]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
Merge back earlier suspend/hibernate material for v4.1.
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131 #else
132 return false;
133 #endif
134 }
135
136 /*
137 * Issues still to be resolved:
138 *
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
141 * - Variable sizing of the per node arrays
142 */
143
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149
150 /*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
154 #define MIN_PARTIAL 5
155
156 /*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
160 */
161 #define MAX_PARTIAL 10
162
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
165
166 /*
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
170 */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172
173 #define OO_SHIFT 16
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
176
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 /*
186 * Tracking user of a slab.
187 */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230 {
231 void *base;
232
233 if (!object)
234 return 1;
235
236 base = page_address(page);
237 if (object < base || object >= base + page->objects * s->size ||
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243 }
244
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 return *(void **)(object + s->offset);
248 }
249
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 prefetch(object + s->offset);
253 }
254
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 void *p;
258
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 p = get_freepointer(s, object);
263 #endif
264 return p;
265 }
266
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 *(void **)(object + s->offset) = fp;
270 }
271
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 __p += (__s)->size)
276
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 return (p - addr) / s->size;
285 }
286
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
296
297 #endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309 }
310
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 return ((PAGE_SIZE << order) - reserved) / size;
314 }
315
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
318 {
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
321 };
322
323 return x;
324 }
325
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 return x.x >> OO_SHIFT;
329 }
330
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 return x.x & OO_MASK;
334 }
335
336 /*
337 * Per slab locking using the pagelock
338 */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 bit_spin_lock(PG_locked, &page->flags);
342 }
343
344 static __always_inline void slab_unlock(struct page *page)
345 {
346 __bit_spin_unlock(PG_locked, &page->flags);
347 }
348
349 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
350 {
351 struct page tmp;
352 tmp.counters = counters_new;
353 /*
354 * page->counters can cover frozen/inuse/objects as well
355 * as page->_count. If we assign to ->counters directly
356 * we run the risk of losing updates to page->_count, so
357 * be careful and only assign to the fields we need.
358 */
359 page->frozen = tmp.frozen;
360 page->inuse = tmp.inuse;
361 page->objects = tmp.objects;
362 }
363
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369 {
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return 1;
378 } else
379 #endif
380 {
381 slab_lock(page);
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 set_page_slub_counters(page, counters_new);
386 slab_unlock(page);
387 return 1;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398
399 return 0;
400 }
401
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return 1;
414 } else
415 #endif
416 {
417 unsigned long flags;
418
419 local_irq_save(flags);
420 slab_lock(page);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 set_page_slub_counters(page, counters_new);
425 slab_unlock(page);
426 local_irq_restore(flags);
427 return 1;
428 }
429 slab_unlock(page);
430 local_irq_restore(flags);
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439
440 return 0;
441 }
442
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445 * Determine a map of object in use on a page.
446 *
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
449 */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457 }
458
459 /*
460 * Debug settings:
461 */
462 #ifdef CONFIG_SLUB_DEBUG_ON
463 static int slub_debug = DEBUG_DEFAULT_FLAGS;
464 #else
465 static int slub_debug;
466 #endif
467
468 static char *slub_debug_slabs;
469 static int disable_higher_order_debug;
470
471 /*
472 * slub is about to manipulate internal object metadata. This memory lies
473 * outside the range of the allocated object, so accessing it would normally
474 * be reported by kasan as a bounds error. metadata_access_enable() is used
475 * to tell kasan that these accesses are OK.
476 */
477 static inline void metadata_access_enable(void)
478 {
479 kasan_disable_current();
480 }
481
482 static inline void metadata_access_disable(void)
483 {
484 kasan_enable_current();
485 }
486
487 /*
488 * Object debugging
489 */
490 static void print_section(char *text, u8 *addr, unsigned int length)
491 {
492 metadata_access_enable();
493 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
494 length, 1);
495 metadata_access_disable();
496 }
497
498 static struct track *get_track(struct kmem_cache *s, void *object,
499 enum track_item alloc)
500 {
501 struct track *p;
502
503 if (s->offset)
504 p = object + s->offset + sizeof(void *);
505 else
506 p = object + s->inuse;
507
508 return p + alloc;
509 }
510
511 static void set_track(struct kmem_cache *s, void *object,
512 enum track_item alloc, unsigned long addr)
513 {
514 struct track *p = get_track(s, object, alloc);
515
516 if (addr) {
517 #ifdef CONFIG_STACKTRACE
518 struct stack_trace trace;
519 int i;
520
521 trace.nr_entries = 0;
522 trace.max_entries = TRACK_ADDRS_COUNT;
523 trace.entries = p->addrs;
524 trace.skip = 3;
525 metadata_access_enable();
526 save_stack_trace(&trace);
527 metadata_access_disable();
528
529 /* See rant in lockdep.c */
530 if (trace.nr_entries != 0 &&
531 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
532 trace.nr_entries--;
533
534 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
535 p->addrs[i] = 0;
536 #endif
537 p->addr = addr;
538 p->cpu = smp_processor_id();
539 p->pid = current->pid;
540 p->when = jiffies;
541 } else
542 memset(p, 0, sizeof(struct track));
543 }
544
545 static void init_tracking(struct kmem_cache *s, void *object)
546 {
547 if (!(s->flags & SLAB_STORE_USER))
548 return;
549
550 set_track(s, object, TRACK_FREE, 0UL);
551 set_track(s, object, TRACK_ALLOC, 0UL);
552 }
553
554 static void print_track(const char *s, struct track *t)
555 {
556 if (!t->addr)
557 return;
558
559 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
560 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
561 #ifdef CONFIG_STACKTRACE
562 {
563 int i;
564 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
565 if (t->addrs[i])
566 pr_err("\t%pS\n", (void *)t->addrs[i]);
567 else
568 break;
569 }
570 #endif
571 }
572
573 static void print_tracking(struct kmem_cache *s, void *object)
574 {
575 if (!(s->flags & SLAB_STORE_USER))
576 return;
577
578 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
579 print_track("Freed", get_track(s, object, TRACK_FREE));
580 }
581
582 static void print_page_info(struct page *page)
583 {
584 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
585 page, page->objects, page->inuse, page->freelist, page->flags);
586
587 }
588
589 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
590 {
591 struct va_format vaf;
592 va_list args;
593
594 va_start(args, fmt);
595 vaf.fmt = fmt;
596 vaf.va = &args;
597 pr_err("=============================================================================\n");
598 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
599 pr_err("-----------------------------------------------------------------------------\n\n");
600
601 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
602 va_end(args);
603 }
604
605 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
606 {
607 struct va_format vaf;
608 va_list args;
609
610 va_start(args, fmt);
611 vaf.fmt = fmt;
612 vaf.va = &args;
613 pr_err("FIX %s: %pV\n", s->name, &vaf);
614 va_end(args);
615 }
616
617 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
618 {
619 unsigned int off; /* Offset of last byte */
620 u8 *addr = page_address(page);
621
622 print_tracking(s, p);
623
624 print_page_info(page);
625
626 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
627 p, p - addr, get_freepointer(s, p));
628
629 if (p > addr + 16)
630 print_section("Bytes b4 ", p - 16, 16);
631
632 print_section("Object ", p, min_t(unsigned long, s->object_size,
633 PAGE_SIZE));
634 if (s->flags & SLAB_RED_ZONE)
635 print_section("Redzone ", p + s->object_size,
636 s->inuse - s->object_size);
637
638 if (s->offset)
639 off = s->offset + sizeof(void *);
640 else
641 off = s->inuse;
642
643 if (s->flags & SLAB_STORE_USER)
644 off += 2 * sizeof(struct track);
645
646 if (off != s->size)
647 /* Beginning of the filler is the free pointer */
648 print_section("Padding ", p + off, s->size - off);
649
650 dump_stack();
651 }
652
653 void object_err(struct kmem_cache *s, struct page *page,
654 u8 *object, char *reason)
655 {
656 slab_bug(s, "%s", reason);
657 print_trailer(s, page, object);
658 }
659
660 static void slab_err(struct kmem_cache *s, struct page *page,
661 const char *fmt, ...)
662 {
663 va_list args;
664 char buf[100];
665
666 va_start(args, fmt);
667 vsnprintf(buf, sizeof(buf), fmt, args);
668 va_end(args);
669 slab_bug(s, "%s", buf);
670 print_page_info(page);
671 dump_stack();
672 }
673
674 static void init_object(struct kmem_cache *s, void *object, u8 val)
675 {
676 u8 *p = object;
677
678 if (s->flags & __OBJECT_POISON) {
679 memset(p, POISON_FREE, s->object_size - 1);
680 p[s->object_size - 1] = POISON_END;
681 }
682
683 if (s->flags & SLAB_RED_ZONE)
684 memset(p + s->object_size, val, s->inuse - s->object_size);
685 }
686
687 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
688 void *from, void *to)
689 {
690 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
691 memset(from, data, to - from);
692 }
693
694 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
695 u8 *object, char *what,
696 u8 *start, unsigned int value, unsigned int bytes)
697 {
698 u8 *fault;
699 u8 *end;
700
701 metadata_access_enable();
702 fault = memchr_inv(start, value, bytes);
703 metadata_access_disable();
704 if (!fault)
705 return 1;
706
707 end = start + bytes;
708 while (end > fault && end[-1] == value)
709 end--;
710
711 slab_bug(s, "%s overwritten", what);
712 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
713 fault, end - 1, fault[0], value);
714 print_trailer(s, page, object);
715
716 restore_bytes(s, what, value, fault, end);
717 return 0;
718 }
719
720 /*
721 * Object layout:
722 *
723 * object address
724 * Bytes of the object to be managed.
725 * If the freepointer may overlay the object then the free
726 * pointer is the first word of the object.
727 *
728 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
729 * 0xa5 (POISON_END)
730 *
731 * object + s->object_size
732 * Padding to reach word boundary. This is also used for Redzoning.
733 * Padding is extended by another word if Redzoning is enabled and
734 * object_size == inuse.
735 *
736 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
737 * 0xcc (RED_ACTIVE) for objects in use.
738 *
739 * object + s->inuse
740 * Meta data starts here.
741 *
742 * A. Free pointer (if we cannot overwrite object on free)
743 * B. Tracking data for SLAB_STORE_USER
744 * C. Padding to reach required alignment boundary or at mininum
745 * one word if debugging is on to be able to detect writes
746 * before the word boundary.
747 *
748 * Padding is done using 0x5a (POISON_INUSE)
749 *
750 * object + s->size
751 * Nothing is used beyond s->size.
752 *
753 * If slabcaches are merged then the object_size and inuse boundaries are mostly
754 * ignored. And therefore no slab options that rely on these boundaries
755 * may be used with merged slabcaches.
756 */
757
758 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
759 {
760 unsigned long off = s->inuse; /* The end of info */
761
762 if (s->offset)
763 /* Freepointer is placed after the object. */
764 off += sizeof(void *);
765
766 if (s->flags & SLAB_STORE_USER)
767 /* We also have user information there */
768 off += 2 * sizeof(struct track);
769
770 if (s->size == off)
771 return 1;
772
773 return check_bytes_and_report(s, page, p, "Object padding",
774 p + off, POISON_INUSE, s->size - off);
775 }
776
777 /* Check the pad bytes at the end of a slab page */
778 static int slab_pad_check(struct kmem_cache *s, struct page *page)
779 {
780 u8 *start;
781 u8 *fault;
782 u8 *end;
783 int length;
784 int remainder;
785
786 if (!(s->flags & SLAB_POISON))
787 return 1;
788
789 start = page_address(page);
790 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
791 end = start + length;
792 remainder = length % s->size;
793 if (!remainder)
794 return 1;
795
796 metadata_access_enable();
797 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
798 metadata_access_disable();
799 if (!fault)
800 return 1;
801 while (end > fault && end[-1] == POISON_INUSE)
802 end--;
803
804 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
805 print_section("Padding ", end - remainder, remainder);
806
807 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
808 return 0;
809 }
810
811 static int check_object(struct kmem_cache *s, struct page *page,
812 void *object, u8 val)
813 {
814 u8 *p = object;
815 u8 *endobject = object + s->object_size;
816
817 if (s->flags & SLAB_RED_ZONE) {
818 if (!check_bytes_and_report(s, page, object, "Redzone",
819 endobject, val, s->inuse - s->object_size))
820 return 0;
821 } else {
822 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
823 check_bytes_and_report(s, page, p, "Alignment padding",
824 endobject, POISON_INUSE,
825 s->inuse - s->object_size);
826 }
827 }
828
829 if (s->flags & SLAB_POISON) {
830 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
831 (!check_bytes_and_report(s, page, p, "Poison", p,
832 POISON_FREE, s->object_size - 1) ||
833 !check_bytes_and_report(s, page, p, "Poison",
834 p + s->object_size - 1, POISON_END, 1)))
835 return 0;
836 /*
837 * check_pad_bytes cleans up on its own.
838 */
839 check_pad_bytes(s, page, p);
840 }
841
842 if (!s->offset && val == SLUB_RED_ACTIVE)
843 /*
844 * Object and freepointer overlap. Cannot check
845 * freepointer while object is allocated.
846 */
847 return 1;
848
849 /* Check free pointer validity */
850 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
851 object_err(s, page, p, "Freepointer corrupt");
852 /*
853 * No choice but to zap it and thus lose the remainder
854 * of the free objects in this slab. May cause
855 * another error because the object count is now wrong.
856 */
857 set_freepointer(s, p, NULL);
858 return 0;
859 }
860 return 1;
861 }
862
863 static int check_slab(struct kmem_cache *s, struct page *page)
864 {
865 int maxobj;
866
867 VM_BUG_ON(!irqs_disabled());
868
869 if (!PageSlab(page)) {
870 slab_err(s, page, "Not a valid slab page");
871 return 0;
872 }
873
874 maxobj = order_objects(compound_order(page), s->size, s->reserved);
875 if (page->objects > maxobj) {
876 slab_err(s, page, "objects %u > max %u",
877 page->objects, maxobj);
878 return 0;
879 }
880 if (page->inuse > page->objects) {
881 slab_err(s, page, "inuse %u > max %u",
882 page->inuse, page->objects);
883 return 0;
884 }
885 /* Slab_pad_check fixes things up after itself */
886 slab_pad_check(s, page);
887 return 1;
888 }
889
890 /*
891 * Determine if a certain object on a page is on the freelist. Must hold the
892 * slab lock to guarantee that the chains are in a consistent state.
893 */
894 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
895 {
896 int nr = 0;
897 void *fp;
898 void *object = NULL;
899 int max_objects;
900
901 fp = page->freelist;
902 while (fp && nr <= page->objects) {
903 if (fp == search)
904 return 1;
905 if (!check_valid_pointer(s, page, fp)) {
906 if (object) {
907 object_err(s, page, object,
908 "Freechain corrupt");
909 set_freepointer(s, object, NULL);
910 } else {
911 slab_err(s, page, "Freepointer corrupt");
912 page->freelist = NULL;
913 page->inuse = page->objects;
914 slab_fix(s, "Freelist cleared");
915 return 0;
916 }
917 break;
918 }
919 object = fp;
920 fp = get_freepointer(s, object);
921 nr++;
922 }
923
924 max_objects = order_objects(compound_order(page), s->size, s->reserved);
925 if (max_objects > MAX_OBJS_PER_PAGE)
926 max_objects = MAX_OBJS_PER_PAGE;
927
928 if (page->objects != max_objects) {
929 slab_err(s, page, "Wrong number of objects. Found %d but "
930 "should be %d", page->objects, max_objects);
931 page->objects = max_objects;
932 slab_fix(s, "Number of objects adjusted.");
933 }
934 if (page->inuse != page->objects - nr) {
935 slab_err(s, page, "Wrong object count. Counter is %d but "
936 "counted were %d", page->inuse, page->objects - nr);
937 page->inuse = page->objects - nr;
938 slab_fix(s, "Object count adjusted.");
939 }
940 return search == NULL;
941 }
942
943 static void trace(struct kmem_cache *s, struct page *page, void *object,
944 int alloc)
945 {
946 if (s->flags & SLAB_TRACE) {
947 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
948 s->name,
949 alloc ? "alloc" : "free",
950 object, page->inuse,
951 page->freelist);
952
953 if (!alloc)
954 print_section("Object ", (void *)object,
955 s->object_size);
956
957 dump_stack();
958 }
959 }
960
961 /*
962 * Tracking of fully allocated slabs for debugging purposes.
963 */
964 static void add_full(struct kmem_cache *s,
965 struct kmem_cache_node *n, struct page *page)
966 {
967 if (!(s->flags & SLAB_STORE_USER))
968 return;
969
970 lockdep_assert_held(&n->list_lock);
971 list_add(&page->lru, &n->full);
972 }
973
974 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
975 {
976 if (!(s->flags & SLAB_STORE_USER))
977 return;
978
979 lockdep_assert_held(&n->list_lock);
980 list_del(&page->lru);
981 }
982
983 /* Tracking of the number of slabs for debugging purposes */
984 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
985 {
986 struct kmem_cache_node *n = get_node(s, node);
987
988 return atomic_long_read(&n->nr_slabs);
989 }
990
991 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
992 {
993 return atomic_long_read(&n->nr_slabs);
994 }
995
996 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
997 {
998 struct kmem_cache_node *n = get_node(s, node);
999
1000 /*
1001 * May be called early in order to allocate a slab for the
1002 * kmem_cache_node structure. Solve the chicken-egg
1003 * dilemma by deferring the increment of the count during
1004 * bootstrap (see early_kmem_cache_node_alloc).
