]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
cpuset,mm: fix no node to alloc memory when changing cpuset's mems
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
31
32 /*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
108 */
109
110 #ifdef CONFIG_SLUB_DEBUG
111 #define SLABDEBUG 1
112 #else
113 #define SLABDEBUG 0
114 #endif
115
116 /*
117 * Issues still to be resolved:
118 *
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
121 * - Variable sizing of the per node arrays
122 */
123
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
126
127 /*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
131 #define MIN_PARTIAL 5
132
133 /*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138 #define MAX_PARTIAL 10
139
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
142
143 /*
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
146 * metadata.
147 */
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149
150 /*
151 * Set of flags that will prevent slab merging
152 */
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
155 SLAB_FAILSLAB)
156
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 SLAB_CACHE_DMA | SLAB_NOTRACK)
159
160 #define OO_SHIFT 16
161 #define OO_MASK ((1 << OO_SHIFT) - 1)
162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
163
164 /* Internal SLUB flags */
165 #define __OBJECT_POISON 0x80000000 /* Poison object */
166 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
167
168 static int kmem_size = sizeof(struct kmem_cache);
169
170 #ifdef CONFIG_SMP
171 static struct notifier_block slab_notifier;
172 #endif
173
174 static enum {
175 DOWN, /* No slab functionality available */
176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
177 UP, /* Everything works but does not show up in sysfs */
178 SYSFS /* Sysfs up */
179 } slab_state = DOWN;
180
181 /* A list of all slab caches on the system */
182 static DECLARE_RWSEM(slub_lock);
183 static LIST_HEAD(slab_caches);
184
185 /*
186 * Tracking user of a slab.
187 */
188 struct track {
189 unsigned long addr; /* Called from address */
190 int cpu; /* Was running on cpu */
191 int pid; /* Pid context */
192 unsigned long when; /* When did the operation occur */
193 };
194
195 enum track_item { TRACK_ALLOC, TRACK_FREE };
196
197 #ifdef CONFIG_SLUB_DEBUG
198 static int sysfs_slab_add(struct kmem_cache *);
199 static int sysfs_slab_alias(struct kmem_cache *, const char *);
200 static void sysfs_slab_remove(struct kmem_cache *);
201
202 #else
203 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
204 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
205 { return 0; }
206 static inline void sysfs_slab_remove(struct kmem_cache *s)
207 {
208 kfree(s);
209 }
210
211 #endif
212
213 static inline void stat(struct kmem_cache *s, enum stat_item si)
214 {
215 #ifdef CONFIG_SLUB_STATS
216 __this_cpu_inc(s->cpu_slab->stat[si]);
217 #endif
218 }
219
220 /********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
223
224 int slab_is_available(void)
225 {
226 return slab_state >= UP;
227 }
228
229 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
230 {
231 #ifdef CONFIG_NUMA
232 return s->node[node];
233 #else
234 return &s->local_node;
235 #endif
236 }
237
238 /* Verify that a pointer has an address that is valid within a slab page */
239 static inline int check_valid_pointer(struct kmem_cache *s,
240 struct page *page, const void *object)
241 {
242 void *base;
243
244 if (!object)
245 return 1;
246
247 base = page_address(page);
248 if (object < base || object >= base + page->objects * s->size ||
249 (object - base) % s->size) {
250 return 0;
251 }
252
253 return 1;
254 }
255
256 static inline void *get_freepointer(struct kmem_cache *s, void *object)
257 {
258 return *(void **)(object + s->offset);
259 }
260
261 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
262 {
263 *(void **)(object + s->offset) = fp;
264 }
265
266 /* Loop over all objects in a slab */
267 #define for_each_object(__p, __s, __addr, __objects) \
268 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
269 __p += (__s)->size)
270
271 /* Scan freelist */
272 #define for_each_free_object(__p, __s, __free) \
273 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
274
275 /* Determine object index from a given position */
276 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
277 {
278 return (p - addr) / s->size;
279 }
280
281 static inline struct kmem_cache_order_objects oo_make(int order,
282 unsigned long size)
283 {
284 struct kmem_cache_order_objects x = {
285 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
286 };
287
288 return x;
289 }
290
291 static inline int oo_order(struct kmem_cache_order_objects x)
292 {
293 return x.x >> OO_SHIFT;
294 }
295
296 static inline int oo_objects(struct kmem_cache_order_objects x)
297 {
298 return x.x & OO_MASK;
299 }
300
301 #ifdef CONFIG_SLUB_DEBUG
302 /*
303 * Debug settings:
304 */
305 #ifdef CONFIG_SLUB_DEBUG_ON
306 static int slub_debug = DEBUG_DEFAULT_FLAGS;
307 #else
308 static int slub_debug;
309 #endif
310
311 static char *slub_debug_slabs;
312 static int disable_higher_order_debug;
313
314 /*
315 * Object debugging
316 */
317 static void print_section(char *text, u8 *addr, unsigned int length)
318 {
319 int i, offset;
320 int newline = 1;
321 char ascii[17];
322
323 ascii[16] = 0;
324
325 for (i = 0; i < length; i++) {
326 if (newline) {
327 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
328 newline = 0;
329 }
330 printk(KERN_CONT " %02x", addr[i]);
331 offset = i % 16;
332 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
333 if (offset == 15) {
334 printk(KERN_CONT " %s\n", ascii);
335 newline = 1;
336 }
337 }
338 if (!newline) {
339 i %= 16;
340 while (i < 16) {
341 printk(KERN_CONT " ");
342 ascii[i] = ' ';
343 i++;
344 }
345 printk(KERN_CONT " %s\n", ascii);
346 }
347 }
348
349 static struct track *get_track(struct kmem_cache *s, void *object,
350 enum track_item alloc)
351 {
352 struct track *p;
353
354 if (s->offset)
355 p = object + s->offset + sizeof(void *);
356 else
357 p = object + s->inuse;
358
359 return p + alloc;
360 }
361
362 static void set_track(struct kmem_cache *s, void *object,
363 enum track_item alloc, unsigned long addr)
364 {
365 struct track *p = get_track(s, object, alloc);
366
367 if (addr) {
368 p->addr = addr;
369 p->cpu = smp_processor_id();
370 p->pid = current->pid;
371 p->when = jiffies;
372 } else
373 memset(p, 0, sizeof(struct track));
374 }
375
376 static void init_tracking(struct kmem_cache *s, void *object)
377 {
378 if (!(s->flags & SLAB_STORE_USER))
379 return;
380
381 set_track(s, object, TRACK_FREE, 0UL);
382 set_track(s, object, TRACK_ALLOC, 0UL);
383 }
384
385 static void print_track(const char *s, struct track *t)
386 {
387 if (!t->addr)
388 return;
389
390 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
391 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
392 }
393
394 static void print_tracking(struct kmem_cache *s, void *object)
395 {
396 if (!(s->flags & SLAB_STORE_USER))
397 return;
398
399 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
400 print_track("Freed", get_track(s, object, TRACK_FREE));
401 }
402
403 static void print_page_info(struct page *page)
404 {
405 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
406 page, page->objects, page->inuse, page->freelist, page->flags);
407
408 }
409
410 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
411 {
412 va_list args;
413 char buf[100];
414
415 va_start(args, fmt);
416 vsnprintf(buf, sizeof(buf), fmt, args);
417 va_end(args);
418 printk(KERN_ERR "========================================"
419 "=====================================\n");
420 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
421 printk(KERN_ERR "----------------------------------------"
422 "-------------------------------------\n\n");
423 }
424
425 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
426 {
427 va_list args;
428 char buf[100];
429
430 va_start(args, fmt);
431 vsnprintf(buf, sizeof(buf), fmt, args);
432 va_end(args);
433 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
434 }
435
436 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
437 {
438 unsigned int off; /* Offset of last byte */
439 u8 *addr = page_address(page);
440
441 print_tracking(s, p);
442
443 print_page_info(page);
444
445 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
446 p, p - addr, get_freepointer(s, p));
447
448 if (p > addr + 16)
449 print_section("Bytes b4", p - 16, 16);
450
451 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
452
453 if (s->flags & SLAB_RED_ZONE)
454 print_section("Redzone", p + s->objsize,
455 s->inuse - s->objsize);
456
457 if (s->offset)
458 off = s->offset + sizeof(void *);
459 else
460 off = s->inuse;
461
462 if (s->flags & SLAB_STORE_USER)
463 off += 2 * sizeof(struct track);
464
465 if (off != s->size)
466 /* Beginning of the filler is the free pointer */
467 print_section("Padding", p + off, s->size - off);
468
469 dump_stack();
470 }
471
472 static void object_err(struct kmem_cache *s, struct page *page,
473 u8 *object, char *reason)
474 {
475 slab_bug(s, "%s", reason);
476 print_trailer(s, page, object);
477 }
478
479 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
480 {
481 va_list args;
482 char buf[100];
483
484 va_start(args, fmt);
485 vsnprintf(buf, sizeof(buf), fmt, args);
486 va_end(args);
487 slab_bug(s, "%s", buf);
488 print_page_info(page);
489 dump_stack();
490 }
491
492 static void init_object(struct kmem_cache *s, void *object, int active)
493 {
494 u8 *p = object;
495
496 if (s->flags & __OBJECT_POISON) {
497 memset(p, POISON_FREE, s->objsize - 1);
498 p[s->objsize - 1] = POISON_END;
499 }
500
501 if (s->flags & SLAB_RED_ZONE)
502 memset(p + s->objsize,
503 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
504 s->inuse - s->objsize);
505 }
506
507 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
508 {
509 while (bytes) {
510 if (*start != (u8)value)
511 return start;
512 start++;
513 bytes--;
514 }
515 return NULL;
516 }
517
518 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
519 void *from, void *to)
520 {
521 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
522 memset(from, data, to - from);
523 }
524
525 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
526 u8 *object, char *what,
527 u8 *start, unsigned int value, unsigned int bytes)
528 {
529 u8 *fault;
530 u8 *end;
531
532 fault = check_bytes(start, value, bytes);
533 if (!fault)
534 return 1;
535
536 end = start + bytes;
537 while (end > fault && end[-1] == value)
538 end--;
539
540 slab_bug(s, "%s overwritten", what);
541 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
542 fault, end - 1, fault[0], value);
543 print_trailer(s, page, object);
544
545 restore_bytes(s, what, value, fault, end);
546 return 0;
547 }
548
549 /*
550 * Object layout:
551 *
552 * object address
553 * Bytes of the object to be managed.
554 * If the freepointer may overlay the object then the free
555 * pointer is the first word of the object.
556 *
557 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
558 * 0xa5 (POISON_END)
559 *
560 * object + s->objsize
561 * Padding to reach word boundary. This is also used for Redzoning.
562 * Padding is extended by another word if Redzoning is enabled and
563 * objsize == inuse.
564 *
565 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
566 * 0xcc (RED_ACTIVE) for objects in use.
567 *
568 * object + s->inuse
569 * Meta data starts here.
570 *
571 * A. Free pointer (if we cannot overwrite object on free)
572 * B. Tracking data for SLAB_STORE_USER
573 * C. Padding to reach required alignment boundary or at mininum
574 * one word if debugging is on to be able to detect writes
575 * before the word boundary.
