]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/slub.c
Merge tag 'mmc-v5.14-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-kernels.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
40
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
43
44 #include "internal.h"
45
46 /*
47 * Lock order:
48 * 1. slab_mutex (Global Mutex)
49 * 2. node->list_lock
50 * 3. slab_lock(page) (Only on some arches and for debugging)
51 *
52 * slab_mutex
53 *
54 * The role of the slab_mutex is to protect the list of all the slabs
55 * and to synchronize major metadata changes to slab cache structures.
56 *
57 * The slab_lock is only used for debugging and on arches that do not
58 * have the ability to do a cmpxchg_double. It only protects:
59 * A. page->freelist -> List of object free in a page
60 * B. page->inuse -> Number of objects in use
61 * C. page->objects -> Number of objects in page
62 * D. page->frozen -> frozen state
63 *
64 * If a slab is frozen then it is exempt from list management. It is not
65 * on any list except per cpu partial list. The processor that froze the
66 * slab is the one who can perform list operations on the page. Other
67 * processors may put objects onto the freelist but the processor that
68 * froze the slab is the only one that can retrieve the objects from the
69 * page's freelist.
70 *
71 * The list_lock protects the partial and full list on each node and
72 * the partial slab counter. If taken then no new slabs may be added or
73 * removed from the lists nor make the number of partial slabs be modified.
74 * (Note that the total number of slabs is an atomic value that may be
75 * modified without taking the list lock).
76 *
77 * The list_lock is a centralized lock and thus we avoid taking it as
78 * much as possible. As long as SLUB does not have to handle partial
79 * slabs, operations can continue without any centralized lock. F.e.
80 * allocating a long series of objects that fill up slabs does not require
81 * the list lock.
82 * Interrupts are disabled during allocation and deallocation in order to
83 * make the slab allocator safe to use in the context of an irq. In addition
84 * interrupts are disabled to ensure that the processor does not change
85 * while handling per_cpu slabs, due to kernel preemption.
86 *
87 * SLUB assigns one slab for allocation to each processor.
88 * Allocations only occur from these slabs called cpu slabs.
89 *
90 * Slabs with free elements are kept on a partial list and during regular
91 * operations no list for full slabs is used. If an object in a full slab is
92 * freed then the slab will show up again on the partial lists.
93 * We track full slabs for debugging purposes though because otherwise we
94 * cannot scan all objects.
95 *
96 * Slabs are freed when they become empty. Teardown and setup is
97 * minimal so we rely on the page allocators per cpu caches for
98 * fast frees and allocs.
99 *
100 * page->frozen The slab is frozen and exempt from list processing.
101 * This means that the slab is dedicated to a purpose
102 * such as satisfying allocations for a specific
103 * processor. Objects may be freed in the slab while
104 * it is frozen but slab_free will then skip the usual
105 * list operations. It is up to the processor holding
106 * the slab to integrate the slab into the slab lists
107 * when the slab is no longer needed.
108 *
109 * One use of this flag is to mark slabs that are
110 * used for allocations. Then such a slab becomes a cpu
111 * slab. The cpu slab may be equipped with an additional
112 * freelist that allows lockless access to
113 * free objects in addition to the regular freelist
114 * that requires the slab lock.
115 *
116 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
117 * options set. This moves slab handling out of
118 * the fast path and disables lockless freelists.
119 */
120
121 #ifdef CONFIG_SLUB_DEBUG
122 #ifdef CONFIG_SLUB_DEBUG_ON
123 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
124 #else
125 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
126 #endif
127 #endif /* CONFIG_SLUB_DEBUG */
128
129 static inline bool kmem_cache_debug(struct kmem_cache *s)
130 {
131 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
132 }
133
134 void *fixup_red_left(struct kmem_cache *s, void *p)
135 {
136 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
137 p += s->red_left_pad;
138
139 return p;
140 }
141
142 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
143 {
144 #ifdef CONFIG_SLUB_CPU_PARTIAL
145 return !kmem_cache_debug(s);
146 #else
147 return false;
148 #endif
149 }
150
151 /*
152 * Issues still to be resolved:
153 *
154 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
155 *
156 * - Variable sizing of the per node arrays
157 */
158
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
161
162 /*
163 * Minimum number of partial slabs. These will be left on the partial
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
165 */
166 #define MIN_PARTIAL 5
167
168 /*
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
171 * sort the partial list by the number of objects in use.
172 */
173 #define MAX_PARTIAL 10
174
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_STORE_USER)
177
178 /*
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
181 */
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
183 SLAB_TRACE)
184
185
186 /*
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
189 * metadata.
190 */
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192
193 #define OO_SHIFT 16
194 #define OO_MASK ((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
196
197 /* Internal SLUB flags */
198 /* Poison object */
199 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
202
203 /*
204 * Tracking user of a slab.
205 */
206 #define TRACK_ADDRS_COUNT 16
207 struct track {
208 unsigned long addr; /* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
211 #endif
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
215 };
216
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
218
219 #ifdef CONFIG_SYSFS
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
222 #else
223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 { return 0; }
226 #endif
227
228 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
229 static void debugfs_slab_add(struct kmem_cache *);
230 #else
231 static inline void debugfs_slab_add(struct kmem_cache *s) { }
232 #endif
233
234 static inline void stat(const struct kmem_cache *s, enum stat_item si)
235 {
236 #ifdef CONFIG_SLUB_STATS
237 /*
238 * The rmw is racy on a preemptible kernel but this is acceptable, so
239 * avoid this_cpu_add()'s irq-disable overhead.
240 */
241 raw_cpu_inc(s->cpu_slab->stat[si]);
242 #endif
243 }
244
245 /*
246 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
247 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
248 * differ during memory hotplug/hotremove operations.
249 * Protected by slab_mutex.
250 */
251 static nodemask_t slab_nodes;
252
253 /********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
256
257 /*
258 * Returns freelist pointer (ptr). With hardening, this is obfuscated
259 * with an XOR of the address where the pointer is held and a per-cache
260 * random number.
261 */
262 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
263 unsigned long ptr_addr)
264 {
265 #ifdef CONFIG_SLAB_FREELIST_HARDENED
266 /*
267 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
268 * Normally, this doesn't cause any issues, as both set_freepointer()
269 * and get_freepointer() are called with a pointer with the same tag.
270 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
271 * example, when __free_slub() iterates over objects in a cache, it
272 * passes untagged pointers to check_object(). check_object() in turns
273 * calls get_freepointer() with an untagged pointer, which causes the
274 * freepointer to be restored incorrectly.
275 */
276 return (void *)((unsigned long)ptr ^ s->random ^
277 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
278 #else
279 return ptr;
280 #endif
281 }
282
283 /* Returns the freelist pointer recorded at location ptr_addr. */
284 static inline void *freelist_dereference(const struct kmem_cache *s,
285 void *ptr_addr)
286 {
287 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
288 (unsigned long)ptr_addr);
289 }
290
291 static inline void *get_freepointer(struct kmem_cache *s, void *object)
292 {
293 object = kasan_reset_tag(object);
294 return freelist_dereference(s, object + s->offset);
295 }
296
297 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
298 {
299 prefetch(object + s->offset);
300 }
301
302 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
303 {
304 unsigned long freepointer_addr;
305 void *p;
306
307 if (!debug_pagealloc_enabled_static())
308 return get_freepointer(s, object);
309
310 object = kasan_reset_tag(object);
311 freepointer_addr = (unsigned long)object + s->offset;
312 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
313 return freelist_ptr(s, p, freepointer_addr);
314 }
315
316 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
317 {
318 unsigned long freeptr_addr = (unsigned long)object + s->offset;
319
320 #ifdef CONFIG_SLAB_FREELIST_HARDENED
321 BUG_ON(object == fp); /* naive detection of double free or corruption */
322 #endif
323
324 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
325 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
326 }
327
328 /* Loop over all objects in a slab */
329 #define for_each_object(__p, __s, __addr, __objects) \
330 for (__p = fixup_red_left(__s, __addr); \
331 __p < (__addr) + (__objects) * (__s)->size; \
332 __p += (__s)->size)
333
334 static inline unsigned int order_objects(unsigned int order, unsigned int size)
335 {
336 return ((unsigned int)PAGE_SIZE << order) / size;
337 }
338
339 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
340 unsigned int size)
341 {
342 struct kmem_cache_order_objects x = {
343 (order << OO_SHIFT) + order_objects(order, size)
344 };
345
346 return x;
347 }
348
349 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
350 {
351 return x.x >> OO_SHIFT;
352 }
353
354 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
355 {
356 return x.x & OO_MASK;
357 }
358
359 /*
360 * Per slab locking using the pagelock
361 */
362 static __always_inline void slab_lock(struct page *page)
363 {
364 VM_BUG_ON_PAGE(PageTail(page), page);
365 bit_spin_lock(PG_locked, &page->flags);
366 }
367
368 static __always_inline void slab_unlock(struct page *page)
369 {
370 VM_BUG_ON_PAGE(PageTail(page), page);
371 __bit_spin_unlock(PG_locked, &page->flags);
372 }
373
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
379 {
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return true;
388 } else
389 #endif
390 {
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 page->counters = counters_new;
396 slab_unlock(page);
397 return true;
398 }
399 slab_unlock(page);
400 }
401
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
404
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
408
409 return false;
410 }
411
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
416 {
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return true;
424 } else
425 #endif
426 {
427 unsigned long flags;
428
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 page->counters = counters_new;
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return true;
438 }
439 slab_unlock(page);
440 local_irq_restore(flags);
441 }
442
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
445
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
449
450 return false;
451 }
452
453 #ifdef CONFIG_SLUB_DEBUG
454 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
455 static DEFINE_SPINLOCK(object_map_lock);
456
457 #if IS_ENABLED(CONFIG_KUNIT)
458 static bool slab_add_kunit_errors(void)
459 {
460 struct kunit_resource *resource;
461
462 if (likely(!current->kunit_test))
463 return false;
464
465 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
466 if (!resource)
467 return false;
468
469 (*(int *)resource->data)++;
470 kunit_put_resource(resource);
471 return true;
472 }
473 #else
474 static inline bool slab_add_kunit_errors(void) { return false; }
475 #endif
476
477 /*
478 * Determine a map of object in use on a page.
479 *
480 * Node listlock must be held to guarantee that the page does
481 * not vanish from under us.
482 */
483 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
484 __acquires(&object_map_lock)
485 {
486 void *p;
487 void *addr = page_address(page);
488
489 VM_BUG_ON(!irqs_disabled());
490
491 spin_lock(&object_map_lock);
492
493 bitmap_zero(object_map, page->objects);
494
495 for (p = page->freelist; p; p = get_freepointer(s, p))
496 set_bit(__obj_to_index(s, addr, p), object_map);
497
498 return object_map;
499 }
500
501 static void put_map(unsigned long *map) __releases(&object_map_lock)
502 {
503 VM_BUG_ON(map != object_map);
504 spin_unlock(&object_map_lock);
505 }
506
507 static inline unsigned int size_from_object(struct kmem_cache *s)
508 {
509 if (s->flags & SLAB_RED_ZONE)
510 return s->size - s->red_left_pad;
511
512 return s->size;
513 }
514
515 static inline void *restore_red_left(struct kmem_cache *s, void *p)
516 {
517 if (s->flags & SLAB_RED_ZONE)
518 p -= s->red_left_pad;
519
520 return p;
521 }
522
523 /*
524 * Debug settings:
525 */
526 #if defined(CONFIG_SLUB_DEBUG_ON)
527 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
528 #else
529 static slab_flags_t slub_debug;
530 #endif
531
532 static char *slub_debug_string;
533 static int disable_higher_order_debug;
534
535 /*
536 * slub is about to manipulate internal object metadata. This memory lies
537 * outside the range of the allocated object, so accessing it would normally
538 * be reported by kasan as a bounds error. metadata_access_enable() is used
539 * to tell kasan that these accesses are OK.
540 */
541 static inline void metadata_access_enable(void)
542 {
543 kasan_disable_current();
544 }
545
546 static inline void metadata_access_disable(void)
547 {
548 kasan_enable_current();
549 }
550
551 /*
552 * Object debugging
553 */
554
555 /* Verify that a pointer has an address that is valid within a slab page */
556 static inline int check_valid_pointer(struct kmem_cache *s,
557 struct page *page, void *object)
558 {
559 void *base;
560
561 if (!object)
562 return 1;
563
564 base = page_address(page);
565 object = kasan_reset_tag(object);
566 object = restore_red_left(s, object);
567 if (object < base || object >= base + page->objects * s->size ||
568 (object - base) % s->size) {
569 return 0;
570 }
571
572 return 1;
573 }
574
575 static void print_section(char *level, char *text, u8 *addr,
576 unsigned int length)
577 {
578 metadata_access_enable();
579 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
580 16, 1, kasan_reset_tag((void *)addr), length, 1);
581 metadata_access_disable();
582 }
583
584 /*
585 * See comment in calculate_sizes().
586 */
587 static inline bool freeptr_outside_object(struct kmem_cache *s)
588 {
589 return s->offset >= s->inuse;
590 }
591
592 /*
593 * Return offset of the end of info block which is inuse + free pointer if
594 * not overlapping with object.
595 */
596 static inline unsigned int get_info_end(struct kmem_cache *s)
597 {
598 if (freeptr_outside_object(s))
599 return s->inuse + sizeof(void *);
600 else
601 return s->inuse;
602 }
603
604 static struct track *get_track(struct kmem_cache *s, void *object,
605 enum track_item alloc)
606 {
607 struct track *p;
608
609 p = object + get_info_end(s);
610
611 return kasan_reset_tag(p + alloc);
612 }
613
614 static void set_track(struct kmem_cache *s, void *object,
615 enum track_item alloc, unsigned long addr)
616 {
617 struct track *p = get_track(s, object, alloc);
618
619 if (addr) {
620 #ifdef CONFIG_STACKTRACE
621 unsigned int nr_entries;
622
623 metadata_access_enable();
624 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
625 TRACK_ADDRS_COUNT, 3);
626 metadata_access_disable();
627
628 if (nr_entries < TRACK_ADDRS_COUNT)
629 p->addrs[nr_entries] = 0;
630 #endif
631 p->addr = addr;
632 p->cpu = smp_processor_id();
633 p->pid = current->pid;
634 p->when = jiffies;
635 } else {
636 memset(p, 0, sizeof(struct track));
637 }
638 }
639
640 static void init_tracking(struct kmem_cache *s, void *object)
641 {
642 if (!(s->flags & SLAB_STORE_USER))
643 return;
644
645 set_track(s, object, TRACK_FREE, 0UL);
646 set_track(s, object, TRACK_ALLOC, 0UL);
647 }
648
649 static void print_track(const char *s, struct track *t, unsigned long pr_time)
650 {
651 if (!t->addr)
652 return;
653
654 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
655 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
656 #ifdef CONFIG_STACKTRACE
657 {
658 int i;
659 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
660 if (t->addrs[i])
661 pr_err("\t%pS\n", (void *)t->addrs[i]);
662 else
663 break;
664 }
665 #endif
666 }
667
668 void print_tracking(struct kmem_cache *s, void *object)
669 {
670 unsigned long pr_time = jiffies;
671 if (!(s->flags & SLAB_STORE_USER))
672 return;
673
674 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
675 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
676 }
677
678 static void print_page_info(struct page *page)
679 {
680 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
681 page, page->objects, page->inuse, page->freelist,
682 page->flags, &page->flags);
683
684 }
685
686 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
687 {
688 struct va_format vaf;
689 va_list args;
690
691 va_start(args, fmt);
692 vaf.fmt = fmt;
693 vaf.va = &args;
694 pr_err("=============================================================================\n");
695 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
696 pr_err("-----------------------------------------------------------------------------\n\n");
697 va_end(args);
698 }
699
700 __printf(2, 3)
701 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
702 {
703 struct va_format vaf;
704 va_list args;
705
706 if (slab_add_kunit_errors())
707 return;
708
709 va_start(args, fmt);
710 vaf.fmt = fmt;
711 vaf.va = &args;
712 pr_err("FIX %s: %pV\n", s->name, &vaf);
713 va_end(args);
714 }
715
716 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
717 void **freelist, void *nextfree)
718 {
719 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
720 !check_valid_pointer(s, page, nextfree) && freelist) {
721 object_err(s, page, *freelist, "Freechain corrupt");
722 *freelist = NULL;
723 slab_fix(s, "Isolate corrupted freechain");
724 return true;
725 }
726
727 return false;
728 }
729
730 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
731 {
732 unsigned int off; /* Offset of last byte */
733 u8 *addr = page_address(page);
734
735 print_tracking(s, p);
736
737 print_page_info(page);
738
739 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
740 p, p - addr, get_freepointer(s, p));
741
742 if (s->flags & SLAB_RED_ZONE)
743 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
744 s->red_left_pad);
745 else if (p > addr + 16)
746 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
747
748 print_section(KERN_ERR, "Object ", p,
749 min_t(unsigned int, s->object_size, PAGE_SIZE));
750 if (s->flags & SLAB_RED_ZONE)
751 print_section(KERN_ERR, "Redzone ", p + s->object_size,
752 s->inuse - s->object_size);
753
754 off = get_info_end(s);
755
756 if (s->flags & SLAB_STORE_USER)
757 off += 2 * sizeof(struct track);
758
759 off += kasan_metadata_size(s);
760
761 if (off != size_from_object(s))
762 /* Beginning of the filler is the free pointer */
763 print_section(KERN_ERR, "Padding ", p + off,
764 size_from_object(s) - off);
765
766 dump_stack();
767 }
768
769 void object_err(struct kmem_cache *s, struct page *page,
770 u8 *object, char *reason)
771 {
772 if (slab_add_kunit_errors())
773 return;
774
775 slab_bug(s, "%s", reason);
776 print_trailer(s, page, object);
777 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
778 }
779
780 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
781 const char *fmt, ...)
782 {
783 va_list args;
784 char buf[100];
785
786 if (slab_add_kunit_errors())
787 return;
788
789 va_start(args, fmt);
790 vsnprintf(buf, sizeof(buf), fmt, args);
791 va_end(args);
792 slab_bug(s, "%s", buf);
793 print_page_info(page);
794 dump_stack();
795 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
796 }
797
798 static void init_object(struct kmem_cache *s, void *object, u8 val)
799 {
800 u8 *p = kasan_reset_tag(object);
801
802 if (s->flags & SLAB_RED_ZONE)
803 memset(p - s->red_left_pad, val, s->red_left_pad);
804
805 if (s->flags & __OBJECT_POISON) {
806 memset(p, POISON_FREE, s->object_size - 1);
807 p[s->object_size - 1] = POISON_END;
808 }
809
810 if (s->flags & SLAB_RED_ZONE)
811 memset(p + s->object_size, val, s->inuse - s->object_size);
812 }
813
814 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
815 void *from, void *to)
816 {
817 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
818 memset(from, data, to - from);
819 }
820
821 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
822 u8 *object, char *what,
823 u8 *start, unsigned int value, unsigned int bytes)
824 {
825 u8 *fault;
826 u8 *end;
827 u8 *addr = page_address(page);
828
829 metadata_access_enable();
830 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
831 metadata_access_disable();
832 if (!fault)
833 return 1;
834
835 end = start + bytes;
836 while (end > fault && end[-1] == value)
837 end--;
838
839 if (slab_add_kunit_errors())
840 goto skip_bug_print;
841
842 slab_bug(s, "%s overwritten", what);
843 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
844 fault, end - 1, fault - addr,
845 fault[0], value);
846 print_trailer(s, page, object);
847 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
848
849 skip_bug_print:
850 restore_bytes(s, what, value, fault, end);
851 return 0;
852 }
853
854 /*
855 * Object layout:
856 *
857 * object address
858 * Bytes of the object to be managed.
859 * If the freepointer may overlay the object then the free
860 * pointer is at the middle of the object.
861 *
862 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
863 * 0xa5 (POISON_END)
864 *
865 * object + s->object_size
866 * Padding to reach word boundary. This is also used for Redzoning.
867 * Padding is extended by another word if Redzoning is enabled and
868 * object_size == inuse.
869 *
870 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
871 * 0xcc (RED_ACTIVE) for objects in use.
872 *
873 * object + s->inuse
874 * Meta data starts here.
875 *
876 * A. Free pointer (if we cannot overwrite object on free)
877 * B. Tracking data for SLAB_STORE_USER
878 * C. Padding to reach required alignment boundary or at minimum
879 * one word if debugging is on to be able to detect writes
880 * before the word boundary.
881 *
882 * Padding is done using 0x5a (POISON_INUSE)
883 *
884 * object + s->size
885 * Nothing is used beyond s->size.
886 *
887 * If slabcaches are merged then the object_size and inuse boundaries are mostly
888 * ignored. And therefore no slab options that rely on these boundaries
889 * may be used with merged slabcaches.