1005 */
1006 if (likely(n)) {
1007 atomic_long_inc(&n->nr_slabs);
1008 atomic_long_add(objects, &n->total_objects);
1009 }
1010 }
1011 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1012 {
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 atomic_long_dec(&n->nr_slabs);
1016 atomic_long_sub(objects, &n->total_objects);
1017 }
1018
1019 /* Object debug checks for alloc/free paths */
1020 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1021 void *object)
1022 {
1023 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1024 return;
1025
1026 init_object(s, object, SLUB_RED_INACTIVE);
1027 init_tracking(s, object);
1028 }
1029
1030 static noinline int alloc_debug_processing(struct kmem_cache *s,
1031 struct page *page,
1032 void *object, unsigned long addr)
1033 {
1034 if (!check_slab(s, page))
1035 goto bad;
1036
1037 if (!check_valid_pointer(s, page, object)) {
1038 object_err(s, page, object, "Freelist Pointer check fails");
1039 goto bad;
1040 }
1041
1042 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1043 goto bad;
1044
1045 /* Success perform special debug activities for allocs */
1046 if (s->flags & SLAB_STORE_USER)
1047 set_track(s, object, TRACK_ALLOC, addr);
1048 trace(s, page, object, 1);
1049 init_object(s, object, SLUB_RED_ACTIVE);
1050 return 1;
1051
1052 bad:
1053 if (PageSlab(page)) {
1054 /*
1055 * If this is a slab page then lets do the best we can
1056 * to avoid issues in the future. Marking all objects
1057 * as used avoids touching the remaining objects.
1058 */
1059 slab_fix(s, "Marking all objects used");
1060 page->inuse = page->objects;
1061 page->freelist = NULL;
1062 }
1063 return 0;
1064 }
1065
1066 static noinline struct kmem_cache_node *free_debug_processing(
1067 struct kmem_cache *s, struct page *page, void *object,
1068 unsigned long addr, unsigned long *flags)
1069 {
1070 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1071
1072 spin_lock_irqsave(&n->list_lock, *flags);
1073 slab_lock(page);
1074
1075 if (!check_slab(s, page))
1076 goto fail;
1077
1078 if (!check_valid_pointer(s, page, object)) {
1079 slab_err(s, page, "Invalid object pointer 0x%p", object);
1080 goto fail;
1081 }
1082
1083 if (on_freelist(s, page, object)) {
1084 object_err(s, page, object, "Object already free");
1085 goto fail;
1086 }
1087
1088 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1089 goto out;
1090
1091 if (unlikely(s != page->slab_cache)) {
1092 if (!PageSlab(page)) {
1093 slab_err(s, page, "Attempt to free object(0x%p) "
1094 "outside of slab", object);
1095 } else if (!page->slab_cache) {
1096 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1097 object);
1098 dump_stack();
1099 } else
1100 object_err(s, page, object,
1101 "page slab pointer corrupt.");
1102 goto fail;
1103 }
1104
1105 if (s->flags & SLAB_STORE_USER)
1106 set_track(s, object, TRACK_FREE, addr);
1107 trace(s, page, object, 0);
1108 init_object(s, object, SLUB_RED_INACTIVE);
1109 out:
1110 slab_unlock(page);
1111 /*
1112 * Keep node_lock to preserve integrity
1113 * until the object is actually freed
1114 */
1115 return n;
1116
1117 fail:
1118 slab_unlock(page);
1119 spin_unlock_irqrestore(&n->list_lock, *flags);
1120 slab_fix(s, "Object at 0x%p not freed", object);
1121 return NULL;
1122 }
1123
1124 static int __init setup_slub_debug(char *str)
1125 {
1126 slub_debug = DEBUG_DEFAULT_FLAGS;
1127 if (*str++ != '=' || !*str)
1128 /*
1129 * No options specified. Switch on full debugging.
1130 */
1131 goto out;
1132
1133 if (*str == ',')
1134 /*
1135 * No options but restriction on slabs. This means full
1136 * debugging for slabs matching a pattern.
1137 */
1138 goto check_slabs;
1139
1140 if (tolower(*str) == 'o') {
1141 /*
1142 * Avoid enabling debugging on caches if its minimum order
1143 * would increase as a result.
1144 */
1145 disable_higher_order_debug = 1;
1146 goto out;
1147 }
1148
1149 slub_debug = 0;
1150 if (*str == '-')
1151 /*
1152 * Switch off all debugging measures.
1153 */
1154 goto out;
1155
1156 /*
1157 * Determine which debug features should be switched on
1158 */
1159 for (; *str && *str != ','; str++) {
1160 switch (tolower(*str)) {
1161 case 'f':
1162 slub_debug |= SLAB_DEBUG_FREE;
1163 break;
1164 case 'z':
1165 slub_debug |= SLAB_RED_ZONE;
1166 break;
1167 case 'p':
1168 slub_debug |= SLAB_POISON;
1169 break;
1170 case 'u':
1171 slub_debug |= SLAB_STORE_USER;
1172 break;
1173 case 't':
1174 slub_debug |= SLAB_TRACE;
1175 break;
1176 case 'a':
1177 slub_debug |= SLAB_FAILSLAB;
1178 break;
1179 default:
1180 pr_err("slub_debug option '%c' unknown. skipped\n",
1181 *str);
1182 }
1183 }
1184
1185 check_slabs:
1186 if (*str == ',')
1187 slub_debug_slabs = str + 1;
1188 out:
1189 return 1;
1190 }
1191
1192 __setup("slub_debug", setup_slub_debug);
1193
1194 unsigned long kmem_cache_flags(unsigned long object_size,
1195 unsigned long flags, const char *name,
1196 void (*ctor)(void *))
1197 {
1198 /*
1199 * Enable debugging if selected on the kernel commandline.
1200 */
1201 if (slub_debug && (!slub_debug_slabs || (name &&
1202 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1203 flags |= slub_debug;
1204
1205 return flags;
1206 }
1207 #else
1208 static inline void setup_object_debug(struct kmem_cache *s,
1209 struct page *page, void *object) {}
1210
1211 static inline int alloc_debug_processing(struct kmem_cache *s,
1212 struct page *page, void *object, unsigned long addr) { return 0; }
1213
1214 static inline struct kmem_cache_node *free_debug_processing(
1215 struct kmem_cache *s, struct page *page, void *object,
1216 unsigned long addr, unsigned long *flags) { return NULL; }
1217
1218 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1219 { return 1; }
1220 static inline int check_object(struct kmem_cache *s, struct page *page,
1221 void *object, u8 val) { return 1; }
1222 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1223 struct page *page) {}
1224 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1225 struct page *page) {}
1226 unsigned long kmem_cache_flags(unsigned long object_size,
1227 unsigned long flags, const char *name,
1228 void (*ctor)(void *))
1229 {
1230 return flags;
1231 }
1232 #define slub_debug 0
1233
1234 #define disable_higher_order_debug 0
1235
1236 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1237 { return 0; }
1238 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 { return 0; }
1240 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1241 int objects) {}
1242 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1243 int objects) {}
1244
1245 #endif /* CONFIG_SLUB_DEBUG */
1246
1247 /*
1248 * Hooks for other subsystems that check memory allocations. In a typical
1249 * production configuration these hooks all should produce no code at all.
1250 */
1251 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1252 {
1253 kmemleak_alloc(ptr, size, 1, flags);
1254 kasan_kmalloc_large(ptr, size);
1255 }
1256
1257 static inline void kfree_hook(const void *x)
1258 {
1259 kmemleak_free(x);
1260 kasan_kfree_large(x);
1261 }
1262
1263 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1264 gfp_t flags)
1265 {
1266 flags &= gfp_allowed_mask;
1267 lockdep_trace_alloc(flags);
1268 might_sleep_if(flags & __GFP_WAIT);
1269
1270 if (should_failslab(s->object_size, flags, s->flags))
1271 return NULL;
1272
1273 return memcg_kmem_get_cache(s, flags);
1274 }
1275
1276 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1277 gfp_t flags, void *object)
1278 {
1279 flags &= gfp_allowed_mask;
1280 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1281 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1282 memcg_kmem_put_cache(s);
1283 kasan_slab_alloc(s, object);
1284 }
1285
1286 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1287 {
1288 kmemleak_free_recursive(x, s->flags);
1289
1290 /*
1291 * Trouble is that we may no longer disable interrupts in the fast path
1292 * So in order to make the debug calls that expect irqs to be
1293 * disabled we need to disable interrupts temporarily.
1294 */
1295 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1296 {
1297 unsigned long flags;
1298
1299 local_irq_save(flags);
1300 kmemcheck_slab_free(s, x, s->object_size);
1301 debug_check_no_locks_freed(x, s->object_size);
1302 local_irq_restore(flags);
1303 }
1304 #endif
1305 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1306 debug_check_no_obj_freed(x, s->object_size);
1307
1308 kasan_slab_free(s, x);
1309 }
1310
1311 /*
1312 * Slab allocation and freeing
1313 */
1314 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1315 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1316 {
1317 struct page *page;
1318 int order = oo_order(oo);
1319
1320 flags |= __GFP_NOTRACK;
1321
1322 if (memcg_charge_slab(s, flags, order))
1323 return NULL;
1324
1325 if (node == NUMA_NO_NODE)
1326 page = alloc_pages(flags, order);
1327 else
1328 page = alloc_pages_exact_node(node, flags, order);
1329
1330 if (!page)
1331 memcg_uncharge_slab(s, order);
1332
1333 return page;
1334 }
1335
1336 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1337 {
1338 struct page *page;
1339 struct kmem_cache_order_objects oo = s->oo;
1340 gfp_t alloc_gfp;
1341
1342 flags &= gfp_allowed_mask;
1343
1344 if (flags & __GFP_WAIT)
1345 local_irq_enable();
1346
1347 flags |= s->allocflags;
1348
1349 /*
1350 * Let the initial higher-order allocation fail under memory pressure
1351 * so we fall-back to the minimum order allocation.
1352 */
1353 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1354
1355 page = alloc_slab_page(s, alloc_gfp, node, oo);
1356 if (unlikely(!page)) {
1357 oo = s->min;
1358 alloc_gfp = flags;
1359 /*
1360 * Allocation may have failed due to fragmentation.
1361 * Try a lower order alloc if possible
1362 */
1363 page = alloc_slab_page(s, alloc_gfp, node, oo);
1364
1365 if (page)
1366 stat(s, ORDER_FALLBACK);
1367 }
1368
1369 if (kmemcheck_enabled && page
1370 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1371 int pages = 1 << oo_order(oo);
1372
1373 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1374
1375 /*
1376 * Objects from caches that have a constructor don't get
1377 * cleared when they're allocated, so we need to do it here.
1378 */
1379 if (s->ctor)
1380 kmemcheck_mark_uninitialized_pages(page, pages);
1381 else
1382 kmemcheck_mark_unallocated_pages(page, pages);
1383 }
1384
1385 if (flags & __GFP_WAIT)
1386 local_irq_disable();
1387 if (!page)
1388 return NULL;
1389
1390 page->objects = oo_objects(oo);
1391 mod_zone_page_state(page_zone(page),
1392 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1393 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1394 1 << oo_order(oo));
1395
1396 return page;
1397 }
1398
1399 static void setup_object(struct kmem_cache *s, struct page *page,
1400 void *object)
1401 {
1402 setup_object_debug(s, page, object);
1403 if (unlikely(s->ctor)) {
1404 kasan_unpoison_object_data(s, object);
1405 s->ctor(object);
1406 kasan_poison_object_data(s, object);
1407 }
1408 }
1409
1410 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1411 {
1412 struct page *page;
1413 void *start;
1414 void *p;
1415 int order;
1416 int idx;
1417
1418 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1419 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1420 BUG();
1421 }
1422
1423 page = allocate_slab(s,
1424 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1425 if (!page)
1426 goto out;
1427
1428 order = compound_order(page);
1429 inc_slabs_node(s, page_to_nid(page), page->objects);
1430 page->slab_cache = s;
1431 __SetPageSlab(page);
1432 if (page->pfmemalloc)
1433 SetPageSlabPfmemalloc(page);
1434
1435 start = page_address(page);
1436
1437 if (unlikely(s->flags & SLAB_POISON))
1438 memset(start, POISON_INUSE, PAGE_SIZE << order);
1439
1440 kasan_poison_slab(page);
1441
1442 for_each_object_idx(p, idx, s, start, page->objects) {
1443 setup_object(s, page, p);
1444 if (likely(idx < page->objects))
1445 set_freepointer(s, p, p + s->size);
1446 else
1447 set_freepointer(s, p, NULL);
1448 }
1449
1450 page->freelist = start;
1451 page->inuse = page->objects;
1452 page->frozen = 1;
1453 out:
1454 return page;
1455 }
1456
1457 static void __free_slab(struct kmem_cache *s, struct page *page)
1458 {
1459 int order = compound_order(page);
1460 int pages = 1 << order;
1461
1462 if (kmem_cache_debug(s)) {
1463 void *p;
1464
1465 slab_pad_check(s, page);
1466 for_each_object(p, s, page_address(page),
1467 page->objects)
1468 check_object(s, page, p, SLUB_RED_INACTIVE);
1469 }
1470
1471 kmemcheck_free_shadow(page, compound_order(page));
1472
1473 mod_zone_page_state(page_zone(page),
1474 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1475 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1476 -pages);
1477
1478 __ClearPageSlabPfmemalloc(page);
1479 __ClearPageSlab(page);
1480
1481 page_mapcount_reset(page);
1482 if (current->reclaim_state)
1483 current->reclaim_state->reclaimed_slab += pages;
1484 __free_pages(page, order);
1485 memcg_uncharge_slab(s, order);
1486 }
1487
1488 #define need_reserve_slab_rcu \
1489 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1490
1491 static void rcu_free_slab(struct rcu_head *h)
1492 {
1493 struct page *page;
1494
1495 if (need_reserve_slab_rcu)
1496 page = virt_to_head_page(h);
1497 else
1498 page = container_of((struct list_head *)h, struct page, lru);
1499
1500 __free_slab(page->slab_cache, page);
1501 }
1502
1503 static void free_slab(struct kmem_cache *s, struct page *page)
1504 {
1505 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1506 struct rcu_head *head;
1507
1508 if (need_reserve_slab_rcu) {
1509 int order = compound_order(page);
1510 int offset = (PAGE_SIZE << order) - s->reserved;
1511
1512 VM_BUG_ON(s->reserved != sizeof(*head));
1513 head = page_address(page) + offset;
1514 } else {
1515 /*
1516 * RCU free overloads the RCU head over the LRU
1517 */
1518 head = (void *)&page->lru;
1519 }
1520
1521 call_rcu(head, rcu_free_slab);
1522 } else
1523 __free_slab(s, page);
1524 }
1525
1526 static void discard_slab(struct kmem_cache *s, struct page *page)
1527 {
1528 dec_slabs_node(s, page_to_nid(page), page->objects);
1529 free_slab(s, page);
1530 }
1531
1532 /*
1533 * Management of partially allocated slabs.
1534 */
1535 static inline void
1536 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1537 {
1538 n->nr_partial++;
1539 if (tail == DEACTIVATE_TO_TAIL)
1540 list_add_tail(&page->lru, &n->partial);
1541 else
1542 list_add(&page->lru, &n->partial);
1543 }
1544
1545 static inline void add_partial(struct kmem_cache_node *n,
1546 struct page *page, int tail)
1547 {
1548 lockdep_assert_held(&n->list_lock);
1549 __add_partial(n, page, tail);
1550 }
1551
1552 static inline void
1553 __remove_partial(struct kmem_cache_node *n, struct page *page)
1554 {
1555 list_del(&page->lru);
1556 n->nr_partial--;
1557 }
1558
1559 static inline void remove_partial(struct kmem_cache_node *n,
1560 struct page *page)
1561 {
1562 lockdep_assert_held(&n->list_lock);
1563 __remove_partial(n, page);
1564 }
1565
1566 /*
1567 * Remove slab from the partial list, freeze it and
1568 * return the pointer to the freelist.
1569 *
1570 * Returns a list of objects or NULL if it fails.
1571 */
1572 static inline void *acquire_slab(struct kmem_cache *s,
1573 struct kmem_cache_node *n, struct page *page,
1574 int mode, int *objects)
1575 {
1576 void *freelist;
1577 unsigned long counters;
1578 struct page new;
1579
1580 lockdep_assert_held(&n->list_lock);
1581
1582 /*
1583 * Zap the freelist and set the frozen bit.
1584 * The old freelist is the list of objects for the
1585 * per cpu allocation list.
1586 */
1587 freelist = page->freelist;
1588 counters = page->counters;
1589 new.counters = counters;
1590 *objects = new.objects - new.inuse;
1591 if (mode) {
1592 new.inuse = page->objects;
1593 new.freelist = NULL;
1594 } else {
1595 new.freelist = freelist;
1596 }
1597
1598 VM_BUG_ON(new.frozen);
1599 new.frozen = 1;
1600
1601 if (!__cmpxchg_double_slab(s, page,
1602 freelist, counters,
1603 new.freelist, new.counters,
1604 "acquire_slab"))
1605 return NULL;
1606
1607 remove_partial(n, page);
1608 WARN_ON(!freelist);
1609 return freelist;
1610 }
1611
1612 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1613 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1614
1615 /*
1616 * Try to allocate a partial slab from a specific node.
1617 */
1618 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1619 struct kmem_cache_cpu *c, gfp_t flags)
1620 {
1621 struct page *page, *page2;
1622 void *object = NULL;
1623 int available = 0;
1624 int objects;
1625
1626 /*
1627 * Racy check. If we mistakenly see no partial slabs then we
1628 * just allocate an empty slab. If we mistakenly try to get a
1629 * partial slab and there is none available then get_partials()
1630 * will return NULL.