576 *
577 * Padding is done using 0x5a (POISON_INUSE)
578 *
579 * object + s->size
580 * Nothing is used beyond s->size.
581 *
582 * If slabcaches are merged then the objsize and inuse boundaries are mostly
583 * ignored. And therefore no slab options that rely on these boundaries
584 * may be used with merged slabcaches.
585 */
586
587 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
588 {
589 unsigned long off = s->inuse; /* The end of info */
590
591 if (s->offset)
592 /* Freepointer is placed after the object. */
593 off += sizeof(void *);
594
595 if (s->flags & SLAB_STORE_USER)
596 /* We also have user information there */
597 off += 2 * sizeof(struct track);
598
599 if (s->size == off)
600 return 1;
601
602 return check_bytes_and_report(s, page, p, "Object padding",
603 p + off, POISON_INUSE, s->size - off);
604 }
605
606 /* Check the pad bytes at the end of a slab page */
607 static int slab_pad_check(struct kmem_cache *s, struct page *page)
608 {
609 u8 *start;
610 u8 *fault;
611 u8 *end;
612 int length;
613 int remainder;
614
615 if (!(s->flags & SLAB_POISON))
616 return 1;
617
618 start = page_address(page);
619 length = (PAGE_SIZE << compound_order(page));
620 end = start + length;
621 remainder = length % s->size;
622 if (!remainder)
623 return 1;
624
625 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
626 if (!fault)
627 return 1;
628 while (end > fault && end[-1] == POISON_INUSE)
629 end--;
630
631 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
632 print_section("Padding", end - remainder, remainder);
633
634 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
635 return 0;
636 }
637
638 static int check_object(struct kmem_cache *s, struct page *page,
639 void *object, int active)
640 {
641 u8 *p = object;
642 u8 *endobject = object + s->objsize;
643
644 if (s->flags & SLAB_RED_ZONE) {
645 unsigned int red =
646 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
647
648 if (!check_bytes_and_report(s, page, object, "Redzone",
649 endobject, red, s->inuse - s->objsize))
650 return 0;
651 } else {
652 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
653 check_bytes_and_report(s, page, p, "Alignment padding",
654 endobject, POISON_INUSE, s->inuse - s->objsize);
655 }
656 }
657
658 if (s->flags & SLAB_POISON) {
659 if (!active && (s->flags & __OBJECT_POISON) &&
660 (!check_bytes_and_report(s, page, p, "Poison", p,
661 POISON_FREE, s->objsize - 1) ||
662 !check_bytes_and_report(s, page, p, "Poison",
663 p + s->objsize - 1, POISON_END, 1)))
664 return 0;
665 /*
666 * check_pad_bytes cleans up on its own.
667 */
668 check_pad_bytes(s, page, p);
669 }
670
671 if (!s->offset && active)
672 /*
673 * Object and freepointer overlap. Cannot check
674 * freepointer while object is allocated.
675 */
676 return 1;
677
678 /* Check free pointer validity */
679 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
680 object_err(s, page, p, "Freepointer corrupt");
681 /*
682 * No choice but to zap it and thus lose the remainder
683 * of the free objects in this slab. May cause
684 * another error because the object count is now wrong.
685 */
686 set_freepointer(s, p, NULL);
687 return 0;
688 }
689 return 1;
690 }
691
692 static int check_slab(struct kmem_cache *s, struct page *page)
693 {
694 int maxobj;
695
696 VM_BUG_ON(!irqs_disabled());
697
698 if (!PageSlab(page)) {
699 slab_err(s, page, "Not a valid slab page");
700 return 0;
701 }
702
703 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
704 if (page->objects > maxobj) {
705 slab_err(s, page, "objects %u > max %u",
706 s->name, page->objects, maxobj);
707 return 0;
708 }
709 if (page->inuse > page->objects) {
710 slab_err(s, page, "inuse %u > max %u",
711 s->name, page->inuse, page->objects);
712 return 0;
713 }
714 /* Slab_pad_check fixes things up after itself */
715 slab_pad_check(s, page);
716 return 1;
717 }
718
719 /*
720 * Determine if a certain object on a page is on the freelist. Must hold the
721 * slab lock to guarantee that the chains are in a consistent state.
722 */
723 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
724 {
725 int nr = 0;
726 void *fp = page->freelist;
727 void *object = NULL;
728 unsigned long max_objects;
729
730 while (fp && nr <= page->objects) {
731 if (fp == search)
732 return 1;
733 if (!check_valid_pointer(s, page, fp)) {
734 if (object) {
735 object_err(s, page, object,
736 "Freechain corrupt");
737 set_freepointer(s, object, NULL);
738 break;
739 } else {
740 slab_err(s, page, "Freepointer corrupt");
741 page->freelist = NULL;
742 page->inuse = page->objects;
743 slab_fix(s, "Freelist cleared");
744 return 0;
745 }
746 break;
747 }
748 object = fp;
749 fp = get_freepointer(s, object);
750 nr++;
751 }
752
753 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
754 if (max_objects > MAX_OBJS_PER_PAGE)
755 max_objects = MAX_OBJS_PER_PAGE;
756
757 if (page->objects != max_objects) {
758 slab_err(s, page, "Wrong number of objects. Found %d but "
759 "should be %d", page->objects, max_objects);
760 page->objects = max_objects;
761 slab_fix(s, "Number of objects adjusted.");
762 }
763 if (page->inuse != page->objects - nr) {
764 slab_err(s, page, "Wrong object count. Counter is %d but "
765 "counted were %d", page->inuse, page->objects - nr);
766 page->inuse = page->objects - nr;
767 slab_fix(s, "Object count adjusted.");
768 }
769 return search == NULL;
770 }
771
772 static void trace(struct kmem_cache *s, struct page *page, void *object,
773 int alloc)
774 {
775 if (s->flags & SLAB_TRACE) {
776 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
777 s->name,
778 alloc ? "alloc" : "free",
779 object, page->inuse,
780 page->freelist);
781
782 if (!alloc)
783 print_section("Object", (void *)object, s->objsize);
784
785 dump_stack();
786 }
787 }
788
789 /*
790 * Tracking of fully allocated slabs for debugging purposes.
791 */
792 static void add_full(struct kmem_cache_node *n, struct page *page)
793 {
794 spin_lock(&n->list_lock);
795 list_add(&page->lru, &n->full);
796 spin_unlock(&n->list_lock);
797 }
798
799 static void remove_full(struct kmem_cache *s, struct page *page)
800 {
801 struct kmem_cache_node *n;
802
803 if (!(s->flags & SLAB_STORE_USER))
804 return;
805
806 n = get_node(s, page_to_nid(page));
807
808 spin_lock(&n->list_lock);
809 list_del(&page->lru);
810 spin_unlock(&n->list_lock);
811 }
812
813 /* Tracking of the number of slabs for debugging purposes */
814 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
815 {
816 struct kmem_cache_node *n = get_node(s, node);
817
818 return atomic_long_read(&n->nr_slabs);
819 }
820
821 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
822 {
823 return atomic_long_read(&n->nr_slabs);
824 }
825
826 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
827 {
828 struct kmem_cache_node *n = get_node(s, node);
829
830 /*
831 * May be called early in order to allocate a slab for the
832 * kmem_cache_node structure. Solve the chicken-egg
833 * dilemma by deferring the increment of the count during
834 * bootstrap (see early_kmem_cache_node_alloc).
835 */
836 if (!NUMA_BUILD || n) {
837 atomic_long_inc(&n->nr_slabs);
838 atomic_long_add(objects, &n->total_objects);
839 }
840 }
841 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
842 {
843 struct kmem_cache_node *n = get_node(s, node);
844
845 atomic_long_dec(&n->nr_slabs);
846 atomic_long_sub(objects, &n->total_objects);
847 }
848
849 /* Object debug checks for alloc/free paths */
850 static void setup_object_debug(struct kmem_cache *s, struct page *page,
851 void *object)
852 {
853 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
854 return;
855
856 init_object(s, object, 0);
857 init_tracking(s, object);
858 }
859
860 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
861 void *object, unsigned long addr)
862 {
863 if (!check_slab(s, page))
864 goto bad;
865
866 if (!on_freelist(s, page, object)) {
867 object_err(s, page, object, "Object already allocated");
868 goto bad;
869 }
870
871 if (!check_valid_pointer(s, page, object)) {
872 object_err(s, page, object, "Freelist Pointer check fails");
873 goto bad;
874 }
875
876 if (!check_object(s, page, object, 0))
877 goto bad;
878
879 /* Success perform special debug activities for allocs */
880 if (s->flags & SLAB_STORE_USER)
881 set_track(s, object, TRACK_ALLOC, addr);
882 trace(s, page, object, 1);
883 init_object(s, object, 1);
884 return 1;
885
886 bad:
887 if (PageSlab(page)) {
888 /*
889 * If this is a slab page then lets do the best we can
890 * to avoid issues in the future. Marking all objects
891 * as used avoids touching the remaining objects.
892 */
893 slab_fix(s, "Marking all objects used");
894 page->inuse = page->objects;
895 page->freelist = NULL;
896 }
897 return 0;
898 }
899
900 static int free_debug_processing(struct kmem_cache *s, struct page *page,
901 void *object, unsigned long addr)
902 {
903 if (!check_slab(s, page))
904 goto fail;
905
906 if (!check_valid_pointer(s, page, object)) {
907 slab_err(s, page, "Invalid object pointer 0x%p", object);
908 goto fail;
909 }
910
911 if (on_freelist(s, page, object)) {
912 object_err(s, page, object, "Object already free");
913 goto fail;
914 }
915
916 if (!check_object(s, page, object, 1))
917 return 0;
918
919 if (unlikely(s != page->slab)) {
920 if (!PageSlab(page)) {
921 slab_err(s, page, "Attempt to free object(0x%p) "
922 "outside of slab", object);
923 } else if (!page->slab) {
924 printk(KERN_ERR
925 "SLUB <none>: no slab for object 0x%p.\n",
926 object);
927 dump_stack();
928 } else
929 object_err(s, page, object,
930 "page slab pointer corrupt.");
931 goto fail;
932 }
933
934 /* Special debug activities for freeing objects */
935 if (!PageSlubFrozen(page) && !page->freelist)
936 remove_full(s, page);
937 if (s->flags & SLAB_STORE_USER)
938 set_track(s, object, TRACK_FREE, addr);
939 trace(s, page, object, 0);
940 init_object(s, object, 0);
941 return 1;
942
943 fail:
944 slab_fix(s, "Object at 0x%p not freed", object);
945 return 0;
946 }
947
948 static int __init setup_slub_debug(char *str)
949 {
950 slub_debug = DEBUG_DEFAULT_FLAGS;
951 if (*str++ != '=' || !*str)
952 /*
953 * No options specified. Switch on full debugging.
954 */
955 goto out;
956
957 if (*str == ',')
958 /*
959 * No options but restriction on slabs. This means full
960 * debugging for slabs matching a pattern.
961 */
962 goto check_slabs;
963
964 if (tolower(*str) == 'o') {
965 /*
966 * Avoid enabling debugging on caches if its minimum order
967 * would increase as a result.