890 */
891
892 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
893 {
894 unsigned long off = get_info_end(s); /* The end of info */
895
896 if (s->flags & SLAB_STORE_USER)
897 /* We also have user information there */
898 off += 2 * sizeof(struct track);
899
900 off += kasan_metadata_size(s);
901
902 if (size_from_object(s) == off)
903 return 1;
904
905 return check_bytes_and_report(s, page, p, "Object padding",
906 p + off, POISON_INUSE, size_from_object(s) - off);
907 }
908
909 /* Check the pad bytes at the end of a slab page */
910 static int slab_pad_check(struct kmem_cache *s, struct page *page)
911 {
912 u8 *start;
913 u8 *fault;
914 u8 *end;
915 u8 *pad;
916 int length;
917 int remainder;
918
919 if (!(s->flags & SLAB_POISON))
920 return 1;
921
922 start = page_address(page);
923 length = page_size(page);
924 end = start + length;
925 remainder = length % s->size;
926 if (!remainder)
927 return 1;
928
929 pad = end - remainder;
930 metadata_access_enable();
931 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
932 metadata_access_disable();
933 if (!fault)
934 return 1;
935 while (end > fault && end[-1] == POISON_INUSE)
936 end--;
937
938 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
939 fault, end - 1, fault - start);
940 print_section(KERN_ERR, "Padding ", pad, remainder);
941
942 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
943 return 0;
944 }
945
946 static int check_object(struct kmem_cache *s, struct page *page,
947 void *object, u8 val)
948 {
949 u8 *p = object;
950 u8 *endobject = object + s->object_size;
951
952 if (s->flags & SLAB_RED_ZONE) {
953 if (!check_bytes_and_report(s, page, object, "Left Redzone",
954 object - s->red_left_pad, val, s->red_left_pad))
955 return 0;
956
957 if (!check_bytes_and_report(s, page, object, "Right Redzone",
958 endobject, val, s->inuse - s->object_size))
959 return 0;
960 } else {
961 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
962 check_bytes_and_report(s, page, p, "Alignment padding",
963 endobject, POISON_INUSE,
964 s->inuse - s->object_size);
965 }
966 }
967
968 if (s->flags & SLAB_POISON) {
969 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
970 (!check_bytes_and_report(s, page, p, "Poison", p,
971 POISON_FREE, s->object_size - 1) ||
972 !check_bytes_and_report(s, page, p, "End Poison",
973 p + s->object_size - 1, POISON_END, 1)))
974 return 0;
975 /*
976 * check_pad_bytes cleans up on its own.
977 */
978 check_pad_bytes(s, page, p);
979 }
980
981 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
982 /*
983 * Object and freepointer overlap. Cannot check
984 * freepointer while object is allocated.
985 */
986 return 1;
987
988 /* Check free pointer validity */
989 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
990 object_err(s, page, p, "Freepointer corrupt");
991 /*
992 * No choice but to zap it and thus lose the remainder
993 * of the free objects in this slab. May cause
994 * another error because the object count is now wrong.
995 */
996 set_freepointer(s, p, NULL);
997 return 0;
998 }
999 return 1;
1000 }
1001
1002 static int check_slab(struct kmem_cache *s, struct page *page)
1003 {
1004 int maxobj;
1005
1006 VM_BUG_ON(!irqs_disabled());
1007
1008 if (!PageSlab(page)) {
1009 slab_err(s, page, "Not a valid slab page");
1010 return 0;
1011 }
1012
1013 maxobj = order_objects(compound_order(page), s->size);
1014 if (page->objects > maxobj) {
1015 slab_err(s, page, "objects %u > max %u",
1016 page->objects, maxobj);
1017 return 0;
1018 }
1019 if (page->inuse > page->objects) {
1020 slab_err(s, page, "inuse %u > max %u",
1021 page->inuse, page->objects);
1022 return 0;
1023 }
1024 /* Slab_pad_check fixes things up after itself */
1025 slab_pad_check(s, page);
1026 return 1;
1027 }
1028
1029 /*
1030 * Determine if a certain object on a page is on the freelist. Must hold the
1031 * slab lock to guarantee that the chains are in a consistent state.
1032 */
1033 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1034 {
1035 int nr = 0;
1036 void *fp;
1037 void *object = NULL;
1038 int max_objects;
1039
1040 fp = page->freelist;
1041 while (fp && nr <= page->objects) {
1042 if (fp == search)
1043 return 1;
1044 if (!check_valid_pointer(s, page, fp)) {
1045 if (object) {
1046 object_err(s, page, object,
1047 "Freechain corrupt");
1048 set_freepointer(s, object, NULL);
1049 } else {
1050 slab_err(s, page, "Freepointer corrupt");
1051 page->freelist = NULL;
1052 page->inuse = page->objects;
1053 slab_fix(s, "Freelist cleared");
1054 return 0;
1055 }
1056 break;
1057 }
1058 object = fp;
1059 fp = get_freepointer(s, object);
1060 nr++;
1061 }
1062
1063 max_objects = order_objects(compound_order(page), s->size);
1064 if (max_objects > MAX_OBJS_PER_PAGE)
1065 max_objects = MAX_OBJS_PER_PAGE;
1066
1067 if (page->objects != max_objects) {
1068 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1069 page->objects, max_objects);
1070 page->objects = max_objects;
1071 slab_fix(s, "Number of objects adjusted");
1072 }
1073 if (page->inuse != page->objects - nr) {
1074 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1075 page->inuse, page->objects - nr);
1076 page->inuse = page->objects - nr;
1077 slab_fix(s, "Object count adjusted");
1078 }
1079 return search == NULL;
1080 }
1081
1082 static void trace(struct kmem_cache *s, struct page *page, void *object,
1083 int alloc)
1084 {
1085 if (s->flags & SLAB_TRACE) {
1086 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1087 s->name,
1088 alloc ? "alloc" : "free",
1089 object, page->inuse,
1090 page->freelist);
1091
1092 if (!alloc)
1093 print_section(KERN_INFO, "Object ", (void *)object,
1094 s->object_size);
1095
1096 dump_stack();
1097 }
1098 }
1099
1100 /*
1101 * Tracking of fully allocated slabs for debugging purposes.
1102 */
1103 static void add_full(struct kmem_cache *s,
1104 struct kmem_cache_node *n, struct page *page)
1105 {
1106 if (!(s->flags & SLAB_STORE_USER))
1107 return;
1108
1109 lockdep_assert_held(&n->list_lock);
1110 list_add(&page->slab_list, &n->full);
1111 }
1112
1113 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1114 {
1115 if (!(s->flags & SLAB_STORE_USER))
1116 return;
1117
1118 lockdep_assert_held(&n->list_lock);
1119 list_del(&page->slab_list);
1120 }
1121
1122 /* Tracking of the number of slabs for debugging purposes */
1123 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1124 {
1125 struct kmem_cache_node *n = get_node(s, node);
1126
1127 return atomic_long_read(&n->nr_slabs);
1128 }
1129
1130 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1131 {
1132 return atomic_long_read(&n->nr_slabs);
1133 }
1134
1135 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1136 {
1137 struct kmem_cache_node *n = get_node(s, node);
1138
1139 /*
1140 * May be called early in order to allocate a slab for the
1141 * kmem_cache_node structure. Solve the chicken-egg
1142 * dilemma by deferring the increment of the count during
1143 * bootstrap (see early_kmem_cache_node_alloc).
1144 */
1145 if (likely(n)) {
1146 atomic_long_inc(&n->nr_slabs);
1147 atomic_long_add(objects, &n->total_objects);
1148 }
1149 }
1150 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1151 {
1152 struct kmem_cache_node *n = get_node(s, node);
1153
1154 atomic_long_dec(&n->nr_slabs);
1155 atomic_long_sub(objects, &n->total_objects);
1156 }
1157
1158 /* Object debug checks for alloc/free paths */
1159 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1160 void *object)
1161 {
1162 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1163 return;
1164
1165 init_object(s, object, SLUB_RED_INACTIVE);
1166 init_tracking(s, object);
1167 }
1168
1169 static
1170 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1171 {
1172 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1173 return;
1174
1175 metadata_access_enable();
1176 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1177 metadata_access_disable();
1178 }
1179
1180 static inline int alloc_consistency_checks(struct kmem_cache *s,
1181 struct page *page, void *object)
1182 {
1183 if (!check_slab(s, page))
1184 return 0;
1185
1186 if (!check_valid_pointer(s, page, object)) {
1187 object_err(s, page, object, "Freelist Pointer check fails");
1188 return 0;
1189 }
1190
1191 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1192 return 0;
1193
1194 return 1;
1195 }
1196
1197 static noinline int alloc_debug_processing(struct kmem_cache *s,
1198 struct page *page,
1199 void *object, unsigned long addr)
1200 {
1201 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1202 if (!alloc_consistency_checks(s, page, object))
1203 goto bad;
1204 }
1205
1206 /* Success perform special debug activities for allocs */
1207 if (s->flags & SLAB_STORE_USER)
1208 set_track(s, object, TRACK_ALLOC, addr);
1209 trace(s, page, object, 1);
1210 init_object(s, object, SLUB_RED_ACTIVE);
1211 return 1;
1212
1213 bad:
1214 if (PageSlab(page)) {
1215 /*
1216 * If this is a slab page then lets do the best we can
1217 * to avoid issues in the future. Marking all objects
1218 * as used avoids touching the remaining objects.
1219 */
1220 slab_fix(s, "Marking all objects used");
1221 page->inuse = page->objects;
1222 page->freelist = NULL;
1223 }
1224 return 0;
1225 }
1226
1227 static inline int free_consistency_checks(struct kmem_cache *s,
1228 struct page *page, void *object, unsigned long addr)
1229 {
1230 if (!check_valid_pointer(s, page, object)) {
1231 slab_err(s, page, "Invalid object pointer 0x%p", object);
1232 return 0;
1233 }
1234
1235 if (on_freelist(s, page, object)) {
1236 object_err(s, page, object, "Object already free");
1237 return 0;
1238 }
1239
1240 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1241 return 0;
1242
1243 if (unlikely(s != page->slab_cache)) {
1244 if (!PageSlab(page)) {
1245 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1246 object);
1247 } else if (!page->slab_cache) {
1248 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1249 object);
1250 dump_stack();
1251 } else
1252 object_err(s, page, object,
1253 "page slab pointer corrupt.");
1254 return 0;
1255 }
1256 return 1;
1257 }
1258
1259 /* Supports checking bulk free of a constructed freelist */
1260 static noinline int free_debug_processing(
1261 struct kmem_cache *s, struct page *page,
1262 void *head, void *tail, int bulk_cnt,
1263 unsigned long addr)
1264 {
1265 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1266 void *object = head;
1267 int cnt = 0;
1268 unsigned long flags;
1269 int ret = 0;
1270
1271 spin_lock_irqsave(&n->list_lock, flags);
1272 slab_lock(page);
1273
1274 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1275 if (!check_slab(s, page))
1276 goto out;
1277 }
1278
1279 next_object:
1280 cnt++;
1281
1282 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1283 if (!free_consistency_checks(s, page, object, addr))
1284 goto out;
1285 }
1286
1287 if (s->flags & SLAB_STORE_USER)
1288 set_track(s, object, TRACK_FREE, addr);
1289 trace(s, page, object, 0);
1290 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1291 init_object(s, object, SLUB_RED_INACTIVE);
1292
1293 /* Reached end of constructed freelist yet? */
1294 if (object != tail) {
1295 object = get_freepointer(s, object);
1296 goto next_object;
1297 }
1298 ret = 1;
1299
1300 out:
1301 if (cnt != bulk_cnt)
1302 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1303 bulk_cnt, cnt);
1304
1305 slab_unlock(page);
1306 spin_unlock_irqrestore(&n->list_lock, flags);
1307 if (!ret)
1308 slab_fix(s, "Object at 0x%p not freed", object);
1309 return ret;
1310 }
1311
1312 /*
1313 * Parse a block of slub_debug options. Blocks are delimited by ';'
1314 *
1315 * @str: start of block
1316 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1317 * @slabs: return start of list of slabs, or NULL when there's no list
1318 * @init: assume this is initial parsing and not per-kmem-create parsing
1319 *
1320 * returns the start of next block if there's any, or NULL
1321 */
1322 static char *
1323 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1324 {
1325 bool higher_order_disable = false;
1326
1327 /* Skip any completely empty blocks */
1328 while (*str && *str == ';')
1329 str++;
1330
1331 if (*str == ',') {
1332 /*
1333 * No options but restriction on slabs. This means full
1334 * debugging for slabs matching a pattern.
1335 */
1336 *flags = DEBUG_DEFAULT_FLAGS;
1337 goto check_slabs;
1338 }
1339 *flags = 0;
1340
1341 /* Determine which debug features should be switched on */
1342 for (; *str && *str != ',' && *str != ';'; str++) {
1343 switch (tolower(*str)) {
1344 case '-':
1345 *flags = 0;
1346 break;
1347 case 'f':
1348 *flags |= SLAB_CONSISTENCY_CHECKS;
1349 break;
1350 case 'z':
1351 *flags |= SLAB_RED_ZONE;
1352 break;
1353 case 'p':
1354 *flags |= SLAB_POISON;
1355 break;
1356 case 'u':
1357 *flags |= SLAB_STORE_USER;
1358 break;
1359 case 't':
1360 *flags |= SLAB_TRACE;
1361 break;
1362 case 'a':
1363 *flags |= SLAB_FAILSLAB;
1364 break;
1365 case 'o':
1366 /*
1367 * Avoid enabling debugging on caches if its minimum
1368 * order would increase as a result.
1369 */
1370 higher_order_disable = true;
1371 break;
1372 default:
1373 if (init)
1374 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1375 }
1376 }
1377 check_slabs:
1378 if (*str == ',')
1379 *slabs = ++str;
1380 else
1381 *slabs = NULL;
1382
1383 /* Skip over the slab list */
1384 while (*str && *str != ';')
1385 str++;
1386
1387 /* Skip any completely empty blocks */
1388 while (*str && *str == ';')
1389 str++;
1390
1391 if (init && higher_order_disable)
1392 disable_higher_order_debug = 1;
1393
1394 if (*str)
1395 return str;
1396 else
1397 return NULL;
1398 }
1399
1400 static int __init setup_slub_debug(char *str)
1401 {
1402 slab_flags_t flags;
1403 slab_flags_t global_flags;
1404 char *saved_str;
1405 char *slab_list;
1406 bool global_slub_debug_changed = false;
1407 bool slab_list_specified = false;
1408
1409 global_flags = DEBUG_DEFAULT_FLAGS;
1410 if (*str++ != '=' || !*str)
1411 /*
1412 * No options specified. Switch on full debugging.
1413 */
1414 goto out;
1415
1416 saved_str = str;
1417 while (str) {
1418 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1419
1420 if (!slab_list) {
1421 global_flags = flags;
1422 global_slub_debug_changed = true;
1423 } else {
1424 slab_list_specified = true;
1425 }
1426 }
1427
1428 /*
1429 * For backwards compatibility, a single list of flags with list of
1430 * slabs means debugging is only changed for those slabs, so the global
1431 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1432 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1433 * long as there is no option specifying flags without a slab list.
1434 */
1435 if (slab_list_specified) {
1436 if (!global_slub_debug_changed)
1437 global_flags = slub_debug;
1438 slub_debug_string = saved_str;
1439 }
1440 out:
1441 slub_debug = global_flags;
1442 if (slub_debug != 0 || slub_debug_string)
1443 static_branch_enable(&slub_debug_enabled);
1444 else
1445 static_branch_disable(&slub_debug_enabled);
1446 if ((static_branch_unlikely(&init_on_alloc) ||
1447 static_branch_unlikely(&init_on_free)) &&
1448 (slub_debug & SLAB_POISON))
1449 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1450 return 1;
1451 }
1452
1453 __setup("slub_debug", setup_slub_debug);
1454
1455 /*
1456 * kmem_cache_flags - apply debugging options to the cache
1457 * @object_size: the size of an object without meta data
1458 * @flags: flags to set
1459 * @name: name of the cache
1460 *
1461 * Debug option(s) are applied to @flags. In addition to the debug
1462 * option(s), if a slab name (or multiple) is specified i.e.
1463 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1464 * then only the select slabs will receive the debug option(s).
1465 */
1466 slab_flags_t kmem_cache_flags(unsigned int object_size,
1467 slab_flags_t flags, const char *name)
1468 {
1469 char *iter;
1470 size_t len;
1471 char *next_block;
1472 slab_flags_t block_flags;
1473 slab_flags_t slub_debug_local = slub_debug;
1474
1475 /*
1476 * If the slab cache is for debugging (e.g. kmemleak) then
1477 * don't store user (stack trace) information by default,
1478 * but let the user enable it via the command line below.
1479 */
1480 if (flags & SLAB_NOLEAKTRACE)
1481 slub_debug_local &= ~SLAB_STORE_USER;
1482
1483 len = strlen(name);
1484 next_block = slub_debug_string;
1485 /* Go through all blocks of debug options, see if any matches our slab's name */
1486 while (next_block) {
1487 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1488 if (!iter)
1489 continue;
1490 /* Found a block that has a slab list, search it */
1491 while (*iter) {
1492 char *end, *glob;
1493 size_t cmplen;
1494
1495 end = strchrnul(iter, ',');
1496 if (next_block && next_block < end)
1497 end = next_block - 1;
1498
1499 glob = strnchr(iter, end - iter, '*');
1500 if (glob)
1501 cmplen = glob - iter;
1502 else
1503 cmplen = max_t(size_t, len, (end - iter));
1504
1505 if (!strncmp(name, iter, cmplen)) {
1506 flags |= block_flags;
1507 return flags;
1508 }
1509
1510 if (!*end || *end == ';')
1511 break;
1512 iter = end + 1;
1513 }
1514 }
1515
1516 return flags | slub_debug_local;
1517 }
1518 #else /* !CONFIG_SLUB_DEBUG */
1519 static inline void setup_object_debug(struct kmem_cache *s,
1520 struct page *page, void *object) {}
1521 static inline
1522 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1523
1524 static inline int alloc_debug_processing(struct kmem_cache *s,
1525 struct page *page, void *object, unsigned long addr) { return 0; }
1526
1527 static inline int free_debug_processing(
1528 struct kmem_cache *s, struct page *page,
1529 void *head, void *tail, int bulk_cnt,
1530 unsigned long addr) { return 0; }
1531
1532 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1533 { return 1; }
1534 static inline int check_object(struct kmem_cache *s, struct page *page,
1535 void *object, u8 val) { return 1; }
1536 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1537 struct page *page) {}
1538 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1539 struct page *page) {}
1540 slab_flags_t kmem_cache_flags(unsigned int object_size,
1541 slab_flags_t flags, const char *name)
1542 {
1543 return flags;
1544 }
1545 #define slub_debug 0
1546
1547 #define disable_higher_order_debug 0
1548
1549 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1550 { return 0; }
1551 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1552 { return 0; }
1553 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1554 int objects) {}
1555 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1556 int objects) {}
1557
1558 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1559 void **freelist, void *nextfree)
1560 {
1561 return false;
1562 }
1563 #endif /* CONFIG_SLUB_DEBUG */
1564
1565 /*
1566 * Hooks for other subsystems that check memory allocations. In a typical
1567 * production configuration these hooks all should produce no code at all.
1568 */
1569 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1570 {
1571 ptr = kasan_kmalloc_large(ptr, size, flags);
1572 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1573 kmemleak_alloc(ptr, size, 1, flags);
1574 return ptr;
1575 }
1576
1577 static __always_inline void kfree_hook(void *x)
1578 {
1579 kmemleak_free(x);
1580 kasan_kfree_large(x);
1581 }
1582
1583 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1584 void *x, bool init)
1585 {
1586 kmemleak_free_recursive(x, s->flags);
1587
1588 /*
1589 * Trouble is that we may no longer disable interrupts in the fast path
1590 * So in order to make the debug calls that expect irqs to be
1591 * disabled we need to disable interrupts temporarily.
1592 */
1593 #ifdef CONFIG_LOCKDEP
1594 {
1595 unsigned long flags;
1596
1597 local_irq_save(flags);
1598 debug_check_no_locks_freed(x, s->object_size);
1599 local_irq_restore(flags);
1600 }
1601 #endif
1602 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1603 debug_check_no_obj_freed(x, s->object_size);
1604
1605 /* Use KCSAN to help debug racy use-after-free. */
1606 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1607 __kcsan_check_access(x, s->object_size,
1608 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1609
1610 /*
1611 * As memory initialization might be integrated into KASAN,
1612 * kasan_slab_free and initialization memset's must be
1613 * kept together to avoid discrepancies in behavior.