1631 */
1632 if (!n || !n->nr_partial)
1633 return NULL;
1634
1635 spin_lock(&n->list_lock);
1636 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1637 void *t;
1638
1639 if (!pfmemalloc_match(page, flags))
1640 continue;
1641
1642 t = acquire_slab(s, n, page, object == NULL, &objects);
1643 if (!t)
1644 break;
1645
1646 available += objects;
1647 if (!object) {
1648 c->page = page;
1649 stat(s, ALLOC_FROM_PARTIAL);
1650 object = t;
1651 } else {
1652 put_cpu_partial(s, page, 0);
1653 stat(s, CPU_PARTIAL_NODE);
1654 }
1655 if (!kmem_cache_has_cpu_partial(s)
1656 || available > s->cpu_partial / 2)
1657 break;
1658
1659 }
1660 spin_unlock(&n->list_lock);
1661 return object;
1662 }
1663
1664 /*
1665 * Get a page from somewhere. Search in increasing NUMA distances.
1666 */
1667 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1668 struct kmem_cache_cpu *c)
1669 {
1670 #ifdef CONFIG_NUMA
1671 struct zonelist *zonelist;
1672 struct zoneref *z;
1673 struct zone *zone;
1674 enum zone_type high_zoneidx = gfp_zone(flags);
1675 void *object;
1676 unsigned int cpuset_mems_cookie;
1677
1678 /*
1679 * The defrag ratio allows a configuration of the tradeoffs between
1680 * inter node defragmentation and node local allocations. A lower
1681 * defrag_ratio increases the tendency to do local allocations
1682 * instead of attempting to obtain partial slabs from other nodes.
1683 *
1684 * If the defrag_ratio is set to 0 then kmalloc() always
1685 * returns node local objects. If the ratio is higher then kmalloc()
1686 * may return off node objects because partial slabs are obtained
1687 * from other nodes and filled up.
1688 *
1689 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1690 * defrag_ratio = 1000) then every (well almost) allocation will
1691 * first attempt to defrag slab caches on other nodes. This means
1692 * scanning over all nodes to look for partial slabs which may be
1693 * expensive if we do it every time we are trying to find a slab
1694 * with available objects.
1695 */
1696 if (!s->remote_node_defrag_ratio ||
1697 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1698 return NULL;
1699
1700 do {
1701 cpuset_mems_cookie = read_mems_allowed_begin();
1702 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1703 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1704 struct kmem_cache_node *n;
1705
1706 n = get_node(s, zone_to_nid(zone));
1707
1708 if (n && cpuset_zone_allowed(zone, flags) &&
1709 n->nr_partial > s->min_partial) {
1710 object = get_partial_node(s, n, c, flags);
1711 if (object) {
1712 /*
1713 * Don't check read_mems_allowed_retry()
1714 * here - if mems_allowed was updated in
1715 * parallel, that was a harmless race
1716 * between allocation and the cpuset
1717 * update
1718 */
1719 return object;
1720 }
1721 }
1722 }
1723 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1724 #endif
1725 return NULL;
1726 }
1727
1728 /*
1729 * Get a partial page, lock it and return it.
1730 */
1731 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1732 struct kmem_cache_cpu *c)
1733 {
1734 void *object;
1735 int searchnode = node;
1736
1737 if (node == NUMA_NO_NODE)
1738 searchnode = numa_mem_id();
1739 else if (!node_present_pages(node))
1740 searchnode = node_to_mem_node(node);
1741
1742 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1743 if (object || node != NUMA_NO_NODE)
1744 return object;
1745
1746 return get_any_partial(s, flags, c);
1747 }
1748
1749 #ifdef CONFIG_PREEMPT
1750 /*
1751 * Calculate the next globally unique transaction for disambiguiation
1752 * during cmpxchg. The transactions start with the cpu number and are then
1753 * incremented by CONFIG_NR_CPUS.
1754 */
1755 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1756 #else
1757 /*
1758 * No preemption supported therefore also no need to check for
1759 * different cpus.
1760 */
1761 #define TID_STEP 1
1762 #endif
1763
1764 static inline unsigned long next_tid(unsigned long tid)
1765 {
1766 return tid + TID_STEP;
1767 }
1768
1769 static inline unsigned int tid_to_cpu(unsigned long tid)
1770 {
1771 return tid % TID_STEP;
1772 }
1773
1774 static inline unsigned long tid_to_event(unsigned long tid)
1775 {
1776 return tid / TID_STEP;
1777 }
1778
1779 static inline unsigned int init_tid(int cpu)
1780 {
1781 return cpu;
1782 }
1783
1784 static inline void note_cmpxchg_failure(const char *n,
1785 const struct kmem_cache *s, unsigned long tid)
1786 {
1787 #ifdef SLUB_DEBUG_CMPXCHG
1788 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1789
1790 pr_info("%s %s: cmpxchg redo ", n, s->name);
1791
1792 #ifdef CONFIG_PREEMPT
1793 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1794 pr_warn("due to cpu change %d -> %d\n",
1795 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1796 else
1797 #endif
1798 if (tid_to_event(tid) != tid_to_event(actual_tid))
1799 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1800 tid_to_event(tid), tid_to_event(actual_tid));
1801 else
1802 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1803 actual_tid, tid, next_tid(tid));
1804 #endif
1805 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1806 }
1807
1808 static void init_kmem_cache_cpus(struct kmem_cache *s)
1809 {
1810 int cpu;
1811
1812 for_each_possible_cpu(cpu)
1813 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1814 }
1815
1816 /*
1817 * Remove the cpu slab
1818 */
1819 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1820 void *freelist)
1821 {
1822 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1823 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1824 int lock = 0;
1825 enum slab_modes l = M_NONE, m = M_NONE;
1826 void *nextfree;
1827 int tail = DEACTIVATE_TO_HEAD;
1828 struct page new;
1829 struct page old;
1830
1831 if (page->freelist) {
1832 stat(s, DEACTIVATE_REMOTE_FREES);
1833 tail = DEACTIVATE_TO_TAIL;
1834 }
1835
1836 /*
1837 * Stage one: Free all available per cpu objects back
1838 * to the page freelist while it is still frozen. Leave the
1839 * last one.
1840 *
1841 * There is no need to take the list->lock because the page
1842 * is still frozen.
1843 */
1844 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1845 void *prior;
1846 unsigned long counters;
1847
1848 do {
1849 prior = page->freelist;
1850 counters = page->counters;
1851 set_freepointer(s, freelist, prior);
1852 new.counters = counters;
1853 new.inuse--;
1854 VM_BUG_ON(!new.frozen);
1855
1856 } while (!__cmpxchg_double_slab(s, page,
1857 prior, counters,
1858 freelist, new.counters,
1859 "drain percpu freelist"));
1860
1861 freelist = nextfree;
1862 }
1863
1864 /*
1865 * Stage two: Ensure that the page is unfrozen while the
1866 * list presence reflects the actual number of objects
1867 * during unfreeze.
1868 *
1869 * We setup the list membership and then perform a cmpxchg
1870 * with the count. If there is a mismatch then the page
1871 * is not unfrozen but the page is on the wrong list.
1872 *
1873 * Then we restart the process which may have to remove
1874 * the page from the list that we just put it on again
1875 * because the number of objects in the slab may have
1876 * changed.
1877 */
1878 redo:
1879
1880 old.freelist = page->freelist;
1881 old.counters = page->counters;
1882 VM_BUG_ON(!old.frozen);
1883
1884 /* Determine target state of the slab */
1885 new.counters = old.counters;
1886 if (freelist) {
1887 new.inuse--;
1888 set_freepointer(s, freelist, old.freelist);
1889 new.freelist = freelist;
1890 } else
1891 new.freelist = old.freelist;
1892
1893 new.frozen = 0;
1894
1895 if (!new.inuse && n->nr_partial >= s->min_partial)
1896 m = M_FREE;
1897 else if (new.freelist) {
1898 m = M_PARTIAL;
1899 if (!lock) {
1900 lock = 1;
1901 /*
1902 * Taking the spinlock removes the possiblity
1903 * that acquire_slab() will see a slab page that
1904 * is frozen
1905 */
1906 spin_lock(&n->list_lock);
1907 }
1908 } else {
1909 m = M_FULL;
1910 if (kmem_cache_debug(s) && !lock) {
1911 lock = 1;
1912 /*
1913 * This also ensures that the scanning of full
1914 * slabs from diagnostic functions will not see
1915 * any frozen slabs.
1916 */
1917 spin_lock(&n->list_lock);
1918 }
1919 }
1920
1921 if (l != m) {
1922
1923 if (l == M_PARTIAL)
1924
1925 remove_partial(n, page);
1926
1927 else if (l == M_FULL)
1928
1929 remove_full(s, n, page);
1930
1931 if (m == M_PARTIAL) {
1932
1933 add_partial(n, page, tail);
1934 stat(s, tail);
1935
1936 } else if (m == M_FULL) {
1937
1938 stat(s, DEACTIVATE_FULL);
1939 add_full(s, n, page);
1940
1941 }
1942 }
1943
1944 l = m;
1945 if (!__cmpxchg_double_slab(s, page,
1946 old.freelist, old.counters,
1947 new.freelist, new.counters,
1948 "unfreezing slab"))
1949 goto redo;
1950
1951 if (lock)
1952 spin_unlock(&n->list_lock);
1953
1954 if (m == M_FREE) {
1955 stat(s, DEACTIVATE_EMPTY);
1956 discard_slab(s, page);
1957 stat(s, FREE_SLAB);
1958 }
1959 }
1960
1961 /*
1962 * Unfreeze all the cpu partial slabs.
1963 *
1964 * This function must be called with interrupts disabled
1965 * for the cpu using c (or some other guarantee must be there
1966 * to guarantee no concurrent accesses).
1967 */
1968 static void unfreeze_partials(struct kmem_cache *s,
1969 struct kmem_cache_cpu *c)
1970 {
1971 #ifdef CONFIG_SLUB_CPU_PARTIAL
1972 struct kmem_cache_node *n = NULL, *n2 = NULL;
1973 struct page *page, *discard_page = NULL;
1974
1975 while ((page = c->partial)) {
1976 struct page new;
1977 struct page old;
1978
1979 c->partial = page->next;
1980
1981 n2 = get_node(s, page_to_nid(page));
1982 if (n != n2) {
1983 if (n)
1984 spin_unlock(&n->list_lock);
1985
1986 n = n2;
1987 spin_lock(&n->list_lock);
1988 }
1989
1990 do {
1991
1992 old.freelist = page->freelist;
1993 old.counters = page->counters;
1994 VM_BUG_ON(!old.frozen);
1995
1996 new.counters = old.counters;
1997 new.freelist = old.freelist;
1998
1999 new.frozen = 0;
2000
2001 } while (!__cmpxchg_double_slab(s, page,
2002 old.freelist, old.counters,
2003 new.freelist, new.counters,
2004 "unfreezing slab"));
2005
2006 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2007 page->next = discard_page;
2008 discard_page = page;
2009 } else {
2010 add_partial(n, page, DEACTIVATE_TO_TAIL);
2011 stat(s, FREE_ADD_PARTIAL);
2012 }
2013 }
2014
2015 if (n)
2016 spin_unlock(&n->list_lock);
2017
2018 while (discard_page) {
2019 page = discard_page;
2020 discard_page = discard_page->next;
2021
2022 stat(s, DEACTIVATE_EMPTY);
2023 discard_slab(s, page);
2024 stat(s, FREE_SLAB);
2025 }
2026 #endif
2027 }
2028
2029 /*
2030 * Put a page that was just frozen (in __slab_free) into a partial page
2031 * slot if available. This is done without interrupts disabled and without
2032 * preemption disabled. The cmpxchg is racy and may put the partial page
2033 * onto a random cpus partial slot.
2034 *
2035 * If we did not find a slot then simply move all the partials to the
2036 * per node partial list.
2037 */
2038 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2039 {
2040 #ifdef CONFIG_SLUB_CPU_PARTIAL
2041 struct page *oldpage;
2042 int pages;
2043 int pobjects;
2044
2045 preempt_disable();
2046 do {
2047 pages = 0;
2048 pobjects = 0;
2049 oldpage = this_cpu_read(s->cpu_slab->partial);
2050
2051 if (oldpage) {
2052 pobjects = oldpage->pobjects;
2053 pages = oldpage->pages;
2054 if (drain && pobjects > s->cpu_partial) {
2055 unsigned long flags;
2056 /*
2057 * partial array is full. Move the existing
2058 * set to the per node partial list.
2059 */
2060 local_irq_save(flags);
2061 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2062 local_irq_restore(flags);
2063 oldpage = NULL;
2064 pobjects = 0;
2065 pages = 0;
2066 stat(s, CPU_PARTIAL_DRAIN);
2067 }
2068 }
2069
2070 pages++;
2071 pobjects += page->objects - page->inuse;
2072
2073 page->pages = pages;
2074 page->pobjects = pobjects;
2075 page->next = oldpage;
2076
2077 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2078 != oldpage);
2079 if (unlikely(!s->cpu_partial)) {
2080 unsigned long flags;
2081
2082 local_irq_save(flags);
2083 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2084 local_irq_restore(flags);
2085 }
2086 preempt_enable();
2087 #endif
2088 }
2089
2090 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2091 {
2092 stat(s, CPUSLAB_FLUSH);
2093 deactivate_slab(s, c->page, c->freelist);
2094
2095 c->tid = next_tid(c->tid);
2096 c->page = NULL;
2097 c->freelist = NULL;
2098 }
2099
2100 /*
2101 * Flush cpu slab.
2102 *
2103 * Called from IPI handler with interrupts disabled.
2104 */
2105 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2106 {
2107 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2108
2109 if (likely(c)) {
2110 if (c->page)
2111 flush_slab(s, c);
2112
2113 unfreeze_partials(s, c);
2114 }
2115 }
2116
2117 static void flush_cpu_slab(void *d)
2118 {
2119 struct kmem_cache *s = d;
2120
2121 __flush_cpu_slab(s, smp_processor_id());
2122 }
2123
2124 static bool has_cpu_slab(int cpu, void *info)
2125 {
2126 struct kmem_cache *s = info;
2127 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2128
2129 return c->page || c->partial;
2130 }
2131
2132 static void flush_all(struct kmem_cache *s)
2133 {
2134 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2135 }
2136
2137 /*
2138 * Check if the objects in a per cpu structure fit numa
2139 * locality expectations.
2140 */
2141 static inline int node_match(struct page *page, int node)
2142 {
2143 #ifdef CONFIG_NUMA
2144 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2145 return 0;
2146 #endif
2147 return 1;
2148 }
2149
2150 #ifdef CONFIG_SLUB_DEBUG
2151 static int count_free(struct page *page)
2152 {
2153 return page->objects - page->inuse;
2154 }
2155
2156 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2157 {
2158 return atomic_long_read(&n->total_objects);
2159 }
2160 #endif /* CONFIG_SLUB_DEBUG */
2161
2162 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2163 static unsigned long count_partial(struct kmem_cache_node *n,
2164 int (*get_count)(struct page *))
2165 {
2166 unsigned long flags;
2167 unsigned long x = 0;
2168 struct page *page;
2169
2170 spin_lock_irqsave(&n->list_lock, flags);
2171 list_for_each_entry(page, &n->partial, lru)
2172 x += get_count(page);
2173 spin_unlock_irqrestore(&n->list_lock, flags);
2174 return x;
2175 }
2176 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2177
2178 static noinline void
2179 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2180 {
2181 #ifdef CONFIG_SLUB_DEBUG
2182 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2183 DEFAULT_RATELIMIT_BURST);
2184 int node;
2185 struct kmem_cache_node *n;
2186
2187 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2188 return;
2189
2190 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2191 nid, gfpflags);
2192 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2193 s->name, s->object_size, s->size, oo_order(s->oo),
2194 oo_order(s->min));
2195
2196 if (oo_order(s->min) > get_order(s->object_size))
2197 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2198 s->name);
2199
2200 for_each_kmem_cache_node(s, node, n) {
2201 unsigned long nr_slabs;
2202 unsigned long nr_objs;
2203 unsigned long nr_free;
2204
2205 nr_free = count_partial(n, count_free);
2206 nr_slabs = node_nr_slabs(n);
2207 nr_objs = node_nr_objs(n);
2208
2209 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2210 node, nr_slabs, nr_objs, nr_free);
2211 }
2212 #endif
2213 }
2214
2215 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2216 int node, struct kmem_cache_cpu **pc)
2217 {
2218 void *freelist;
2219 struct kmem_cache_cpu *c = *pc;
2220 struct page *page;
2221
2222 freelist = get_partial(s, flags, node, c);
2223
2224 if (freelist)
2225 return freelist;
2226
2227 page = new_slab(s, flags, node);
2228 if (page) {
2229 c = raw_cpu_ptr(s->cpu_slab);
2230 if (c->page)
2231 flush_slab(s, c);
2232
2233 /*
2234 * No other reference to the page yet so we can
2235 * muck around with it freely without cmpxchg
2236 */
2237 freelist = page->freelist;
2238 page->freelist = NULL;
2239
2240 stat(s, ALLOC_SLAB);
2241 c->page = page;
2242 *pc = c;
2243 } else
2244 freelist = NULL;
2245
2246 return freelist;
2247 }
2248
2249 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2250 {
2251 if (unlikely(PageSlabPfmemalloc(page)))
2252 return gfp_pfmemalloc_allowed(gfpflags);
2253
2254 return true;
2255 }
2256
2257 /*
2258 * Check the page->freelist of a page and either transfer the freelist to the
2259 * per cpu freelist or deactivate the page.
2260 *
2261 * The page is still frozen if the return value is not NULL.
2262 *
2263 * If this function returns NULL then the page has been unfrozen.
2264 *
2265 * This function must be called with interrupt disabled.
2266 */
2267 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2268 {
2269 struct page new;
2270 unsigned long counters;
2271 void *freelist;
2272
2273 do {
2274 freelist = page->freelist;
2275 counters = page->counters;
2276
2277 new.counters = counters;
2278 VM_BUG_ON(!new.frozen);
2279
2280 new.inuse = page->objects;
2281 new.frozen = freelist != NULL;
2282
2283 } while (!__cmpxchg_double_slab(s, page,
2284 freelist, counters,
2285 NULL, new.counters,
2286 "get_freelist"));
2287
2288 return freelist;
2289 }
2290
2291 /*
2292 * Slow path. The lockless freelist is empty or we need to perform
2293 * debugging duties.