968 */
969 disable_higher_order_debug = 1;
970 goto out;
971 }
972
973 slub_debug = 0;
974 if (*str == '-')
975 /*
976 * Switch off all debugging measures.
977 */
978 goto out;
979
980 /*
981 * Determine which debug features should be switched on
982 */
983 for (; *str && *str != ','; str++) {
984 switch (tolower(*str)) {
985 case 'f':
986 slub_debug |= SLAB_DEBUG_FREE;
987 break;
988 case 'z':
989 slub_debug |= SLAB_RED_ZONE;
990 break;
991 case 'p':
992 slub_debug |= SLAB_POISON;
993 break;
994 case 'u':
995 slub_debug |= SLAB_STORE_USER;
996 break;
997 case 't':
998 slub_debug |= SLAB_TRACE;
999 break;
1000 case 'a':
1001 slub_debug |= SLAB_FAILSLAB;
1002 break;
1003 default:
1004 printk(KERN_ERR "slub_debug option '%c' "
1005 "unknown. skipped\n", *str);
1006 }
1007 }
1008
1009 check_slabs:
1010 if (*str == ',')
1011 slub_debug_slabs = str + 1;
1012 out:
1013 return 1;
1014 }
1015
1016 __setup("slub_debug", setup_slub_debug);
1017
1018 static unsigned long kmem_cache_flags(unsigned long objsize,
1019 unsigned long flags, const char *name,
1020 void (*ctor)(void *))
1021 {
1022 /*
1023 * Enable debugging if selected on the kernel commandline.
1024 */
1025 if (slub_debug && (!slub_debug_slabs ||
1026 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1027 flags |= slub_debug;
1028
1029 return flags;
1030 }
1031 #else
1032 static inline void setup_object_debug(struct kmem_cache *s,
1033 struct page *page, void *object) {}
1034
1035 static inline int alloc_debug_processing(struct kmem_cache *s,
1036 struct page *page, void *object, unsigned long addr) { return 0; }
1037
1038 static inline int free_debug_processing(struct kmem_cache *s,
1039 struct page *page, void *object, unsigned long addr) { return 0; }
1040
1041 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1042 { return 1; }
1043 static inline int check_object(struct kmem_cache *s, struct page *page,
1044 void *object, int active) { return 1; }
1045 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1046 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
1048 void (*ctor)(void *))
1049 {
1050 return flags;
1051 }
1052 #define slub_debug 0
1053
1054 #define disable_higher_order_debug 0
1055
1056 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1057 { return 0; }
1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1059 { return 0; }
1060 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1061 int objects) {}
1062 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1063 int objects) {}
1064 #endif
1065
1066 /*
1067 * Slab allocation and freeing
1068 */
1069 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1070 struct kmem_cache_order_objects oo)
1071 {
1072 int order = oo_order(oo);
1073
1074 flags |= __GFP_NOTRACK;
1075
1076 if (node == -1)
1077 return alloc_pages(flags, order);
1078 else
1079 return alloc_pages_exact_node(node, flags, order);
1080 }
1081
1082 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1083 {
1084 struct page *page;
1085 struct kmem_cache_order_objects oo = s->oo;
1086 gfp_t alloc_gfp;
1087
1088 flags |= s->allocflags;
1089
1090 /*
1091 * Let the initial higher-order allocation fail under memory pressure
1092 * so we fall-back to the minimum order allocation.
1093 */
1094 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1095
1096 page = alloc_slab_page(alloc_gfp, node, oo);
1097 if (unlikely(!page)) {
1098 oo = s->min;
1099 /*
1100 * Allocation may have failed due to fragmentation.
1101 * Try a lower order alloc if possible
1102 */
1103 page = alloc_slab_page(flags, node, oo);
1104 if (!page)
1105 return NULL;
1106
1107 stat(s, ORDER_FALLBACK);
1108 }
1109
1110 if (kmemcheck_enabled
1111 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1112 int pages = 1 << oo_order(oo);
1113
1114 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1115
1116 /*
1117 * Objects from caches that have a constructor don't get
1118 * cleared when they're allocated, so we need to do it here.
1119 */
1120 if (s->ctor)
1121 kmemcheck_mark_uninitialized_pages(page, pages);
1122 else
1123 kmemcheck_mark_unallocated_pages(page, pages);
1124 }
1125
1126 page->objects = oo_objects(oo);
1127 mod_zone_page_state(page_zone(page),
1128 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1129 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1130 1 << oo_order(oo));
1131
1132 return page;
1133 }
1134
1135 static void setup_object(struct kmem_cache *s, struct page *page,
1136 void *object)
1137 {
1138 setup_object_debug(s, page, object);
1139 if (unlikely(s->ctor))
1140 s->ctor(object);
1141 }
1142
1143 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1144 {
1145 struct page *page;
1146 void *start;
1147 void *last;
1148 void *p;
1149
1150 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1151
1152 page = allocate_slab(s,
1153 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1154 if (!page)
1155 goto out;
1156
1157 inc_slabs_node(s, page_to_nid(page), page->objects);
1158 page->slab = s;
1159 page->flags |= 1 << PG_slab;
1160 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1161 SLAB_STORE_USER | SLAB_TRACE))
1162 __SetPageSlubDebug(page);
1163
1164 start = page_address(page);
1165
1166 if (unlikely(s->flags & SLAB_POISON))
1167 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1168
1169 last = start;
1170 for_each_object(p, s, start, page->objects) {
1171 setup_object(s, page, last);
1172 set_freepointer(s, last, p);
1173 last = p;
1174 }
1175 setup_object(s, page, last);
1176 set_freepointer(s, last, NULL);
1177
1178 page->freelist = start;
1179 page->inuse = 0;
1180 out:
1181 return page;
1182 }
1183
1184 static void __free_slab(struct kmem_cache *s, struct page *page)
1185 {
1186 int order = compound_order(page);
1187 int pages = 1 << order;
1188
1189 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1190 void *p;
1191
1192 slab_pad_check(s, page);
1193 for_each_object(p, s, page_address(page),
1194 page->objects)
1195 check_object(s, page, p, 0);
1196 __ClearPageSlubDebug(page);
1197 }
1198
1199 kmemcheck_free_shadow(page, compound_order(page));
1200
1201 mod_zone_page_state(page_zone(page),
1202 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1203 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1204 -pages);
1205
1206 __ClearPageSlab(page);
1207 reset_page_mapcount(page);
1208 if (current->reclaim_state)
1209 current->reclaim_state->reclaimed_slab += pages;
1210 __free_pages(page, order);
1211 }
1212
1213 static void rcu_free_slab(struct rcu_head *h)
1214 {
1215 struct page *page;
1216
1217 page = container_of((struct list_head *)h, struct page, lru);
1218 __free_slab(page->slab, page);
1219 }
1220
1221 static void free_slab(struct kmem_cache *s, struct page *page)
1222 {
1223 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1224 /*
1225 * RCU free overloads the RCU head over the LRU
1226 */
1227 struct rcu_head *head = (void *)&page->lru;
1228
1229 call_rcu(head, rcu_free_slab);
1230 } else
1231 __free_slab(s, page);
1232 }
1233
1234 static void discard_slab(struct kmem_cache *s, struct page *page)
1235 {
1236 dec_slabs_node(s, page_to_nid(page), page->objects);
1237 free_slab(s, page);
1238 }
1239
1240 /*
1241 * Per slab locking using the pagelock
1242 */
1243 static __always_inline void slab_lock(struct page *page)
1244 {
1245 bit_spin_lock(PG_locked, &page->flags);
1246 }
1247
1248 static __always_inline void slab_unlock(struct page *page)
1249 {
1250 __bit_spin_unlock(PG_locked, &page->flags);
1251 }
1252
1253 static __always_inline int slab_trylock(struct page *page)
1254 {
1255 int rc = 1;
1256
1257 rc = bit_spin_trylock(PG_locked, &page->flags);
1258 return rc;
1259 }
1260
1261 /*
1262 * Management of partially allocated slabs
1263 */
1264 static void add_partial(struct kmem_cache_node *n,
1265 struct page *page, int tail)
1266 {
1267 spin_lock(&n->list_lock);
1268 n->nr_partial++;
1269 if (tail)
1270 list_add_tail(&page->lru, &n->partial);
1271 else
1272 list_add(&page->lru, &n->partial);
1273 spin_unlock(&n->list_lock);
1274 }
1275
1276 static void remove_partial(struct kmem_cache *s, struct page *page)
1277 {
1278 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1279
1280 spin_lock(&n->list_lock);
1281 list_del(&page->lru);
1282 n->nr_partial--;
1283 spin_unlock(&n->list_lock);
1284 }
1285
1286 /*
1287 * Lock slab and remove from the partial list.
1288 *
1289 * Must hold list_lock.
1290 */
1291 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1292 struct page *page)
1293 {
1294 if (slab_trylock(page)) {
1295 list_del(&page->lru);
1296 n->nr_partial--;
1297 __SetPageSlubFrozen(page);
1298 return 1;
1299 }
1300 return 0;
1301 }
1302
1303 /*
1304 * Try to allocate a partial slab from a specific node.
1305 */
1306 static struct page *get_partial_node(struct kmem_cache_node *n)
1307 {
1308 struct page *page;
1309
1310 /*
1311 * Racy check. If we mistakenly see no partial slabs then we
1312 * just allocate an empty slab. If we mistakenly try to get a
1313 * partial slab and there is none available then get_partials()
1314 * will return NULL.
1315 */
1316 if (!n || !n->nr_partial)
1317 return NULL;
1318
1319 spin_lock(&n->list_lock);
1320 list_for_each_entry(page, &n->partial, lru)
1321 if (lock_and_freeze_slab(n, page))
1322 goto out;
1323 page = NULL;
1324 out:
1325 spin_unlock(&n->list_lock);
1326 return page;
1327 }
1328
1329 /*
1330 * Get a page from somewhere. Search in increasing NUMA distances.
1331 */
1332 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1333 {
1334 #ifdef CONFIG_NUMA
1335 struct zonelist *zonelist;
1336 struct zoneref *z;
1337 struct zone *zone;
1338 enum zone_type high_zoneidx = gfp_zone(flags);
1339 struct page *page;
1340
1341 /*
1342 * The defrag ratio allows a configuration of the tradeoffs between
1343 * inter node defragmentation and node local allocations. A lower
1344 * defrag_ratio increases the tendency to do local allocations
1345 * instead of attempting to obtain partial slabs from other nodes.
1346 *
1347 * If the defrag_ratio is set to 0 then kmalloc() always
1348 * returns node local objects. If the ratio is higher then kmalloc()
1349 * may return off node objects because partial slabs are obtained
1350 * from other nodes and filled up.
1351 *
1352 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1353 * defrag_ratio = 1000) then every (well almost) allocation will
1354 * first attempt to defrag slab caches on other nodes. This means
1355 * scanning over all nodes to look for partial slabs which may be
1356 * expensive if we do it every time we are trying to find a slab
1357 * with available objects.