1614 *
1615 * The initialization memset's clear the object and the metadata,
1616 * but don't touch the SLAB redzone.
1617 */
1618 if (init) {
1619 int rsize;
1620
1621 if (!kasan_has_integrated_init())
1622 memset(kasan_reset_tag(x), 0, s->object_size);
1623 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1624 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1625 s->size - s->inuse - rsize);
1626 }
1627 /* KASAN might put x into memory quarantine, delaying its reuse. */
1628 return kasan_slab_free(s, x, init);
1629 }
1630
1631 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1632 void **head, void **tail)
1633 {
1634
1635 void *object;
1636 void *next = *head;
1637 void *old_tail = *tail ? *tail : *head;
1638
1639 if (is_kfence_address(next)) {
1640 slab_free_hook(s, next, false);
1641 return true;
1642 }
1643
1644 /* Head and tail of the reconstructed freelist */
1645 *head = NULL;
1646 *tail = NULL;
1647
1648 do {
1649 object = next;
1650 next = get_freepointer(s, object);
1651
1652 /* If object's reuse doesn't have to be delayed */
1653 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1654 /* Move object to the new freelist */
1655 set_freepointer(s, object, *head);
1656 *head = object;
1657 if (!*tail)
1658 *tail = object;
1659 }
1660 } while (object != old_tail);
1661
1662 if (*head == *tail)
1663 *tail = NULL;
1664
1665 return *head != NULL;
1666 }
1667
1668 static void *setup_object(struct kmem_cache *s, struct page *page,
1669 void *object)
1670 {
1671 setup_object_debug(s, page, object);
1672 object = kasan_init_slab_obj(s, object);
1673 if (unlikely(s->ctor)) {
1674 kasan_unpoison_object_data(s, object);
1675 s->ctor(object);
1676 kasan_poison_object_data(s, object);
1677 }
1678 return object;
1679 }
1680
1681 /*
1682 * Slab allocation and freeing
1683 */
1684 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1685 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1686 {
1687 struct page *page;
1688 unsigned int order = oo_order(oo);
1689
1690 if (node == NUMA_NO_NODE)
1691 page = alloc_pages(flags, order);
1692 else
1693 page = __alloc_pages_node(node, flags, order);
1694
1695 return page;
1696 }
1697
1698 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1699 /* Pre-initialize the random sequence cache */
1700 static int init_cache_random_seq(struct kmem_cache *s)
1701 {
1702 unsigned int count = oo_objects(s->oo);
1703 int err;
1704
1705 /* Bailout if already initialised */
1706 if (s->random_seq)
1707 return 0;
1708
1709 err = cache_random_seq_create(s, count, GFP_KERNEL);
1710 if (err) {
1711 pr_err("SLUB: Unable to initialize free list for %s\n",
1712 s->name);
1713 return err;
1714 }
1715
1716 /* Transform to an offset on the set of pages */
1717 if (s->random_seq) {
1718 unsigned int i;
1719
1720 for (i = 0; i < count; i++)
1721 s->random_seq[i] *= s->size;
1722 }
1723 return 0;
1724 }
1725
1726 /* Initialize each random sequence freelist per cache */
1727 static void __init init_freelist_randomization(void)
1728 {
1729 struct kmem_cache *s;
1730
1731 mutex_lock(&slab_mutex);
1732
1733 list_for_each_entry(s, &slab_caches, list)
1734 init_cache_random_seq(s);
1735
1736 mutex_unlock(&slab_mutex);
1737 }
1738
1739 /* Get the next entry on the pre-computed freelist randomized */
1740 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1741 unsigned long *pos, void *start,
1742 unsigned long page_limit,
1743 unsigned long freelist_count)
1744 {
1745 unsigned int idx;
1746
1747 /*
1748 * If the target page allocation failed, the number of objects on the
1749 * page might be smaller than the usual size defined by the cache.
1750 */
1751 do {
1752 idx = s->random_seq[*pos];
1753 *pos += 1;
1754 if (*pos >= freelist_count)
1755 *pos = 0;
1756 } while (unlikely(idx >= page_limit));
1757
1758 return (char *)start + idx;
1759 }
1760
1761 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1762 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1763 {
1764 void *start;
1765 void *cur;
1766 void *next;
1767 unsigned long idx, pos, page_limit, freelist_count;
1768
1769 if (page->objects < 2 || !s->random_seq)
1770 return false;
1771
1772 freelist_count = oo_objects(s->oo);
1773 pos = get_random_int() % freelist_count;
1774
1775 page_limit = page->objects * s->size;
1776 start = fixup_red_left(s, page_address(page));
1777
1778 /* First entry is used as the base of the freelist */
1779 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1780 freelist_count);
1781 cur = setup_object(s, page, cur);
1782 page->freelist = cur;
1783
1784 for (idx = 1; idx < page->objects; idx++) {
1785 next = next_freelist_entry(s, page, &pos, start, page_limit,
1786 freelist_count);
1787 next = setup_object(s, page, next);
1788 set_freepointer(s, cur, next);
1789 cur = next;
1790 }
1791 set_freepointer(s, cur, NULL);
1792
1793 return true;
1794 }
1795 #else
1796 static inline int init_cache_random_seq(struct kmem_cache *s)
1797 {
1798 return 0;
1799 }
1800 static inline void init_freelist_randomization(void) { }
1801 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1802 {
1803 return false;
1804 }
1805 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1806
1807 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1808 {
1809 struct page *page;
1810 struct kmem_cache_order_objects oo = s->oo;
1811 gfp_t alloc_gfp;
1812 void *start, *p, *next;
1813 int idx;
1814 bool shuffle;
1815
1816 flags &= gfp_allowed_mask;
1817
1818 if (gfpflags_allow_blocking(flags))
1819 local_irq_enable();
1820
1821 flags |= s->allocflags;
1822
1823 /*
1824 * Let the initial higher-order allocation fail under memory pressure
1825 * so we fall-back to the minimum order allocation.
1826 */
1827 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1828 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1829 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1830
1831 page = alloc_slab_page(s, alloc_gfp, node, oo);
1832 if (unlikely(!page)) {
1833 oo = s->min;
1834 alloc_gfp = flags;
1835 /*
1836 * Allocation may have failed due to fragmentation.
1837 * Try a lower order alloc if possible
1838 */
1839 page = alloc_slab_page(s, alloc_gfp, node, oo);
1840 if (unlikely(!page))
1841 goto out;
1842 stat(s, ORDER_FALLBACK);
1843 }
1844
1845 page->objects = oo_objects(oo);
1846
1847 account_slab_page(page, oo_order(oo), s, flags);
1848
1849 page->slab_cache = s;
1850 __SetPageSlab(page);
1851 if (page_is_pfmemalloc(page))
1852 SetPageSlabPfmemalloc(page);
1853
1854 kasan_poison_slab(page);
1855
1856 start = page_address(page);
1857
1858 setup_page_debug(s, page, start);
1859
1860 shuffle = shuffle_freelist(s, page);
1861
1862 if (!shuffle) {
1863 start = fixup_red_left(s, start);
1864 start = setup_object(s, page, start);
1865 page->freelist = start;
1866 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1867 next = p + s->size;
1868 next = setup_object(s, page, next);
1869 set_freepointer(s, p, next);
1870 p = next;
1871 }
1872 set_freepointer(s, p, NULL);
1873 }
1874
1875 page->inuse = page->objects;
1876 page->frozen = 1;
1877
1878 out:
1879 if (gfpflags_allow_blocking(flags))
1880 local_irq_disable();
1881 if (!page)
1882 return NULL;
1883
1884 inc_slabs_node(s, page_to_nid(page), page->objects);
1885
1886 return page;
1887 }
1888
1889 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1890 {
1891 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1892 flags = kmalloc_fix_flags(flags);
1893
1894 return allocate_slab(s,
1895 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1896 }
1897
1898 static void __free_slab(struct kmem_cache *s, struct page *page)
1899 {
1900 int order = compound_order(page);
1901 int pages = 1 << order;
1902
1903 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1904 void *p;
1905
1906 slab_pad_check(s, page);
1907 for_each_object(p, s, page_address(page),
1908 page->objects)
1909 check_object(s, page, p, SLUB_RED_INACTIVE);
1910 }
1911
1912 __ClearPageSlabPfmemalloc(page);
1913 __ClearPageSlab(page);
1914 /* In union with page->mapping where page allocator expects NULL */
1915 page->slab_cache = NULL;
1916 if (current->reclaim_state)
1917 current->reclaim_state->reclaimed_slab += pages;
1918 unaccount_slab_page(page, order, s);
1919 __free_pages(page, order);
1920 }
1921
1922 static void rcu_free_slab(struct rcu_head *h)
1923 {
1924 struct page *page = container_of(h, struct page, rcu_head);
1925
1926 __free_slab(page->slab_cache, page);
1927 }
1928
1929 static void free_slab(struct kmem_cache *s, struct page *page)
1930 {
1931 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1932 call_rcu(&page->rcu_head, rcu_free_slab);
1933 } else
1934 __free_slab(s, page);
1935 }
1936
1937 static void discard_slab(struct kmem_cache *s, struct page *page)
1938 {
1939 dec_slabs_node(s, page_to_nid(page), page->objects);
1940 free_slab(s, page);
1941 }
1942
1943 /*
1944 * Management of partially allocated slabs.
1945 */
1946 static inline void
1947 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1948 {
1949 n->nr_partial++;
1950 if (tail == DEACTIVATE_TO_TAIL)
1951 list_add_tail(&page->slab_list, &n->partial);
1952 else
1953 list_add(&page->slab_list, &n->partial);
1954 }
1955
1956 static inline void add_partial(struct kmem_cache_node *n,
1957 struct page *page, int tail)
1958 {
1959 lockdep_assert_held(&n->list_lock);
1960 __add_partial(n, page, tail);
1961 }
1962
1963 static inline void remove_partial(struct kmem_cache_node *n,
1964 struct page *page)
1965 {
1966 lockdep_assert_held(&n->list_lock);
1967 list_del(&page->slab_list);
1968 n->nr_partial--;
1969 }
1970
1971 /*
1972 * Remove slab from the partial list, freeze it and
1973 * return the pointer to the freelist.
1974 *
1975 * Returns a list of objects or NULL if it fails.
1976 */
1977 static inline void *acquire_slab(struct kmem_cache *s,
1978 struct kmem_cache_node *n, struct page *page,
1979 int mode, int *objects)
1980 {
1981 void *freelist;
1982 unsigned long counters;
1983 struct page new;
1984
1985 lockdep_assert_held(&n->list_lock);
1986
1987 /*
1988 * Zap the freelist and set the frozen bit.
1989 * The old freelist is the list of objects for the
1990 * per cpu allocation list.
1991 */
1992 freelist = page->freelist;
1993 counters = page->counters;
1994 new.counters = counters;
1995 *objects = new.objects - new.inuse;
1996 if (mode) {
1997 new.inuse = page->objects;
1998 new.freelist = NULL;
1999 } else {
2000 new.freelist = freelist;
2001 }
2002
2003 VM_BUG_ON(new.frozen);
2004 new.frozen = 1;
2005
2006 if (!__cmpxchg_double_slab(s, page,
2007 freelist, counters,
2008 new.freelist, new.counters,
2009 "acquire_slab"))
2010 return NULL;
2011
2012 remove_partial(n, page);
2013 WARN_ON(!freelist);
2014 return freelist;
2015 }
2016
2017 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2018 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2019
2020 /*
2021 * Try to allocate a partial slab from a specific node.
2022 */
2023 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2024 struct kmem_cache_cpu *c, gfp_t flags)
2025 {
2026 struct page *page, *page2;
2027 void *object = NULL;
2028 unsigned int available = 0;
2029 int objects;
2030
2031 /*
2032 * Racy check. If we mistakenly see no partial slabs then we
2033 * just allocate an empty slab. If we mistakenly try to get a
2034 * partial slab and there is none available then get_partial()
2035 * will return NULL.
2036 */
2037 if (!n || !n->nr_partial)
2038 return NULL;
2039
2040 spin_lock(&n->list_lock);
2041 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2042 void *t;
2043
2044 if (!pfmemalloc_match(page, flags))
2045 continue;
2046
2047 t = acquire_slab(s, n, page, object == NULL, &objects);
2048 if (!t)
2049 break;
2050
2051 available += objects;
2052 if (!object) {
2053 c->page = page;
2054 stat(s, ALLOC_FROM_PARTIAL);
2055 object = t;
2056 } else {
2057 put_cpu_partial(s, page, 0);
2058 stat(s, CPU_PARTIAL_NODE);
2059 }
2060 if (!kmem_cache_has_cpu_partial(s)
2061 || available > slub_cpu_partial(s) / 2)
2062 break;
2063
2064 }
2065 spin_unlock(&n->list_lock);
2066 return object;
2067 }
2068
2069 /*
2070 * Get a page from somewhere. Search in increasing NUMA distances.
2071 */
2072 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2073 struct kmem_cache_cpu *c)
2074 {
2075 #ifdef CONFIG_NUMA
2076 struct zonelist *zonelist;
2077 struct zoneref *z;
2078 struct zone *zone;
2079 enum zone_type highest_zoneidx = gfp_zone(flags);
2080 void *object;
2081 unsigned int cpuset_mems_cookie;
2082
2083 /*
2084 * The defrag ratio allows a configuration of the tradeoffs between
2085 * inter node defragmentation and node local allocations. A lower
2086 * defrag_ratio increases the tendency to do local allocations
2087 * instead of attempting to obtain partial slabs from other nodes.
2088 *
2089 * If the defrag_ratio is set to 0 then kmalloc() always
2090 * returns node local objects. If the ratio is higher then kmalloc()
2091 * may return off node objects because partial slabs are obtained
2092 * from other nodes and filled up.
2093 *
2094 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2095 * (which makes defrag_ratio = 1000) then every (well almost)
2096 * allocation will first attempt to defrag slab caches on other nodes.
2097 * This means scanning over all nodes to look for partial slabs which
2098 * may be expensive if we do it every time we are trying to find a slab
2099 * with available objects.
2100 */
2101 if (!s->remote_node_defrag_ratio ||
2102 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2103 return NULL;
2104
2105 do {
2106 cpuset_mems_cookie = read_mems_allowed_begin();
2107 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2108 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2109 struct kmem_cache_node *n;
2110
2111 n = get_node(s, zone_to_nid(zone));
2112
2113 if (n && cpuset_zone_allowed(zone, flags) &&
2114 n->nr_partial > s->min_partial) {
2115 object = get_partial_node(s, n, c, flags);
2116 if (object) {
2117 /*
2118 * Don't check read_mems_allowed_retry()
2119 * here - if mems_allowed was updated in
2120 * parallel, that was a harmless race
2121 * between allocation and the cpuset
2122 * update
2123 */
2124 return object;
2125 }
2126 }
2127 }
2128 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2129 #endif /* CONFIG_NUMA */
2130 return NULL;
2131 }
2132
2133 /*
2134 * Get a partial page, lock it and return it.
2135 */
2136 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2137 struct kmem_cache_cpu *c)
2138 {
2139 void *object;
2140 int searchnode = node;
2141
2142 if (node == NUMA_NO_NODE)
2143 searchnode = numa_mem_id();
2144
2145 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2146 if (object || node != NUMA_NO_NODE)
2147 return object;
2148
2149 return get_any_partial(s, flags, c);
2150 }
2151
2152 #ifdef CONFIG_PREEMPTION
2153 /*
2154 * Calculate the next globally unique transaction for disambiguation
2155 * during cmpxchg. The transactions start with the cpu number and are then
2156 * incremented by CONFIG_NR_CPUS.
2157 */
2158 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2159 #else
2160 /*
2161 * No preemption supported therefore also no need to check for
2162 * different cpus.
2163 */
2164 #define TID_STEP 1
2165 #endif
2166
2167 static inline unsigned long next_tid(unsigned long tid)
2168 {
2169 return tid + TID_STEP;
2170 }
2171
2172 #ifdef SLUB_DEBUG_CMPXCHG
2173 static inline unsigned int tid_to_cpu(unsigned long tid)
2174 {
2175 return tid % TID_STEP;
2176 }
2177
2178 static inline unsigned long tid_to_event(unsigned long tid)
2179 {
2180 return tid / TID_STEP;
2181 }
2182 #endif
2183
2184 static inline unsigned int init_tid(int cpu)
2185 {
2186 return cpu;
2187 }
2188
2189 static inline void note_cmpxchg_failure(const char *n,
2190 const struct kmem_cache *s, unsigned long tid)
2191 {
2192 #ifdef SLUB_DEBUG_CMPXCHG
2193 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2194
2195 pr_info("%s %s: cmpxchg redo ", n, s->name);
2196
2197 #ifdef CONFIG_PREEMPTION
2198 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2199 pr_warn("due to cpu change %d -> %d\n",
2200 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2201 else
2202 #endif
2203 if (tid_to_event(tid) != tid_to_event(actual_tid))
2204 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2205 tid_to_event(tid), tid_to_event(actual_tid));
2206 else
2207 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2208 actual_tid, tid, next_tid(tid));
2209 #endif
2210 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2211 }
2212
2213 static void init_kmem_cache_cpus(struct kmem_cache *s)
2214 {
2215 int cpu;
2216
2217 for_each_possible_cpu(cpu)
2218 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2219 }
2220
2221 /*
2222 * Remove the cpu slab
2223 */
2224 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2225 void *freelist, struct kmem_cache_cpu *c)
2226 {
2227 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2228 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2229 int lock = 0, free_delta = 0;
2230 enum slab_modes l = M_NONE, m = M_NONE;
2231 void *nextfree, *freelist_iter, *freelist_tail;
2232 int tail = DEACTIVATE_TO_HEAD;
2233 struct page new;
2234 struct page old;
2235
2236 if (page->freelist) {
2237 stat(s, DEACTIVATE_REMOTE_FREES);
2238 tail = DEACTIVATE_TO_TAIL;
2239 }
2240
2241 /*
2242 * Stage one: Count the objects on cpu's freelist as free_delta and
2243 * remember the last object in freelist_tail for later splicing.
2244 */
2245 freelist_tail = NULL;
2246 freelist_iter = freelist;
2247 while (freelist_iter) {
2248 nextfree = get_freepointer(s, freelist_iter);
2249
2250 /*
2251 * If 'nextfree' is invalid, it is possible that the object at
2252 * 'freelist_iter' is already corrupted. So isolate all objects
2253 * starting at 'freelist_iter' by skipping them.
2254 */
2255 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2256 break;
2257
2258 freelist_tail = freelist_iter;
2259 free_delta++;
2260
2261 freelist_iter = nextfree;
2262 }
2263
2264 /*
2265 * Stage two: Unfreeze the page while splicing the per-cpu
2266 * freelist to the head of page's freelist.
2267 *
2268 * Ensure that the page is unfrozen while the list presence
2269 * reflects the actual number of objects during unfreeze.
2270 *
2271 * We setup the list membership and then perform a cmpxchg
2272 * with the count. If there is a mismatch then the page
2273 * is not unfrozen but the page is on the wrong list.
2274 *
2275 * Then we restart the process which may have to remove
2276 * the page from the list that we just put it on again
2277 * because the number of objects in the slab may have
2278 * changed.
2279 */
2280 redo:
2281
2282 old.freelist = READ_ONCE(page->freelist);
2283 old.counters = READ_ONCE(page->counters);
2284 VM_BUG_ON(!old.frozen);
2285
2286 /* Determine target state of the slab */
2287 new.counters = old.counters;
2288 if (freelist_tail) {
2289 new.inuse -= free_delta;
2290 set_freepointer(s, freelist_tail, old.freelist);
2291 new.freelist = freelist;
2292 } else
2293 new.freelist = old.freelist;
2294
2295 new.frozen = 0;
2296
2297 if (!new.inuse && n->nr_partial >= s->min_partial)
2298 m = M_FREE;
2299 else if (new.freelist) {
2300 m = M_PARTIAL;
2301 if (!lock) {
2302 lock = 1;
2303 /*
2304 * Taking the spinlock removes the possibility
2305 * that acquire_slab() will see a slab page that
2306 * is frozen
2307 */
2308 spin_lock(&n->list_lock);
2309 }
2310 } else {
2311 m = M_FULL;
2312 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2313 lock = 1;
2314 /*
2315 * This also ensures that the scanning of full
2316 * slabs from diagnostic functions will not see
2317 * any frozen slabs.