2294 *
2295 * Processing is still very fast if new objects have been freed to the
2296 * regular freelist. In that case we simply take over the regular freelist
2297 * as the lockless freelist and zap the regular freelist.
2298 *
2299 * If that is not working then we fall back to the partial lists. We take the
2300 * first element of the freelist as the object to allocate now and move the
2301 * rest of the freelist to the lockless freelist.
2302 *
2303 * And if we were unable to get a new slab from the partial slab lists then
2304 * we need to allocate a new slab. This is the slowest path since it involves
2305 * a call to the page allocator and the setup of a new slab.
2306 */
2307 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2308 unsigned long addr, struct kmem_cache_cpu *c)
2309 {
2310 void *freelist;
2311 struct page *page;
2312 unsigned long flags;
2313
2314 local_irq_save(flags);
2315 #ifdef CONFIG_PREEMPT
2316 /*
2317 * We may have been preempted and rescheduled on a different
2318 * cpu before disabling interrupts. Need to reload cpu area
2319 * pointer.
2320 */
2321 c = this_cpu_ptr(s->cpu_slab);
2322 #endif
2323
2324 page = c->page;
2325 if (!page)
2326 goto new_slab;
2327 redo:
2328
2329 if (unlikely(!node_match(page, node))) {
2330 int searchnode = node;
2331
2332 if (node != NUMA_NO_NODE && !node_present_pages(node))
2333 searchnode = node_to_mem_node(node);
2334
2335 if (unlikely(!node_match(page, searchnode))) {
2336 stat(s, ALLOC_NODE_MISMATCH);
2337 deactivate_slab(s, page, c->freelist);
2338 c->page = NULL;
2339 c->freelist = NULL;
2340 goto new_slab;
2341 }
2342 }
2343
2344 /*
2345 * By rights, we should be searching for a slab page that was
2346 * PFMEMALLOC but right now, we are losing the pfmemalloc
2347 * information when the page leaves the per-cpu allocator
2348 */
2349 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2350 deactivate_slab(s, page, c->freelist);
2351 c->page = NULL;
2352 c->freelist = NULL;
2353 goto new_slab;
2354 }
2355
2356 /* must check again c->freelist in case of cpu migration or IRQ */
2357 freelist = c->freelist;
2358 if (freelist)
2359 goto load_freelist;
2360
2361 freelist = get_freelist(s, page);
2362
2363 if (!freelist) {
2364 c->page = NULL;
2365 stat(s, DEACTIVATE_BYPASS);
2366 goto new_slab;
2367 }
2368
2369 stat(s, ALLOC_REFILL);
2370
2371 load_freelist:
2372 /*
2373 * freelist is pointing to the list of objects to be used.
2374 * page is pointing to the page from which the objects are obtained.
2375 * That page must be frozen for per cpu allocations to work.
2376 */
2377 VM_BUG_ON(!c->page->frozen);
2378 c->freelist = get_freepointer(s, freelist);
2379 c->tid = next_tid(c->tid);
2380 local_irq_restore(flags);
2381 return freelist;
2382
2383 new_slab:
2384
2385 if (c->partial) {
2386 page = c->page = c->partial;
2387 c->partial = page->next;
2388 stat(s, CPU_PARTIAL_ALLOC);
2389 c->freelist = NULL;
2390 goto redo;
2391 }
2392
2393 freelist = new_slab_objects(s, gfpflags, node, &c);
2394
2395 if (unlikely(!freelist)) {
2396 slab_out_of_memory(s, gfpflags, node);
2397 local_irq_restore(flags);
2398 return NULL;
2399 }
2400
2401 page = c->page;
2402 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2403 goto load_freelist;
2404
2405 /* Only entered in the debug case */
2406 if (kmem_cache_debug(s) &&
2407 !alloc_debug_processing(s, page, freelist, addr))
2408 goto new_slab; /* Slab failed checks. Next slab needed */
2409
2410 deactivate_slab(s, page, get_freepointer(s, freelist));
2411 c->page = NULL;
2412 c->freelist = NULL;
2413 local_irq_restore(flags);
2414 return freelist;
2415 }
2416
2417 /*
2418 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2419 * have the fastpath folded into their functions. So no function call
2420 * overhead for requests that can be satisfied on the fastpath.
2421 *
2422 * The fastpath works by first checking if the lockless freelist can be used.
2423 * If not then __slab_alloc is called for slow processing.
2424 *
2425 * Otherwise we can simply pick the next object from the lockless free list.
2426 */
2427 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2428 gfp_t gfpflags, int node, unsigned long addr)
2429 {
2430 void **object;
2431 struct kmem_cache_cpu *c;
2432 struct page *page;
2433 unsigned long tid;
2434
2435 s = slab_pre_alloc_hook(s, gfpflags);
2436 if (!s)
2437 return NULL;
2438 redo:
2439 /*
2440 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2441 * enabled. We may switch back and forth between cpus while
2442 * reading from one cpu area. That does not matter as long
2443 * as we end up on the original cpu again when doing the cmpxchg.
2444 *
2445 * We should guarantee that tid and kmem_cache are retrieved on
2446 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2447 * to check if it is matched or not.
2448 */
2449 do {
2450 tid = this_cpu_read(s->cpu_slab->tid);
2451 c = raw_cpu_ptr(s->cpu_slab);
2452 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2453 unlikely(tid != READ_ONCE(c->tid)));
2454
2455 /*
2456 * Irqless object alloc/free algorithm used here depends on sequence
2457 * of fetching cpu_slab's data. tid should be fetched before anything
2458 * on c to guarantee that object and page associated with previous tid
2459 * won't be used with current tid. If we fetch tid first, object and
2460 * page could be one associated with next tid and our alloc/free
2461 * request will be failed. In this case, we will retry. So, no problem.
2462 */
2463 barrier();
2464
2465 /*
2466 * The transaction ids are globally unique per cpu and per operation on
2467 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2468 * occurs on the right processor and that there was no operation on the
2469 * linked list in between.
2470 */
2471
2472 object = c->freelist;
2473 page = c->page;
2474 if (unlikely(!object || !node_match(page, node))) {
2475 object = __slab_alloc(s, gfpflags, node, addr, c);
2476 stat(s, ALLOC_SLOWPATH);
2477 } else {
2478 void *next_object = get_freepointer_safe(s, object);
2479
2480 /*
2481 * The cmpxchg will only match if there was no additional
2482 * operation and if we are on the right processor.
2483 *
2484 * The cmpxchg does the following atomically (without lock
2485 * semantics!)
2486 * 1. Relocate first pointer to the current per cpu area.
2487 * 2. Verify that tid and freelist have not been changed
2488 * 3. If they were not changed replace tid and freelist
2489 *
2490 * Since this is without lock semantics the protection is only
2491 * against code executing on this cpu *not* from access by
2492 * other cpus.
2493 */
2494 if (unlikely(!this_cpu_cmpxchg_double(
2495 s->cpu_slab->freelist, s->cpu_slab->tid,
2496 object, tid,
2497 next_object, next_tid(tid)))) {
2498
2499 note_cmpxchg_failure("slab_alloc", s, tid);
2500 goto redo;
2501 }
2502 prefetch_freepointer(s, next_object);
2503 stat(s, ALLOC_FASTPATH);
2504 }
2505
2506 if (unlikely(gfpflags & __GFP_ZERO) && object)
2507 memset(object, 0, s->object_size);
2508
2509 slab_post_alloc_hook(s, gfpflags, object);
2510
2511 return object;
2512 }
2513
2514 static __always_inline void *slab_alloc(struct kmem_cache *s,
2515 gfp_t gfpflags, unsigned long addr)
2516 {
2517 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2518 }
2519
2520 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2521 {
2522 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2523
2524 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2525 s->size, gfpflags);
2526
2527 return ret;
2528 }
2529 EXPORT_SYMBOL(kmem_cache_alloc);
2530
2531 #ifdef CONFIG_TRACING
2532 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2533 {
2534 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2535 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2536 kasan_kmalloc(s, ret, size);
2537 return ret;
2538 }
2539 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2540 #endif
2541
2542 #ifdef CONFIG_NUMA
2543 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2544 {
2545 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2546
2547 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2548 s->object_size, s->size, gfpflags, node);
2549
2550 return ret;
2551 }
2552 EXPORT_SYMBOL(kmem_cache_alloc_node);
2553
2554 #ifdef CONFIG_TRACING
2555 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2556 gfp_t gfpflags,
2557 int node, size_t size)
2558 {
2559 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2560
2561 trace_kmalloc_node(_RET_IP_, ret,
2562 size, s->size, gfpflags, node);
2563
2564 kasan_kmalloc(s, ret, size);
2565 return ret;
2566 }
2567 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2568 #endif
2569 #endif
2570
2571 /*
2572 * Slow path handling. This may still be called frequently since objects
2573 * have a longer lifetime than the cpu slabs in most processing loads.
2574 *
2575 * So we still attempt to reduce cache line usage. Just take the slab
2576 * lock and free the item. If there is no additional partial page
2577 * handling required then we can return immediately.
2578 */
2579 static void __slab_free(struct kmem_cache *s, struct page *page,
2580 void *x, unsigned long addr)
2581 {
2582 void *prior;
2583 void **object = (void *)x;
2584 int was_frozen;
2585 struct page new;
2586 unsigned long counters;
2587 struct kmem_cache_node *n = NULL;
2588 unsigned long uninitialized_var(flags);
2589
2590 stat(s, FREE_SLOWPATH);
2591
2592 if (kmem_cache_debug(s) &&
2593 !(n = free_debug_processing(s, page, x, addr, &flags)))
2594 return;
2595
2596 do {
2597 if (unlikely(n)) {
2598 spin_unlock_irqrestore(&n->list_lock, flags);
2599 n = NULL;
2600 }
2601 prior = page->freelist;
2602 counters = page->counters;
2603 set_freepointer(s, object, prior);
2604 new.counters = counters;
2605 was_frozen = new.frozen;
2606 new.inuse--;
2607 if ((!new.inuse || !prior) && !was_frozen) {
2608
2609 if (kmem_cache_has_cpu_partial(s) && !prior) {
2610
2611 /*
2612 * Slab was on no list before and will be
2613 * partially empty
2614 * We can defer the list move and instead
2615 * freeze it.
2616 */
2617 new.frozen = 1;
2618
2619 } else { /* Needs to be taken off a list */
2620
2621 n = get_node(s, page_to_nid(page));
2622 /*
2623 * Speculatively acquire the list_lock.
2624 * If the cmpxchg does not succeed then we may
2625 * drop the list_lock without any processing.
2626 *
2627 * Otherwise the list_lock will synchronize with
2628 * other processors updating the list of slabs.
2629 */
2630 spin_lock_irqsave(&n->list_lock, flags);
2631
2632 }
2633 }
2634
2635 } while (!cmpxchg_double_slab(s, page,
2636 prior, counters,
2637 object, new.counters,
2638 "__slab_free"));
2639
2640 if (likely(!n)) {
2641
2642 /*
2643 * If we just froze the page then put it onto the
2644 * per cpu partial list.
2645 */
2646 if (new.frozen && !was_frozen) {
2647 put_cpu_partial(s, page, 1);
2648 stat(s, CPU_PARTIAL_FREE);
2649 }
2650 /*
2651 * The list lock was not taken therefore no list
2652 * activity can be necessary.
2653 */
2654 if (was_frozen)
2655 stat(s, FREE_FROZEN);
2656 return;
2657 }
2658
2659 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2660 goto slab_empty;
2661
2662 /*
2663 * Objects left in the slab. If it was not on the partial list before
2664 * then add it.
2665 */
2666 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2667 if (kmem_cache_debug(s))
2668 remove_full(s, n, page);
2669 add_partial(n, page, DEACTIVATE_TO_TAIL);
2670 stat(s, FREE_ADD_PARTIAL);
2671 }
2672 spin_unlock_irqrestore(&n->list_lock, flags);
2673 return;
2674
2675 slab_empty:
2676 if (prior) {
2677 /*
2678 * Slab on the partial list.
2679 */
2680 remove_partial(n, page);
2681 stat(s, FREE_REMOVE_PARTIAL);
2682 } else {
2683 /* Slab must be on the full list */
2684 remove_full(s, n, page);
2685 }
2686
2687 spin_unlock_irqrestore(&n->list_lock, flags);
2688 stat(s, FREE_SLAB);
2689 discard_slab(s, page);
2690 }
2691
2692 /*
2693 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2694 * can perform fastpath freeing without additional function calls.
2695 *
2696 * The fastpath is only possible if we are freeing to the current cpu slab
2697 * of this processor. This typically the case if we have just allocated
2698 * the item before.
2699 *
2700 * If fastpath is not possible then fall back to __slab_free where we deal
2701 * with all sorts of special processing.
2702 */
2703 static __always_inline void slab_free(struct kmem_cache *s,
2704 struct page *page, void *x, unsigned long addr)
2705 {
2706 void **object = (void *)x;
2707 struct kmem_cache_cpu *c;
2708 unsigned long tid;
2709
2710 slab_free_hook(s, x);
2711
2712 redo:
2713 /*
2714 * Determine the currently cpus per cpu slab.
2715 * The cpu may change afterward. However that does not matter since
2716 * data is retrieved via this pointer. If we are on the same cpu
2717 * during the cmpxchg then the free will succedd.
2718 */
2719 do {
2720 tid = this_cpu_read(s->cpu_slab->tid);
2721 c = raw_cpu_ptr(s->cpu_slab);
2722 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2723 unlikely(tid != READ_ONCE(c->tid)));
2724
2725 /* Same with comment on barrier() in slab_alloc_node() */
2726 barrier();
2727
2728 if (likely(page == c->page)) {
2729 set_freepointer(s, object, c->freelist);
2730
2731 if (unlikely(!this_cpu_cmpxchg_double(
2732 s->cpu_slab->freelist, s->cpu_slab->tid,
2733 c->freelist, tid,
2734 object, next_tid(tid)))) {
2735
2736 note_cmpxchg_failure("slab_free", s, tid);
2737 goto redo;
2738 }
2739 stat(s, FREE_FASTPATH);
2740 } else
2741 __slab_free(s, page, x, addr);
2742
2743 }
2744
2745 void kmem_cache_free(struct kmem_cache *s, void *x)
2746 {
2747 s = cache_from_obj(s, x);
2748 if (!s)
2749 return;
2750 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2751 trace_kmem_cache_free(_RET_IP_, x);
2752 }
2753 EXPORT_SYMBOL(kmem_cache_free);
2754
2755 /*
2756 * Object placement in a slab is made very easy because we always start at
2757 * offset 0. If we tune the size of the object to the alignment then we can
2758 * get the required alignment by putting one properly sized object after
2759 * another.
2760 *
2761 * Notice that the allocation order determines the sizes of the per cpu
2762 * caches. Each processor has always one slab available for allocations.
2763 * Increasing the allocation order reduces the number of times that slabs
2764 * must be moved on and off the partial lists and is therefore a factor in
2765 * locking overhead.
2766 */
2767
2768 /*
2769 * Mininum / Maximum order of slab pages. This influences locking overhead
2770 * and slab fragmentation. A higher order reduces the number of partial slabs
2771 * and increases the number of allocations possible without having to
2772 * take the list_lock.
2773 */
2774 static int slub_min_order;
2775 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2776 static int slub_min_objects;
2777
2778 /*
2779 * Calculate the order of allocation given an slab object size.
2780 *
2781 * The order of allocation has significant impact on performance and other
2782 * system components. Generally order 0 allocations should be preferred since
2783 * order 0 does not cause fragmentation in the page allocator. Larger objects
2784 * be problematic to put into order 0 slabs because there may be too much
2785 * unused space left. We go to a higher order if more than 1/16th of the slab
2786 * would be wasted.
2787 *
2788 * In order to reach satisfactory performance we must ensure that a minimum
2789 * number of objects is in one slab. Otherwise we may generate too much
2790 * activity on the partial lists which requires taking the list_lock. This is
2791 * less a concern for large slabs though which are rarely used.
2792 *
2793 * slub_max_order specifies the order where we begin to stop considering the
2794 * number of objects in a slab as critical. If we reach slub_max_order then
2795 * we try to keep the page order as low as possible. So we accept more waste
2796 * of space in favor of a small page order.
2797 *
2798 * Higher order allocations also allow the placement of more objects in a
2799 * slab and thereby reduce object handling overhead. If the user has
2800 * requested a higher mininum order then we start with that one instead of
2801 * the smallest order which will fit the object.
2802 */
2803 static inline int slab_order(int size, int min_objects,
2804 int max_order, int fract_leftover, int reserved)
2805 {
2806 int order;
2807 int rem;
2808 int min_order = slub_min_order;
2809
2810 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2811 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2812
2813 for (order = max(min_order,
2814 fls(min_objects * size - 1) - PAGE_SHIFT);
2815 order <= max_order; order++) {
2816
2817 unsigned long slab_size = PAGE_SIZE << order;
2818
2819 if (slab_size < min_objects * size + reserved)
2820 continue;
2821
2822 rem = (slab_size - reserved) % size;
2823
2824 if (rem <= slab_size / fract_leftover)
2825 break;
2826
2827 }
2828
2829 return order;
2830 }
2831
2832 static inline int calculate_order(int size, int reserved)
2833 {
2834 int order;
2835 int min_objects;
2836 int fraction;
2837 int max_objects;
2838
2839 /*
2840 * Attempt to find best configuration for a slab. This
2841 * works by first attempting to generate a layout with
2842 * the best configuration and backing off gradually.
2843 *
2844 * First we reduce the acceptable waste in a slab. Then
2845 * we reduce the minimum objects required in a slab.