1358 */
1359 if (!s->remote_node_defrag_ratio ||
1360 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1361 return NULL;
1362
1363 get_mems_allowed();
1364 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1365 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1366 struct kmem_cache_node *n;
1367
1368 n = get_node(s, zone_to_nid(zone));
1369
1370 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1371 n->nr_partial > s->min_partial) {
1372 page = get_partial_node(n);
1373 if (page) {
1374 put_mems_allowed();
1375 return page;
1376 }
1377 }
1378 }
1379 put_mems_allowed();
1380 #endif
1381 return NULL;
1382 }
1383
1384 /*
1385 * Get a partial page, lock it and return it.
1386 */
1387 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1388 {
1389 struct page *page;
1390 int searchnode = (node == -1) ? numa_node_id() : node;
1391
1392 page = get_partial_node(get_node(s, searchnode));
1393 if (page || (flags & __GFP_THISNODE))
1394 return page;
1395
1396 return get_any_partial(s, flags);
1397 }
1398
1399 /*
1400 * Move a page back to the lists.
1401 *
1402 * Must be called with the slab lock held.
1403 *
1404 * On exit the slab lock will have been dropped.
1405 */
1406 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1407 {
1408 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1409
1410 __ClearPageSlubFrozen(page);
1411 if (page->inuse) {
1412
1413 if (page->freelist) {
1414 add_partial(n, page, tail);
1415 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1416 } else {
1417 stat(s, DEACTIVATE_FULL);
1418 if (SLABDEBUG && PageSlubDebug(page) &&
1419 (s->flags & SLAB_STORE_USER))
1420 add_full(n, page);
1421 }
1422 slab_unlock(page);
1423 } else {
1424 stat(s, DEACTIVATE_EMPTY);
1425 if (n->nr_partial < s->min_partial) {
1426 /*
1427 * Adding an empty slab to the partial slabs in order
1428 * to avoid page allocator overhead. This slab needs
1429 * to come after the other slabs with objects in
1430 * so that the others get filled first. That way the
1431 * size of the partial list stays small.
1432 *
1433 * kmem_cache_shrink can reclaim any empty slabs from
1434 * the partial list.
1435 */
1436 add_partial(n, page, 1);
1437 slab_unlock(page);
1438 } else {
1439 slab_unlock(page);
1440 stat(s, FREE_SLAB);
1441 discard_slab(s, page);
1442 }
1443 }
1444 }
1445
1446 /*
1447 * Remove the cpu slab
1448 */
1449 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1450 {
1451 struct page *page = c->page;
1452 int tail = 1;
1453
1454 if (page->freelist)
1455 stat(s, DEACTIVATE_REMOTE_FREES);
1456 /*
1457 * Merge cpu freelist into slab freelist. Typically we get here
1458 * because both freelists are empty. So this is unlikely
1459 * to occur.
1460 */
1461 while (unlikely(c->freelist)) {
1462 void **object;
1463
1464 tail = 0; /* Hot objects. Put the slab first */
1465
1466 /* Retrieve object from cpu_freelist */
1467 object = c->freelist;
1468 c->freelist = get_freepointer(s, c->freelist);
1469
1470 /* And put onto the regular freelist */
1471 set_freepointer(s, object, page->freelist);
1472 page->freelist = object;
1473 page->inuse--;
1474 }
1475 c->page = NULL;
1476 unfreeze_slab(s, page, tail);
1477 }
1478
1479 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1480 {
1481 stat(s, CPUSLAB_FLUSH);
1482 slab_lock(c->page);
1483 deactivate_slab(s, c);
1484 }
1485
1486 /*
1487 * Flush cpu slab.
1488 *
1489 * Called from IPI handler with interrupts disabled.
1490 */
1491 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1492 {
1493 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1494
1495 if (likely(c && c->page))
1496 flush_slab(s, c);
1497 }
1498
1499 static void flush_cpu_slab(void *d)
1500 {
1501 struct kmem_cache *s = d;
1502
1503 __flush_cpu_slab(s, smp_processor_id());
1504 }
1505
1506 static void flush_all(struct kmem_cache *s)
1507 {
1508 on_each_cpu(flush_cpu_slab, s, 1);
1509 }
1510
1511 /*
1512 * Check if the objects in a per cpu structure fit numa
1513 * locality expectations.
1514 */
1515 static inline int node_match(struct kmem_cache_cpu *c, int node)
1516 {
1517 #ifdef CONFIG_NUMA
1518 if (node != -1 && c->node != node)
1519 return 0;
1520 #endif
1521 return 1;
1522 }
1523
1524 static int count_free(struct page *page)
1525 {
1526 return page->objects - page->inuse;
1527 }
1528
1529 static unsigned long count_partial(struct kmem_cache_node *n,
1530 int (*get_count)(struct page *))
1531 {
1532 unsigned long flags;
1533 unsigned long x = 0;
1534 struct page *page;
1535
1536 spin_lock_irqsave(&n->list_lock, flags);
1537 list_for_each_entry(page, &n->partial, lru)
1538 x += get_count(page);
1539 spin_unlock_irqrestore(&n->list_lock, flags);
1540 return x;
1541 }
1542
1543 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1544 {
1545 #ifdef CONFIG_SLUB_DEBUG
1546 return atomic_long_read(&n->total_objects);
1547 #else
1548 return 0;
1549 #endif
1550 }
1551
1552 static noinline void
1553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1554 {
1555 int node;
1556
1557 printk(KERN_WARNING
1558 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1559 nid, gfpflags);
1560 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1561 "default order: %d, min order: %d\n", s->name, s->objsize,
1562 s->size, oo_order(s->oo), oo_order(s->min));
1563
1564 if (oo_order(s->min) > get_order(s->objsize))
1565 printk(KERN_WARNING " %s debugging increased min order, use "
1566 "slub_debug=O to disable.\n", s->name);
1567
1568 for_each_online_node(node) {
1569 struct kmem_cache_node *n = get_node(s, node);
1570 unsigned long nr_slabs;
1571 unsigned long nr_objs;
1572 unsigned long nr_free;
1573
1574 if (!n)
1575 continue;
1576
1577 nr_free = count_partial(n, count_free);
1578 nr_slabs = node_nr_slabs(n);
1579 nr_objs = node_nr_objs(n);
1580
1581 printk(KERN_WARNING
1582 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1583 node, nr_slabs, nr_objs, nr_free);
1584 }
1585 }
1586
1587 /*
1588 * Slow path. The lockless freelist is empty or we need to perform
1589 * debugging duties.
1590 *
1591 * Interrupts are disabled.
1592 *
1593 * Processing is still very fast if new objects have been freed to the
1594 * regular freelist. In that case we simply take over the regular freelist
1595 * as the lockless freelist and zap the regular freelist.
1596 *
1597 * If that is not working then we fall back to the partial lists. We take the
1598 * first element of the freelist as the object to allocate now and move the
1599 * rest of the freelist to the lockless freelist.
1600 *
1601 * And if we were unable to get a new slab from the partial slab lists then
1602 * we need to allocate a new slab. This is the slowest path since it involves
1603 * a call to the page allocator and the setup of a new slab.
1604 */
1605 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1606 unsigned long addr, struct kmem_cache_cpu *c)
1607 {
1608 void **object;
1609 struct page *new;
1610
1611 /* We handle __GFP_ZERO in the caller */
1612 gfpflags &= ~__GFP_ZERO;
1613
1614 if (!c->page)
1615 goto new_slab;
1616
1617 slab_lock(c->page);
1618 if (unlikely(!node_match(c, node)))
1619 goto another_slab;
1620
1621 stat(s, ALLOC_REFILL);
1622
1623 load_freelist:
1624 object = c->page->freelist;
1625 if (unlikely(!object))
1626 goto another_slab;
1627 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1628 goto debug;
1629
1630 c->freelist = get_freepointer(s, object);
1631 c->page->inuse = c->page->objects;
1632 c->page->freelist = NULL;
1633 c->node = page_to_nid(c->page);
1634 unlock_out:
1635 slab_unlock(c->page);
1636 stat(s, ALLOC_SLOWPATH);
1637 return object;
1638
1639 another_slab:
1640 deactivate_slab(s, c);
1641
1642 new_slab:
1643 new = get_partial(s, gfpflags, node);
1644 if (new) {
1645 c->page = new;
1646 stat(s, ALLOC_FROM_PARTIAL);
1647 goto load_freelist;
1648 }
1649
1650 if (gfpflags & __GFP_WAIT)
1651 local_irq_enable();
1652
1653 new = new_slab(s, gfpflags, node);
1654
1655 if (gfpflags & __GFP_WAIT)
1656 local_irq_disable();
1657
1658 if (new) {
1659 c = __this_cpu_ptr(s->cpu_slab);
1660 stat(s, ALLOC_SLAB);
1661 if (c->page)
1662 flush_slab(s, c);
1663 slab_lock(new);
1664 __SetPageSlubFrozen(new);
1665 c->page = new;
1666 goto load_freelist;
1667 }
1668 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1669 slab_out_of_memory(s, gfpflags, node);
1670 return NULL;
1671 debug:
1672 if (!alloc_debug_processing(s, c->page, object, addr))
1673 goto another_slab;
1674
1675 c->page->inuse++;
1676 c->page->freelist = get_freepointer(s, object);
1677 c->node = -1;
1678 goto unlock_out;
1679 }
1680
1681 /*
1682 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1683 * have the fastpath folded into their functions. So no function call
1684 * overhead for requests that can be satisfied on the fastpath.
1685 *
1686 * The fastpath works by first checking if the lockless freelist can be used.
1687 * If not then __slab_alloc is called for slow processing.
1688 *
1689 * Otherwise we can simply pick the next object from the lockless free list.
1690 */
1691 static __always_inline void *slab_alloc(struct kmem_cache *s,
1692 gfp_t gfpflags, int node, unsigned long addr)
1693 {
1694 void **object;
1695 struct kmem_cache_cpu *c;
1696 unsigned long flags;
1697
1698 gfpflags &= gfp_allowed_mask;
1699
1700 lockdep_trace_alloc(gfpflags);
1701 might_sleep_if(gfpflags & __GFP_WAIT);
1702
1703 if (should_failslab(s->objsize, gfpflags, s->flags))
1704 return NULL;
1705
1706 local_irq_save(flags);
1707 c = __this_cpu_ptr(s->cpu_slab);
1708 object = c->freelist;
1709 if (unlikely(!object || !node_match(c, node)))
1710
1711 object = __slab_alloc(s, gfpflags, node, addr, c);
1712
1713 else {
1714 c->freelist = get_freepointer(s, object);
1715 stat(s, ALLOC_FASTPATH);
1716 }
1717 local_irq_restore(flags);
1718
1719 if (unlikely(gfpflags & __GFP_ZERO) && object)
1720 memset(object, 0, s->objsize);
1721
1722 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1723 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1724
1725 return object;
1726 }
1727
1728 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1729 {
1730 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1731
1732 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1733
1734 return ret;
1735 }
1736 EXPORT_SYMBOL(kmem_cache_alloc);
1737
1738 #ifdef CONFIG_TRACING
1739 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1740 {
1741 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1742 }
1743 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1744 #endif
1745
1746 #ifdef CONFIG_NUMA
1747 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1748 {
1749 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1750
1751 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1752 s->objsize, s->size, gfpflags, node);
1753
1754 return ret;
1755 }
1756 EXPORT_SYMBOL(kmem_cache_alloc_node);
1757 #endif
1758
1759 #ifdef CONFIG_TRACING
1760 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1761 gfp_t gfpflags,
1762 int node)
1763 {
1764 return slab_alloc(s, gfpflags, node, _RET_IP_);
1765 }
1766 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1767 #endif
1768
1769 /*
1770 * Slow patch handling. This may still be called frequently since objects
1771 * have a longer lifetime than the cpu slabs in most processing loads.