2318 */
2319 spin_lock(&n->list_lock);
2320 }
2321 }
2322
2323 if (l != m) {
2324 if (l == M_PARTIAL)
2325 remove_partial(n, page);
2326 else if (l == M_FULL)
2327 remove_full(s, n, page);
2328
2329 if (m == M_PARTIAL)
2330 add_partial(n, page, tail);
2331 else if (m == M_FULL)
2332 add_full(s, n, page);
2333 }
2334
2335 l = m;
2336 if (!__cmpxchg_double_slab(s, page,
2337 old.freelist, old.counters,
2338 new.freelist, new.counters,
2339 "unfreezing slab"))
2340 goto redo;
2341
2342 if (lock)
2343 spin_unlock(&n->list_lock);
2344
2345 if (m == M_PARTIAL)
2346 stat(s, tail);
2347 else if (m == M_FULL)
2348 stat(s, DEACTIVATE_FULL);
2349 else if (m == M_FREE) {
2350 stat(s, DEACTIVATE_EMPTY);
2351 discard_slab(s, page);
2352 stat(s, FREE_SLAB);
2353 }
2354
2355 c->page = NULL;
2356 c->freelist = NULL;
2357 }
2358
2359 /*
2360 * Unfreeze all the cpu partial slabs.
2361 *
2362 * This function must be called with interrupts disabled
2363 * for the cpu using c (or some other guarantee must be there
2364 * to guarantee no concurrent accesses).
2365 */
2366 static void unfreeze_partials(struct kmem_cache *s,
2367 struct kmem_cache_cpu *c)
2368 {
2369 #ifdef CONFIG_SLUB_CPU_PARTIAL
2370 struct kmem_cache_node *n = NULL, *n2 = NULL;
2371 struct page *page, *discard_page = NULL;
2372
2373 while ((page = slub_percpu_partial(c))) {
2374 struct page new;
2375 struct page old;
2376
2377 slub_set_percpu_partial(c, page);
2378
2379 n2 = get_node(s, page_to_nid(page));
2380 if (n != n2) {
2381 if (n)
2382 spin_unlock(&n->list_lock);
2383
2384 n = n2;
2385 spin_lock(&n->list_lock);
2386 }
2387
2388 do {
2389
2390 old.freelist = page->freelist;
2391 old.counters = page->counters;
2392 VM_BUG_ON(!old.frozen);
2393
2394 new.counters = old.counters;
2395 new.freelist = old.freelist;
2396
2397 new.frozen = 0;
2398
2399 } while (!__cmpxchg_double_slab(s, page,
2400 old.freelist, old.counters,
2401 new.freelist, new.counters,
2402 "unfreezing slab"));
2403
2404 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2405 page->next = discard_page;
2406 discard_page = page;
2407 } else {
2408 add_partial(n, page, DEACTIVATE_TO_TAIL);
2409 stat(s, FREE_ADD_PARTIAL);
2410 }
2411 }
2412
2413 if (n)
2414 spin_unlock(&n->list_lock);
2415
2416 while (discard_page) {
2417 page = discard_page;
2418 discard_page = discard_page->next;
2419
2420 stat(s, DEACTIVATE_EMPTY);
2421 discard_slab(s, page);
2422 stat(s, FREE_SLAB);
2423 }
2424 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2425 }
2426
2427 /*
2428 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2429 * partial page slot if available.
2430 *
2431 * If we did not find a slot then simply move all the partials to the
2432 * per node partial list.
2433 */
2434 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2435 {
2436 #ifdef CONFIG_SLUB_CPU_PARTIAL
2437 struct page *oldpage;
2438 int pages;
2439 int pobjects;
2440
2441 preempt_disable();
2442 do {
2443 pages = 0;
2444 pobjects = 0;
2445 oldpage = this_cpu_read(s->cpu_slab->partial);
2446
2447 if (oldpage) {
2448 pobjects = oldpage->pobjects;
2449 pages = oldpage->pages;
2450 if (drain && pobjects > slub_cpu_partial(s)) {
2451 unsigned long flags;
2452 /*
2453 * partial array is full. Move the existing
2454 * set to the per node partial list.
2455 */
2456 local_irq_save(flags);
2457 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2458 local_irq_restore(flags);
2459 oldpage = NULL;
2460 pobjects = 0;
2461 pages = 0;
2462 stat(s, CPU_PARTIAL_DRAIN);
2463 }
2464 }
2465
2466 pages++;
2467 pobjects += page->objects - page->inuse;
2468
2469 page->pages = pages;
2470 page->pobjects = pobjects;
2471 page->next = oldpage;
2472
2473 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2474 != oldpage);
2475 if (unlikely(!slub_cpu_partial(s))) {
2476 unsigned long flags;
2477
2478 local_irq_save(flags);
2479 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2480 local_irq_restore(flags);
2481 }
2482 preempt_enable();
2483 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2484 }
2485
2486 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2487 {
2488 stat(s, CPUSLAB_FLUSH);
2489 deactivate_slab(s, c->page, c->freelist, c);
2490
2491 c->tid = next_tid(c->tid);
2492 }
2493
2494 /*
2495 * Flush cpu slab.
2496 *
2497 * Called from IPI handler with interrupts disabled.
2498 */
2499 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2500 {
2501 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2502
2503 if (c->page)
2504 flush_slab(s, c);
2505
2506 unfreeze_partials(s, c);
2507 }
2508
2509 static void flush_cpu_slab(void *d)
2510 {
2511 struct kmem_cache *s = d;
2512
2513 __flush_cpu_slab(s, smp_processor_id());
2514 }
2515
2516 static bool has_cpu_slab(int cpu, void *info)
2517 {
2518 struct kmem_cache *s = info;
2519 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2520
2521 return c->page || slub_percpu_partial(c);
2522 }
2523
2524 static void flush_all(struct kmem_cache *s)
2525 {
2526 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2527 }
2528
2529 /*
2530 * Use the cpu notifier to insure that the cpu slabs are flushed when
2531 * necessary.
2532 */
2533 static int slub_cpu_dead(unsigned int cpu)
2534 {
2535 struct kmem_cache *s;
2536 unsigned long flags;
2537
2538 mutex_lock(&slab_mutex);
2539 list_for_each_entry(s, &slab_caches, list) {
2540 local_irq_save(flags);
2541 __flush_cpu_slab(s, cpu);
2542 local_irq_restore(flags);
2543 }
2544 mutex_unlock(&slab_mutex);
2545 return 0;
2546 }
2547
2548 /*
2549 * Check if the objects in a per cpu structure fit numa
2550 * locality expectations.
2551 */
2552 static inline int node_match(struct page *page, int node)
2553 {
2554 #ifdef CONFIG_NUMA
2555 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2556 return 0;
2557 #endif
2558 return 1;
2559 }
2560
2561 #ifdef CONFIG_SLUB_DEBUG
2562 static int count_free(struct page *page)
2563 {
2564 return page->objects - page->inuse;
2565 }
2566
2567 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2568 {
2569 return atomic_long_read(&n->total_objects);
2570 }
2571 #endif /* CONFIG_SLUB_DEBUG */
2572
2573 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2574 static unsigned long count_partial(struct kmem_cache_node *n,
2575 int (*get_count)(struct page *))
2576 {
2577 unsigned long flags;
2578 unsigned long x = 0;
2579 struct page *page;
2580
2581 spin_lock_irqsave(&n->list_lock, flags);
2582 list_for_each_entry(page, &n->partial, slab_list)
2583 x += get_count(page);
2584 spin_unlock_irqrestore(&n->list_lock, flags);
2585 return x;
2586 }
2587 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2588
2589 static noinline void
2590 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2591 {
2592 #ifdef CONFIG_SLUB_DEBUG
2593 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2594 DEFAULT_RATELIMIT_BURST);
2595 int node;
2596 struct kmem_cache_node *n;
2597
2598 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2599 return;
2600
2601 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2602 nid, gfpflags, &gfpflags);
2603 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2604 s->name, s->object_size, s->size, oo_order(s->oo),
2605 oo_order(s->min));
2606
2607 if (oo_order(s->min) > get_order(s->object_size))
2608 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2609 s->name);
2610
2611 for_each_kmem_cache_node(s, node, n) {
2612 unsigned long nr_slabs;
2613 unsigned long nr_objs;
2614 unsigned long nr_free;
2615
2616 nr_free = count_partial(n, count_free);
2617 nr_slabs = node_nr_slabs(n);
2618 nr_objs = node_nr_objs(n);
2619
2620 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2621 node, nr_slabs, nr_objs, nr_free);
2622 }
2623 #endif
2624 }
2625
2626 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2627 int node, struct kmem_cache_cpu **pc)
2628 {
2629 void *freelist;
2630 struct kmem_cache_cpu *c = *pc;
2631 struct page *page;
2632
2633 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2634
2635 freelist = get_partial(s, flags, node, c);
2636
2637 if (freelist)
2638 return freelist;
2639
2640 page = new_slab(s, flags, node);
2641 if (page) {
2642 c = raw_cpu_ptr(s->cpu_slab);
2643 if (c->page)
2644 flush_slab(s, c);
2645
2646 /*
2647 * No other reference to the page yet so we can
2648 * muck around with it freely without cmpxchg
2649 */
2650 freelist = page->freelist;
2651 page->freelist = NULL;
2652
2653 stat(s, ALLOC_SLAB);
2654 c->page = page;
2655 *pc = c;
2656 }
2657
2658 return freelist;
2659 }
2660
2661 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2662 {
2663 if (unlikely(PageSlabPfmemalloc(page)))
2664 return gfp_pfmemalloc_allowed(gfpflags);
2665
2666 return true;
2667 }
2668
2669 /*
2670 * Check the page->freelist of a page and either transfer the freelist to the
2671 * per cpu freelist or deactivate the page.
2672 *
2673 * The page is still frozen if the return value is not NULL.
2674 *
2675 * If this function returns NULL then the page has been unfrozen.
2676 *
2677 * This function must be called with interrupt disabled.
2678 */
2679 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2680 {
2681 struct page new;
2682 unsigned long counters;
2683 void *freelist;
2684
2685 do {
2686 freelist = page->freelist;
2687 counters = page->counters;
2688
2689 new.counters = counters;
2690 VM_BUG_ON(!new.frozen);
2691
2692 new.inuse = page->objects;
2693 new.frozen = freelist != NULL;
2694
2695 } while (!__cmpxchg_double_slab(s, page,
2696 freelist, counters,
2697 NULL, new.counters,
2698 "get_freelist"));
2699
2700 return freelist;
2701 }
2702
2703 /*
2704 * Slow path. The lockless freelist is empty or we need to perform
2705 * debugging duties.
2706 *
2707 * Processing is still very fast if new objects have been freed to the
2708 * regular freelist. In that case we simply take over the regular freelist
2709 * as the lockless freelist and zap the regular freelist.
2710 *
2711 * If that is not working then we fall back to the partial lists. We take the
2712 * first element of the freelist as the object to allocate now and move the
2713 * rest of the freelist to the lockless freelist.
2714 *
2715 * And if we were unable to get a new slab from the partial slab lists then
2716 * we need to allocate a new slab. This is the slowest path since it involves
2717 * a call to the page allocator and the setup of a new slab.
2718 *
2719 * Version of __slab_alloc to use when we know that interrupts are
2720 * already disabled (which is the case for bulk allocation).
2721 */
2722 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2723 unsigned long addr, struct kmem_cache_cpu *c)
2724 {
2725 void *freelist;
2726 struct page *page;
2727
2728 stat(s, ALLOC_SLOWPATH);
2729
2730 page = c->page;
2731 if (!page) {
2732 /*
2733 * if the node is not online or has no normal memory, just
2734 * ignore the node constraint
2735 */
2736 if (unlikely(node != NUMA_NO_NODE &&
2737 !node_isset(node, slab_nodes)))
2738 node = NUMA_NO_NODE;
2739 goto new_slab;
2740 }
2741 redo:
2742
2743 if (unlikely(!node_match(page, node))) {
2744 /*
2745 * same as above but node_match() being false already
2746 * implies node != NUMA_NO_NODE
2747 */
2748 if (!node_isset(node, slab_nodes)) {
2749 node = NUMA_NO_NODE;
2750 goto redo;
2751 } else {
2752 stat(s, ALLOC_NODE_MISMATCH);
2753 deactivate_slab(s, page, c->freelist, c);
2754 goto new_slab;
2755 }
2756 }
2757
2758 /*
2759 * By rights, we should be searching for a slab page that was
2760 * PFMEMALLOC but right now, we are losing the pfmemalloc
2761 * information when the page leaves the per-cpu allocator
2762 */
2763 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2764 deactivate_slab(s, page, c->freelist, c);
2765 goto new_slab;
2766 }
2767
2768 /* must check again c->freelist in case of cpu migration or IRQ */
2769 freelist = c->freelist;
2770 if (freelist)
2771 goto load_freelist;
2772
2773 freelist = get_freelist(s, page);
2774
2775 if (!freelist) {
2776 c->page = NULL;
2777 stat(s, DEACTIVATE_BYPASS);
2778 goto new_slab;
2779 }
2780
2781 stat(s, ALLOC_REFILL);
2782
2783 load_freelist:
2784 /*
2785 * freelist is pointing to the list of objects to be used.
2786 * page is pointing to the page from which the objects are obtained.
2787 * That page must be frozen for per cpu allocations to work.
2788 */
2789 VM_BUG_ON(!c->page->frozen);
2790 c->freelist = get_freepointer(s, freelist);
2791 c->tid = next_tid(c->tid);
2792 return freelist;
2793
2794 new_slab:
2795
2796 if (slub_percpu_partial(c)) {
2797 page = c->page = slub_percpu_partial(c);
2798 slub_set_percpu_partial(c, page);
2799 stat(s, CPU_PARTIAL_ALLOC);
2800 goto redo;
2801 }
2802
2803 freelist = new_slab_objects(s, gfpflags, node, &c);
2804
2805 if (unlikely(!freelist)) {
2806 slab_out_of_memory(s, gfpflags, node);
2807 return NULL;
2808 }
2809
2810 page = c->page;
2811 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2812 goto load_freelist;
2813
2814 /* Only entered in the debug case */
2815 if (kmem_cache_debug(s) &&
2816 !alloc_debug_processing(s, page, freelist, addr))
2817 goto new_slab; /* Slab failed checks. Next slab needed */
2818
2819 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2820 return freelist;
2821 }
2822
2823 /*
2824 * Another one that disabled interrupt and compensates for possible
2825 * cpu changes by refetching the per cpu area pointer.
2826 */
2827 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2828 unsigned long addr, struct kmem_cache_cpu *c)
2829 {
2830 void *p;
2831 unsigned long flags;
2832
2833 local_irq_save(flags);
2834 #ifdef CONFIG_PREEMPTION
2835 /*
2836 * We may have been preempted and rescheduled on a different
2837 * cpu before disabling interrupts. Need to reload cpu area
2838 * pointer.
2839 */
2840 c = this_cpu_ptr(s->cpu_slab);
2841 #endif
2842
2843 p = ___slab_alloc(s, gfpflags, node, addr, c);
2844 local_irq_restore(flags);
2845 return p;
2846 }
2847
2848 /*
2849 * If the object has been wiped upon free, make sure it's fully initialized by
2850 * zeroing out freelist pointer.
2851 */
2852 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2853 void *obj)
2854 {
2855 if (unlikely(slab_want_init_on_free(s)) && obj)
2856 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2857 0, sizeof(void *));
2858 }
2859
2860 /*
2861 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2862 * have the fastpath folded into their functions. So no function call
2863 * overhead for requests that can be satisfied on the fastpath.
2864 *
2865 * The fastpath works by first checking if the lockless freelist can be used.
2866 * If not then __slab_alloc is called for slow processing.
2867 *
2868 * Otherwise we can simply pick the next object from the lockless free list.
2869 */
2870 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2871 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2872 {
2873 void *object;
2874 struct kmem_cache_cpu *c;
2875 struct page *page;
2876 unsigned long tid;
2877 struct obj_cgroup *objcg = NULL;
2878 bool init = false;
2879
2880 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2881 if (!s)
2882 return NULL;
2883
2884 object = kfence_alloc(s, orig_size, gfpflags);
2885 if (unlikely(object))
2886 goto out;
2887
2888 redo:
2889 /*
2890 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2891 * enabled. We may switch back and forth between cpus while
2892 * reading from one cpu area. That does not matter as long
2893 * as we end up on the original cpu again when doing the cmpxchg.
2894 *
2895 * We should guarantee that tid and kmem_cache are retrieved on
2896 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2897 * to check if it is matched or not.
2898 */
2899 do {
2900 tid = this_cpu_read(s->cpu_slab->tid);
2901 c = raw_cpu_ptr(s->cpu_slab);
2902 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2903 unlikely(tid != READ_ONCE(c->tid)));
2904
2905 /*
2906 * Irqless object alloc/free algorithm used here depends on sequence
2907 * of fetching cpu_slab's data. tid should be fetched before anything
2908 * on c to guarantee that object and page associated with previous tid
2909 * won't be used with current tid. If we fetch tid first, object and
2910 * page could be one associated with next tid and our alloc/free
2911 * request will be failed. In this case, we will retry. So, no problem.
2912 */
2913 barrier();
2914
2915 /*
2916 * The transaction ids are globally unique per cpu and per operation on
2917 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2918 * occurs on the right processor and that there was no operation on the
2919 * linked list in between.
2920 */
2921
2922 object = c->freelist;
2923 page = c->page;
2924 if (unlikely(!object || !page || !node_match(page, node))) {
2925 object = __slab_alloc(s, gfpflags, node, addr, c);
2926 } else {
2927 void *next_object = get_freepointer_safe(s, object);
2928
2929 /*
2930 * The cmpxchg will only match if there was no additional
2931 * operation and if we are on the right processor.
2932 *
2933 * The cmpxchg does the following atomically (without lock
2934 * semantics!)
2935 * 1. Relocate first pointer to the current per cpu area.
2936 * 2. Verify that tid and freelist have not been changed
2937 * 3. If they were not changed replace tid and freelist
2938 *
2939 * Since this is without lock semantics the protection is only
2940 * against code executing on this cpu *not* from access by
2941 * other cpus.
2942 */
2943 if (unlikely(!this_cpu_cmpxchg_double(
2944 s->cpu_slab->freelist, s->cpu_slab->tid,
2945 object, tid,
2946 next_object, next_tid(tid)))) {
2947
2948 note_cmpxchg_failure("slab_alloc", s, tid);
2949 goto redo;
2950 }
2951 prefetch_freepointer(s, next_object);
2952 stat(s, ALLOC_FASTPATH);
2953 }
2954
2955 maybe_wipe_obj_freeptr(s, object);
2956 init = slab_want_init_on_alloc(gfpflags, s);
2957
2958 out:
2959 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2960
2961 return object;
2962 }
2963
2964 static __always_inline void *slab_alloc(struct kmem_cache *s,
2965 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2966 {
2967 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2968 }
2969
2970 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2971 {
2972 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2973
2974 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2975 s->size, gfpflags);
2976
2977 return ret;
2978 }
2979 EXPORT_SYMBOL(kmem_cache_alloc);
2980
2981 #ifdef CONFIG_TRACING
2982 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2983 {
2984 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2985 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2986 ret = kasan_kmalloc(s, ret, size, gfpflags);
2987 return ret;
2988 }
2989 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2990 #endif
2991
2992 #ifdef CONFIG_NUMA
2993 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2994 {
2995 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
2996
2997 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2998 s->object_size, s->size, gfpflags, node);
2999
3000 return ret;
3001 }
3002 EXPORT_SYMBOL(kmem_cache_alloc_node);
3003
3004 #ifdef CONFIG_TRACING
3005 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3006 gfp_t gfpflags,
3007 int node, size_t size)
3008 {
3009 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3010
3011 trace_kmalloc_node(_RET_IP_, ret,
3012 size, s->size, gfpflags, node);
3013
3014 ret = kasan_kmalloc(s, ret, size, gfpflags);
3015 return ret;
3016 }
3017 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3018 #endif
3019 #endif /* CONFIG_NUMA */
3020
3021 /*
3022 * Slow path handling. This may still be called frequently since objects
3023 * have a longer lifetime than the cpu slabs in most processing loads.
3024 *
3025 * So we still attempt to reduce cache line usage. Just take the slab
3026 * lock and free the item. If there is no additional partial page
3027 * handling required then we can return immediately.
3028 */
3029 static void __slab_free(struct kmem_cache *s, struct page *page,
3030 void *head, void *tail, int cnt,
3031 unsigned long addr)
3032
3033 {
3034 void *prior;
3035 int was_frozen;
3036 struct page new;
3037 unsigned long counters;
3038 struct kmem_cache_node *n = NULL;
3039 unsigned long flags;
3040
3041 stat(s, FREE_SLOWPATH);
3042
3043 if (kfence_free(head))
3044 return;
3045
3046 if (kmem_cache_debug(s) &&
3047 !free_debug_processing(s, page, head, tail, cnt, addr))
3048 return;
3049
3050 do {
3051 if (unlikely(n)) {
3052 spin_unlock_irqrestore(&n->list_lock, flags);
3053 n = NULL;
3054 }
3055 prior = page->freelist;
3056 counters = page->counters;
3057 set_freepointer(s, tail, prior);
3058 new.counters = counters;
3059 was_frozen = new.frozen;
3060 new.inuse -= cnt;
3061 if ((!new.inuse || !prior) && !was_frozen) {
3062
3063 if (kmem_cache_has_cpu_partial(s) && !prior) {
3064
3065 /*
3066 * Slab was on no list before and will be
3067 * partially empty
3068 * We can defer the list move and instead
3069 * freeze it.