2846 */
2847 min_objects = slub_min_objects;
2848 if (!min_objects)
2849 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2850 max_objects = order_objects(slub_max_order, size, reserved);
2851 min_objects = min(min_objects, max_objects);
2852
2853 while (min_objects > 1) {
2854 fraction = 16;
2855 while (fraction >= 4) {
2856 order = slab_order(size, min_objects,
2857 slub_max_order, fraction, reserved);
2858 if (order <= slub_max_order)
2859 return order;
2860 fraction /= 2;
2861 }
2862 min_objects--;
2863 }
2864
2865 /*
2866 * We were unable to place multiple objects in a slab. Now
2867 * lets see if we can place a single object there.
2868 */
2869 order = slab_order(size, 1, slub_max_order, 1, reserved);
2870 if (order <= slub_max_order)
2871 return order;
2872
2873 /*
2874 * Doh this slab cannot be placed using slub_max_order.
2875 */
2876 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2877 if (order < MAX_ORDER)
2878 return order;
2879 return -ENOSYS;
2880 }
2881
2882 static void
2883 init_kmem_cache_node(struct kmem_cache_node *n)
2884 {
2885 n->nr_partial = 0;
2886 spin_lock_init(&n->list_lock);
2887 INIT_LIST_HEAD(&n->partial);
2888 #ifdef CONFIG_SLUB_DEBUG
2889 atomic_long_set(&n->nr_slabs, 0);
2890 atomic_long_set(&n->total_objects, 0);
2891 INIT_LIST_HEAD(&n->full);
2892 #endif
2893 }
2894
2895 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2896 {
2897 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2898 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2899
2900 /*
2901 * Must align to double word boundary for the double cmpxchg
2902 * instructions to work; see __pcpu_double_call_return_bool().
2903 */
2904 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2905 2 * sizeof(void *));
2906
2907 if (!s->cpu_slab)
2908 return 0;
2909
2910 init_kmem_cache_cpus(s);
2911
2912 return 1;
2913 }
2914
2915 static struct kmem_cache *kmem_cache_node;
2916
2917 /*
2918 * No kmalloc_node yet so do it by hand. We know that this is the first
2919 * slab on the node for this slabcache. There are no concurrent accesses
2920 * possible.
2921 *
2922 * Note that this function only works on the kmem_cache_node
2923 * when allocating for the kmem_cache_node. This is used for bootstrapping
2924 * memory on a fresh node that has no slab structures yet.
2925 */
2926 static void early_kmem_cache_node_alloc(int node)
2927 {
2928 struct page *page;
2929 struct kmem_cache_node *n;
2930
2931 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2932
2933 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2934
2935 BUG_ON(!page);
2936 if (page_to_nid(page) != node) {
2937 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2938 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2939 }
2940
2941 n = page->freelist;
2942 BUG_ON(!n);
2943 page->freelist = get_freepointer(kmem_cache_node, n);
2944 page->inuse = 1;
2945 page->frozen = 0;
2946 kmem_cache_node->node[node] = n;
2947 #ifdef CONFIG_SLUB_DEBUG
2948 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2949 init_tracking(kmem_cache_node, n);
2950 #endif
2951 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
2952 init_kmem_cache_node(n);
2953 inc_slabs_node(kmem_cache_node, node, page->objects);
2954
2955 /*
2956 * No locks need to be taken here as it has just been
2957 * initialized and there is no concurrent access.
2958 */
2959 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2960 }
2961
2962 static void free_kmem_cache_nodes(struct kmem_cache *s)
2963 {
2964 int node;
2965 struct kmem_cache_node *n;
2966
2967 for_each_kmem_cache_node(s, node, n) {
2968 kmem_cache_free(kmem_cache_node, n);
2969 s->node[node] = NULL;
2970 }
2971 }
2972
2973 static int init_kmem_cache_nodes(struct kmem_cache *s)
2974 {
2975 int node;
2976
2977 for_each_node_state(node, N_NORMAL_MEMORY) {
2978 struct kmem_cache_node *n;
2979
2980 if (slab_state == DOWN) {
2981 early_kmem_cache_node_alloc(node);
2982 continue;
2983 }
2984 n = kmem_cache_alloc_node(kmem_cache_node,
2985 GFP_KERNEL, node);
2986
2987 if (!n) {
2988 free_kmem_cache_nodes(s);
2989 return 0;
2990 }
2991
2992 s->node[node] = n;
2993 init_kmem_cache_node(n);
2994 }
2995 return 1;
2996 }
2997
2998 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2999 {
3000 if (min < MIN_PARTIAL)
3001 min = MIN_PARTIAL;
3002 else if (min > MAX_PARTIAL)
3003 min = MAX_PARTIAL;
3004 s->min_partial = min;
3005 }
3006
3007 /*
3008 * calculate_sizes() determines the order and the distribution of data within
3009 * a slab object.
3010 */
3011 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3012 {
3013 unsigned long flags = s->flags;
3014 unsigned long size = s->object_size;
3015 int order;
3016
3017 /*
3018 * Round up object size to the next word boundary. We can only
3019 * place the free pointer at word boundaries and this determines
3020 * the possible location of the free pointer.
3021 */
3022 size = ALIGN(size, sizeof(void *));
3023
3024 #ifdef CONFIG_SLUB_DEBUG
3025 /*
3026 * Determine if we can poison the object itself. If the user of
3027 * the slab may touch the object after free or before allocation
3028 * then we should never poison the object itself.
3029 */
3030 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3031 !s->ctor)
3032 s->flags |= __OBJECT_POISON;
3033 else
3034 s->flags &= ~__OBJECT_POISON;
3035
3036
3037 /*
3038 * If we are Redzoning then check if there is some space between the
3039 * end of the object and the free pointer. If not then add an
3040 * additional word to have some bytes to store Redzone information.
3041 */
3042 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3043 size += sizeof(void *);
3044 #endif
3045
3046 /*
3047 * With that we have determined the number of bytes in actual use
3048 * by the object. This is the potential offset to the free pointer.
3049 */
3050 s->inuse = size;
3051
3052 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3053 s->ctor)) {
3054 /*
3055 * Relocate free pointer after the object if it is not
3056 * permitted to overwrite the first word of the object on
3057 * kmem_cache_free.
3058 *
3059 * This is the case if we do RCU, have a constructor or
3060 * destructor or are poisoning the objects.
3061 */
3062 s->offset = size;
3063 size += sizeof(void *);
3064 }
3065
3066 #ifdef CONFIG_SLUB_DEBUG
3067 if (flags & SLAB_STORE_USER)
3068 /*
3069 * Need to store information about allocs and frees after
3070 * the object.
3071 */
3072 size += 2 * sizeof(struct track);
3073
3074 if (flags & SLAB_RED_ZONE)
3075 /*
3076 * Add some empty padding so that we can catch
3077 * overwrites from earlier objects rather than let
3078 * tracking information or the free pointer be
3079 * corrupted if a user writes before the start
3080 * of the object.
3081 */
3082 size += sizeof(void *);
3083 #endif
3084
3085 /*
3086 * SLUB stores one object immediately after another beginning from
3087 * offset 0. In order to align the objects we have to simply size
3088 * each object to conform to the alignment.
3089 */
3090 size = ALIGN(size, s->align);
3091 s->size = size;
3092 if (forced_order >= 0)
3093 order = forced_order;
3094 else
3095 order = calculate_order(size, s->reserved);
3096
3097 if (order < 0)
3098 return 0;
3099
3100 s->allocflags = 0;
3101 if (order)
3102 s->allocflags |= __GFP_COMP;
3103
3104 if (s->flags & SLAB_CACHE_DMA)
3105 s->allocflags |= GFP_DMA;
3106
3107 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3108 s->allocflags |= __GFP_RECLAIMABLE;
3109
3110 /*
3111 * Determine the number of objects per slab
3112 */
3113 s->oo = oo_make(order, size, s->reserved);
3114 s->min = oo_make(get_order(size), size, s->reserved);
3115 if (oo_objects(s->oo) > oo_objects(s->max))
3116 s->max = s->oo;
3117
3118 return !!oo_objects(s->oo);
3119 }
3120
3121 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3122 {
3123 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3124 s->reserved = 0;
3125
3126 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3127 s->reserved = sizeof(struct rcu_head);
3128
3129 if (!calculate_sizes(s, -1))
3130 goto error;
3131 if (disable_higher_order_debug) {
3132 /*
3133 * Disable debugging flags that store metadata if the min slab
3134 * order increased.
3135 */
3136 if (get_order(s->size) > get_order(s->object_size)) {
3137 s->flags &= ~DEBUG_METADATA_FLAGS;
3138 s->offset = 0;
3139 if (!calculate_sizes(s, -1))
3140 goto error;
3141 }
3142 }
3143
3144 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3145 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3146 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3147 /* Enable fast mode */
3148 s->flags |= __CMPXCHG_DOUBLE;
3149 #endif
3150
3151 /*
3152 * The larger the object size is, the more pages we want on the partial
3153 * list to avoid pounding the page allocator excessively.
3154 */
3155 set_min_partial(s, ilog2(s->size) / 2);
3156
3157 /*
3158 * cpu_partial determined the maximum number of objects kept in the
3159 * per cpu partial lists of a processor.
3160 *
3161 * Per cpu partial lists mainly contain slabs that just have one
3162 * object freed. If they are used for allocation then they can be
3163 * filled up again with minimal effort. The slab will never hit the
3164 * per node partial lists and therefore no locking will be required.
3165 *
3166 * This setting also determines
3167 *
3168 * A) The number of objects from per cpu partial slabs dumped to the
3169 * per node list when we reach the limit.
3170 * B) The number of objects in cpu partial slabs to extract from the
3171 * per node list when we run out of per cpu objects. We only fetch
3172 * 50% to keep some capacity around for frees.
3173 */
3174 if (!kmem_cache_has_cpu_partial(s))
3175 s->cpu_partial = 0;
3176 else if (s->size >= PAGE_SIZE)
3177 s->cpu_partial = 2;
3178 else if (s->size >= 1024)
3179 s->cpu_partial = 6;
3180 else if (s->size >= 256)
3181 s->cpu_partial = 13;
3182 else
3183 s->cpu_partial = 30;
3184
3185 #ifdef CONFIG_NUMA
3186 s->remote_node_defrag_ratio = 1000;
3187 #endif
3188 if (!init_kmem_cache_nodes(s))
3189 goto error;
3190
3191 if (alloc_kmem_cache_cpus(s))
3192 return 0;
3193
3194 free_kmem_cache_nodes(s);
3195 error:
3196 if (flags & SLAB_PANIC)
3197 panic("Cannot create slab %s size=%lu realsize=%u "
3198 "order=%u offset=%u flags=%lx\n",
3199 s->name, (unsigned long)s->size, s->size,
3200 oo_order(s->oo), s->offset, flags);
3201 return -EINVAL;
3202 }
3203
3204 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3205 const char *text)
3206 {
3207 #ifdef CONFIG_SLUB_DEBUG
3208 void *addr = page_address(page);
3209 void *p;
3210 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3211 sizeof(long), GFP_ATOMIC);
3212 if (!map)
3213 return;
3214 slab_err(s, page, text, s->name);
3215 slab_lock(page);
3216
3217 get_map(s, page, map);
3218 for_each_object(p, s, addr, page->objects) {
3219
3220 if (!test_bit(slab_index(p, s, addr), map)) {
3221 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3222 print_tracking(s, p);
3223 }
3224 }
3225 slab_unlock(page);
3226 kfree(map);
3227 #endif
3228 }
3229
3230 /*
3231 * Attempt to free all partial slabs on a node.
3232 * This is called from kmem_cache_close(). We must be the last thread
3233 * using the cache and therefore we do not need to lock anymore.
3234 */
3235 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3236 {
3237 struct page *page, *h;
3238
3239 list_for_each_entry_safe(page, h, &n->partial, lru) {
3240 if (!page->inuse) {
3241 __remove_partial(n, page);
3242 discard_slab(s, page);
3243 } else {
3244 list_slab_objects(s, page,
3245 "Objects remaining in %s on kmem_cache_close()");
3246 }
3247 }
3248 }
3249
3250 /*
3251 * Release all resources used by a slab cache.
3252 */
3253 static inline int kmem_cache_close(struct kmem_cache *s)
3254 {
3255 int node;
3256 struct kmem_cache_node *n;
3257
3258 flush_all(s);
3259 /* Attempt to free all objects */
3260 for_each_kmem_cache_node(s, node, n) {
3261 free_partial(s, n);
3262 if (n->nr_partial || slabs_node(s, node))
3263 return 1;
3264 }
3265 free_percpu(s->cpu_slab);
3266 free_kmem_cache_nodes(s);
3267 return 0;
3268 }
3269
3270 int __kmem_cache_shutdown(struct kmem_cache *s)
3271 {
3272 return kmem_cache_close(s);
3273 }
3274
3275 /********************************************************************
3276 * Kmalloc subsystem
3277 *******************************************************************/
3278
3279 static int __init setup_slub_min_order(char *str)
3280 {
3281 get_option(&str, &slub_min_order);
3282
3283 return 1;
3284 }
3285
3286 __setup("slub_min_order=", setup_slub_min_order);
3287
3288 static int __init setup_slub_max_order(char *str)
3289 {
3290 get_option(&str, &slub_max_order);
3291 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3292
3293 return 1;
3294 }
3295
3296 __setup("slub_max_order=", setup_slub_max_order);
3297
3298 static int __init setup_slub_min_objects(char *str)
3299 {
3300 get_option(&str, &slub_min_objects);
3301
3302 return 1;
3303 }
3304
3305 __setup("slub_min_objects=", setup_slub_min_objects);
3306
3307 void *__kmalloc(size_t size, gfp_t flags)
3308 {
3309 struct kmem_cache *s;
3310 void *ret;
3311
3312 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3313 return kmalloc_large(size, flags);
3314
3315 s = kmalloc_slab(size, flags);
3316
3317 if (unlikely(ZERO_OR_NULL_PTR(s)))
3318 return s;
3319
3320 ret = slab_alloc(s, flags, _RET_IP_);
3321
3322 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3323
3324 kasan_kmalloc(s, ret, size);
3325
3326 return ret;
3327 }
3328 EXPORT_SYMBOL(__kmalloc);
3329
3330 #ifdef CONFIG_NUMA
3331 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3332 {
3333 struct page *page;
3334 void *ptr = NULL;
3335
3336 flags |= __GFP_COMP | __GFP_NOTRACK;
3337 page = alloc_kmem_pages_node(node, flags, get_order(size));
3338 if (page)
3339 ptr = page_address(page);
3340
3341 kmalloc_large_node_hook(ptr, size, flags);
3342 return ptr;
3343 }
3344
3345 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3346 {
3347 struct kmem_cache *s;
3348 void *ret;
3349
3350 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3351 ret = kmalloc_large_node(size, flags, node);
3352
3353 trace_kmalloc_node(_RET_IP_, ret,
3354 size, PAGE_SIZE << get_order(size),
3355 flags, node);
3356
3357 return ret;
3358 }
3359
3360 s = kmalloc_slab(size, flags);
3361
3362 if (unlikely(ZERO_OR_NULL_PTR(s)))
3363 return s;
3364
3365 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3366
3367 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3368
3369 kasan_kmalloc(s, ret, size);
3370
3371 return ret;
3372 }
3373 EXPORT_SYMBOL(__kmalloc_node);
3374 #endif
3375
3376 static size_t __ksize(const void *object)
3377 {
3378 struct page *page;
3379
3380 if (unlikely(object == ZERO_SIZE_PTR))
3381 return 0;
3382
3383 page = virt_to_head_page(object);
3384
3385 if (unlikely(!PageSlab(page))) {
3386 WARN_ON(!PageCompound(page));
3387 return PAGE_SIZE << compound_order(page);
3388 }
3389
3390 return slab_ksize(page->slab_cache);
3391 }
3392
3393 size_t ksize(const void *object)
3394 {
3395 size_t size = __ksize(object);
3396 /* We assume that ksize callers could use whole allocated area,
3397 so we need unpoison this area. */
3398 kasan_krealloc(object, size);
3399 return size;
3400 }
3401 EXPORT_SYMBOL(ksize);
3402
3403 void kfree(const void *x)
3404 {
3405 struct page *page;
3406 void *object = (void *)x;
3407
3408 trace_kfree(_RET_IP_, x);
3409
3410 if (unlikely(ZERO_OR_NULL_PTR(x)))
3411 return;
3412
3413 page = virt_to_head_page(x);
3414 if (unlikely(!PageSlab(page))) {
3415 BUG_ON(!PageCompound(page));
3416 kfree_hook(x);
3417 __free_kmem_pages(page, compound_order(page));
3418 return;
3419 }
3420 slab_free(page->slab_cache, page, object, _RET_IP_);
3421 }
3422 EXPORT_SYMBOL(kfree);
3423
3424 #define SHRINK_PROMOTE_MAX 32
3425
3426 /*
3427 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3428 * up most to the head of the partial lists. New allocations will then
3429 * fill those up and thus they can be removed from the partial lists.
3430 *
3431 * The slabs with the least items are placed last. This results in them
3432 * being allocated from last increasing the chance that the last objects
3433 * are freed in them.
3434 */
3435 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3436 {
3437 int node;
3438 int i;
3439 struct kmem_cache_node *n;
3440 struct page *page;
3441 struct page *t;
3442 struct list_head discard;
3443 struct list_head promote[SHRINK_PROMOTE_MAX];
3444 unsigned long flags;
3445 int ret = 0;
3446
3447 if (deactivate) {
3448 /*
3449 * Disable empty slabs caching. Used to avoid pinning offline
3450 * memory cgroups by kmem pages that can be freed.
3451 */
3452 s->cpu_partial = 0;
3453 s->min_partial = 0;
3454
3455 /*
3456 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3457 * so we have to make sure the change is visible.