1772 *
1773 * So we still attempt to reduce cache line usage. Just take the slab
1774 * lock and free the item. If there is no additional partial page
1775 * handling required then we can return immediately.
1776 */
1777 static void __slab_free(struct kmem_cache *s, struct page *page,
1778 void *x, unsigned long addr)
1779 {
1780 void *prior;
1781 void **object = (void *)x;
1782
1783 stat(s, FREE_SLOWPATH);
1784 slab_lock(page);
1785
1786 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1787 goto debug;
1788
1789 checks_ok:
1790 prior = page->freelist;
1791 set_freepointer(s, object, prior);
1792 page->freelist = object;
1793 page->inuse--;
1794
1795 if (unlikely(PageSlubFrozen(page))) {
1796 stat(s, FREE_FROZEN);
1797 goto out_unlock;
1798 }
1799
1800 if (unlikely(!page->inuse))
1801 goto slab_empty;
1802
1803 /*
1804 * Objects left in the slab. If it was not on the partial list before
1805 * then add it.
1806 */
1807 if (unlikely(!prior)) {
1808 add_partial(get_node(s, page_to_nid(page)), page, 1);
1809 stat(s, FREE_ADD_PARTIAL);
1810 }
1811
1812 out_unlock:
1813 slab_unlock(page);
1814 return;
1815
1816 slab_empty:
1817 if (prior) {
1818 /*
1819 * Slab still on the partial list.
1820 */
1821 remove_partial(s, page);
1822 stat(s, FREE_REMOVE_PARTIAL);
1823 }
1824 slab_unlock(page);
1825 stat(s, FREE_SLAB);
1826 discard_slab(s, page);
1827 return;
1828
1829 debug:
1830 if (!free_debug_processing(s, page, x, addr))
1831 goto out_unlock;
1832 goto checks_ok;
1833 }
1834
1835 /*
1836 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1837 * can perform fastpath freeing without additional function calls.
1838 *
1839 * The fastpath is only possible if we are freeing to the current cpu slab
1840 * of this processor. This typically the case if we have just allocated
1841 * the item before.
1842 *
1843 * If fastpath is not possible then fall back to __slab_free where we deal
1844 * with all sorts of special processing.
1845 */
1846 static __always_inline void slab_free(struct kmem_cache *s,
1847 struct page *page, void *x, unsigned long addr)
1848 {
1849 void **object = (void *)x;
1850 struct kmem_cache_cpu *c;
1851 unsigned long flags;
1852
1853 kmemleak_free_recursive(x, s->flags);
1854 local_irq_save(flags);
1855 c = __this_cpu_ptr(s->cpu_slab);
1856 kmemcheck_slab_free(s, object, s->objsize);
1857 debug_check_no_locks_freed(object, s->objsize);
1858 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1859 debug_check_no_obj_freed(object, s->objsize);
1860 if (likely(page == c->page && c->node >= 0)) {
1861 set_freepointer(s, object, c->freelist);
1862 c->freelist = object;
1863 stat(s, FREE_FASTPATH);
1864 } else
1865 __slab_free(s, page, x, addr);
1866
1867 local_irq_restore(flags);
1868 }
1869
1870 void kmem_cache_free(struct kmem_cache *s, void *x)
1871 {
1872 struct page *page;
1873
1874 page = virt_to_head_page(x);
1875
1876 slab_free(s, page, x, _RET_IP_);
1877
1878 trace_kmem_cache_free(_RET_IP_, x);
1879 }
1880 EXPORT_SYMBOL(kmem_cache_free);
1881
1882 /* Figure out on which slab page the object resides */
1883 static struct page *get_object_page(const void *x)
1884 {
1885 struct page *page = virt_to_head_page(x);
1886
1887 if (!PageSlab(page))
1888 return NULL;
1889
1890 return page;
1891 }
1892
1893 /*
1894 * Object placement in a slab is made very easy because we always start at
1895 * offset 0. If we tune the size of the object to the alignment then we can
1896 * get the required alignment by putting one properly sized object after
1897 * another.
1898 *
1899 * Notice that the allocation order determines the sizes of the per cpu
1900 * caches. Each processor has always one slab available for allocations.
1901 * Increasing the allocation order reduces the number of times that slabs
1902 * must be moved on and off the partial lists and is therefore a factor in
1903 * locking overhead.
1904 */
1905
1906 /*
1907 * Mininum / Maximum order of slab pages. This influences locking overhead
1908 * and slab fragmentation. A higher order reduces the number of partial slabs
1909 * and increases the number of allocations possible without having to
1910 * take the list_lock.
1911 */
1912 static int slub_min_order;
1913 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1914 static int slub_min_objects;
1915
1916 /*
1917 * Merge control. If this is set then no merging of slab caches will occur.
1918 * (Could be removed. This was introduced to pacify the merge skeptics.)
1919 */
1920 static int slub_nomerge;
1921
1922 /*
1923 * Calculate the order of allocation given an slab object size.
1924 *
1925 * The order of allocation has significant impact on performance and other
1926 * system components. Generally order 0 allocations should be preferred since
1927 * order 0 does not cause fragmentation in the page allocator. Larger objects
1928 * be problematic to put into order 0 slabs because there may be too much
1929 * unused space left. We go to a higher order if more than 1/16th of the slab
1930 * would be wasted.
1931 *
1932 * In order to reach satisfactory performance we must ensure that a minimum
1933 * number of objects is in one slab. Otherwise we may generate too much
1934 * activity on the partial lists which requires taking the list_lock. This is
1935 * less a concern for large slabs though which are rarely used.
1936 *
1937 * slub_max_order specifies the order where we begin to stop considering the
1938 * number of objects in a slab as critical. If we reach slub_max_order then
1939 * we try to keep the page order as low as possible. So we accept more waste
1940 * of space in favor of a small page order.
1941 *
1942 * Higher order allocations also allow the placement of more objects in a
1943 * slab and thereby reduce object handling overhead. If the user has
1944 * requested a higher mininum order then we start with that one instead of
1945 * the smallest order which will fit the object.
1946 */
1947 static inline int slab_order(int size, int min_objects,
1948 int max_order, int fract_leftover)
1949 {
1950 int order;
1951 int rem;
1952 int min_order = slub_min_order;
1953
1954 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1955 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1956
1957 for (order = max(min_order,
1958 fls(min_objects * size - 1) - PAGE_SHIFT);
1959 order <= max_order; order++) {
1960
1961 unsigned long slab_size = PAGE_SIZE << order;
1962
1963 if (slab_size < min_objects * size)
1964 continue;
1965
1966 rem = slab_size % size;
1967
1968 if (rem <= slab_size / fract_leftover)
1969 break;
1970
1971 }
1972
1973 return order;
1974 }
1975
1976 static inline int calculate_order(int size)
1977 {
1978 int order;
1979 int min_objects;
1980 int fraction;
1981 int max_objects;
1982
1983 /*
1984 * Attempt to find best configuration for a slab. This
1985 * works by first attempting to generate a layout with
1986 * the best configuration and backing off gradually.
1987 *
1988 * First we reduce the acceptable waste in a slab. Then
1989 * we reduce the minimum objects required in a slab.
1990 */
1991 min_objects = slub_min_objects;
1992 if (!min_objects)
1993 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1994 max_objects = (PAGE_SIZE << slub_max_order)/size;
1995 min_objects = min(min_objects, max_objects);
1996
1997 while (min_objects > 1) {
1998 fraction = 16;
1999 while (fraction >= 4) {
2000 order = slab_order(size, min_objects,
2001 slub_max_order, fraction);
2002 if (order <= slub_max_order)
2003 return order;
2004 fraction /= 2;
2005 }
2006 min_objects--;
2007 }
2008
2009 /*
2010 * We were unable to place multiple objects in a slab. Now
2011 * lets see if we can place a single object there.
2012 */
2013 order = slab_order(size, 1, slub_max_order, 1);
2014 if (order <= slub_max_order)
2015 return order;
2016
2017 /*
2018 * Doh this slab cannot be placed using slub_max_order.
2019 */
2020 order = slab_order(size, 1, MAX_ORDER, 1);
2021 if (order < MAX_ORDER)
2022 return order;
2023 return -ENOSYS;
2024 }
2025
2026 /*
2027 * Figure out what the alignment of the objects will be.
2028 */
2029 static unsigned long calculate_alignment(unsigned long flags,
2030 unsigned long align, unsigned long size)
2031 {
2032 /*
2033 * If the user wants hardware cache aligned objects then follow that
2034 * suggestion if the object is sufficiently large.
2035 *
2036 * The hardware cache alignment cannot override the specified
2037 * alignment though. If that is greater then use it.
2038 */
2039 if (flags & SLAB_HWCACHE_ALIGN) {
2040 unsigned long ralign = cache_line_size();
2041 while (size <= ralign / 2)
2042 ralign /= 2;
2043 align = max(align, ralign);
2044 }
2045
2046 if (align < ARCH_SLAB_MINALIGN)
2047 align = ARCH_SLAB_MINALIGN;
2048
2049 return ALIGN(align, sizeof(void *));
2050 }
2051
2052 static void
2053 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2054 {
2055 n->nr_partial = 0;
2056 spin_lock_init(&n->list_lock);
2057 INIT_LIST_HEAD(&n->partial);
2058 #ifdef CONFIG_SLUB_DEBUG
2059 atomic_long_set(&n->nr_slabs, 0);
2060 atomic_long_set(&n->total_objects, 0);
2061 INIT_LIST_HEAD(&n->full);
2062 #endif
2063 }
2064
2065 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2066
2067 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2068 {
2069 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2070 /*
2071 * Boot time creation of the kmalloc array. Use static per cpu data
2072 * since the per cpu allocator is not available yet.
2073 */
2074 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2075 else
2076 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2077
2078 if (!s->cpu_slab)
2079 return 0;
2080
2081 return 1;
2082 }
2083
2084 #ifdef CONFIG_NUMA
2085 /*
2086 * No kmalloc_node yet so do it by hand. We know that this is the first
2087 * slab on the node for this slabcache. There are no concurrent accesses
2088 * possible.
2089 *
2090 * Note that this function only works on the kmalloc_node_cache
2091 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2092 * memory on a fresh node that has no slab structures yet.