3070 */
3071 new.frozen = 1;
3072
3073 } else { /* Needs to be taken off a list */
3074
3075 n = get_node(s, page_to_nid(page));
3076 /*
3077 * Speculatively acquire the list_lock.
3078 * If the cmpxchg does not succeed then we may
3079 * drop the list_lock without any processing.
3080 *
3081 * Otherwise the list_lock will synchronize with
3082 * other processors updating the list of slabs.
3083 */
3084 spin_lock_irqsave(&n->list_lock, flags);
3085
3086 }
3087 }
3088
3089 } while (!cmpxchg_double_slab(s, page,
3090 prior, counters,
3091 head, new.counters,
3092 "__slab_free"));
3093
3094 if (likely(!n)) {
3095
3096 if (likely(was_frozen)) {
3097 /*
3098 * The list lock was not taken therefore no list
3099 * activity can be necessary.
3100 */
3101 stat(s, FREE_FROZEN);
3102 } else if (new.frozen) {
3103 /*
3104 * If we just froze the page then put it onto the
3105 * per cpu partial list.
3106 */
3107 put_cpu_partial(s, page, 1);
3108 stat(s, CPU_PARTIAL_FREE);
3109 }
3110
3111 return;
3112 }
3113
3114 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3115 goto slab_empty;
3116
3117 /*
3118 * Objects left in the slab. If it was not on the partial list before
3119 * then add it.
3120 */
3121 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3122 remove_full(s, n, page);
3123 add_partial(n, page, DEACTIVATE_TO_TAIL);
3124 stat(s, FREE_ADD_PARTIAL);
3125 }
3126 spin_unlock_irqrestore(&n->list_lock, flags);
3127 return;
3128
3129 slab_empty:
3130 if (prior) {
3131 /*
3132 * Slab on the partial list.
3133 */
3134 remove_partial(n, page);
3135 stat(s, FREE_REMOVE_PARTIAL);
3136 } else {
3137 /* Slab must be on the full list */
3138 remove_full(s, n, page);
3139 }
3140
3141 spin_unlock_irqrestore(&n->list_lock, flags);
3142 stat(s, FREE_SLAB);
3143 discard_slab(s, page);
3144 }
3145
3146 /*
3147 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3148 * can perform fastpath freeing without additional function calls.
3149 *
3150 * The fastpath is only possible if we are freeing to the current cpu slab
3151 * of this processor. This typically the case if we have just allocated
3152 * the item before.
3153 *
3154 * If fastpath is not possible then fall back to __slab_free where we deal
3155 * with all sorts of special processing.
3156 *
3157 * Bulk free of a freelist with several objects (all pointing to the
3158 * same page) possible by specifying head and tail ptr, plus objects
3159 * count (cnt). Bulk free indicated by tail pointer being set.
3160 */
3161 static __always_inline void do_slab_free(struct kmem_cache *s,
3162 struct page *page, void *head, void *tail,
3163 int cnt, unsigned long addr)
3164 {
3165 void *tail_obj = tail ? : head;
3166 struct kmem_cache_cpu *c;
3167 unsigned long tid;
3168
3169 memcg_slab_free_hook(s, &head, 1);
3170 redo:
3171 /*
3172 * Determine the currently cpus per cpu slab.
3173 * The cpu may change afterward. However that does not matter since
3174 * data is retrieved via this pointer. If we are on the same cpu
3175 * during the cmpxchg then the free will succeed.
3176 */
3177 do {
3178 tid = this_cpu_read(s->cpu_slab->tid);
3179 c = raw_cpu_ptr(s->cpu_slab);
3180 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3181 unlikely(tid != READ_ONCE(c->tid)));
3182
3183 /* Same with comment on barrier() in slab_alloc_node() */
3184 barrier();
3185
3186 if (likely(page == c->page)) {
3187 void **freelist = READ_ONCE(c->freelist);
3188
3189 set_freepointer(s, tail_obj, freelist);
3190
3191 if (unlikely(!this_cpu_cmpxchg_double(
3192 s->cpu_slab->freelist, s->cpu_slab->tid,
3193 freelist, tid,
3194 head, next_tid(tid)))) {
3195
3196 note_cmpxchg_failure("slab_free", s, tid);
3197 goto redo;
3198 }
3199 stat(s, FREE_FASTPATH);
3200 } else
3201 __slab_free(s, page, head, tail_obj, cnt, addr);
3202
3203 }
3204
3205 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3206 void *head, void *tail, int cnt,
3207 unsigned long addr)
3208 {
3209 /*
3210 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3211 * to remove objects, whose reuse must be delayed.
3212 */
3213 if (slab_free_freelist_hook(s, &head, &tail))
3214 do_slab_free(s, page, head, tail, cnt, addr);
3215 }
3216
3217 #ifdef CONFIG_KASAN_GENERIC
3218 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3219 {
3220 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3221 }
3222 #endif
3223
3224 void kmem_cache_free(struct kmem_cache *s, void *x)
3225 {
3226 s = cache_from_obj(s, x);
3227 if (!s)
3228 return;
3229 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3230 trace_kmem_cache_free(_RET_IP_, x, s->name);
3231 }
3232 EXPORT_SYMBOL(kmem_cache_free);
3233
3234 struct detached_freelist {
3235 struct page *page;
3236 void *tail;
3237 void *freelist;
3238 int cnt;
3239 struct kmem_cache *s;
3240 };
3241
3242 static inline void free_nonslab_page(struct page *page, void *object)
3243 {
3244 unsigned int order = compound_order(page);
3245
3246 VM_BUG_ON_PAGE(!PageCompound(page), page);
3247 kfree_hook(object);
3248 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3249 __free_pages(page, order);
3250 }
3251
3252 /*
3253 * This function progressively scans the array with free objects (with
3254 * a limited look ahead) and extract objects belonging to the same
3255 * page. It builds a detached freelist directly within the given
3256 * page/objects. This can happen without any need for
3257 * synchronization, because the objects are owned by running process.
3258 * The freelist is build up as a single linked list in the objects.
3259 * The idea is, that this detached freelist can then be bulk
3260 * transferred to the real freelist(s), but only requiring a single
3261 * synchronization primitive. Look ahead in the array is limited due
3262 * to performance reasons.
3263 */
3264 static inline
3265 int build_detached_freelist(struct kmem_cache *s, size_t size,
3266 void **p, struct detached_freelist *df)
3267 {
3268 size_t first_skipped_index = 0;
3269 int lookahead = 3;
3270 void *object;
3271 struct page *page;
3272
3273 /* Always re-init detached_freelist */
3274 df->page = NULL;
3275
3276 do {
3277 object = p[--size];
3278 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3279 } while (!object && size);
3280
3281 if (!object)
3282 return 0;
3283
3284 page = virt_to_head_page(object);
3285 if (!s) {
3286 /* Handle kalloc'ed objects */
3287 if (unlikely(!PageSlab(page))) {
3288 free_nonslab_page(page, object);
3289 p[size] = NULL; /* mark object processed */
3290 return size;
3291 }
3292 /* Derive kmem_cache from object */
3293 df->s = page->slab_cache;
3294 } else {
3295 df->s = cache_from_obj(s, object); /* Support for memcg */
3296 }
3297
3298 if (is_kfence_address(object)) {
3299 slab_free_hook(df->s, object, false);
3300 __kfence_free(object);
3301 p[size] = NULL; /* mark object processed */
3302 return size;
3303 }
3304
3305 /* Start new detached freelist */
3306 df->page = page;
3307 set_freepointer(df->s, object, NULL);
3308 df->tail = object;
3309 df->freelist = object;
3310 p[size] = NULL; /* mark object processed */
3311 df->cnt = 1;
3312
3313 while (size) {
3314 object = p[--size];
3315 if (!object)
3316 continue; /* Skip processed objects */
3317
3318 /* df->page is always set at this point */
3319 if (df->page == virt_to_head_page(object)) {
3320 /* Opportunity build freelist */
3321 set_freepointer(df->s, object, df->freelist);
3322 df->freelist = object;
3323 df->cnt++;
3324 p[size] = NULL; /* mark object processed */
3325
3326 continue;
3327 }
3328
3329 /* Limit look ahead search */
3330 if (!--lookahead)
3331 break;
3332
3333 if (!first_skipped_index)
3334 first_skipped_index = size + 1;
3335 }
3336
3337 return first_skipped_index;
3338 }
3339
3340 /* Note that interrupts must be enabled when calling this function. */
3341 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3342 {
3343 if (WARN_ON(!size))
3344 return;
3345
3346 memcg_slab_free_hook(s, p, size);
3347 do {
3348 struct detached_freelist df;
3349
3350 size = build_detached_freelist(s, size, p, &df);
3351 if (!df.page)
3352 continue;
3353
3354 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3355 } while (likely(size));
3356 }
3357 EXPORT_SYMBOL(kmem_cache_free_bulk);
3358
3359 /* Note that interrupts must be enabled when calling this function. */
3360 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3361 void **p)
3362 {
3363 struct kmem_cache_cpu *c;
3364 int i;
3365 struct obj_cgroup *objcg = NULL;
3366
3367 /* memcg and kmem_cache debug support */
3368 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3369 if (unlikely(!s))
3370 return false;
3371 /*
3372 * Drain objects in the per cpu slab, while disabling local
3373 * IRQs, which protects against PREEMPT and interrupts
3374 * handlers invoking normal fastpath.
3375 */
3376 local_irq_disable();
3377 c = this_cpu_ptr(s->cpu_slab);
3378
3379 for (i = 0; i < size; i++) {
3380 void *object = kfence_alloc(s, s->object_size, flags);
3381
3382 if (unlikely(object)) {
3383 p[i] = object;
3384 continue;
3385 }
3386
3387 object = c->freelist;
3388 if (unlikely(!object)) {
3389 /*
3390 * We may have removed an object from c->freelist using
3391 * the fastpath in the previous iteration; in that case,
3392 * c->tid has not been bumped yet.
3393 * Since ___slab_alloc() may reenable interrupts while
3394 * allocating memory, we should bump c->tid now.
3395 */
3396 c->tid = next_tid(c->tid);
3397
3398 /*
3399 * Invoking slow path likely have side-effect
3400 * of re-populating per CPU c->freelist
3401 */
3402 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3403 _RET_IP_, c);
3404 if (unlikely(!p[i]))
3405 goto error;
3406
3407 c = this_cpu_ptr(s->cpu_slab);
3408 maybe_wipe_obj_freeptr(s, p[i]);
3409
3410 continue; /* goto for-loop */
3411 }
3412 c->freelist = get_freepointer(s, object);
3413 p[i] = object;
3414 maybe_wipe_obj_freeptr(s, p[i]);
3415 }
3416 c->tid = next_tid(c->tid);
3417 local_irq_enable();
3418
3419 /*
3420 * memcg and kmem_cache debug support and memory initialization.
3421 * Done outside of the IRQ disabled fastpath loop.
3422 */
3423 slab_post_alloc_hook(s, objcg, flags, size, p,
3424 slab_want_init_on_alloc(flags, s));
3425 return i;
3426 error:
3427 local_irq_enable();
3428 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3429 __kmem_cache_free_bulk(s, i, p);
3430 return 0;
3431 }
3432 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3433
3434
3435 /*
3436 * Object placement in a slab is made very easy because we always start at
3437 * offset 0. If we tune the size of the object to the alignment then we can
3438 * get the required alignment by putting one properly sized object after
3439 * another.
3440 *
3441 * Notice that the allocation order determines the sizes of the per cpu
3442 * caches. Each processor has always one slab available for allocations.
3443 * Increasing the allocation order reduces the number of times that slabs
3444 * must be moved on and off the partial lists and is therefore a factor in
3445 * locking overhead.
3446 */
3447
3448 /*
3449 * Minimum / Maximum order of slab pages. This influences locking overhead
3450 * and slab fragmentation. A higher order reduces the number of partial slabs
3451 * and increases the number of allocations possible without having to
3452 * take the list_lock.
3453 */
3454 static unsigned int slub_min_order;
3455 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3456 static unsigned int slub_min_objects;
3457
3458 /*
3459 * Calculate the order of allocation given an slab object size.
3460 *
3461 * The order of allocation has significant impact on performance and other
3462 * system components. Generally order 0 allocations should be preferred since
3463 * order 0 does not cause fragmentation in the page allocator. Larger objects
3464 * be problematic to put into order 0 slabs because there may be too much
3465 * unused space left. We go to a higher order if more than 1/16th of the slab
3466 * would be wasted.
3467 *
3468 * In order to reach satisfactory performance we must ensure that a minimum
3469 * number of objects is in one slab. Otherwise we may generate too much
3470 * activity on the partial lists which requires taking the list_lock. This is
3471 * less a concern for large slabs though which are rarely used.
3472 *
3473 * slub_max_order specifies the order where we begin to stop considering the
3474 * number of objects in a slab as critical. If we reach slub_max_order then
3475 * we try to keep the page order as low as possible. So we accept more waste
3476 * of space in favor of a small page order.
3477 *
3478 * Higher order allocations also allow the placement of more objects in a
3479 * slab and thereby reduce object handling overhead. If the user has
3480 * requested a higher minimum order then we start with that one instead of
3481 * the smallest order which will fit the object.
3482 */
3483 static inline unsigned int slab_order(unsigned int size,
3484 unsigned int min_objects, unsigned int max_order,
3485 unsigned int fract_leftover)
3486 {
3487 unsigned int min_order = slub_min_order;
3488 unsigned int order;
3489
3490 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3491 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3492
3493 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3494 order <= max_order; order++) {
3495
3496 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3497 unsigned int rem;
3498
3499 rem = slab_size % size;
3500
3501 if (rem <= slab_size / fract_leftover)
3502 break;
3503 }
3504
3505 return order;
3506 }
3507
3508 static inline int calculate_order(unsigned int size)
3509 {
3510 unsigned int order;
3511 unsigned int min_objects;
3512 unsigned int max_objects;
3513 unsigned int nr_cpus;
3514
3515 /*
3516 * Attempt to find best configuration for a slab. This
3517 * works by first attempting to generate a layout with
3518 * the best configuration and backing off gradually.
3519 *
3520 * First we increase the acceptable waste in a slab. Then
3521 * we reduce the minimum objects required in a slab.
3522 */
3523 min_objects = slub_min_objects;
3524 if (!min_objects) {
3525 /*
3526 * Some architectures will only update present cpus when
3527 * onlining them, so don't trust the number if it's just 1. But
3528 * we also don't want to use nr_cpu_ids always, as on some other
3529 * architectures, there can be many possible cpus, but never
3530 * onlined. Here we compromise between trying to avoid too high
3531 * order on systems that appear larger than they are, and too
3532 * low order on systems that appear smaller than they are.
3533 */
3534 nr_cpus = num_present_cpus();
3535 if (nr_cpus <= 1)
3536 nr_cpus = nr_cpu_ids;
3537 min_objects = 4 * (fls(nr_cpus) + 1);
3538 }
3539 max_objects = order_objects(slub_max_order, size);
3540 min_objects = min(min_objects, max_objects);
3541
3542 while (min_objects > 1) {
3543 unsigned int fraction;
3544
3545 fraction = 16;
3546 while (fraction >= 4) {
3547 order = slab_order(size, min_objects,
3548 slub_max_order, fraction);
3549 if (order <= slub_max_order)
3550 return order;
3551 fraction /= 2;
3552 }
3553 min_objects--;
3554 }
3555
3556 /*
3557 * We were unable to place multiple objects in a slab. Now
3558 * lets see if we can place a single object there.
3559 */
3560 order = slab_order(size, 1, slub_max_order, 1);
3561 if (order <= slub_max_order)
3562 return order;
3563
3564 /*
3565 * Doh this slab cannot be placed using slub_max_order.
3566 */
3567 order = slab_order(size, 1, MAX_ORDER, 1);
3568 if (order < MAX_ORDER)
3569 return order;
3570 return -ENOSYS;
3571 }
3572
3573 static void
3574 init_kmem_cache_node(struct kmem_cache_node *n)
3575 {
3576 n->nr_partial = 0;
3577 spin_lock_init(&n->list_lock);
3578 INIT_LIST_HEAD(&n->partial);
3579 #ifdef CONFIG_SLUB_DEBUG
3580 atomic_long_set(&n->nr_slabs, 0);
3581 atomic_long_set(&n->total_objects, 0);
3582 INIT_LIST_HEAD(&n->full);
3583 #endif
3584 }
3585
3586 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3587 {
3588 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3589 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3590
3591 /*
3592 * Must align to double word boundary for the double cmpxchg
3593 * instructions to work; see __pcpu_double_call_return_bool().
3594 */
3595 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3596 2 * sizeof(void *));
3597
3598 if (!s->cpu_slab)
3599 return 0;
3600
3601 init_kmem_cache_cpus(s);
3602
3603 return 1;
3604 }
3605
3606 static struct kmem_cache *kmem_cache_node;
3607
3608 /*
3609 * No kmalloc_node yet so do it by hand. We know that this is the first
3610 * slab on the node for this slabcache. There are no concurrent accesses
3611 * possible.
3612 *
3613 * Note that this function only works on the kmem_cache_node
3614 * when allocating for the kmem_cache_node. This is used for bootstrapping
3615 * memory on a fresh node that has no slab structures yet.
3616 */
3617 static void early_kmem_cache_node_alloc(int node)
3618 {
3619 struct page *page;
3620 struct kmem_cache_node *n;
3621
3622 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3623
3624 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3625
3626 BUG_ON(!page);
3627 if (page_to_nid(page) != node) {
3628 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3629 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3630 }
3631
3632 n = page->freelist;
3633 BUG_ON(!n);
3634 #ifdef CONFIG_SLUB_DEBUG
3635 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3636 init_tracking(kmem_cache_node, n);
3637 #endif
3638 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3639 page->freelist = get_freepointer(kmem_cache_node, n);
3640 page->inuse = 1;
3641 page->frozen = 0;
3642 kmem_cache_node->node[node] = n;
3643 init_kmem_cache_node(n);
3644 inc_slabs_node(kmem_cache_node, node, page->objects);
3645
3646 /*
3647 * No locks need to be taken here as it has just been
3648 * initialized and there is no concurrent access.
3649 */
3650 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3651 }
3652
3653 static void free_kmem_cache_nodes(struct kmem_cache *s)
3654 {
3655 int node;
3656 struct kmem_cache_node *n;
3657
3658 for_each_kmem_cache_node(s, node, n) {
3659 s->node[node] = NULL;
3660 kmem_cache_free(kmem_cache_node, n);
3661 }
3662 }
3663
3664 void __kmem_cache_release(struct kmem_cache *s)
3665 {
3666 cache_random_seq_destroy(s);
3667 free_percpu(s->cpu_slab);
3668 free_kmem_cache_nodes(s);
3669 }
3670
3671 static int init_kmem_cache_nodes(struct kmem_cache *s)
3672 {
3673 int node;
3674
3675 for_each_node_mask(node, slab_nodes) {
3676 struct kmem_cache_node *n;
3677
3678 if (slab_state == DOWN) {
3679 early_kmem_cache_node_alloc(node);
3680 continue;
3681 }
3682 n = kmem_cache_alloc_node(kmem_cache_node,
3683 GFP_KERNEL, node);
3684
3685 if (!n) {
3686 free_kmem_cache_nodes(s);
3687 return 0;
3688 }
3689
3690 init_kmem_cache_node(n);
3691 s->node[node] = n;
3692 }
3693 return 1;
3694 }
3695
3696 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3697 {
3698 if (min < MIN_PARTIAL)
3699 min = MIN_PARTIAL;
3700 else if (min > MAX_PARTIAL)
3701 min = MAX_PARTIAL;
3702 s->min_partial = min;
3703 }
3704
3705 static void set_cpu_partial(struct kmem_cache *s)
3706 {
3707 #ifdef CONFIG_SLUB_CPU_PARTIAL
3708 /*
3709 * cpu_partial determined the maximum number of objects kept in the
3710 * per cpu partial lists of a processor.
3711 *
3712 * Per cpu partial lists mainly contain slabs that just have one
3713 * object freed. If they are used for allocation then they can be
3714 * filled up again with minimal effort. The slab will never hit the
3715 * per node partial lists and therefore no locking will be required.