3458 */
3459 kick_all_cpus_sync();
3460 }
3461
3462 flush_all(s);
3463 for_each_kmem_cache_node(s, node, n) {
3464 INIT_LIST_HEAD(&discard);
3465 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3466 INIT_LIST_HEAD(promote + i);
3467
3468 spin_lock_irqsave(&n->list_lock, flags);
3469
3470 /*
3471 * Build lists of slabs to discard or promote.
3472 *
3473 * Note that concurrent frees may occur while we hold the
3474 * list_lock. page->inuse here is the upper limit.
3475 */
3476 list_for_each_entry_safe(page, t, &n->partial, lru) {
3477 int free = page->objects - page->inuse;
3478
3479 /* Do not reread page->inuse */
3480 barrier();
3481
3482 /* We do not keep full slabs on the list */
3483 BUG_ON(free <= 0);
3484
3485 if (free == page->objects) {
3486 list_move(&page->lru, &discard);
3487 n->nr_partial--;
3488 } else if (free <= SHRINK_PROMOTE_MAX)
3489 list_move(&page->lru, promote + free - 1);
3490 }
3491
3492 /*
3493 * Promote the slabs filled up most to the head of the
3494 * partial list.
3495 */
3496 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3497 list_splice(promote + i, &n->partial);
3498
3499 spin_unlock_irqrestore(&n->list_lock, flags);
3500
3501 /* Release empty slabs */
3502 list_for_each_entry_safe(page, t, &discard, lru)
3503 discard_slab(s, page);
3504
3505 if (slabs_node(s, node))
3506 ret = 1;
3507 }
3508
3509 return ret;
3510 }
3511
3512 static int slab_mem_going_offline_callback(void *arg)
3513 {
3514 struct kmem_cache *s;
3515
3516 mutex_lock(&slab_mutex);
3517 list_for_each_entry(s, &slab_caches, list)
3518 __kmem_cache_shrink(s, false);
3519 mutex_unlock(&slab_mutex);
3520
3521 return 0;
3522 }
3523
3524 static void slab_mem_offline_callback(void *arg)
3525 {
3526 struct kmem_cache_node *n;
3527 struct kmem_cache *s;
3528 struct memory_notify *marg = arg;
3529 int offline_node;
3530
3531 offline_node = marg->status_change_nid_normal;
3532
3533 /*
3534 * If the node still has available memory. we need kmem_cache_node
3535 * for it yet.
3536 */
3537 if (offline_node < 0)
3538 return;
3539
3540 mutex_lock(&slab_mutex);
3541 list_for_each_entry(s, &slab_caches, list) {
3542 n = get_node(s, offline_node);
3543 if (n) {
3544 /*
3545 * if n->nr_slabs > 0, slabs still exist on the node
3546 * that is going down. We were unable to free them,
3547 * and offline_pages() function shouldn't call this
3548 * callback. So, we must fail.
3549 */
3550 BUG_ON(slabs_node(s, offline_node));
3551
3552 s->node[offline_node] = NULL;
3553 kmem_cache_free(kmem_cache_node, n);
3554 }
3555 }
3556 mutex_unlock(&slab_mutex);
3557 }
3558
3559 static int slab_mem_going_online_callback(void *arg)
3560 {
3561 struct kmem_cache_node *n;
3562 struct kmem_cache *s;
3563 struct memory_notify *marg = arg;
3564 int nid = marg->status_change_nid_normal;
3565 int ret = 0;
3566
3567 /*
3568 * If the node's memory is already available, then kmem_cache_node is
3569 * already created. Nothing to do.
3570 */
3571 if (nid < 0)
3572 return 0;
3573
3574 /*
3575 * We are bringing a node online. No memory is available yet. We must
3576 * allocate a kmem_cache_node structure in order to bring the node
3577 * online.
3578 */
3579 mutex_lock(&slab_mutex);
3580 list_for_each_entry(s, &slab_caches, list) {
3581 /*
3582 * XXX: kmem_cache_alloc_node will fallback to other nodes
3583 * since memory is not yet available from the node that
3584 * is brought up.
3585 */
3586 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3587 if (!n) {
3588 ret = -ENOMEM;
3589 goto out;
3590 }
3591 init_kmem_cache_node(n);
3592 s->node[nid] = n;
3593 }
3594 out:
3595 mutex_unlock(&slab_mutex);
3596 return ret;
3597 }
3598
3599 static int slab_memory_callback(struct notifier_block *self,
3600 unsigned long action, void *arg)
3601 {
3602 int ret = 0;
3603
3604 switch (action) {
3605 case MEM_GOING_ONLINE:
3606 ret = slab_mem_going_online_callback(arg);
3607 break;
3608 case MEM_GOING_OFFLINE:
3609 ret = slab_mem_going_offline_callback(arg);
3610 break;
3611 case MEM_OFFLINE:
3612 case MEM_CANCEL_ONLINE:
3613 slab_mem_offline_callback(arg);
3614 break;
3615 case MEM_ONLINE:
3616 case MEM_CANCEL_OFFLINE:
3617 break;
3618 }
3619 if (ret)
3620 ret = notifier_from_errno(ret);
3621 else
3622 ret = NOTIFY_OK;
3623 return ret;
3624 }
3625
3626 static struct notifier_block slab_memory_callback_nb = {
3627 .notifier_call = slab_memory_callback,
3628 .priority = SLAB_CALLBACK_PRI,
3629 };
3630
3631 /********************************************************************
3632 * Basic setup of slabs
3633 *******************************************************************/
3634
3635 /*
3636 * Used for early kmem_cache structures that were allocated using
3637 * the page allocator. Allocate them properly then fix up the pointers
3638 * that may be pointing to the wrong kmem_cache structure.
3639 */
3640
3641 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3642 {
3643 int node;
3644 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3645 struct kmem_cache_node *n;
3646
3647 memcpy(s, static_cache, kmem_cache->object_size);
3648
3649 /*
3650 * This runs very early, and only the boot processor is supposed to be
3651 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3652 * IPIs around.
3653 */
3654 __flush_cpu_slab(s, smp_processor_id());
3655 for_each_kmem_cache_node(s, node, n) {
3656 struct page *p;
3657
3658 list_for_each_entry(p, &n->partial, lru)
3659 p->slab_cache = s;
3660
3661 #ifdef CONFIG_SLUB_DEBUG
3662 list_for_each_entry(p, &n->full, lru)
3663 p->slab_cache = s;
3664 #endif
3665 }
3666 slab_init_memcg_params(s);
3667 list_add(&s->list, &slab_caches);
3668 return s;
3669 }
3670
3671 void __init kmem_cache_init(void)
3672 {
3673 static __initdata struct kmem_cache boot_kmem_cache,
3674 boot_kmem_cache_node;
3675
3676 if (debug_guardpage_minorder())
3677 slub_max_order = 0;
3678
3679 kmem_cache_node = &boot_kmem_cache_node;
3680 kmem_cache = &boot_kmem_cache;
3681
3682 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3683 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3684
3685 register_hotmemory_notifier(&slab_memory_callback_nb);
3686
3687 /* Able to allocate the per node structures */
3688 slab_state = PARTIAL;
3689
3690 create_boot_cache(kmem_cache, "kmem_cache",
3691 offsetof(struct kmem_cache, node) +
3692 nr_node_ids * sizeof(struct kmem_cache_node *),
3693 SLAB_HWCACHE_ALIGN);
3694
3695 kmem_cache = bootstrap(&boot_kmem_cache);
3696
3697 /*
3698 * Allocate kmem_cache_node properly from the kmem_cache slab.
3699 * kmem_cache_node is separately allocated so no need to
3700 * update any list pointers.
3701 */
3702 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3703
3704 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3705 create_kmalloc_caches(0);
3706
3707 #ifdef CONFIG_SMP
3708 register_cpu_notifier(&slab_notifier);
3709 #endif
3710
3711 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3712 cache_line_size(),
3713 slub_min_order, slub_max_order, slub_min_objects,
3714 nr_cpu_ids, nr_node_ids);
3715 }
3716
3717 void __init kmem_cache_init_late(void)
3718 {
3719 }
3720
3721 struct kmem_cache *
3722 __kmem_cache_alias(const char *name, size_t size, size_t align,
3723 unsigned long flags, void (*ctor)(void *))
3724 {
3725 struct kmem_cache *s, *c;
3726
3727 s = find_mergeable(size, align, flags, name, ctor);
3728 if (s) {
3729 s->refcount++;
3730
3731 /*
3732 * Adjust the object sizes so that we clear
3733 * the complete object on kzalloc.
3734 */
3735 s->object_size = max(s->object_size, (int)size);
3736 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3737
3738 for_each_memcg_cache(c, s) {
3739 c->object_size = s->object_size;
3740 c->inuse = max_t(int, c->inuse,
3741 ALIGN(size, sizeof(void *)));
3742 }
3743
3744 if (sysfs_slab_alias(s, name)) {
3745 s->refcount--;
3746 s = NULL;
3747 }
3748 }
3749
3750 return s;
3751 }
3752
3753 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3754 {
3755 int err;
3756
3757 err = kmem_cache_open(s, flags);
3758 if (err)
3759 return err;
3760
3761 /* Mutex is not taken during early boot */
3762 if (slab_state <= UP)
3763 return 0;
3764
3765 memcg_propagate_slab_attrs(s);
3766 err = sysfs_slab_add(s);
3767 if (err)
3768 kmem_cache_close(s);
3769
3770 return err;
3771 }
3772
3773 #ifdef CONFIG_SMP
3774 /*
3775 * Use the cpu notifier to insure that the cpu slabs are flushed when
3776 * necessary.
3777 */
3778 static int slab_cpuup_callback(struct notifier_block *nfb,
3779 unsigned long action, void *hcpu)
3780 {
3781 long cpu = (long)hcpu;
3782 struct kmem_cache *s;
3783 unsigned long flags;
3784
3785 switch (action) {
3786 case CPU_UP_CANCELED:
3787 case CPU_UP_CANCELED_FROZEN:
3788 case CPU_DEAD:
3789 case CPU_DEAD_FROZEN:
3790 mutex_lock(&slab_mutex);
3791 list_for_each_entry(s, &slab_caches, list) {
3792 local_irq_save(flags);
3793 __flush_cpu_slab(s, cpu);
3794 local_irq_restore(flags);
3795 }
3796 mutex_unlock(&slab_mutex);
3797 break;
3798 default:
3799 break;
3800 }
3801 return NOTIFY_OK;
3802 }
3803
3804 static struct notifier_block slab_notifier = {
3805 .notifier_call = slab_cpuup_callback
3806 };
3807
3808 #endif
3809
3810 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3811 {
3812 struct kmem_cache *s;
3813 void *ret;
3814
3815 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3816 return kmalloc_large(size, gfpflags);
3817
3818 s = kmalloc_slab(size, gfpflags);
3819
3820 if (unlikely(ZERO_OR_NULL_PTR(s)))
3821 return s;
3822
3823 ret = slab_alloc(s, gfpflags, caller);
3824
3825 /* Honor the call site pointer we received. */
3826 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3827
3828 return ret;
3829 }
3830
3831 #ifdef CONFIG_NUMA
3832 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3833 int node, unsigned long caller)
3834 {
3835 struct kmem_cache *s;
3836 void *ret;
3837
3838 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3839 ret = kmalloc_large_node(size, gfpflags, node);
3840
3841 trace_kmalloc_node(caller, ret,
3842 size, PAGE_SIZE << get_order(size),
3843 gfpflags, node);
3844
3845 return ret;
3846 }
3847
3848 s = kmalloc_slab(size, gfpflags);
3849
3850 if (unlikely(ZERO_OR_NULL_PTR(s)))
3851 return s;
3852
3853 ret = slab_alloc_node(s, gfpflags, node, caller);
3854
3855 /* Honor the call site pointer we received. */
3856 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3857
3858 return ret;
3859 }
3860 #endif
3861
3862 #ifdef CONFIG_SYSFS
3863 static int count_inuse(struct page *page)
3864 {
3865 return page->inuse;
3866 }
3867
3868 static int count_total(struct page *page)
3869 {
3870 return page->objects;
3871 }
3872 #endif
3873
3874 #ifdef CONFIG_SLUB_DEBUG
3875 static int validate_slab(struct kmem_cache *s, struct page *page,
3876 unsigned long *map)
3877 {
3878 void *p;
3879 void *addr = page_address(page);
3880
3881 if (!check_slab(s, page) ||
3882 !on_freelist(s, page, NULL))
3883 return 0;
3884
3885 /* Now we know that a valid freelist exists */
3886 bitmap_zero(map, page->objects);
3887
3888 get_map(s, page, map);
3889 for_each_object(p, s, addr, page->objects) {
3890 if (test_bit(slab_index(p, s, addr), map))
3891 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3892 return 0;
3893 }
3894
3895 for_each_object(p, s, addr, page->objects)
3896 if (!test_bit(slab_index(p, s, addr), map))
3897 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3898 return 0;
3899 return 1;
3900 }
3901
3902 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3903 unsigned long *map)
3904 {
3905 slab_lock(page);
3906 validate_slab(s, page, map);
3907 slab_unlock(page);
3908 }
3909
3910 static int validate_slab_node(struct kmem_cache *s,
3911 struct kmem_cache_node *n, unsigned long *map)
3912 {
3913 unsigned long count = 0;
3914 struct page *page;
3915 unsigned long flags;
3916
3917 spin_lock_irqsave(&n->list_lock, flags);
3918
3919 list_for_each_entry(page, &n->partial, lru) {
3920 validate_slab_slab(s, page, map);
3921 count++;
3922 }
3923 if (count != n->nr_partial)
3924 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3925 s->name, count, n->nr_partial);
3926
3927 if (!(s->flags & SLAB_STORE_USER))
3928 goto out;
3929
3930 list_for_each_entry(page, &n->full, lru) {
3931 validate_slab_slab(s, page, map);
3932 count++;
3933 }
3934 if (count != atomic_long_read(&n->nr_slabs))
3935 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3936 s->name, count, atomic_long_read(&n->nr_slabs));
3937
3938 out:
3939 spin_unlock_irqrestore(&n->list_lock, flags);
3940 return count;
3941 }
3942
3943 static long validate_slab_cache(struct kmem_cache *s)
3944 {
3945 int node;
3946 unsigned long count = 0;
3947 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3948 sizeof(unsigned long), GFP_KERNEL);
3949 struct kmem_cache_node *n;
3950
3951 if (!map)
3952 return -ENOMEM;
3953
3954 flush_all(s);
3955 for_each_kmem_cache_node(s, node, n)
3956 count += validate_slab_node(s, n, map);
3957 kfree(map);
3958 return count;
3959 }
3960 /*
3961 * Generate lists of code addresses where slabcache objects are allocated
3962 * and freed.
3963 */
3964
3965 struct location {
3966 unsigned long count;
3967 unsigned long addr;
3968 long long sum_time;
3969 long min_time;
3970 long max_time;
3971 long min_pid;
3972 long max_pid;
3973 DECLARE_BITMAP(cpus, NR_CPUS);
3974 nodemask_t nodes;
3975 };
3976
3977 struct loc_track {
3978 unsigned long max;
3979 unsigned long count;
3980 struct location *loc;
3981 };
3982
3983 static void free_loc_track(struct loc_track *t)
3984 {
3985 if (t->max)
3986 free_pages((unsigned long)t->loc,
3987 get_order(sizeof(struct location) * t->max));
3988 }
3989
3990 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3991 {
3992 struct location *l;
3993 int order;
3994
3995 order = get_order(sizeof(struct location) * max);
3996
3997 l = (void *)__get_free_pages(flags, order);
3998 if (!l)
3999 return 0;
4000
4001 if (t->count) {
4002 memcpy(l, t->loc, sizeof(struct location) * t->count);
4003 free_loc_track(t);
4004 }
4005 t->max = max;
4006 t->loc = l;
4007 return 1;
4008 }
4009
4010 static int add_location(struct loc_track *t, struct kmem_cache *s,
4011 const struct track *track)
4012 {
4013 long start, end, pos;
4014 struct location *l;
4015 unsigned long caddr;
4016 unsigned long age = jiffies - track->when;
4017
4018 start = -1;
4019 end = t->count;
4020
4021 for ( ; ; ) {
4022 pos = start + (end - start + 1) / 2;
4023
4024 /*
4025 * There is nothing at "end". If we end up there
4026 * we need to add something to before end.
4027 */
4028 if (pos == end)
4029 break;
4030
4031 caddr = t->loc[pos].addr;
4032 if (track->addr == caddr) {
4033
4034 l = &t->loc[pos];
4035 l->count++;
4036 if (track->when) {
4037 l->sum_time += age;
4038 if (age < l->min_time)
4039 l->min_time = age;
4040 if (age > l->max_time)
4041 l->max_time = age;
4042
4043 if (track->pid < l->min_pid)
4044 l->min_pid = track->pid;
4045 if (track->pid > l->max_pid)
4046 l->max_pid = track->pid;
4047
4048 cpumask_set_cpu(track->cpu,
4049 to_cpumask(l->cpus));
4050 }
4051 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4052 return 1;
4053 }
4054
4055 if (track->addr < caddr)
4056 end = pos;
4057 else
4058 start = pos;
4059 }
4060
4061 /*
4062 * Not found. Insert new tracking element.