2093 */
2094 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2095 {
2096 struct page *page;
2097 struct kmem_cache_node *n;
2098 unsigned long flags;
2099
2100 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2101
2102 page = new_slab(kmalloc_caches, gfpflags, node);
2103
2104 BUG_ON(!page);
2105 if (page_to_nid(page) != node) {
2106 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2107 "node %d\n", node);
2108 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2109 "in order to be able to continue\n");
2110 }
2111
2112 n = page->freelist;
2113 BUG_ON(!n);
2114 page->freelist = get_freepointer(kmalloc_caches, n);
2115 page->inuse++;
2116 kmalloc_caches->node[node] = n;
2117 #ifdef CONFIG_SLUB_DEBUG
2118 init_object(kmalloc_caches, n, 1);
2119 init_tracking(kmalloc_caches, n);
2120 #endif
2121 init_kmem_cache_node(n, kmalloc_caches);
2122 inc_slabs_node(kmalloc_caches, node, page->objects);
2123
2124 /*
2125 * lockdep requires consistent irq usage for each lock
2126 * so even though there cannot be a race this early in
2127 * the boot sequence, we still disable irqs.
2128 */
2129 local_irq_save(flags);
2130 add_partial(n, page, 0);
2131 local_irq_restore(flags);
2132 }
2133
2134 static void free_kmem_cache_nodes(struct kmem_cache *s)
2135 {
2136 int node;
2137
2138 for_each_node_state(node, N_NORMAL_MEMORY) {
2139 struct kmem_cache_node *n = s->node[node];
2140 if (n && n != &s->local_node)
2141 kmem_cache_free(kmalloc_caches, n);
2142 s->node[node] = NULL;
2143 }
2144 }
2145
2146 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2147 {
2148 int node;
2149 int local_node;
2150
2151 if (slab_state >= UP && (s < kmalloc_caches ||
2152 s >= kmalloc_caches + KMALLOC_CACHES))
2153 local_node = page_to_nid(virt_to_page(s));
2154 else
2155 local_node = 0;
2156
2157 for_each_node_state(node, N_NORMAL_MEMORY) {
2158 struct kmem_cache_node *n;
2159
2160 if (local_node == node)
2161 n = &s->local_node;
2162 else {
2163 if (slab_state == DOWN) {
2164 early_kmem_cache_node_alloc(gfpflags, node);
2165 continue;
2166 }
2167 n = kmem_cache_alloc_node(kmalloc_caches,
2168 gfpflags, node);
2169
2170 if (!n) {
2171 free_kmem_cache_nodes(s);
2172 return 0;
2173 }
2174
2175 }
2176 s->node[node] = n;
2177 init_kmem_cache_node(n, s);
2178 }
2179 return 1;
2180 }
2181 #else
2182 static void free_kmem_cache_nodes(struct kmem_cache *s)
2183 {
2184 }
2185
2186 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2187 {
2188 init_kmem_cache_node(&s->local_node, s);
2189 return 1;
2190 }
2191 #endif
2192
2193 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2194 {
2195 if (min < MIN_PARTIAL)
2196 min = MIN_PARTIAL;
2197 else if (min > MAX_PARTIAL)
2198 min = MAX_PARTIAL;
2199 s->min_partial = min;
2200 }
2201
2202 /*
2203 * calculate_sizes() determines the order and the distribution of data within
2204 * a slab object.
2205 */
2206 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2207 {
2208 unsigned long flags = s->flags;
2209 unsigned long size = s->objsize;
2210 unsigned long align = s->align;
2211 int order;
2212
2213 /*
2214 * Round up object size to the next word boundary. We can only
2215 * place the free pointer at word boundaries and this determines
2216 * the possible location of the free pointer.
2217 */
2218 size = ALIGN(size, sizeof(void *));
2219
2220 #ifdef CONFIG_SLUB_DEBUG
2221 /*
2222 * Determine if we can poison the object itself. If the user of
2223 * the slab may touch the object after free or before allocation
2224 * then we should never poison the object itself.
2225 */
2226 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2227 !s->ctor)
2228 s->flags |= __OBJECT_POISON;
2229 else
2230 s->flags &= ~__OBJECT_POISON;
2231
2232
2233 /*
2234 * If we are Redzoning then check if there is some space between the
2235 * end of the object and the free pointer. If not then add an
2236 * additional word to have some bytes to store Redzone information.
2237 */
2238 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2239 size += sizeof(void *);
2240 #endif
2241
2242 /*
2243 * With that we have determined the number of bytes in actual use
2244 * by the object. This is the potential offset to the free pointer.
2245 */
2246 s->inuse = size;
2247
2248 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2249 s->ctor)) {
2250 /*
2251 * Relocate free pointer after the object if it is not
2252 * permitted to overwrite the first word of the object on
2253 * kmem_cache_free.
2254 *
2255 * This is the case if we do RCU, have a constructor or
2256 * destructor or are poisoning the objects.
2257 */
2258 s->offset = size;
2259 size += sizeof(void *);
2260 }
2261
2262 #ifdef CONFIG_SLUB_DEBUG
2263 if (flags & SLAB_STORE_USER)
2264 /*
2265 * Need to store information about allocs and frees after
2266 * the object.
2267 */
2268 size += 2 * sizeof(struct track);
2269
2270 if (flags & SLAB_RED_ZONE)
2271 /*
2272 * Add some empty padding so that we can catch
2273 * overwrites from earlier objects rather than let
2274 * tracking information or the free pointer be
2275 * corrupted if a user writes before the start
2276 * of the object.
2277 */
2278 size += sizeof(void *);
2279 #endif
2280
2281 /*
2282 * Determine the alignment based on various parameters that the
2283 * user specified and the dynamic determination of cache line size
2284 * on bootup.
2285 */
2286 align = calculate_alignment(flags, align, s->objsize);
2287 s->align = align;
2288
2289 /*
2290 * SLUB stores one object immediately after another beginning from
2291 * offset 0. In order to align the objects we have to simply size
2292 * each object to conform to the alignment.
2293 */
2294 size = ALIGN(size, align);
2295 s->size = size;
2296 if (forced_order >= 0)
2297 order = forced_order;
2298 else
2299 order = calculate_order(size);
2300
2301 if (order < 0)
2302 return 0;
2303
2304 s->allocflags = 0;
2305 if (order)
2306 s->allocflags |= __GFP_COMP;
2307
2308 if (s->flags & SLAB_CACHE_DMA)
2309 s->allocflags |= SLUB_DMA;
2310
2311 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2312 s->allocflags |= __GFP_RECLAIMABLE;
2313
2314 /*
2315 * Determine the number of objects per slab
2316 */
2317 s->oo = oo_make(order, size);
2318 s->min = oo_make(get_order(size), size);
2319 if (oo_objects(s->oo) > oo_objects(s->max))
2320 s->max = s->oo;
2321
2322 return !!oo_objects(s->oo);
2323
2324 }
2325
2326 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2327 const char *name, size_t size,
2328 size_t align, unsigned long flags,
2329 void (*ctor)(void *))
2330 {
2331 memset(s, 0, kmem_size);
2332 s->name = name;
2333 s->ctor = ctor;
2334 s->objsize = size;
2335 s->align = align;
2336 s->flags = kmem_cache_flags(size, flags, name, ctor);
2337
2338 if (!calculate_sizes(s, -1))
2339 goto error;
2340 if (disable_higher_order_debug) {
2341 /*
2342 * Disable debugging flags that store metadata if the min slab
2343 * order increased.
2344 */
2345 if (get_order(s->size) > get_order(s->objsize)) {
2346 s->flags &= ~DEBUG_METADATA_FLAGS;
2347 s->offset = 0;
2348 if (!calculate_sizes(s, -1))
2349 goto error;
2350 }
2351 }
2352
2353 /*
2354 * The larger the object size is, the more pages we want on the partial
2355 * list to avoid pounding the page allocator excessively.
2356 */
2357 set_min_partial(s, ilog2(s->size));
2358 s->refcount = 1;
2359 #ifdef CONFIG_NUMA
2360 s->remote_node_defrag_ratio = 1000;
2361 #endif
2362 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2363 goto error;
2364
2365 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2366 return 1;
2367
2368 free_kmem_cache_nodes(s);
2369 error:
2370 if (flags & SLAB_PANIC)
2371 panic("Cannot create slab %s size=%lu realsize=%u "
2372 "order=%u offset=%u flags=%lx\n",
2373 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2374 s->offset, flags);
2375 return 0;
2376 }
2377
2378 /*
2379 * Check if a given pointer is valid
2380 */
2381 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2382 {
2383 struct page *page;
2384
2385 if (!kern_ptr_validate(object, s->size))
2386 return 0;
2387
2388 page = get_object_page(object);
2389
2390 if (!page || s != page->slab)
2391 /* No slab or wrong slab */
2392 return 0;
2393
2394 if (!check_valid_pointer(s, page, object))
2395 return 0;
2396
2397 /*
2398 * We could also check if the object is on the slabs freelist.
2399 * But this would be too expensive and it seems that the main
2400 * purpose of kmem_ptr_valid() is to check if the object belongs
2401 * to a certain slab.
2402 */
2403 return 1;
2404 }
2405 EXPORT_SYMBOL(kmem_ptr_validate);
2406
2407 /*
2408 * Determine the size of a slab object
2409 */
2410 unsigned int kmem_cache_size(struct kmem_cache *s)
2411 {
2412 return s->objsize;
2413 }
2414 EXPORT_SYMBOL(kmem_cache_size);
2415
2416 const char *kmem_cache_name(struct kmem_cache *s)
2417 {
2418 return s->name;
2419 }
2420 EXPORT_SYMBOL(kmem_cache_name);
2421
2422 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2423 const char *text)
2424 {
2425 #ifdef CONFIG_SLUB_DEBUG
2426 void *addr = page_address(page);
2427 void *p;
2428 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2429 GFP_ATOMIC);
2430
2431 if (!map)
2432 return;
2433 slab_err(s, page, "%s", text);
2434 slab_lock(page);
2435 for_each_free_object(p, s, page->freelist)
2436 set_bit(slab_index(p, s, addr), map);
2437
2438 for_each_object(p, s, addr, page->objects) {
2439
2440 if (!test_bit(slab_index(p, s, addr), map)) {
2441 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2442 p, p - addr);
2443 print_tracking(s, p);
2444 }
2445 }
2446 slab_unlock(page);
2447 kfree(map);
2448 #endif
2449 }
2450
2451 /*
2452 * Attempt to free all partial slabs on a node.
2453 */
2454 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2455 {
2456 unsigned long flags;
2457 struct page *page, *h;
2458
2459 spin_lock_irqsave(&n->list_lock, flags);
2460 list_for_each_entry_safe(page, h, &n->partial, lru) {
2461 if (!page->inuse) {
2462 list_del(&page->lru);
2463 discard_slab(s, page);
2464 n->nr_partial--;
2465 } else {
2466 list_slab_objects(s, page,
2467 "Objects remaining on kmem_cache_close()");
2468 }
2469 }
2470 spin_unlock_irqrestore(&n->list_lock, flags);
2471 }
2472
2473 /*
2474 * Release all resources used by a slab cache.