3716 *
3717 * This setting also determines
3718 *
3719 * A) The number of objects from per cpu partial slabs dumped to the
3720 * per node list when we reach the limit.
3721 * B) The number of objects in cpu partial slabs to extract from the
3722 * per node list when we run out of per cpu objects. We only fetch
3723 * 50% to keep some capacity around for frees.
3724 */
3725 if (!kmem_cache_has_cpu_partial(s))
3726 slub_set_cpu_partial(s, 0);
3727 else if (s->size >= PAGE_SIZE)
3728 slub_set_cpu_partial(s, 2);
3729 else if (s->size >= 1024)
3730 slub_set_cpu_partial(s, 6);
3731 else if (s->size >= 256)
3732 slub_set_cpu_partial(s, 13);
3733 else
3734 slub_set_cpu_partial(s, 30);
3735 #endif
3736 }
3737
3738 /*
3739 * calculate_sizes() determines the order and the distribution of data within
3740 * a slab object.
3741 */
3742 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3743 {
3744 slab_flags_t flags = s->flags;
3745 unsigned int size = s->object_size;
3746 unsigned int order;
3747
3748 /*
3749 * Round up object size to the next word boundary. We can only
3750 * place the free pointer at word boundaries and this determines
3751 * the possible location of the free pointer.
3752 */
3753 size = ALIGN(size, sizeof(void *));
3754
3755 #ifdef CONFIG_SLUB_DEBUG
3756 /*
3757 * Determine if we can poison the object itself. If the user of
3758 * the slab may touch the object after free or before allocation
3759 * then we should never poison the object itself.
3760 */
3761 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3762 !s->ctor)
3763 s->flags |= __OBJECT_POISON;
3764 else
3765 s->flags &= ~__OBJECT_POISON;
3766
3767
3768 /*
3769 * If we are Redzoning then check if there is some space between the
3770 * end of the object and the free pointer. If not then add an
3771 * additional word to have some bytes to store Redzone information.
3772 */
3773 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3774 size += sizeof(void *);
3775 #endif
3776
3777 /*
3778 * With that we have determined the number of bytes in actual use
3779 * by the object and redzoning.
3780 */
3781 s->inuse = size;
3782
3783 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3784 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3785 s->ctor) {
3786 /*
3787 * Relocate free pointer after the object if it is not
3788 * permitted to overwrite the first word of the object on
3789 * kmem_cache_free.
3790 *
3791 * This is the case if we do RCU, have a constructor or
3792 * destructor, are poisoning the objects, or are
3793 * redzoning an object smaller than sizeof(void *).
3794 *
3795 * The assumption that s->offset >= s->inuse means free
3796 * pointer is outside of the object is used in the
3797 * freeptr_outside_object() function. If that is no
3798 * longer true, the function needs to be modified.
3799 */
3800 s->offset = size;
3801 size += sizeof(void *);
3802 } else {
3803 /*
3804 * Store freelist pointer near middle of object to keep
3805 * it away from the edges of the object to avoid small
3806 * sized over/underflows from neighboring allocations.
3807 */
3808 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
3809 }
3810
3811 #ifdef CONFIG_SLUB_DEBUG
3812 if (flags & SLAB_STORE_USER)
3813 /*
3814 * Need to store information about allocs and frees after
3815 * the object.
3816 */
3817 size += 2 * sizeof(struct track);
3818 #endif
3819
3820 kasan_cache_create(s, &size, &s->flags);
3821 #ifdef CONFIG_SLUB_DEBUG
3822 if (flags & SLAB_RED_ZONE) {
3823 /*
3824 * Add some empty padding so that we can catch
3825 * overwrites from earlier objects rather than let
3826 * tracking information or the free pointer be
3827 * corrupted if a user writes before the start
3828 * of the object.
3829 */
3830 size += sizeof(void *);
3831
3832 s->red_left_pad = sizeof(void *);
3833 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3834 size += s->red_left_pad;
3835 }
3836 #endif
3837
3838 /*
3839 * SLUB stores one object immediately after another beginning from
3840 * offset 0. In order to align the objects we have to simply size
3841 * each object to conform to the alignment.
3842 */
3843 size = ALIGN(size, s->align);
3844 s->size = size;
3845 s->reciprocal_size = reciprocal_value(size);
3846 if (forced_order >= 0)
3847 order = forced_order;
3848 else
3849 order = calculate_order(size);
3850
3851 if ((int)order < 0)
3852 return 0;
3853
3854 s->allocflags = 0;
3855 if (order)
3856 s->allocflags |= __GFP_COMP;
3857
3858 if (s->flags & SLAB_CACHE_DMA)
3859 s->allocflags |= GFP_DMA;
3860
3861 if (s->flags & SLAB_CACHE_DMA32)
3862 s->allocflags |= GFP_DMA32;
3863
3864 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3865 s->allocflags |= __GFP_RECLAIMABLE;
3866
3867 /*
3868 * Determine the number of objects per slab
3869 */
3870 s->oo = oo_make(order, size);
3871 s->min = oo_make(get_order(size), size);
3872 if (oo_objects(s->oo) > oo_objects(s->max))
3873 s->max = s->oo;
3874
3875 return !!oo_objects(s->oo);
3876 }
3877
3878 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3879 {
3880 s->flags = kmem_cache_flags(s->size, flags, s->name);
3881 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3882 s->random = get_random_long();
3883 #endif
3884
3885 if (!calculate_sizes(s, -1))
3886 goto error;
3887 if (disable_higher_order_debug) {
3888 /*
3889 * Disable debugging flags that store metadata if the min slab
3890 * order increased.
3891 */
3892 if (get_order(s->size) > get_order(s->object_size)) {
3893 s->flags &= ~DEBUG_METADATA_FLAGS;
3894 s->offset = 0;
3895 if (!calculate_sizes(s, -1))
3896 goto error;
3897 }
3898 }
3899
3900 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3901 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3902 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3903 /* Enable fast mode */
3904 s->flags |= __CMPXCHG_DOUBLE;
3905 #endif
3906
3907 /*
3908 * The larger the object size is, the more pages we want on the partial
3909 * list to avoid pounding the page allocator excessively.
3910 */
3911 set_min_partial(s, ilog2(s->size) / 2);
3912
3913 set_cpu_partial(s);
3914
3915 #ifdef CONFIG_NUMA
3916 s->remote_node_defrag_ratio = 1000;
3917 #endif
3918
3919 /* Initialize the pre-computed randomized freelist if slab is up */
3920 if (slab_state >= UP) {
3921 if (init_cache_random_seq(s))
3922 goto error;
3923 }
3924
3925 if (!init_kmem_cache_nodes(s))
3926 goto error;
3927
3928 if (alloc_kmem_cache_cpus(s))
3929 return 0;
3930
3931 free_kmem_cache_nodes(s);
3932 error:
3933 return -EINVAL;
3934 }
3935
3936 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3937 const char *text)
3938 {
3939 #ifdef CONFIG_SLUB_DEBUG
3940 void *addr = page_address(page);
3941 unsigned long *map;
3942 void *p;
3943
3944 slab_err(s, page, text, s->name);
3945 slab_lock(page);
3946
3947 map = get_map(s, page);
3948 for_each_object(p, s, addr, page->objects) {
3949
3950 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3951 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3952 print_tracking(s, p);
3953 }
3954 }
3955 put_map(map);
3956 slab_unlock(page);
3957 #endif
3958 }
3959
3960 /*
3961 * Attempt to free all partial slabs on a node.
3962 * This is called from __kmem_cache_shutdown(). We must take list_lock
3963 * because sysfs file might still access partial list after the shutdowning.
3964 */
3965 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3966 {
3967 LIST_HEAD(discard);
3968 struct page *page, *h;
3969
3970 BUG_ON(irqs_disabled());
3971 spin_lock_irq(&n->list_lock);
3972 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3973 if (!page->inuse) {
3974 remove_partial(n, page);
3975 list_add(&page->slab_list, &discard);
3976 } else {
3977 list_slab_objects(s, page,
3978 "Objects remaining in %s on __kmem_cache_shutdown()");
3979 }
3980 }
3981 spin_unlock_irq(&n->list_lock);
3982
3983 list_for_each_entry_safe(page, h, &discard, slab_list)
3984 discard_slab(s, page);
3985 }
3986
3987 bool __kmem_cache_empty(struct kmem_cache *s)
3988 {
3989 int node;
3990 struct kmem_cache_node *n;
3991
3992 for_each_kmem_cache_node(s, node, n)
3993 if (n->nr_partial || slabs_node(s, node))
3994 return false;
3995 return true;
3996 }
3997
3998 /*
3999 * Release all resources used by a slab cache.
4000 */
4001 int __kmem_cache_shutdown(struct kmem_cache *s)
4002 {
4003 int node;
4004 struct kmem_cache_node *n;
4005
4006 flush_all(s);
4007 /* Attempt to free all objects */
4008 for_each_kmem_cache_node(s, node, n) {
4009 free_partial(s, n);
4010 if (n->nr_partial || slabs_node(s, node))
4011 return 1;
4012 }
4013 return 0;
4014 }
4015
4016 #ifdef CONFIG_PRINTK
4017 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4018 {
4019 void *base;
4020 int __maybe_unused i;
4021 unsigned int objnr;
4022 void *objp;
4023 void *objp0;
4024 struct kmem_cache *s = page->slab_cache;
4025 struct track __maybe_unused *trackp;
4026
4027 kpp->kp_ptr = object;
4028 kpp->kp_page = page;
4029 kpp->kp_slab_cache = s;
4030 base = page_address(page);
4031 objp0 = kasan_reset_tag(object);
4032 #ifdef CONFIG_SLUB_DEBUG
4033 objp = restore_red_left(s, objp0);
4034 #else
4035 objp = objp0;
4036 #endif
4037 objnr = obj_to_index(s, page, objp);
4038 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4039 objp = base + s->size * objnr;
4040 kpp->kp_objp = objp;
4041 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4042 !(s->flags & SLAB_STORE_USER))
4043 return;
4044 #ifdef CONFIG_SLUB_DEBUG
4045 objp = fixup_red_left(s, objp);
4046 trackp = get_track(s, objp, TRACK_ALLOC);
4047 kpp->kp_ret = (void *)trackp->addr;
4048 #ifdef CONFIG_STACKTRACE
4049 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4050 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4051 if (!kpp->kp_stack[i])
4052 break;
4053 }
4054
4055 trackp = get_track(s, objp, TRACK_FREE);
4056 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4057 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4058 if (!kpp->kp_free_stack[i])
4059 break;
4060 }
4061 #endif
4062 #endif
4063 }
4064 #endif
4065
4066 /********************************************************************
4067 * Kmalloc subsystem
4068 *******************************************************************/
4069
4070 static int __init setup_slub_min_order(char *str)
4071 {
4072 get_option(&str, (int *)&slub_min_order);
4073
4074 return 1;
4075 }
4076
4077 __setup("slub_min_order=", setup_slub_min_order);
4078
4079 static int __init setup_slub_max_order(char *str)
4080 {
4081 get_option(&str, (int *)&slub_max_order);
4082 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4083
4084 return 1;
4085 }
4086
4087 __setup("slub_max_order=", setup_slub_max_order);
4088
4089 static int __init setup_slub_min_objects(char *str)
4090 {
4091 get_option(&str, (int *)&slub_min_objects);
4092
4093 return 1;
4094 }
4095
4096 __setup("slub_min_objects=", setup_slub_min_objects);
4097
4098 void *__kmalloc(size_t size, gfp_t flags)
4099 {
4100 struct kmem_cache *s;
4101 void *ret;
4102
4103 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4104 return kmalloc_large(size, flags);
4105
4106 s = kmalloc_slab(size, flags);
4107
4108 if (unlikely(ZERO_OR_NULL_PTR(s)))
4109 return s;
4110
4111 ret = slab_alloc(s, flags, _RET_IP_, size);
4112
4113 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4114
4115 ret = kasan_kmalloc(s, ret, size, flags);
4116
4117 return ret;
4118 }
4119 EXPORT_SYMBOL(__kmalloc);
4120
4121 #ifdef CONFIG_NUMA
4122 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4123 {
4124 struct page *page;
4125 void *ptr = NULL;
4126 unsigned int order = get_order(size);
4127
4128 flags |= __GFP_COMP;
4129 page = alloc_pages_node(node, flags, order);
4130 if (page) {
4131 ptr = page_address(page);
4132 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4133 PAGE_SIZE << order);
4134 }
4135
4136 return kmalloc_large_node_hook(ptr, size, flags);
4137 }
4138
4139 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4140 {
4141 struct kmem_cache *s;
4142 void *ret;
4143
4144 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4145 ret = kmalloc_large_node(size, flags, node);
4146
4147 trace_kmalloc_node(_RET_IP_, ret,
4148 size, PAGE_SIZE << get_order(size),
4149 flags, node);
4150
4151 return ret;
4152 }
4153
4154 s = kmalloc_slab(size, flags);
4155
4156 if (unlikely(ZERO_OR_NULL_PTR(s)))
4157 return s;
4158
4159 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4160
4161 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4162
4163 ret = kasan_kmalloc(s, ret, size, flags);
4164
4165 return ret;
4166 }
4167 EXPORT_SYMBOL(__kmalloc_node);
4168 #endif /* CONFIG_NUMA */
4169
4170 #ifdef CONFIG_HARDENED_USERCOPY
4171 /*
4172 * Rejects incorrectly sized objects and objects that are to be copied
4173 * to/from userspace but do not fall entirely within the containing slab
4174 * cache's usercopy region.
4175 *
4176 * Returns NULL if check passes, otherwise const char * to name of cache
4177 * to indicate an error.
4178 */
4179 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4180 bool to_user)
4181 {
4182 struct kmem_cache *s;
4183 unsigned int offset;
4184 size_t object_size;
4185 bool is_kfence = is_kfence_address(ptr);
4186
4187 ptr = kasan_reset_tag(ptr);
4188
4189 /* Find object and usable object size. */
4190 s = page->slab_cache;
4191
4192 /* Reject impossible pointers. */
4193 if (ptr < page_address(page))
4194 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4195 to_user, 0, n);
4196
4197 /* Find offset within object. */
4198 if (is_kfence)
4199 offset = ptr - kfence_object_start(ptr);
4200 else
4201 offset = (ptr - page_address(page)) % s->size;
4202
4203 /* Adjust for redzone and reject if within the redzone. */
4204 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4205 if (offset < s->red_left_pad)
4206 usercopy_abort("SLUB object in left red zone",
4207 s->name, to_user, offset, n);
4208 offset -= s->red_left_pad;
4209 }
4210
4211 /* Allow address range falling entirely within usercopy region. */
4212 if (offset >= s->useroffset &&
4213 offset - s->useroffset <= s->usersize &&
4214 n <= s->useroffset - offset + s->usersize)
4215 return;
4216
4217 /*
4218 * If the copy is still within the allocated object, produce
4219 * a warning instead of rejecting the copy. This is intended
4220 * to be a temporary method to find any missing usercopy
4221 * whitelists.
4222 */
4223 object_size = slab_ksize(s);
4224 if (usercopy_fallback &&
4225 offset <= object_size && n <= object_size - offset) {
4226 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4227 return;
4228 }
4229
4230 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4231 }
4232 #endif /* CONFIG_HARDENED_USERCOPY */
4233
4234 size_t __ksize(const void *object)
4235 {
4236 struct page *page;
4237
4238 if (unlikely(object == ZERO_SIZE_PTR))
4239 return 0;
4240
4241 page = virt_to_head_page(object);
4242
4243 if (unlikely(!PageSlab(page))) {
4244 WARN_ON(!PageCompound(page));
4245 return page_size(page);
4246 }
4247
4248 return slab_ksize(page->slab_cache);
4249 }
4250 EXPORT_SYMBOL(__ksize);
4251
4252 void kfree(const void *x)
4253 {
4254 struct page *page;
4255 void *object = (void *)x;
4256
4257 trace_kfree(_RET_IP_, x);
4258
4259 if (unlikely(ZERO_OR_NULL_PTR(x)))
4260 return;
4261
4262 page = virt_to_head_page(x);
4263 if (unlikely(!PageSlab(page))) {
4264 free_nonslab_page(page, object);
4265 return;
4266 }
4267 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4268 }
4269 EXPORT_SYMBOL(kfree);
4270
4271 #define SHRINK_PROMOTE_MAX 32
4272
4273 /*
4274 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4275 * up most to the head of the partial lists. New allocations will then
4276 * fill those up and thus they can be removed from the partial lists.
4277 *
4278 * The slabs with the least items are placed last. This results in them
4279 * being allocated from last increasing the chance that the last objects
4280 * are freed in them.
4281 */
4282 int __kmem_cache_shrink(struct kmem_cache *s)
4283 {
4284 int node;
4285 int i;
4286 struct kmem_cache_node *n;
4287 struct page *page;
4288 struct page *t;
4289 struct list_head discard;
4290 struct list_head promote[SHRINK_PROMOTE_MAX];
4291 unsigned long flags;
4292 int ret = 0;
4293
4294 flush_all(s);
4295 for_each_kmem_cache_node(s, node, n) {
4296 INIT_LIST_HEAD(&discard);
4297 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4298 INIT_LIST_HEAD(promote + i);
4299
4300 spin_lock_irqsave(&n->list_lock, flags);
4301
4302 /*
4303 * Build lists of slabs to discard or promote.
4304 *
4305 * Note that concurrent frees may occur while we hold the
4306 * list_lock. page->inuse here is the upper limit.
4307 */
4308 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4309 int free = page->objects - page->inuse;
4310
4311 /* Do not reread page->inuse */
4312 barrier();
4313
4314 /* We do not keep full slabs on the list */
4315 BUG_ON(free <= 0);
4316
4317 if (free == page->objects) {
4318 list_move(&page->slab_list, &discard);
4319 n->nr_partial--;
4320 } else if (free <= SHRINK_PROMOTE_MAX)
4321 list_move(&page->slab_list, promote + free - 1);
4322 }
4323
4324 /*
4325 * Promote the slabs filled up most to the head of the
4326 * partial list.
4327 */
4328 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4329 list_splice(promote + i, &n->partial);
4330
4331 spin_unlock_irqrestore(&n->list_lock, flags);
4332
4333 /* Release empty slabs */
4334 list_for_each_entry_safe(page, t, &discard, slab_list)
4335 discard_slab(s, page);
4336
4337 if (slabs_node(s, node))
4338 ret = 1;
4339 }
4340
4341 return ret;
4342 }
4343
4344 static int slab_mem_going_offline_callback(void *arg)
4345 {
4346 struct kmem_cache *s;
4347
4348 mutex_lock(&slab_mutex);
4349 list_for_each_entry(s, &slab_caches, list)
4350 __kmem_cache_shrink(s);
4351 mutex_unlock(&slab_mutex);
4352
4353 return 0;
4354 }
4355
4356 static void slab_mem_offline_callback(void *arg)
4357 {
4358 struct memory_notify *marg = arg;
4359 int offline_node;
4360
4361 offline_node = marg->status_change_nid_normal;
4362
4363 /*
4364 * If the node still has available memory. we need kmem_cache_node
4365 * for it yet.
4366 */
4367 if (offline_node < 0)
4368 return;
4369
4370 mutex_lock(&slab_mutex);
4371 node_clear(offline_node, slab_nodes);
4372 /*
4373 * We no longer free kmem_cache_node structures here, as it would be
4374 * racy with all get_node() users, and infeasible to protect them with
4375 * slab_mutex.
4376 */
4377 mutex_unlock(&slab_mutex);
4378 }
4379
4380 static int slab_mem_going_online_callback(void *arg)
4381 {
4382 struct kmem_cache_node *n;
4383 struct kmem_cache *s;
4384 struct memory_notify *marg = arg;
4385 int nid = marg->status_change_nid_normal;
4386 int ret = 0;
4387
4388 /*
4389 * If the node's memory is already available, then kmem_cache_node is
4390 * already created. Nothing to do.
4391 */
4392 if (nid < 0)
4393 return 0;
4394
4395 /*
4396 * We are bringing a node online. No memory is available yet. We must
4397 * allocate a kmem_cache_node structure in order to bring the node
4398 * online.
4399 */
4400 mutex_lock(&slab_mutex);
4401 list_for_each_entry(s, &slab_caches, list) {
4402 /*
4403 * The structure may already exist if the node was previously
4404 * onlined and offlined.
4405 */
4406 if (get_node(s, nid))
4407 continue;
4408 /*
4409 * XXX: kmem_cache_alloc_node will fallback to other nodes
4410 * since memory is not yet available from the node that
4411 * is brought up.
4412 */
4413 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4414 if (!n) {
4415 ret = -ENOMEM;
4416 goto out;
4417 }
4418 init_kmem_cache_node(n);
4419 s->node[nid] = n;
4420 }
4421 /*
4422 * Any cache created after this point will also have kmem_cache_node
4423 * initialized for the new node.