4063 */
4064 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4065 return 0;
4066
4067 l = t->loc + pos;
4068 if (pos < t->count)
4069 memmove(l + 1, l,
4070 (t->count - pos) * sizeof(struct location));
4071 t->count++;
4072 l->count = 1;
4073 l->addr = track->addr;
4074 l->sum_time = age;
4075 l->min_time = age;
4076 l->max_time = age;
4077 l->min_pid = track->pid;
4078 l->max_pid = track->pid;
4079 cpumask_clear(to_cpumask(l->cpus));
4080 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4081 nodes_clear(l->nodes);
4082 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4083 return 1;
4084 }
4085
4086 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4087 struct page *page, enum track_item alloc,
4088 unsigned long *map)
4089 {
4090 void *addr = page_address(page);
4091 void *p;
4092
4093 bitmap_zero(map, page->objects);
4094 get_map(s, page, map);
4095
4096 for_each_object(p, s, addr, page->objects)
4097 if (!test_bit(slab_index(p, s, addr), map))
4098 add_location(t, s, get_track(s, p, alloc));
4099 }
4100
4101 static int list_locations(struct kmem_cache *s, char *buf,
4102 enum track_item alloc)
4103 {
4104 int len = 0;
4105 unsigned long i;
4106 struct loc_track t = { 0, 0, NULL };
4107 int node;
4108 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4109 sizeof(unsigned long), GFP_KERNEL);
4110 struct kmem_cache_node *n;
4111
4112 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4113 GFP_TEMPORARY)) {
4114 kfree(map);
4115 return sprintf(buf, "Out of memory\n");
4116 }
4117 /* Push back cpu slabs */
4118 flush_all(s);
4119
4120 for_each_kmem_cache_node(s, node, n) {
4121 unsigned long flags;
4122 struct page *page;
4123
4124 if (!atomic_long_read(&n->nr_slabs))
4125 continue;
4126
4127 spin_lock_irqsave(&n->list_lock, flags);
4128 list_for_each_entry(page, &n->partial, lru)
4129 process_slab(&t, s, page, alloc, map);
4130 list_for_each_entry(page, &n->full, lru)
4131 process_slab(&t, s, page, alloc, map);
4132 spin_unlock_irqrestore(&n->list_lock, flags);
4133 }
4134
4135 for (i = 0; i < t.count; i++) {
4136 struct location *l = &t.loc[i];
4137
4138 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4139 break;
4140 len += sprintf(buf + len, "%7ld ", l->count);
4141
4142 if (l->addr)
4143 len += sprintf(buf + len, "%pS", (void *)l->addr);
4144 else
4145 len += sprintf(buf + len, "<not-available>");
4146
4147 if (l->sum_time != l->min_time) {
4148 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4149 l->min_time,
4150 (long)div_u64(l->sum_time, l->count),
4151 l->max_time);
4152 } else
4153 len += sprintf(buf + len, " age=%ld",
4154 l->min_time);
4155
4156 if (l->min_pid != l->max_pid)
4157 len += sprintf(buf + len, " pid=%ld-%ld",
4158 l->min_pid, l->max_pid);
4159 else
4160 len += sprintf(buf + len, " pid=%ld",
4161 l->min_pid);
4162
4163 if (num_online_cpus() > 1 &&
4164 !cpumask_empty(to_cpumask(l->cpus)) &&
4165 len < PAGE_SIZE - 60)
4166 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4167 " cpus=%*pbl",
4168 cpumask_pr_args(to_cpumask(l->cpus)));
4169
4170 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4171 len < PAGE_SIZE - 60)
4172 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4173 " nodes=%*pbl",
4174 nodemask_pr_args(&l->nodes));
4175
4176 len += sprintf(buf + len, "\n");
4177 }
4178
4179 free_loc_track(&t);
4180 kfree(map);
4181 if (!t.count)
4182 len += sprintf(buf, "No data\n");
4183 return len;
4184 }
4185 #endif
4186
4187 #ifdef SLUB_RESILIENCY_TEST
4188 static void __init resiliency_test(void)
4189 {
4190 u8 *p;
4191
4192 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4193
4194 pr_err("SLUB resiliency testing\n");
4195 pr_err("-----------------------\n");
4196 pr_err("A. Corruption after allocation\n");
4197
4198 p = kzalloc(16, GFP_KERNEL);
4199 p[16] = 0x12;
4200 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4201 p + 16);
4202
4203 validate_slab_cache(kmalloc_caches[4]);
4204
4205 /* Hmmm... The next two are dangerous */
4206 p = kzalloc(32, GFP_KERNEL);
4207 p[32 + sizeof(void *)] = 0x34;
4208 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4209 p);
4210 pr_err("If allocated object is overwritten then not detectable\n\n");
4211
4212 validate_slab_cache(kmalloc_caches[5]);
4213 p = kzalloc(64, GFP_KERNEL);
4214 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4215 *p = 0x56;
4216 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4217 p);
4218 pr_err("If allocated object is overwritten then not detectable\n\n");
4219 validate_slab_cache(kmalloc_caches[6]);
4220
4221 pr_err("\nB. Corruption after free\n");
4222 p = kzalloc(128, GFP_KERNEL);
4223 kfree(p);
4224 *p = 0x78;
4225 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4226 validate_slab_cache(kmalloc_caches[7]);
4227
4228 p = kzalloc(256, GFP_KERNEL);
4229 kfree(p);
4230 p[50] = 0x9a;
4231 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4232 validate_slab_cache(kmalloc_caches[8]);
4233
4234 p = kzalloc(512, GFP_KERNEL);
4235 kfree(p);
4236 p[512] = 0xab;
4237 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4238 validate_slab_cache(kmalloc_caches[9]);
4239 }
4240 #else
4241 #ifdef CONFIG_SYSFS
4242 static void resiliency_test(void) {};
4243 #endif
4244 #endif
4245
4246 #ifdef CONFIG_SYSFS
4247 enum slab_stat_type {
4248 SL_ALL, /* All slabs */
4249 SL_PARTIAL, /* Only partially allocated slabs */
4250 SL_CPU, /* Only slabs used for cpu caches */
4251 SL_OBJECTS, /* Determine allocated objects not slabs */
4252 SL_TOTAL /* Determine object capacity not slabs */
4253 };
4254
4255 #define SO_ALL (1 << SL_ALL)
4256 #define SO_PARTIAL (1 << SL_PARTIAL)
4257 #define SO_CPU (1 << SL_CPU)
4258 #define SO_OBJECTS (1 << SL_OBJECTS)
4259 #define SO_TOTAL (1 << SL_TOTAL)
4260
4261 static ssize_t show_slab_objects(struct kmem_cache *s,
4262 char *buf, unsigned long flags)
4263 {
4264 unsigned long total = 0;
4265 int node;
4266 int x;
4267 unsigned long *nodes;
4268
4269 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4270 if (!nodes)
4271 return -ENOMEM;
4272
4273 if (flags & SO_CPU) {
4274 int cpu;
4275
4276 for_each_possible_cpu(cpu) {
4277 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4278 cpu);
4279 int node;
4280 struct page *page;
4281
4282 page = ACCESS_ONCE(c->page);
4283 if (!page)
4284 continue;
4285
4286 node = page_to_nid(page);
4287 if (flags & SO_TOTAL)
4288 x = page->objects;
4289 else if (flags & SO_OBJECTS)
4290 x = page->inuse;
4291 else
4292 x = 1;
4293
4294 total += x;
4295 nodes[node] += x;
4296
4297 page = ACCESS_ONCE(c->partial);
4298 if (page) {
4299 node = page_to_nid(page);
4300 if (flags & SO_TOTAL)
4301 WARN_ON_ONCE(1);
4302 else if (flags & SO_OBJECTS)
4303 WARN_ON_ONCE(1);
4304 else
4305 x = page->pages;
4306 total += x;
4307 nodes[node] += x;
4308 }
4309 }
4310 }
4311
4312 get_online_mems();
4313 #ifdef CONFIG_SLUB_DEBUG
4314 if (flags & SO_ALL) {
4315 struct kmem_cache_node *n;
4316
4317 for_each_kmem_cache_node(s, node, n) {
4318
4319 if (flags & SO_TOTAL)
4320 x = atomic_long_read(&n->total_objects);
4321 else if (flags & SO_OBJECTS)
4322 x = atomic_long_read(&n->total_objects) -
4323 count_partial(n, count_free);
4324 else
4325 x = atomic_long_read(&n->nr_slabs);
4326 total += x;
4327 nodes[node] += x;
4328 }
4329
4330 } else
4331 #endif
4332 if (flags & SO_PARTIAL) {
4333 struct kmem_cache_node *n;
4334
4335 for_each_kmem_cache_node(s, node, n) {
4336 if (flags & SO_TOTAL)
4337 x = count_partial(n, count_total);
4338 else if (flags & SO_OBJECTS)
4339 x = count_partial(n, count_inuse);
4340 else
4341 x = n->nr_partial;
4342 total += x;
4343 nodes[node] += x;
4344 }
4345 }
4346 x = sprintf(buf, "%lu", total);
4347 #ifdef CONFIG_NUMA
4348 for (node = 0; node < nr_node_ids; node++)
4349 if (nodes[node])
4350 x += sprintf(buf + x, " N%d=%lu",
4351 node, nodes[node]);
4352 #endif
4353 put_online_mems();
4354 kfree(nodes);
4355 return x + sprintf(buf + x, "\n");
4356 }
4357
4358 #ifdef CONFIG_SLUB_DEBUG
4359 static int any_slab_objects(struct kmem_cache *s)
4360 {
4361 int node;
4362 struct kmem_cache_node *n;
4363
4364 for_each_kmem_cache_node(s, node, n)
4365 if (atomic_long_read(&n->total_objects))
4366 return 1;
4367
4368 return 0;
4369 }
4370 #endif
4371
4372 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4373 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4374
4375 struct slab_attribute {
4376 struct attribute attr;
4377 ssize_t (*show)(struct kmem_cache *s, char *buf);
4378 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4379 };
4380
4381 #define SLAB_ATTR_RO(_name) \
4382 static struct slab_attribute _name##_attr = \
4383 __ATTR(_name, 0400, _name##_show, NULL)
4384
4385 #define SLAB_ATTR(_name) \
4386 static struct slab_attribute _name##_attr = \
4387 __ATTR(_name, 0600, _name##_show, _name##_store)
4388
4389 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4390 {
4391 return sprintf(buf, "%d\n", s->size);
4392 }
4393 SLAB_ATTR_RO(slab_size);
4394
4395 static ssize_t align_show(struct kmem_cache *s, char *buf)
4396 {
4397 return sprintf(buf, "%d\n", s->align);
4398 }
4399 SLAB_ATTR_RO(align);
4400
4401 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4402 {
4403 return sprintf(buf, "%d\n", s->object_size);
4404 }
4405 SLAB_ATTR_RO(object_size);
4406
4407 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4408 {
4409 return sprintf(buf, "%d\n", oo_objects(s->oo));
4410 }
4411 SLAB_ATTR_RO(objs_per_slab);
4412
4413 static ssize_t order_store(struct kmem_cache *s,
4414 const char *buf, size_t length)
4415 {
4416 unsigned long order;
4417 int err;
4418
4419 err = kstrtoul(buf, 10, &order);
4420 if (err)
4421 return err;
4422
4423 if (order > slub_max_order || order < slub_min_order)
4424 return -EINVAL;
4425
4426 calculate_sizes(s, order);
4427 return length;
4428 }
4429
4430 static ssize_t order_show(struct kmem_cache *s, char *buf)
4431 {
4432 return sprintf(buf, "%d\n", oo_order(s->oo));
4433 }
4434 SLAB_ATTR(order);
4435
4436 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4437 {
4438 return sprintf(buf, "%lu\n", s->min_partial);
4439 }
4440
4441 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4442 size_t length)
4443 {
4444 unsigned long min;
4445 int err;
4446
4447 err = kstrtoul(buf, 10, &min);
4448 if (err)
4449 return err;
4450
4451 set_min_partial(s, min);
4452 return length;
4453 }
4454 SLAB_ATTR(min_partial);
4455
4456 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4457 {
4458 return sprintf(buf, "%u\n", s->cpu_partial);
4459 }
4460
4461 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4462 size_t length)
4463 {
4464 unsigned long objects;
4465 int err;
4466
4467 err = kstrtoul(buf, 10, &objects);
4468 if (err)
4469 return err;
4470 if (objects && !kmem_cache_has_cpu_partial(s))
4471 return -EINVAL;
4472
4473 s->cpu_partial = objects;
4474 flush_all(s);
4475 return length;
4476 }
4477 SLAB_ATTR(cpu_partial);
4478
4479 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4480 {
4481 if (!s->ctor)
4482 return 0;
4483 return sprintf(buf, "%pS\n", s->ctor);
4484 }
4485 SLAB_ATTR_RO(ctor);
4486
4487 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4488 {
4489 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4490 }
4491 SLAB_ATTR_RO(aliases);
4492
4493 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4494 {
4495 return show_slab_objects(s, buf, SO_PARTIAL);
4496 }
4497 SLAB_ATTR_RO(partial);
4498
4499 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4500 {
4501 return show_slab_objects(s, buf, SO_CPU);
4502 }
4503 SLAB_ATTR_RO(cpu_slabs);
4504
4505 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4506 {
4507 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4508 }
4509 SLAB_ATTR_RO(objects);
4510
4511 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4512 {
4513 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4514 }
4515 SLAB_ATTR_RO(objects_partial);
4516
4517 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4518 {
4519 int objects = 0;
4520 int pages = 0;
4521 int cpu;
4522 int len;
4523
4524 for_each_online_cpu(cpu) {
4525 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4526
4527 if (page) {
4528 pages += page->pages;
4529 objects += page->pobjects;
4530 }
4531 }
4532
4533 len = sprintf(buf, "%d(%d)", objects, pages);
4534
4535 #ifdef CONFIG_SMP
4536 for_each_online_cpu(cpu) {
4537 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4538
4539 if (page && len < PAGE_SIZE - 20)
4540 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4541 page->pobjects, page->pages);
4542 }
4543 #endif
4544 return len + sprintf(buf + len, "\n");
4545 }
4546 SLAB_ATTR_RO(slabs_cpu_partial);
4547
4548 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4549 {
4550 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4551 }
4552
4553 static ssize_t reclaim_account_store(struct kmem_cache *s,
4554 const char *buf, size_t length)
4555 {
4556 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4557 if (buf[0] == '1')
4558 s->flags |= SLAB_RECLAIM_ACCOUNT;
4559 return length;
4560 }
4561 SLAB_ATTR(reclaim_account);
4562
4563 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4564 {
4565 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4566 }
4567 SLAB_ATTR_RO(hwcache_align);
4568
4569 #ifdef CONFIG_ZONE_DMA
4570 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4571 {
4572 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4573 }
4574 SLAB_ATTR_RO(cache_dma);
4575 #endif
4576
4577 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4578 {
4579 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4580 }
4581 SLAB_ATTR_RO(destroy_by_rcu);
4582
4583 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4584 {
4585 return sprintf(buf, "%d\n", s->reserved);
4586 }
4587 SLAB_ATTR_RO(reserved);
4588
4589 #ifdef CONFIG_SLUB_DEBUG
4590 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4591 {
4592 return show_slab_objects(s, buf, SO_ALL);
4593 }
4594 SLAB_ATTR_RO(slabs);
4595
4596 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4597 {
4598 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4599 }
4600 SLAB_ATTR_RO(total_objects);
4601
4602 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4603 {
4604 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4605 }
4606
4607 static ssize_t sanity_checks_store(struct kmem_cache *s,
4608 const char *buf, size_t length)
4609 {
4610 s->flags &= ~SLAB_DEBUG_FREE;
4611 if (buf[0] == '1') {
4612 s->flags &= ~__CMPXCHG_DOUBLE;
4613 s->flags |= SLAB_DEBUG_FREE;
4614 }
4615 return length;
4616 }
4617 SLAB_ATTR(sanity_checks);
4618
4619 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4620 {
4621 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4622 }
4623
4624 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4625 size_t length)
4626 {
4627 /*
4628 * Tracing a merged cache is going to give confusing results
4629 * as well as cause other issues like converting a mergeable
4630 * cache into an umergeable one.