2475 */
2476 static inline int kmem_cache_close(struct kmem_cache *s)
2477 {
2478 int node;
2479
2480 flush_all(s);
2481 free_percpu(s->cpu_slab);
2482 /* Attempt to free all objects */
2483 for_each_node_state(node, N_NORMAL_MEMORY) {
2484 struct kmem_cache_node *n = get_node(s, node);
2485
2486 free_partial(s, n);
2487 if (n->nr_partial || slabs_node(s, node))
2488 return 1;
2489 }
2490 free_kmem_cache_nodes(s);
2491 return 0;
2492 }
2493
2494 /*
2495 * Close a cache and release the kmem_cache structure
2496 * (must be used for caches created using kmem_cache_create)
2497 */
2498 void kmem_cache_destroy(struct kmem_cache *s)
2499 {
2500 down_write(&slub_lock);
2501 s->refcount--;
2502 if (!s->refcount) {
2503 list_del(&s->list);
2504 up_write(&slub_lock);
2505 if (kmem_cache_close(s)) {
2506 printk(KERN_ERR "SLUB %s: %s called for cache that "
2507 "still has objects.\n", s->name, __func__);
2508 dump_stack();
2509 }
2510 if (s->flags & SLAB_DESTROY_BY_RCU)
2511 rcu_barrier();
2512 sysfs_slab_remove(s);
2513 } else
2514 up_write(&slub_lock);
2515 }
2516 EXPORT_SYMBOL(kmem_cache_destroy);
2517
2518 /********************************************************************
2519 * Kmalloc subsystem
2520 *******************************************************************/
2521
2522 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2523 EXPORT_SYMBOL(kmalloc_caches);
2524
2525 static int __init setup_slub_min_order(char *str)
2526 {
2527 get_option(&str, &slub_min_order);
2528
2529 return 1;
2530 }
2531
2532 __setup("slub_min_order=", setup_slub_min_order);
2533
2534 static int __init setup_slub_max_order(char *str)
2535 {
2536 get_option(&str, &slub_max_order);
2537 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2538
2539 return 1;
2540 }
2541
2542 __setup("slub_max_order=", setup_slub_max_order);
2543
2544 static int __init setup_slub_min_objects(char *str)
2545 {
2546 get_option(&str, &slub_min_objects);
2547
2548 return 1;
2549 }
2550
2551 __setup("slub_min_objects=", setup_slub_min_objects);
2552
2553 static int __init setup_slub_nomerge(char *str)
2554 {
2555 slub_nomerge = 1;
2556 return 1;
2557 }
2558
2559 __setup("slub_nomerge", setup_slub_nomerge);
2560
2561 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2562 const char *name, int size, gfp_t gfp_flags)
2563 {
2564 unsigned int flags = 0;
2565
2566 if (gfp_flags & SLUB_DMA)
2567 flags = SLAB_CACHE_DMA;
2568
2569 /*
2570 * This function is called with IRQs disabled during early-boot on
2571 * single CPU so there's no need to take slub_lock here.
2572 */
2573 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2574 flags, NULL))
2575 goto panic;
2576
2577 list_add(&s->list, &slab_caches);
2578
2579 if (sysfs_slab_add(s))
2580 goto panic;
2581 return s;
2582
2583 panic:
2584 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2585 }
2586
2587 #ifdef CONFIG_ZONE_DMA
2588 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2589
2590 static void sysfs_add_func(struct work_struct *w)
2591 {
2592 struct kmem_cache *s;
2593
2594 down_write(&slub_lock);
2595 list_for_each_entry(s, &slab_caches, list) {
2596 if (s->flags & __SYSFS_ADD_DEFERRED) {
2597 s->flags &= ~__SYSFS_ADD_DEFERRED;
2598 sysfs_slab_add(s);
2599 }
2600 }
2601 up_write(&slub_lock);
2602 }
2603
2604 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2605
2606 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2607 {
2608 struct kmem_cache *s;
2609 char *text;
2610 size_t realsize;
2611 unsigned long slabflags;
2612 int i;
2613
2614 s = kmalloc_caches_dma[index];
2615 if (s)
2616 return s;
2617
2618 /* Dynamically create dma cache */
2619 if (flags & __GFP_WAIT)
2620 down_write(&slub_lock);
2621 else {
2622 if (!down_write_trylock(&slub_lock))
2623 goto out;
2624 }
2625
2626 if (kmalloc_caches_dma[index])
2627 goto unlock_out;
2628
2629 realsize = kmalloc_caches[index].objsize;
2630 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2631 (unsigned int)realsize);
2632
2633 s = NULL;
2634 for (i = 0; i < KMALLOC_CACHES; i++)
2635 if (!kmalloc_caches[i].size)
2636 break;
2637
2638 BUG_ON(i >= KMALLOC_CACHES);
2639 s = kmalloc_caches + i;
2640
2641 /*
2642 * Must defer sysfs creation to a workqueue because we don't know
2643 * what context we are called from. Before sysfs comes up, we don't
2644 * need to do anything because our sysfs initcall will start by
2645 * adding all existing slabs to sysfs.
2646 */
2647 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2648 if (slab_state >= SYSFS)
2649 slabflags |= __SYSFS_ADD_DEFERRED;
2650
2651 if (!text || !kmem_cache_open(s, flags, text,
2652 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2653 s->size = 0;
2654 kfree(text);
2655 goto unlock_out;
2656 }
2657
2658 list_add(&s->list, &slab_caches);
2659 kmalloc_caches_dma[index] = s;
2660
2661 if (slab_state >= SYSFS)
2662 schedule_work(&sysfs_add_work);
2663
2664 unlock_out:
2665 up_write(&slub_lock);
2666 out:
2667 return kmalloc_caches_dma[index];
2668 }
2669 #endif
2670
2671 /*
2672 * Conversion table for small slabs sizes / 8 to the index in the
2673 * kmalloc array. This is necessary for slabs < 192 since we have non power
2674 * of two cache sizes there. The size of larger slabs can be determined using
2675 * fls.
2676 */
2677 static s8 size_index[24] = {
2678 3, /* 8 */
2679 4, /* 16 */
2680 5, /* 24 */
2681 5, /* 32 */
2682 6, /* 40 */
2683 6, /* 48 */
2684 6, /* 56 */
2685 6, /* 64 */
2686 1, /* 72 */
2687 1, /* 80 */
2688 1, /* 88 */
2689 1, /* 96 */
2690 7, /* 104 */
2691 7, /* 112 */
2692 7, /* 120 */
2693 7, /* 128 */
2694 2, /* 136 */
2695 2, /* 144 */
2696 2, /* 152 */
2697 2, /* 160 */
2698 2, /* 168 */
2699 2, /* 176 */
2700 2, /* 184 */
2701 2 /* 192 */
2702 };
2703
2704 static inline int size_index_elem(size_t bytes)
2705 {
2706 return (bytes - 1) / 8;
2707 }
2708
2709 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2710 {
2711 int index;
2712
2713 if (size <= 192) {
2714 if (!size)
2715 return ZERO_SIZE_PTR;
2716
2717 index = size_index[size_index_elem(size)];
2718 } else
2719 index = fls(size - 1);
2720
2721 #ifdef CONFIG_ZONE_DMA
2722 if (unlikely((flags & SLUB_DMA)))
2723 return dma_kmalloc_cache(index, flags);
2724
2725 #endif
2726 return &kmalloc_caches[index];
2727 }
2728
2729 void *__kmalloc(size_t size, gfp_t flags)
2730 {
2731 struct kmem_cache *s;
2732 void *ret;
2733
2734 if (unlikely(size > SLUB_MAX_SIZE))
2735 return kmalloc_large(size, flags);
2736
2737 s = get_slab(size, flags);
2738
2739 if (unlikely(ZERO_OR_NULL_PTR(s)))
2740 return s;
2741
2742 ret = slab_alloc(s, flags, -1, _RET_IP_);
2743
2744 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2745
2746 return ret;
2747 }
2748 EXPORT_SYMBOL(__kmalloc);
2749
2750 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2751 {
2752 struct page *page;
2753 void *ptr = NULL;
2754
2755 flags |= __GFP_COMP | __GFP_NOTRACK;
2756 page = alloc_pages_node(node, flags, get_order(size));
2757 if (page)
2758 ptr = page_address(page);
2759
2760 kmemleak_alloc(ptr, size, 1, flags);
2761 return ptr;
2762 }
2763
2764 #ifdef CONFIG_NUMA
2765 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2766 {
2767 struct kmem_cache *s;
2768 void *ret;
2769
2770 if (unlikely(size > SLUB_MAX_SIZE)) {
2771 ret = kmalloc_large_node(size, flags, node);
2772
2773 trace_kmalloc_node(_RET_IP_, ret,
2774 size, PAGE_SIZE << get_order(size),
2775 flags, node);
2776
2777 return ret;
2778 }
2779
2780 s = get_slab(size, flags);
2781
2782 if (unlikely(ZERO_OR_NULL_PTR(s)))
2783 return s;
2784
2785 ret = slab_alloc(s, flags, node, _RET_IP_);
2786
2787 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2788
2789 return ret;
2790 }
2791 EXPORT_SYMBOL(__kmalloc_node);
2792 #endif
2793
2794 size_t ksize(const void *object)
2795 {
2796 struct page *page;
2797 struct kmem_cache *s;
2798
2799 if (unlikely(object == ZERO_SIZE_PTR))
2800 return 0;
2801
2802 page = virt_to_head_page(object);
2803
2804 if (unlikely(!PageSlab(page))) {
2805 WARN_ON(!PageCompound(page));
2806 return PAGE_SIZE << compound_order(page);
2807 }
2808 s = page->slab;
2809
2810 #ifdef CONFIG_SLUB_DEBUG
2811 /*
2812 * Debugging requires use of the padding between object
2813 * and whatever may come after it.
2814 */
2815 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2816 return s->objsize;
2817
2818 #endif
2819 /*
2820 * If we have the need to store the freelist pointer
2821 * back there or track user information then we can
2822 * only use the space before that information.
2823 */
2824 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2825 return s->inuse;
2826 /*
2827 * Else we can use all the padding etc for the allocation
2828 */
2829 return s->size;
2830 }
2831 EXPORT_SYMBOL(ksize);
2832
2833 void kfree(const void *x)
2834 {
2835 struct page *page;
2836 void *object = (void *)x;
2837
2838 trace_kfree(_RET_IP_, x);
2839
2840 if (unlikely(ZERO_OR_NULL_PTR(x)))
2841 return;
2842
2843 page = virt_to_head_page(x);
2844 if (unlikely(!PageSlab(page))) {
2845 BUG_ON(!PageCompound(page));
2846 kmemleak_free(x);
2847 put_page(page);
2848 return;
2849 }
2850 slab_free(page->slab, page, object, _RET_IP_);
2851 }
2852 EXPORT_SYMBOL(kfree);
2853
2854 /*
2855 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2856 * the remaining slabs by the number of items in use. The slabs with the
2857 * most items in use come first. New allocations will then fill those up
2858 * and thus they can be removed from the partial lists.
2859 *
2860 * The slabs with the least items are placed last. This results in them
2861 * being allocated from last increasing the chance that the last objects
2862 * are freed in them.