4424 */
4425 node_set(nid, slab_nodes);
4426 out:
4427 mutex_unlock(&slab_mutex);
4428 return ret;
4429 }
4430
4431 static int slab_memory_callback(struct notifier_block *self,
4432 unsigned long action, void *arg)
4433 {
4434 int ret = 0;
4435
4436 switch (action) {
4437 case MEM_GOING_ONLINE:
4438 ret = slab_mem_going_online_callback(arg);
4439 break;
4440 case MEM_GOING_OFFLINE:
4441 ret = slab_mem_going_offline_callback(arg);
4442 break;
4443 case MEM_OFFLINE:
4444 case MEM_CANCEL_ONLINE:
4445 slab_mem_offline_callback(arg);
4446 break;
4447 case MEM_ONLINE:
4448 case MEM_CANCEL_OFFLINE:
4449 break;
4450 }
4451 if (ret)
4452 ret = notifier_from_errno(ret);
4453 else
4454 ret = NOTIFY_OK;
4455 return ret;
4456 }
4457
4458 static struct notifier_block slab_memory_callback_nb = {
4459 .notifier_call = slab_memory_callback,
4460 .priority = SLAB_CALLBACK_PRI,
4461 };
4462
4463 /********************************************************************
4464 * Basic setup of slabs
4465 *******************************************************************/
4466
4467 /*
4468 * Used for early kmem_cache structures that were allocated using
4469 * the page allocator. Allocate them properly then fix up the pointers
4470 * that may be pointing to the wrong kmem_cache structure.
4471 */
4472
4473 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4474 {
4475 int node;
4476 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4477 struct kmem_cache_node *n;
4478
4479 memcpy(s, static_cache, kmem_cache->object_size);
4480
4481 /*
4482 * This runs very early, and only the boot processor is supposed to be
4483 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4484 * IPIs around.
4485 */
4486 __flush_cpu_slab(s, smp_processor_id());
4487 for_each_kmem_cache_node(s, node, n) {
4488 struct page *p;
4489
4490 list_for_each_entry(p, &n->partial, slab_list)
4491 p->slab_cache = s;
4492
4493 #ifdef CONFIG_SLUB_DEBUG
4494 list_for_each_entry(p, &n->full, slab_list)
4495 p->slab_cache = s;
4496 #endif
4497 }
4498 list_add(&s->list, &slab_caches);
4499 return s;
4500 }
4501
4502 void __init kmem_cache_init(void)
4503 {
4504 static __initdata struct kmem_cache boot_kmem_cache,
4505 boot_kmem_cache_node;
4506 int node;
4507
4508 if (debug_guardpage_minorder())
4509 slub_max_order = 0;
4510
4511 /* Print slub debugging pointers without hashing */
4512 if (__slub_debug_enabled())
4513 no_hash_pointers_enable(NULL);
4514
4515 kmem_cache_node = &boot_kmem_cache_node;
4516 kmem_cache = &boot_kmem_cache;
4517
4518 /*
4519 * Initialize the nodemask for which we will allocate per node
4520 * structures. Here we don't need taking slab_mutex yet.
4521 */
4522 for_each_node_state(node, N_NORMAL_MEMORY)
4523 node_set(node, slab_nodes);
4524
4525 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4526 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4527
4528 register_hotmemory_notifier(&slab_memory_callback_nb);
4529
4530 /* Able to allocate the per node structures */
4531 slab_state = PARTIAL;
4532
4533 create_boot_cache(kmem_cache, "kmem_cache",
4534 offsetof(struct kmem_cache, node) +
4535 nr_node_ids * sizeof(struct kmem_cache_node *),
4536 SLAB_HWCACHE_ALIGN, 0, 0);
4537
4538 kmem_cache = bootstrap(&boot_kmem_cache);
4539 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4540
4541 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4542 setup_kmalloc_cache_index_table();
4543 create_kmalloc_caches(0);
4544
4545 /* Setup random freelists for each cache */
4546 init_freelist_randomization();
4547
4548 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4549 slub_cpu_dead);
4550
4551 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4552 cache_line_size(),
4553 slub_min_order, slub_max_order, slub_min_objects,
4554 nr_cpu_ids, nr_node_ids);
4555 }
4556
4557 void __init kmem_cache_init_late(void)
4558 {
4559 }
4560
4561 struct kmem_cache *
4562 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4563 slab_flags_t flags, void (*ctor)(void *))
4564 {
4565 struct kmem_cache *s;
4566
4567 s = find_mergeable(size, align, flags, name, ctor);
4568 if (s) {
4569 s->refcount++;
4570
4571 /*
4572 * Adjust the object sizes so that we clear
4573 * the complete object on kzalloc.
4574 */
4575 s->object_size = max(s->object_size, size);
4576 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4577
4578 if (sysfs_slab_alias(s, name)) {
4579 s->refcount--;
4580 s = NULL;
4581 }
4582 }
4583
4584 return s;
4585 }
4586
4587 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4588 {
4589 int err;
4590
4591 err = kmem_cache_open(s, flags);
4592 if (err)
4593 return err;
4594
4595 /* Mutex is not taken during early boot */
4596 if (slab_state <= UP)
4597 return 0;
4598
4599 err = sysfs_slab_add(s);
4600 if (err)
4601 __kmem_cache_release(s);
4602
4603 if (s->flags & SLAB_STORE_USER)
4604 debugfs_slab_add(s);
4605
4606 return err;
4607 }
4608
4609 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4610 {
4611 struct kmem_cache *s;
4612 void *ret;
4613
4614 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4615 return kmalloc_large(size, gfpflags);
4616
4617 s = kmalloc_slab(size, gfpflags);
4618
4619 if (unlikely(ZERO_OR_NULL_PTR(s)))
4620 return s;
4621
4622 ret = slab_alloc(s, gfpflags, caller, size);
4623
4624 /* Honor the call site pointer we received. */
4625 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4626
4627 return ret;
4628 }
4629 EXPORT_SYMBOL(__kmalloc_track_caller);
4630
4631 #ifdef CONFIG_NUMA
4632 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4633 int node, unsigned long caller)
4634 {
4635 struct kmem_cache *s;
4636 void *ret;
4637
4638 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4639 ret = kmalloc_large_node(size, gfpflags, node);
4640
4641 trace_kmalloc_node(caller, ret,
4642 size, PAGE_SIZE << get_order(size),
4643 gfpflags, node);
4644
4645 return ret;
4646 }
4647
4648 s = kmalloc_slab(size, gfpflags);
4649
4650 if (unlikely(ZERO_OR_NULL_PTR(s)))
4651 return s;
4652
4653 ret = slab_alloc_node(s, gfpflags, node, caller, size);
4654
4655 /* Honor the call site pointer we received. */
4656 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4657
4658 return ret;
4659 }
4660 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4661 #endif
4662
4663 #ifdef CONFIG_SYSFS
4664 static int count_inuse(struct page *page)
4665 {
4666 return page->inuse;
4667 }
4668
4669 static int count_total(struct page *page)
4670 {
4671 return page->objects;
4672 }
4673 #endif
4674
4675 #ifdef CONFIG_SLUB_DEBUG
4676 static void validate_slab(struct kmem_cache *s, struct page *page)
4677 {
4678 void *p;
4679 void *addr = page_address(page);
4680 unsigned long *map;
4681
4682 slab_lock(page);
4683
4684 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4685 goto unlock;
4686
4687 /* Now we know that a valid freelist exists */
4688 map = get_map(s, page);
4689 for_each_object(p, s, addr, page->objects) {
4690 u8 val = test_bit(__obj_to_index(s, addr, p), map) ?
4691 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4692
4693 if (!check_object(s, page, p, val))
4694 break;
4695 }
4696 put_map(map);
4697 unlock:
4698 slab_unlock(page);
4699 }
4700
4701 static int validate_slab_node(struct kmem_cache *s,
4702 struct kmem_cache_node *n)
4703 {
4704 unsigned long count = 0;
4705 struct page *page;
4706 unsigned long flags;
4707
4708 spin_lock_irqsave(&n->list_lock, flags);
4709
4710 list_for_each_entry(page, &n->partial, slab_list) {
4711 validate_slab(s, page);
4712 count++;
4713 }
4714 if (count != n->nr_partial) {
4715 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4716 s->name, count, n->nr_partial);
4717 slab_add_kunit_errors();
4718 }
4719
4720 if (!(s->flags & SLAB_STORE_USER))
4721 goto out;
4722
4723 list_for_each_entry(page, &n->full, slab_list) {
4724 validate_slab(s, page);
4725 count++;
4726 }
4727 if (count != atomic_long_read(&n->nr_slabs)) {
4728 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4729 s->name, count, atomic_long_read(&n->nr_slabs));
4730 slab_add_kunit_errors();
4731 }
4732
4733 out:
4734 spin_unlock_irqrestore(&n->list_lock, flags);
4735 return count;
4736 }
4737
4738 long validate_slab_cache(struct kmem_cache *s)
4739 {
4740 int node;
4741 unsigned long count = 0;
4742 struct kmem_cache_node *n;
4743
4744 flush_all(s);
4745 for_each_kmem_cache_node(s, node, n)
4746 count += validate_slab_node(s, n);
4747
4748 return count;
4749 }
4750 EXPORT_SYMBOL(validate_slab_cache);
4751
4752 #ifdef CONFIG_DEBUG_FS
4753 /*
4754 * Generate lists of code addresses where slabcache objects are allocated
4755 * and freed.
4756 */
4757
4758 struct location {
4759 unsigned long count;
4760 unsigned long addr;
4761 long long sum_time;
4762 long min_time;
4763 long max_time;
4764 long min_pid;
4765 long max_pid;
4766 DECLARE_BITMAP(cpus, NR_CPUS);
4767 nodemask_t nodes;
4768 };
4769
4770 struct loc_track {
4771 unsigned long max;
4772 unsigned long count;
4773 struct location *loc;
4774 };
4775
4776 static struct dentry *slab_debugfs_root;
4777
4778 static void free_loc_track(struct loc_track *t)
4779 {
4780 if (t->max)
4781 free_pages((unsigned long)t->loc,
4782 get_order(sizeof(struct location) * t->max));
4783 }
4784
4785 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4786 {
4787 struct location *l;
4788 int order;
4789
4790 order = get_order(sizeof(struct location) * max);
4791
4792 l = (void *)__get_free_pages(flags, order);
4793 if (!l)
4794 return 0;
4795
4796 if (t->count) {
4797 memcpy(l, t->loc, sizeof(struct location) * t->count);
4798 free_loc_track(t);
4799 }
4800 t->max = max;
4801 t->loc = l;
4802 return 1;
4803 }
4804
4805 static int add_location(struct loc_track *t, struct kmem_cache *s,
4806 const struct track *track)
4807 {
4808 long start, end, pos;
4809 struct location *l;
4810 unsigned long caddr;
4811 unsigned long age = jiffies - track->when;
4812
4813 start = -1;
4814 end = t->count;
4815
4816 for ( ; ; ) {
4817 pos = start + (end - start + 1) / 2;
4818
4819 /*
4820 * There is nothing at "end". If we end up there
4821 * we need to add something to before end.
4822 */
4823 if (pos == end)
4824 break;
4825
4826 caddr = t->loc[pos].addr;
4827 if (track->addr == caddr) {
4828
4829 l = &t->loc[pos];
4830 l->count++;
4831 if (track->when) {
4832 l->sum_time += age;
4833 if (age < l->min_time)
4834 l->min_time = age;
4835 if (age > l->max_time)
4836 l->max_time = age;
4837
4838 if (track->pid < l->min_pid)
4839 l->min_pid = track->pid;
4840 if (track->pid > l->max_pid)
4841 l->max_pid = track->pid;
4842
4843 cpumask_set_cpu(track->cpu,
4844 to_cpumask(l->cpus));
4845 }
4846 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4847 return 1;
4848 }
4849
4850 if (track->addr < caddr)
4851 end = pos;
4852 else
4853 start = pos;
4854 }
4855
4856 /*
4857 * Not found. Insert new tracking element.
4858 */
4859 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4860 return 0;
4861
4862 l = t->loc + pos;
4863 if (pos < t->count)
4864 memmove(l + 1, l,
4865 (t->count - pos) * sizeof(struct location));
4866 t->count++;
4867 l->count = 1;
4868 l->addr = track->addr;
4869 l->sum_time = age;
4870 l->min_time = age;
4871 l->max_time = age;
4872 l->min_pid = track->pid;
4873 l->max_pid = track->pid;
4874 cpumask_clear(to_cpumask(l->cpus));
4875 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4876 nodes_clear(l->nodes);
4877 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4878 return 1;
4879 }
4880
4881 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4882 struct page *page, enum track_item alloc)
4883 {
4884 void *addr = page_address(page);
4885 void *p;
4886 unsigned long *map;
4887
4888 map = get_map(s, page);
4889 for_each_object(p, s, addr, page->objects)
4890 if (!test_bit(__obj_to_index(s, addr, p), map))
4891 add_location(t, s, get_track(s, p, alloc));
4892 put_map(map);
4893 }
4894 #endif /* CONFIG_DEBUG_FS */
4895 #endif /* CONFIG_SLUB_DEBUG */
4896
4897 #ifdef CONFIG_SYSFS
4898 enum slab_stat_type {
4899 SL_ALL, /* All slabs */
4900 SL_PARTIAL, /* Only partially allocated slabs */
4901 SL_CPU, /* Only slabs used for cpu caches */
4902 SL_OBJECTS, /* Determine allocated objects not slabs */
4903 SL_TOTAL /* Determine object capacity not slabs */
4904 };
4905
4906 #define SO_ALL (1 << SL_ALL)
4907 #define SO_PARTIAL (1 << SL_PARTIAL)
4908 #define SO_CPU (1 << SL_CPU)
4909 #define SO_OBJECTS (1 << SL_OBJECTS)
4910 #define SO_TOTAL (1 << SL_TOTAL)
4911
4912 static ssize_t show_slab_objects(struct kmem_cache *s,
4913 char *buf, unsigned long flags)
4914 {
4915 unsigned long total = 0;
4916 int node;
4917 int x;
4918 unsigned long *nodes;
4919 int len = 0;
4920
4921 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4922 if (!nodes)
4923 return -ENOMEM;
4924
4925 if (flags & SO_CPU) {
4926 int cpu;
4927
4928 for_each_possible_cpu(cpu) {
4929 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4930 cpu);
4931 int node;
4932 struct page *page;
4933
4934 page = READ_ONCE(c->page);
4935 if (!page)
4936 continue;
4937
4938 node = page_to_nid(page);
4939 if (flags & SO_TOTAL)
4940 x = page->objects;
4941 else if (flags & SO_OBJECTS)
4942 x = page->inuse;
4943 else
4944 x = 1;
4945
4946 total += x;
4947 nodes[node] += x;
4948
4949 page = slub_percpu_partial_read_once(c);
4950 if (page) {
4951 node = page_to_nid(page);
4952 if (flags & SO_TOTAL)
4953 WARN_ON_ONCE(1);
4954 else if (flags & SO_OBJECTS)
4955 WARN_ON_ONCE(1);
4956 else
4957 x = page->pages;
4958 total += x;
4959 nodes[node] += x;
4960 }
4961 }
4962 }
4963
4964 /*
4965 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4966 * already held which will conflict with an existing lock order:
4967 *
4968 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4969 *
4970 * We don't really need mem_hotplug_lock (to hold off
4971 * slab_mem_going_offline_callback) here because slab's memory hot
4972 * unplug code doesn't destroy the kmem_cache->node[] data.