4631 */
4632 if (s->refcount > 1)
4633 return -EINVAL;
4634
4635 s->flags &= ~SLAB_TRACE;
4636 if (buf[0] == '1') {
4637 s->flags &= ~__CMPXCHG_DOUBLE;
4638 s->flags |= SLAB_TRACE;
4639 }
4640 return length;
4641 }
4642 SLAB_ATTR(trace);
4643
4644 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4645 {
4646 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4647 }
4648
4649 static ssize_t red_zone_store(struct kmem_cache *s,
4650 const char *buf, size_t length)
4651 {
4652 if (any_slab_objects(s))
4653 return -EBUSY;
4654
4655 s->flags &= ~SLAB_RED_ZONE;
4656 if (buf[0] == '1') {
4657 s->flags &= ~__CMPXCHG_DOUBLE;
4658 s->flags |= SLAB_RED_ZONE;
4659 }
4660 calculate_sizes(s, -1);
4661 return length;
4662 }
4663 SLAB_ATTR(red_zone);
4664
4665 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4666 {
4667 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4668 }
4669
4670 static ssize_t poison_store(struct kmem_cache *s,
4671 const char *buf, size_t length)
4672 {
4673 if (any_slab_objects(s))
4674 return -EBUSY;
4675
4676 s->flags &= ~SLAB_POISON;
4677 if (buf[0] == '1') {
4678 s->flags &= ~__CMPXCHG_DOUBLE;
4679 s->flags |= SLAB_POISON;
4680 }
4681 calculate_sizes(s, -1);
4682 return length;
4683 }
4684 SLAB_ATTR(poison);
4685
4686 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4687 {
4688 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4689 }
4690
4691 static ssize_t store_user_store(struct kmem_cache *s,
4692 const char *buf, size_t length)
4693 {
4694 if (any_slab_objects(s))
4695 return -EBUSY;
4696
4697 s->flags &= ~SLAB_STORE_USER;
4698 if (buf[0] == '1') {
4699 s->flags &= ~__CMPXCHG_DOUBLE;
4700 s->flags |= SLAB_STORE_USER;
4701 }
4702 calculate_sizes(s, -1);
4703 return length;
4704 }
4705 SLAB_ATTR(store_user);
4706
4707 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4708 {
4709 return 0;
4710 }
4711
4712 static ssize_t validate_store(struct kmem_cache *s,
4713 const char *buf, size_t length)
4714 {
4715 int ret = -EINVAL;
4716
4717 if (buf[0] == '1') {
4718 ret = validate_slab_cache(s);
4719 if (ret >= 0)
4720 ret = length;
4721 }
4722 return ret;
4723 }
4724 SLAB_ATTR(validate);
4725
4726 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4727 {
4728 if (!(s->flags & SLAB_STORE_USER))
4729 return -ENOSYS;
4730 return list_locations(s, buf, TRACK_ALLOC);
4731 }
4732 SLAB_ATTR_RO(alloc_calls);
4733
4734 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4735 {
4736 if (!(s->flags & SLAB_STORE_USER))
4737 return -ENOSYS;
4738 return list_locations(s, buf, TRACK_FREE);
4739 }
4740 SLAB_ATTR_RO(free_calls);
4741 #endif /* CONFIG_SLUB_DEBUG */
4742
4743 #ifdef CONFIG_FAILSLAB
4744 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4745 {
4746 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4747 }
4748
4749 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4750 size_t length)
4751 {
4752 if (s->refcount > 1)
4753 return -EINVAL;
4754
4755 s->flags &= ~SLAB_FAILSLAB;
4756 if (buf[0] == '1')
4757 s->flags |= SLAB_FAILSLAB;
4758 return length;
4759 }
4760 SLAB_ATTR(failslab);
4761 #endif
4762
4763 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4764 {
4765 return 0;
4766 }
4767
4768 static ssize_t shrink_store(struct kmem_cache *s,
4769 const char *buf, size_t length)
4770 {
4771 if (buf[0] == '1')
4772 kmem_cache_shrink(s);
4773 else
4774 return -EINVAL;
4775 return length;
4776 }
4777 SLAB_ATTR(shrink);
4778
4779 #ifdef CONFIG_NUMA
4780 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4781 {
4782 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4783 }
4784
4785 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4786 const char *buf, size_t length)
4787 {
4788 unsigned long ratio;
4789 int err;
4790
4791 err = kstrtoul(buf, 10, &ratio);
4792 if (err)
4793 return err;
4794
4795 if (ratio <= 100)
4796 s->remote_node_defrag_ratio = ratio * 10;
4797
4798 return length;
4799 }
4800 SLAB_ATTR(remote_node_defrag_ratio);
4801 #endif
4802
4803 #ifdef CONFIG_SLUB_STATS
4804 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4805 {
4806 unsigned long sum = 0;
4807 int cpu;
4808 int len;
4809 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4810
4811 if (!data)
4812 return -ENOMEM;
4813
4814 for_each_online_cpu(cpu) {
4815 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4816
4817 data[cpu] = x;
4818 sum += x;
4819 }
4820
4821 len = sprintf(buf, "%lu", sum);
4822
4823 #ifdef CONFIG_SMP
4824 for_each_online_cpu(cpu) {
4825 if (data[cpu] && len < PAGE_SIZE - 20)
4826 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4827 }
4828 #endif
4829 kfree(data);
4830 return len + sprintf(buf + len, "\n");
4831 }
4832
4833 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4834 {
4835 int cpu;
4836
4837 for_each_online_cpu(cpu)
4838 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4839 }
4840
4841 #define STAT_ATTR(si, text) \
4842 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4843 { \
4844 return show_stat(s, buf, si); \
4845 } \
4846 static ssize_t text##_store(struct kmem_cache *s, \
4847 const char *buf, size_t length) \
4848 { \
4849 if (buf[0] != '0') \
4850 return -EINVAL; \
4851 clear_stat(s, si); \
4852 return length; \
4853 } \
4854 SLAB_ATTR(text); \
4855
4856 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4857 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4858 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4859 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4860 STAT_ATTR(FREE_FROZEN, free_frozen);
4861 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4862 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4863 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4864 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4865 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4866 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4867 STAT_ATTR(FREE_SLAB, free_slab);
4868 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4869 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4870 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4871 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4872 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4873 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4874 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4875 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4876 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4877 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4878 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4879 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4880 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4881 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4882 #endif
4883
4884 static struct attribute *slab_attrs[] = {
4885 &slab_size_attr.attr,
4886 &object_size_attr.attr,
4887 &objs_per_slab_attr.attr,
4888 &order_attr.attr,
4889 &min_partial_attr.attr,
4890 &cpu_partial_attr.attr,
4891 &objects_attr.attr,
4892 &objects_partial_attr.attr,
4893 &partial_attr.attr,
4894 &cpu_slabs_attr.attr,
4895 &ctor_attr.attr,
4896 &aliases_attr.attr,
4897 &align_attr.attr,
4898 &hwcache_align_attr.attr,
4899 &reclaim_account_attr.attr,
4900 &destroy_by_rcu_attr.attr,
4901 &shrink_attr.attr,
4902 &reserved_attr.attr,
4903 &slabs_cpu_partial_attr.attr,
4904 #ifdef CONFIG_SLUB_DEBUG
4905 &total_objects_attr.attr,
4906 &slabs_attr.attr,
4907 &sanity_checks_attr.attr,
4908 &trace_attr.attr,
4909 &red_zone_attr.attr,
4910 &poison_attr.attr,
4911 &store_user_attr.attr,
4912 &validate_attr.attr,
4913 &alloc_calls_attr.attr,
4914 &free_calls_attr.attr,
4915 #endif
4916 #ifdef CONFIG_ZONE_DMA
4917 &cache_dma_attr.attr,
4918 #endif
4919 #ifdef CONFIG_NUMA
4920 &remote_node_defrag_ratio_attr.attr,
4921 #endif
4922 #ifdef CONFIG_SLUB_STATS
4923 &alloc_fastpath_attr.attr,
4924 &alloc_slowpath_attr.attr,
4925 &free_fastpath_attr.attr,
4926 &free_slowpath_attr.attr,
4927 &free_frozen_attr.attr,
4928 &free_add_partial_attr.attr,
4929 &free_remove_partial_attr.attr,
4930 &alloc_from_partial_attr.attr,
4931 &alloc_slab_attr.attr,
4932 &alloc_refill_attr.attr,
4933 &alloc_node_mismatch_attr.attr,
4934 &free_slab_attr.attr,
4935 &cpuslab_flush_attr.attr,
4936 &deactivate_full_attr.attr,
4937 &deactivate_empty_attr.attr,
4938 &deactivate_to_head_attr.attr,
4939 &deactivate_to_tail_attr.attr,
4940 &deactivate_remote_frees_attr.attr,
4941 &deactivate_bypass_attr.attr,
4942 &order_fallback_attr.attr,
4943 &cmpxchg_double_fail_attr.attr,
4944 &cmpxchg_double_cpu_fail_attr.attr,
4945 &cpu_partial_alloc_attr.attr,
4946 &cpu_partial_free_attr.attr,
4947 &cpu_partial_node_attr.attr,
4948 &cpu_partial_drain_attr.attr,
4949 #endif
4950 #ifdef CONFIG_FAILSLAB
4951 &failslab_attr.attr,
4952 #endif
4953
4954 NULL
4955 };
4956
4957 static struct attribute_group slab_attr_group = {
4958 .attrs = slab_attrs,
4959 };
4960
4961 static ssize_t slab_attr_show(struct kobject *kobj,
4962 struct attribute *attr,
4963 char *buf)
4964 {
4965 struct slab_attribute *attribute;
4966 struct kmem_cache *s;
4967 int err;
4968
4969 attribute = to_slab_attr(attr);
4970 s = to_slab(kobj);
4971
4972 if (!attribute->show)
4973 return -EIO;
4974
4975 err = attribute->show(s, buf);
4976
4977 return err;
4978 }
4979
4980 static ssize_t slab_attr_store(struct kobject *kobj,
4981 struct attribute *attr,
4982 const char *buf, size_t len)
4983 {
4984 struct slab_attribute *attribute;
4985 struct kmem_cache *s;
4986 int err;
4987
4988 attribute = to_slab_attr(attr);
4989 s = to_slab(kobj);
4990
4991 if (!attribute->store)
4992 return -EIO;
4993
4994 err = attribute->store(s, buf, len);
4995 #ifdef CONFIG_MEMCG_KMEM
4996 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4997 struct kmem_cache *c;
4998
4999 mutex_lock(&slab_mutex);
5000 if (s->max_attr_size < len)
5001 s->max_attr_size = len;
5002
5003 /*
5004 * This is a best effort propagation, so this function's return
5005 * value will be determined by the parent cache only. This is
5006 * basically because not all attributes will have a well
5007 * defined semantics for rollbacks - most of the actions will
5008 * have permanent effects.
5009 *
5010 * Returning the error value of any of the children that fail
5011 * is not 100 % defined, in the sense that users seeing the
5012 * error code won't be able to know anything about the state of
5013 * the cache.
5014 *
5015 * Only returning the error code for the parent cache at least
5016 * has well defined semantics. The cache being written to
5017 * directly either failed or succeeded, in which case we loop
5018 * through the descendants with best-effort propagation.
5019 */
5020 for_each_memcg_cache(c, s)
5021 attribute->store(c, buf, len);
5022 mutex_unlock(&slab_mutex);
5023 }
5024 #endif
5025 return err;
5026 }
5027
5028 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5029 {
5030 #ifdef CONFIG_MEMCG_KMEM
5031 int i;
5032 char *buffer = NULL;
5033 struct kmem_cache *root_cache;
5034
5035 if (is_root_cache(s))
5036 return;
5037
5038 root_cache = s->memcg_params.root_cache;
5039
5040 /*
5041 * This mean this cache had no attribute written. Therefore, no point
5042 * in copying default values around
5043 */
5044 if (!root_cache->max_attr_size)
5045 return;
5046
5047 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5048 char mbuf[64];
5049 char *buf;
5050 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5051
5052 if (!attr || !attr->store || !attr->show)
5053 continue;
5054
5055 /*
5056 * It is really bad that we have to allocate here, so we will
5057 * do it only as a fallback. If we actually allocate, though,
5058 * we can just use the allocated buffer until the end.
5059 *
5060 * Most of the slub attributes will tend to be very small in
5061 * size, but sysfs allows buffers up to a page, so they can
5062 * theoretically happen.
5063 */
5064 if (buffer)
5065 buf = buffer;
5066 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5067 buf = mbuf;
5068 else {
5069 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5070 if (WARN_ON(!buffer))
5071 continue;
5072 buf = buffer;
5073 }
5074
5075 attr->show(root_cache, buf);
5076 attr->store(s, buf, strlen(buf));
5077 }
5078
5079 if (buffer)
5080 free_page((unsigned long)buffer);
5081 #endif
5082 }
5083
5084 static void kmem_cache_release(struct kobject *k)
5085 {
5086 slab_kmem_cache_release(to_slab(k));
5087 }
5088
5089 static const struct sysfs_ops slab_sysfs_ops = {
5090 .show = slab_attr_show,
5091 .store = slab_attr_store,
5092 };
5093
5094 static struct kobj_type slab_ktype = {
5095 .sysfs_ops = &slab_sysfs_ops,
5096 .release = kmem_cache_release,
5097 };
5098
5099 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5100 {
5101 struct kobj_type *ktype = get_ktype(kobj);
5102
5103 if (ktype == &slab_ktype)
5104 return 1;
5105 return 0;
5106 }
5107
5108 static const struct kset_uevent_ops slab_uevent_ops = {
5109 .filter = uevent_filter,
5110 };
5111
5112 static struct kset *slab_kset;
5113
5114 static inline struct kset *cache_kset(struct kmem_cache *s)
5115 {
5116 #ifdef CONFIG_MEMCG_KMEM
5117 if (!is_root_cache(s))
5118 return s->memcg_params.root_cache->memcg_kset;
5119 #endif
5120 return slab_kset;
5121 }
5122
5123 #define ID_STR_LENGTH 64
5124
5125 /* Create a unique string id for a slab cache:
5126 *
5127 * Format :[flags-]size
5128 */
5129 static char *create_unique_id(struct kmem_cache *s)
5130 {
5131 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5132 char *p = name;
5133
5134 BUG_ON(!name);
5135
5136 *p++ = ':';
5137 /*
5138 * First flags affecting slabcache operations. We will only
5139 * get here for aliasable slabs so we do not need to support
5140 * too many flags. The flags here must cover all flags that
5141 * are matched during merging to guarantee that the id is
5142 * unique.
5143 */
5144 if (s->flags & SLAB_CACHE_DMA)
5145 *p++ = 'd';
5146 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5147 *p++ = 'a';
5148 if (s->flags & SLAB_DEBUG_FREE)
5149 *p++ = 'F';
5150 if (!(s->flags & SLAB_NOTRACK))
5151 *p++ = 't';
5152 if (p != name + 1)
5153 *p++ = '-';
5154 p += sprintf(p, "%07d", s->size);
5155
5156 BUG_ON(p > name + ID_STR_LENGTH - 1);
5157 return name;
5158 }
5159
5160 static int sysfs_slab_add(struct kmem_cache *s)
5161 {
5162 int err;
5163 const char *name;
5164 int unmergeable = slab_unmergeable(s);
5165
5166 if (unmergeable) {
5167 /*
5168 * Slabcache can never be merged so we can use the name proper.
5169 * This is typically the case for debug situations. In that
5170 * case we can catch duplicate names easily.
5171 */
5172 sysfs_remove_link(&slab_kset->kobj, s->name);
5173 name = s->name;
5174 } else {
5175 /*
5176 * Create a unique name for the slab as a target
5177 * for the symlinks.
5178 */
5179 name = create_unique_id(s);
5180 }
5181
5182 s->kobj.kset = cache_kset(s);
5183 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5184 if (err)
5185 goto out_put_kobj;
5186
5187 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5188 if (err)
5189 goto out_del_kobj;
5190
5191 #ifdef CONFIG_MEMCG_KMEM
5192 if (is_root_cache(s)) {
5193 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5194 if (!s->memcg_kset) {
5195 err = -ENOMEM;
5196 goto out_del_kobj;
5197 }
5198 }
5199 #endif
5200
5201 kobject_uevent(&s->kobj, KOBJ_ADD);
5202 if (!unmergeable) {
5203 /* Setup first alias */
5204 sysfs_slab_alias(s, s->name);
5205 }
5206 out:
5207 if (!unmergeable)
5208 kfree(name);
5209 return err;
5210 out_del_kobj:
5211 kobject_del(&s->kobj);
5212 out_put_kobj:
5213 kobject_put(&s->kobj);
5214 goto out;
5215 }
5216
5217 void sysfs_slab_remove(struct kmem_cache *s)
5218 {
5219 if (slab_state < FULL)
5220 /*
5221 * Sysfs has not been setup yet so no need to remove the
5222 * cache from sysfs.
5223 */
5224 return;
5225
5226 #ifdef CONFIG_MEMCG_KMEM
5227 kset_unregister(s->memcg_kset);
5228 #endif
5229 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5230 kobject_del(&s->kobj);
5231 kobject_put(&s->kobj);
5232 }
5233
5234 /*
5235 * Need to buffer aliases during bootup until sysfs becomes
5236 * available lest we lose that information.
5237 */
5238 struct saved_alias {
5239 struct kmem_cache *s;
5240 const char *name;
5241 struct saved_alias *next;
5242 };
5243
5244 static struct saved_alias *alias_list;
5245
5246 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5247 {
5248 struct saved_alias *al;
5249
5250 if (slab_state == FULL) {
5251 /*
5252 * If we have a leftover link then remove it.
5253 */
5254 sysfs_remove_link(&slab_kset->kobj, name);
5255 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5256 }
5257
5258 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5259 if (!al)
5260 return -ENOMEM;
5261
5262 al->s = s;
5263 al->name = name;
5264 al->next = alias_list;
5265 alias_list = al;
5266 return 0;
5267 }
5268
5269 static int __init slab_sysfs_init(void)
5270 {
5271 struct kmem_cache *s;
5272 int err;
5273
5274 mutex_lock(&slab_mutex);
5275
5276 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5277 if (!slab_kset) {
5278 mutex_unlock(&slab_mutex);
5279 pr_err("Cannot register slab subsystem.\n");
5280 return -ENOSYS;
5281 }
5282
5283 slab_state = FULL;
5284
5285 list_for_each_entry(s, &slab_caches, list) {
5286 err = sysfs_slab_add(s);
5287 if (err)
5288 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5289 s->name);
5290 }
5291
5292 while (alias_list) {
5293 struct saved_alias *al = alias_list;
5294
5295 alias_list = alias_list->next;
5296 err = sysfs_slab_alias(al->s, al->name);
5297 if (err)
5298 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5299 al->name);
5300 kfree(al);
5301 }
5302
5303 mutex_unlock(&slab_mutex);
5304 resiliency_test();
5305 return 0;
5306 }
5307
5308 __initcall(slab_sysfs_init);
5309 #endif /* CONFIG_SYSFS */
5310
5311 /*
5312 * The /proc/slabinfo ABI
5313 */
5314 #ifdef CONFIG_SLABINFO
5315 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5316 {
5317 unsigned long nr_slabs = 0;
5318 unsigned long nr_objs = 0;
5319 unsigned long nr_free = 0;
5320 int node;
5321 struct kmem_cache_node *n;
5322
5323 for_each_kmem_cache_node(s, node, n) {
5324 nr_slabs += node_nr_slabs(n);
5325 nr_objs += node_nr_objs(n);
5326 nr_free += count_partial(n, count_free);
5327 }
5328
5329 sinfo->active_objs = nr_objs - nr_free;
5330 sinfo->num_objs = nr_objs;
5331 sinfo->active_slabs = nr_slabs;
5332 sinfo->num_slabs = nr_slabs;
5333 sinfo->objects_per_slab = oo_objects(s->oo);
5334 sinfo->cache_order = oo_order(s->oo);
5335 }
5336
5337 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5338 {
5339 }
5340
5341 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5342 size_t count, loff_t *ppos)
5343 {
5344 return -EIO;
5345 }
5346 #endif /* CONFIG_SLABINFO */