4973 */
4974
4975 #ifdef CONFIG_SLUB_DEBUG
4976 if (flags & SO_ALL) {
4977 struct kmem_cache_node *n;
4978
4979 for_each_kmem_cache_node(s, node, n) {
4980
4981 if (flags & SO_TOTAL)
4982 x = atomic_long_read(&n->total_objects);
4983 else if (flags & SO_OBJECTS)
4984 x = atomic_long_read(&n->total_objects) -
4985 count_partial(n, count_free);
4986 else
4987 x = atomic_long_read(&n->nr_slabs);
4988 total += x;
4989 nodes[node] += x;
4990 }
4991
4992 } else
4993 #endif
4994 if (flags & SO_PARTIAL) {
4995 struct kmem_cache_node *n;
4996
4997 for_each_kmem_cache_node(s, node, n) {
4998 if (flags & SO_TOTAL)
4999 x = count_partial(n, count_total);
5000 else if (flags & SO_OBJECTS)
5001 x = count_partial(n, count_inuse);
5002 else
5003 x = n->nr_partial;
5004 total += x;
5005 nodes[node] += x;
5006 }
5007 }
5008
5009 len += sysfs_emit_at(buf, len, "%lu", total);
5010 #ifdef CONFIG_NUMA
5011 for (node = 0; node < nr_node_ids; node++) {
5012 if (nodes[node])
5013 len += sysfs_emit_at(buf, len, " N%d=%lu",
5014 node, nodes[node]);
5015 }
5016 #endif
5017 len += sysfs_emit_at(buf, len, "\n");
5018 kfree(nodes);
5019
5020 return len;
5021 }
5022
5023 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5024 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5025
5026 struct slab_attribute {
5027 struct attribute attr;
5028 ssize_t (*show)(struct kmem_cache *s, char *buf);
5029 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5030 };
5031
5032 #define SLAB_ATTR_RO(_name) \
5033 static struct slab_attribute _name##_attr = \
5034 __ATTR(_name, 0400, _name##_show, NULL)
5035
5036 #define SLAB_ATTR(_name) \
5037 static struct slab_attribute _name##_attr = \
5038 __ATTR(_name, 0600, _name##_show, _name##_store)
5039
5040 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5041 {
5042 return sysfs_emit(buf, "%u\n", s->size);
5043 }
5044 SLAB_ATTR_RO(slab_size);
5045
5046 static ssize_t align_show(struct kmem_cache *s, char *buf)
5047 {
5048 return sysfs_emit(buf, "%u\n", s->align);
5049 }
5050 SLAB_ATTR_RO(align);
5051
5052 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5053 {
5054 return sysfs_emit(buf, "%u\n", s->object_size);
5055 }
5056 SLAB_ATTR_RO(object_size);
5057
5058 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5059 {
5060 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5061 }
5062 SLAB_ATTR_RO(objs_per_slab);
5063
5064 static ssize_t order_show(struct kmem_cache *s, char *buf)
5065 {
5066 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5067 }
5068 SLAB_ATTR_RO(order);
5069
5070 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5071 {
5072 return sysfs_emit(buf, "%lu\n", s->min_partial);
5073 }
5074
5075 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5076 size_t length)
5077 {
5078 unsigned long min;
5079 int err;
5080
5081 err = kstrtoul(buf, 10, &min);
5082 if (err)
5083 return err;
5084
5085 set_min_partial(s, min);
5086 return length;
5087 }
5088 SLAB_ATTR(min_partial);
5089
5090 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5091 {
5092 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5093 }
5094
5095 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5096 size_t length)
5097 {
5098 unsigned int objects;
5099 int err;
5100
5101 err = kstrtouint(buf, 10, &objects);
5102 if (err)
5103 return err;
5104 if (objects && !kmem_cache_has_cpu_partial(s))
5105 return -EINVAL;
5106
5107 slub_set_cpu_partial(s, objects);
5108 flush_all(s);
5109 return length;
5110 }
5111 SLAB_ATTR(cpu_partial);
5112
5113 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5114 {
5115 if (!s->ctor)
5116 return 0;
5117 return sysfs_emit(buf, "%pS\n", s->ctor);
5118 }
5119 SLAB_ATTR_RO(ctor);
5120
5121 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5122 {
5123 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5124 }
5125 SLAB_ATTR_RO(aliases);
5126
5127 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5128 {
5129 return show_slab_objects(s, buf, SO_PARTIAL);
5130 }
5131 SLAB_ATTR_RO(partial);
5132
5133 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5134 {
5135 return show_slab_objects(s, buf, SO_CPU);
5136 }
5137 SLAB_ATTR_RO(cpu_slabs);
5138
5139 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5140 {
5141 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5142 }
5143 SLAB_ATTR_RO(objects);
5144
5145 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5146 {
5147 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5148 }
5149 SLAB_ATTR_RO(objects_partial);
5150
5151 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5152 {
5153 int objects = 0;
5154 int pages = 0;
5155 int cpu;
5156 int len = 0;
5157
5158 for_each_online_cpu(cpu) {
5159 struct page *page;
5160
5161 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5162
5163 if (page) {
5164 pages += page->pages;
5165 objects += page->pobjects;
5166 }
5167 }
5168
5169 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5170
5171 #ifdef CONFIG_SMP
5172 for_each_online_cpu(cpu) {
5173 struct page *page;
5174
5175 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5176 if (page)
5177 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5178 cpu, page->pobjects, page->pages);
5179 }
5180 #endif
5181 len += sysfs_emit_at(buf, len, "\n");
5182
5183 return len;
5184 }
5185 SLAB_ATTR_RO(slabs_cpu_partial);
5186
5187 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5188 {
5189 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5190 }
5191 SLAB_ATTR_RO(reclaim_account);
5192
5193 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5194 {
5195 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5196 }
5197 SLAB_ATTR_RO(hwcache_align);
5198
5199 #ifdef CONFIG_ZONE_DMA
5200 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5201 {
5202 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5203 }
5204 SLAB_ATTR_RO(cache_dma);
5205 #endif
5206
5207 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5208 {
5209 return sysfs_emit(buf, "%u\n", s->usersize);
5210 }
5211 SLAB_ATTR_RO(usersize);
5212
5213 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5214 {
5215 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5216 }
5217 SLAB_ATTR_RO(destroy_by_rcu);
5218
5219 #ifdef CONFIG_SLUB_DEBUG
5220 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5221 {
5222 return show_slab_objects(s, buf, SO_ALL);
5223 }
5224 SLAB_ATTR_RO(slabs);
5225
5226 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5227 {
5228 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5229 }
5230 SLAB_ATTR_RO(total_objects);
5231
5232 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5233 {
5234 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5235 }
5236 SLAB_ATTR_RO(sanity_checks);
5237
5238 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5239 {
5240 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5241 }
5242 SLAB_ATTR_RO(trace);
5243
5244 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5245 {
5246 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5247 }
5248
5249 SLAB_ATTR_RO(red_zone);
5250
5251 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5252 {
5253 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5254 }
5255
5256 SLAB_ATTR_RO(poison);
5257
5258 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5259 {
5260 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5261 }
5262
5263 SLAB_ATTR_RO(store_user);
5264
5265 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5266 {
5267 return 0;
5268 }
5269
5270 static ssize_t validate_store(struct kmem_cache *s,
5271 const char *buf, size_t length)
5272 {
5273 int ret = -EINVAL;
5274
5275 if (buf[0] == '1') {
5276 ret = validate_slab_cache(s);
5277 if (ret >= 0)
5278 ret = length;
5279 }
5280 return ret;
5281 }
5282 SLAB_ATTR(validate);
5283
5284 #endif /* CONFIG_SLUB_DEBUG */
5285
5286 #ifdef CONFIG_FAILSLAB
5287 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5288 {
5289 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5290 }
5291 SLAB_ATTR_RO(failslab);
5292 #endif
5293
5294 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5295 {
5296 return 0;
5297 }
5298
5299 static ssize_t shrink_store(struct kmem_cache *s,
5300 const char *buf, size_t length)
5301 {
5302 if (buf[0] == '1')
5303 kmem_cache_shrink(s);
5304 else
5305 return -EINVAL;
5306 return length;
5307 }
5308 SLAB_ATTR(shrink);
5309
5310 #ifdef CONFIG_NUMA
5311 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5312 {
5313 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5314 }
5315
5316 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5317 const char *buf, size_t length)
5318 {
5319 unsigned int ratio;
5320 int err;
5321
5322 err = kstrtouint(buf, 10, &ratio);
5323 if (err)
5324 return err;
5325 if (ratio > 100)
5326 return -ERANGE;
5327
5328 s->remote_node_defrag_ratio = ratio * 10;
5329
5330 return length;
5331 }
5332 SLAB_ATTR(remote_node_defrag_ratio);
5333 #endif
5334
5335 #ifdef CONFIG_SLUB_STATS
5336 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5337 {
5338 unsigned long sum = 0;
5339 int cpu;
5340 int len = 0;
5341 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5342
5343 if (!data)
5344 return -ENOMEM;
5345
5346 for_each_online_cpu(cpu) {
5347 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5348
5349 data[cpu] = x;
5350 sum += x;
5351 }
5352
5353 len += sysfs_emit_at(buf, len, "%lu", sum);
5354
5355 #ifdef CONFIG_SMP
5356 for_each_online_cpu(cpu) {
5357 if (data[cpu])
5358 len += sysfs_emit_at(buf, len, " C%d=%u",
5359 cpu, data[cpu]);
5360 }
5361 #endif
5362 kfree(data);
5363 len += sysfs_emit_at(buf, len, "\n");
5364
5365 return len;
5366 }
5367
5368 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5369 {
5370 int cpu;
5371
5372 for_each_online_cpu(cpu)
5373 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5374 }
5375
5376 #define STAT_ATTR(si, text) \
5377 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5378 { \
5379 return show_stat(s, buf, si); \
5380 } \
5381 static ssize_t text##_store(struct kmem_cache *s, \
5382 const char *buf, size_t length) \
5383 { \
5384 if (buf[0] != '0') \
5385 return -EINVAL; \
5386 clear_stat(s, si); \
5387 return length; \
5388 } \
5389 SLAB_ATTR(text); \
5390
5391 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5392 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5393 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5394 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5395 STAT_ATTR(FREE_FROZEN, free_frozen);
5396 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5397 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5398 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5399 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5400 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5401 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5402 STAT_ATTR(FREE_SLAB, free_slab);
5403 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5404 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5405 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5406 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5407 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5408 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5409 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5410 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5411 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5412 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5413 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5414 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5415 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5416 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5417 #endif /* CONFIG_SLUB_STATS */
5418
5419 static struct attribute *slab_attrs[] = {
5420 &slab_size_attr.attr,
5421 &object_size_attr.attr,
5422 &objs_per_slab_attr.attr,
5423 &order_attr.attr,
5424 &min_partial_attr.attr,
5425 &cpu_partial_attr.attr,
5426 &objects_attr.attr,
5427 &objects_partial_attr.attr,
5428 &partial_attr.attr,
5429 &cpu_slabs_attr.attr,
5430 &ctor_attr.attr,
5431 &aliases_attr.attr,
5432 &align_attr.attr,
5433 &hwcache_align_attr.attr,
5434 &reclaim_account_attr.attr,
5435 &destroy_by_rcu_attr.attr,
5436 &shrink_attr.attr,
5437 &slabs_cpu_partial_attr.attr,
5438 #ifdef CONFIG_SLUB_DEBUG
5439 &total_objects_attr.attr,
5440 &slabs_attr.attr,
5441 &sanity_checks_attr.attr,
5442 &trace_attr.attr,
5443 &red_zone_attr.attr,
5444 &poison_attr.attr,
5445 &store_user_attr.attr,
5446 &validate_attr.attr,
5447 #endif
5448 #ifdef CONFIG_ZONE_DMA
5449 &cache_dma_attr.attr,
5450 #endif
5451 #ifdef CONFIG_NUMA
5452 &remote_node_defrag_ratio_attr.attr,
5453 #endif
5454 #ifdef CONFIG_SLUB_STATS
5455 &alloc_fastpath_attr.attr,
5456 &alloc_slowpath_attr.attr,
5457 &free_fastpath_attr.attr,
5458 &free_slowpath_attr.attr,
5459 &free_frozen_attr.attr,
5460 &free_add_partial_attr.attr,
5461 &free_remove_partial_attr.attr,
5462 &alloc_from_partial_attr.attr,
5463 &alloc_slab_attr.attr,
5464 &alloc_refill_attr.attr,
5465 &alloc_node_mismatch_attr.attr,
5466 &free_slab_attr.attr,
5467 &cpuslab_flush_attr.attr,
5468 &deactivate_full_attr.attr,
5469 &deactivate_empty_attr.attr,
5470 &deactivate_to_head_attr.attr,
5471 &deactivate_to_tail_attr.attr,
5472 &deactivate_remote_frees_attr.attr,
5473 &deactivate_bypass_attr.attr,
5474 &order_fallback_attr.attr,
5475 &cmpxchg_double_fail_attr.attr,
5476 &cmpxchg_double_cpu_fail_attr.attr,
5477 &cpu_partial_alloc_attr.attr,
5478 &cpu_partial_free_attr.attr,
5479 &cpu_partial_node_attr.attr,
5480 &cpu_partial_drain_attr.attr,
5481 #endif
5482 #ifdef CONFIG_FAILSLAB
5483 &failslab_attr.attr,
5484 #endif
5485 &usersize_attr.attr,
5486
5487 NULL
5488 };
5489
5490 static const struct attribute_group slab_attr_group = {
5491 .attrs = slab_attrs,
5492 };
5493
5494 static ssize_t slab_attr_show(struct kobject *kobj,
5495 struct attribute *attr,
5496 char *buf)
5497 {
5498 struct slab_attribute *attribute;
5499 struct kmem_cache *s;
5500 int err;
5501
5502 attribute = to_slab_attr(attr);
5503 s = to_slab(kobj);
5504
5505 if (!attribute->show)
5506 return -EIO;
5507
5508 err = attribute->show(s, buf);
5509
5510 return err;
5511 }
5512
5513 static ssize_t slab_attr_store(struct kobject *kobj,
5514 struct attribute *attr,
5515 const char *buf, size_t len)
5516 {
5517 struct slab_attribute *attribute;
5518 struct kmem_cache *s;
5519 int err;
5520
5521 attribute = to_slab_attr(attr);
5522 s = to_slab(kobj);
5523
5524 if (!attribute->store)
5525 return -EIO;
5526
5527 err = attribute->store(s, buf, len);
5528 return err;
5529 }
5530
5531 static void kmem_cache_release(struct kobject *k)
5532 {
5533 slab_kmem_cache_release(to_slab(k));
5534 }
5535
5536 static const struct sysfs_ops slab_sysfs_ops = {
5537 .show = slab_attr_show,
5538 .store = slab_attr_store,
5539 };
5540
5541 static struct kobj_type slab_ktype = {
5542 .sysfs_ops = &slab_sysfs_ops,
5543 .release = kmem_cache_release,
5544 };
5545
5546 static struct kset *slab_kset;
5547
5548 static inline struct kset *cache_kset(struct kmem_cache *s)
5549 {
5550 return slab_kset;
5551 }
5552
5553 #define ID_STR_LENGTH 64
5554
5555 /* Create a unique string id for a slab cache:
5556 *
5557 * Format :[flags-]size
5558 */
5559 static char *create_unique_id(struct kmem_cache *s)
5560 {
5561 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5562 char *p = name;
5563
5564 BUG_ON(!name);
5565
5566 *p++ = ':';
5567 /*
5568 * First flags affecting slabcache operations. We will only
5569 * get here for aliasable slabs so we do not need to support
5570 * too many flags. The flags here must cover all flags that
5571 * are matched during merging to guarantee that the id is
5572 * unique.
5573 */
5574 if (s->flags & SLAB_CACHE_DMA)
5575 *p++ = 'd';
5576 if (s->flags & SLAB_CACHE_DMA32)
5577 *p++ = 'D';
5578 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5579 *p++ = 'a';
5580 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5581 *p++ = 'F';
5582 if (s->flags & SLAB_ACCOUNT)
5583 *p++ = 'A';
5584 if (p != name + 1)
5585 *p++ = '-';
5586 p += sprintf(p, "%07u", s->size);
5587
5588 BUG_ON(p > name + ID_STR_LENGTH - 1);
5589 return name;
5590 }
5591
5592 static int sysfs_slab_add(struct kmem_cache *s)
5593 {
5594 int err;
5595 const char *name;
5596 struct kset *kset = cache_kset(s);
5597 int unmergeable = slab_unmergeable(s);
5598
5599 if (!kset) {
5600 kobject_init(&s->kobj, &slab_ktype);
5601 return 0;
5602 }
5603
5604 if (!unmergeable && disable_higher_order_debug &&
5605 (slub_debug & DEBUG_METADATA_FLAGS))
5606 unmergeable = 1;
5607
5608 if (unmergeable) {
5609 /*
5610 * Slabcache can never be merged so we can use the name proper.
5611 * This is typically the case for debug situations. In that
5612 * case we can catch duplicate names easily.
5613 */
5614 sysfs_remove_link(&slab_kset->kobj, s->name);
5615 name = s->name;
5616 } else {
5617 /*
5618 * Create a unique name for the slab as a target
5619 * for the symlinks.
5620 */
5621 name = create_unique_id(s);
5622 }
5623
5624 s->kobj.kset = kset;
5625 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5626 if (err)
5627 goto out;
5628
5629 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5630 if (err)
5631 goto out_del_kobj;
5632
5633 if (!unmergeable) {
5634 /* Setup first alias */
5635 sysfs_slab_alias(s, s->name);
5636 }
5637 out:
5638 if (!unmergeable)
5639 kfree(name);
5640 return err;
5641 out_del_kobj:
5642 kobject_del(&s->kobj);
5643 goto out;
5644 }
5645
5646 void sysfs_slab_unlink(struct kmem_cache *s)
5647 {
5648 if (slab_state >= FULL)
5649 kobject_del(&s->kobj);
5650 }
5651
5652 void sysfs_slab_release(struct kmem_cache *s)
5653 {
5654 if (slab_state >= FULL)
5655 kobject_put(&s->kobj);
5656 }
5657
5658 /*
5659 * Need to buffer aliases during bootup until sysfs becomes
5660 * available lest we lose that information.
5661 */
5662 struct saved_alias {
5663 struct kmem_cache *s;
5664 const char *name;
5665 struct saved_alias *next;
5666 };
5667
5668 static struct saved_alias *alias_list;
5669
5670 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5671 {
5672 struct saved_alias *al;
5673
5674 if (slab_state == FULL) {
5675 /*
5676 * If we have a leftover link then remove it.
5677 */
5678 sysfs_remove_link(&slab_kset->kobj, name);
5679 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5680 }
5681
5682 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5683 if (!al)
5684 return -ENOMEM;
5685
5686 al->s = s;
5687 al->name = name;
5688 al->next = alias_list;
5689 alias_list = al;
5690 return 0;
5691 }
5692
5693 static int __init slab_sysfs_init(void)
5694 {
5695 struct kmem_cache *s;
5696 int err;
5697
5698 mutex_lock(&slab_mutex);
5699
5700 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5701 if (!slab_kset) {
5702 mutex_unlock(&slab_mutex);
5703 pr_err("Cannot register slab subsystem.\n");
5704 return -ENOSYS;
5705 }
5706
5707 slab_state = FULL;
5708
5709 list_for_each_entry(s, &slab_caches, list) {
5710 err = sysfs_slab_add(s);
5711 if (err)
5712 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5713 s->name);
5714 }
5715
5716 while (alias_list) {
5717 struct saved_alias *al = alias_list;
5718
5719 alias_list = alias_list->next;
5720 err = sysfs_slab_alias(al->s, al->name);
5721 if (err)
5722 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5723 al->name);
5724 kfree(al);
5725 }
5726
5727 mutex_unlock(&slab_mutex);
5728 return 0;
5729 }
5730
5731 __initcall(slab_sysfs_init);
5732 #endif /* CONFIG_SYSFS */
5733
5734 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5735 static int slab_debugfs_show(struct seq_file *seq, void *v)
5736 {
5737
5738 struct location *l;
5739 unsigned int idx = *(unsigned int *)v;
5740 struct loc_track *t = seq->private;
5741
5742 if (idx < t->count) {
5743 l = &t->loc[idx];
5744
5745 seq_printf(seq, "%7ld ", l->count);
5746
5747 if (l->addr)
5748 seq_printf(seq, "%pS", (void *)l->addr);
5749 else
5750 seq_puts(seq, "<not-available>");
5751
5752 if (l->sum_time != l->min_time) {
5753 seq_printf(seq, " age=%ld/%llu/%ld",
5754 l->min_time, div_u64(l->sum_time, l->count),
5755 l->max_time);
5756 } else
5757 seq_printf(seq, " age=%ld", l->min_time);
5758
5759 if (l->min_pid != l->max_pid)
5760 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5761 else
5762 seq_printf(seq, " pid=%ld",
5763 l->min_pid);
5764
5765 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5766 seq_printf(seq, " cpus=%*pbl",
5767 cpumask_pr_args(to_cpumask(l->cpus)));
5768
5769 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5770 seq_printf(seq, " nodes=%*pbl",
5771 nodemask_pr_args(&l->nodes));
5772
5773 seq_puts(seq, "\n");
5774 }
5775
5776 if (!idx && !t->count)
5777 seq_puts(seq, "No data\n");
5778
5779 return 0;
5780 }
5781
5782 static void slab_debugfs_stop(struct seq_file *seq, void *v)
5783 {
5784 }
5785
5786 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5787 {
5788 struct loc_track *t = seq->private;
5789
5790 v = ppos;
5791 ++*ppos;
5792 if (*ppos <= t->count)
5793 return v;
5794
5795 return NULL;
5796 }
5797
5798 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5799 {
5800 return ppos;
5801 }
5802
5803 static const struct seq_operations slab_debugfs_sops = {
5804 .start = slab_debugfs_start,
5805 .next = slab_debugfs_next,
5806 .stop = slab_debugfs_stop,
5807 .show = slab_debugfs_show,
5808 };
5809
5810 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5811 {
5812
5813 struct kmem_cache_node *n;
5814 enum track_item alloc;
5815 int node;
5816 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5817 sizeof(struct loc_track));
5818 struct kmem_cache *s = file_inode(filep)->i_private;
5819
5820 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5821 alloc = TRACK_ALLOC;
5822 else
5823 alloc = TRACK_FREE;
5824
5825 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL))
5826 return -ENOMEM;
5827
5828 /* Push back cpu slabs */
5829 flush_all(s);
5830
5831 for_each_kmem_cache_node(s, node, n) {
5832 unsigned long flags;
5833 struct page *page;
5834
5835 if (!atomic_long_read(&n->nr_slabs))
5836 continue;
5837
5838 spin_lock_irqsave(&n->list_lock, flags);
5839 list_for_each_entry(page, &n->partial, slab_list)
5840 process_slab(t, s, page, alloc);
5841 list_for_each_entry(page, &n->full, slab_list)
5842 process_slab(t, s, page, alloc);
5843 spin_unlock_irqrestore(&n->list_lock, flags);
5844 }
5845
5846 return 0;
5847 }
5848
5849 static int slab_debug_trace_release(struct inode *inode, struct file *file)
5850 {
5851 struct seq_file *seq = file->private_data;
5852 struct loc_track *t = seq->private;
5853
5854 free_loc_track(t);
5855 return seq_release_private(inode, file);
5856 }
5857
5858 static const struct file_operations slab_debugfs_fops = {
5859 .open = slab_debug_trace_open,
5860 .read = seq_read,
5861 .llseek = seq_lseek,
5862 .release = slab_debug_trace_release,
5863 };
5864
5865 static void debugfs_slab_add(struct kmem_cache *s)
5866 {
5867 struct dentry *slab_cache_dir;
5868
5869 if (unlikely(!slab_debugfs_root))
5870 return;
5871
5872 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5873
5874 debugfs_create_file("alloc_traces", 0400,
5875 slab_cache_dir, s, &slab_debugfs_fops);
5876
5877 debugfs_create_file("free_traces", 0400,
5878 slab_cache_dir, s, &slab_debugfs_fops);
5879 }
5880
5881 void debugfs_slab_release(struct kmem_cache *s)
5882 {
5883 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5884 }
5885
5886 static int __init slab_debugfs_init(void)
5887 {
5888 struct kmem_cache *s;
5889
5890 slab_debugfs_root = debugfs_create_dir("slab", NULL);
5891
5892 list_for_each_entry(s, &slab_caches, list)
5893 if (s->flags & SLAB_STORE_USER)
5894 debugfs_slab_add(s);
5895
5896 return 0;
5897
5898 }
5899 __initcall(slab_debugfs_init);
5900 #endif
5901 /*
5902 * The /proc/slabinfo ABI
5903 */
5904 #ifdef CONFIG_SLUB_DEBUG
5905 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5906 {
5907 unsigned long nr_slabs = 0;
5908 unsigned long nr_objs = 0;
5909 unsigned long nr_free = 0;
5910 int node;
5911 struct kmem_cache_node *n;
5912
5913 for_each_kmem_cache_node(s, node, n) {
5914 nr_slabs += node_nr_slabs(n);
5915 nr_objs += node_nr_objs(n);
5916 nr_free += count_partial(n, count_free);
5917 }
5918
5919 sinfo->active_objs = nr_objs - nr_free;
5920 sinfo->num_objs = nr_objs;
5921 sinfo->active_slabs = nr_slabs;
5922 sinfo->num_slabs = nr_slabs;
5923 sinfo->objects_per_slab = oo_objects(s->oo);
5924 sinfo->cache_order = oo_order(s->oo);
5925 }
5926
5927 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5928 {
5929 }
5930
5931 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5932 size_t count, loff_t *ppos)
5933 {
5934 return -EIO;
5935 }
5936 #endif /* CONFIG_SLUB_DEBUG */