2863 */
2864 int kmem_cache_shrink(struct kmem_cache *s)
2865 {
2866 int node;
2867 int i;
2868 struct kmem_cache_node *n;
2869 struct page *page;
2870 struct page *t;
2871 int objects = oo_objects(s->max);
2872 struct list_head *slabs_by_inuse =
2873 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2874 unsigned long flags;
2875
2876 if (!slabs_by_inuse)
2877 return -ENOMEM;
2878
2879 flush_all(s);
2880 for_each_node_state(node, N_NORMAL_MEMORY) {
2881 n = get_node(s, node);
2882
2883 if (!n->nr_partial)
2884 continue;
2885
2886 for (i = 0; i < objects; i++)
2887 INIT_LIST_HEAD(slabs_by_inuse + i);
2888
2889 spin_lock_irqsave(&n->list_lock, flags);
2890
2891 /*
2892 * Build lists indexed by the items in use in each slab.
2893 *
2894 * Note that concurrent frees may occur while we hold the
2895 * list_lock. page->inuse here is the upper limit.
2896 */
2897 list_for_each_entry_safe(page, t, &n->partial, lru) {
2898 if (!page->inuse && slab_trylock(page)) {
2899 /*
2900 * Must hold slab lock here because slab_free
2901 * may have freed the last object and be
2902 * waiting to release the slab.
2903 */
2904 list_del(&page->lru);
2905 n->nr_partial--;
2906 slab_unlock(page);
2907 discard_slab(s, page);
2908 } else {
2909 list_move(&page->lru,
2910 slabs_by_inuse + page->inuse);
2911 }
2912 }
2913
2914 /*
2915 * Rebuild the partial list with the slabs filled up most
2916 * first and the least used slabs at the end.
2917 */
2918 for (i = objects - 1; i >= 0; i--)
2919 list_splice(slabs_by_inuse + i, n->partial.prev);
2920
2921 spin_unlock_irqrestore(&n->list_lock, flags);
2922 }
2923
2924 kfree(slabs_by_inuse);
2925 return 0;
2926 }
2927 EXPORT_SYMBOL(kmem_cache_shrink);
2928
2929 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2930 static int slab_mem_going_offline_callback(void *arg)
2931 {
2932 struct kmem_cache *s;
2933
2934 down_read(&slub_lock);
2935 list_for_each_entry(s, &slab_caches, list)
2936 kmem_cache_shrink(s);
2937 up_read(&slub_lock);
2938
2939 return 0;
2940 }
2941
2942 static void slab_mem_offline_callback(void *arg)
2943 {
2944 struct kmem_cache_node *n;
2945 struct kmem_cache *s;
2946 struct memory_notify *marg = arg;
2947 int offline_node;
2948
2949 offline_node = marg->status_change_nid;
2950
2951 /*
2952 * If the node still has available memory. we need kmem_cache_node
2953 * for it yet.
2954 */
2955 if (offline_node < 0)
2956 return;
2957
2958 down_read(&slub_lock);
2959 list_for_each_entry(s, &slab_caches, list) {
2960 n = get_node(s, offline_node);
2961 if (n) {
2962 /*
2963 * if n->nr_slabs > 0, slabs still exist on the node
2964 * that is going down. We were unable to free them,
2965 * and offline_pages() function shouldn't call this
2966 * callback. So, we must fail.
2967 */
2968 BUG_ON(slabs_node(s, offline_node));
2969
2970 s->node[offline_node] = NULL;
2971 kmem_cache_free(kmalloc_caches, n);
2972 }
2973 }
2974 up_read(&slub_lock);
2975 }
2976
2977 static int slab_mem_going_online_callback(void *arg)
2978 {
2979 struct kmem_cache_node *n;
2980 struct kmem_cache *s;
2981 struct memory_notify *marg = arg;
2982 int nid = marg->status_change_nid;
2983 int ret = 0;
2984
2985 /*
2986 * If the node's memory is already available, then kmem_cache_node is
2987 * already created. Nothing to do.
2988 */
2989 if (nid < 0)
2990 return 0;
2991
2992 /*
2993 * We are bringing a node online. No memory is available yet. We must
2994 * allocate a kmem_cache_node structure in order to bring the node
2995 * online.
2996 */
2997 down_read(&slub_lock);
2998 list_for_each_entry(s, &slab_caches, list) {
2999 /*
3000 * XXX: kmem_cache_alloc_node will fallback to other nodes
3001 * since memory is not yet available from the node that
3002 * is brought up.
3003 */
3004 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3005 if (!n) {
3006 ret = -ENOMEM;
3007 goto out;
3008 }
3009 init_kmem_cache_node(n, s);
3010 s->node[nid] = n;
3011 }
3012 out:
3013 up_read(&slub_lock);
3014 return ret;
3015 }
3016
3017 static int slab_memory_callback(struct notifier_block *self,
3018 unsigned long action, void *arg)
3019 {
3020 int ret = 0;
3021
3022 switch (action) {
3023 case MEM_GOING_ONLINE:
3024 ret = slab_mem_going_online_callback(arg);
3025 break;
3026 case MEM_GOING_OFFLINE:
3027 ret = slab_mem_going_offline_callback(arg);
3028 break;
3029 case MEM_OFFLINE:
3030 case MEM_CANCEL_ONLINE:
3031 slab_mem_offline_callback(arg);
3032 break;
3033 case MEM_ONLINE:
3034 case MEM_CANCEL_OFFLINE:
3035 break;
3036 }
3037 if (ret)
3038 ret = notifier_from_errno(ret);
3039 else
3040 ret = NOTIFY_OK;
3041 return ret;
3042 }
3043
3044 #endif /* CONFIG_MEMORY_HOTPLUG */
3045
3046 /********************************************************************
3047 * Basic setup of slabs
3048 *******************************************************************/
3049
3050 void __init kmem_cache_init(void)
3051 {
3052 int i;
3053 int caches = 0;
3054
3055 #ifdef CONFIG_NUMA
3056 /*
3057 * Must first have the slab cache available for the allocations of the
3058 * struct kmem_cache_node's. There is special bootstrap code in
3059 * kmem_cache_open for slab_state == DOWN.
3060 */
3061 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3062 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3063 kmalloc_caches[0].refcount = -1;
3064 caches++;
3065
3066 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3067 #endif
3068
3069 /* Able to allocate the per node structures */
3070 slab_state = PARTIAL;
3071
3072 /* Caches that are not of the two-to-the-power-of size */
3073 if (KMALLOC_MIN_SIZE <= 32) {
3074 create_kmalloc_cache(&kmalloc_caches[1],
3075 "kmalloc-96", 96, GFP_NOWAIT);
3076 caches++;
3077 }
3078 if (KMALLOC_MIN_SIZE <= 64) {
3079 create_kmalloc_cache(&kmalloc_caches[2],
3080 "kmalloc-192", 192, GFP_NOWAIT);
3081 caches++;
3082 }
3083
3084 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3085 create_kmalloc_cache(&kmalloc_caches[i],
3086 "kmalloc", 1 << i, GFP_NOWAIT);
3087 caches++;
3088 }
3089
3090
3091 /*
3092 * Patch up the size_index table if we have strange large alignment
3093 * requirements for the kmalloc array. This is only the case for
3094 * MIPS it seems. The standard arches will not generate any code here.
3095 *
3096 * Largest permitted alignment is 256 bytes due to the way we
3097 * handle the index determination for the smaller caches.
3098 *
3099 * Make sure that nothing crazy happens if someone starts tinkering
3100 * around with ARCH_KMALLOC_MINALIGN
3101 */
3102 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3103 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3104
3105 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3106 int elem = size_index_elem(i);
3107 if (elem >= ARRAY_SIZE(size_index))
3108 break;
3109 size_index[elem] = KMALLOC_SHIFT_LOW;
3110 }
3111
3112 if (KMALLOC_MIN_SIZE == 64) {
3113 /*
3114 * The 96 byte size cache is not used if the alignment
3115 * is 64 byte.
3116 */
3117 for (i = 64 + 8; i <= 96; i += 8)
3118 size_index[size_index_elem(i)] = 7;
3119 } else if (KMALLOC_MIN_SIZE == 128) {
3120 /*
3121 * The 192 byte sized cache is not used if the alignment
3122 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3123 * instead.
3124 */
3125 for (i = 128 + 8; i <= 192; i += 8)
3126 size_index[size_index_elem(i)] = 8;
3127 }
3128
3129 slab_state = UP;
3130
3131 /* Provide the correct kmalloc names now that the caches are up */
3132 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3133 kmalloc_caches[i]. name =
3134 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3135
3136 #ifdef CONFIG_SMP
3137 register_cpu_notifier(&slab_notifier);
3138 #endif
3139 #ifdef CONFIG_NUMA
3140 kmem_size = offsetof(struct kmem_cache, node) +
3141 nr_node_ids * sizeof(struct kmem_cache_node *);
3142 #else
3143 kmem_size = sizeof(struct kmem_cache);
3144 #endif
3145
3146 printk(KERN_INFO
3147 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3148 " CPUs=%d, Nodes=%d\n",
3149 caches, cache_line_size(),
3150 slub_min_order, slub_max_order, slub_min_objects,
3151 nr_cpu_ids, nr_node_ids);
3152 }
3153
3154 void __init kmem_cache_init_late(void)
3155 {
3156 }
3157
3158 /*
3159 * Find a mergeable slab cache
3160 */
3161 static int slab_unmergeable(struct kmem_cache *s)
3162 {
3163 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3164 return 1;
3165
3166 if (s->ctor)
3167 return 1;
3168
3169 /*
3170 * We may have set a slab to be unmergeable during bootstrap.
3171 */
3172 if (s->refcount < 0)
3173 return 1;
3174
3175 return 0;
3176 }
3177
3178 static struct kmem_cache *find_mergeable(size_t size,
3179 size_t align, unsigned long flags, const char *name,
3180 void (*ctor)(void *))
3181 {
3182 struct kmem_cache *s;
3183
3184 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3185 return NULL;
3186
3187 if (ctor)
3188 return NULL;
3189
3190 size = ALIGN(size, sizeof(void *));
3191 align = calculate_alignment(flags, align, size);
3192 size = ALIGN(size, align);
3193 flags = kmem_cache_flags(size, flags, name, NULL);
3194
3195 list_for_each_entry(s, &slab_caches, list) {
3196 if (slab_unmergeable(s))
3197 continue;
3198
3199 if (size > s->size)
3200 continue;
3201
3202 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3203 continue;
3204 /*
3205 * Check if alignment is compatible.
3206 * Courtesy of Adrian Drzewiecki
3207 */
3208 if ((s->size & ~(align - 1)) != s->size)
3209 continue;
3210
3211 if (s->size - size >= sizeof(void *))
3212 continue;
3213
3214 return s;
3215 }
3216 return NULL;
3217 }
3218
3219 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3220 size_t align, unsigned long flags, void (*ctor)(void *))
3221 {
3222 struct kmem_cache *s;
3223
3224 if (WARN_ON(!name))
3225 return NULL;
3226
3227 down_write(&slub_lock);
3228 s = find_mergeable(size, align, flags, name, ctor);
3229 if (s) {
3230 s->refcount++;
3231 /*
3232 * Adjust the object sizes so that we clear
3233 * the complete object on kzalloc.
3234 */
3235 s->objsize = max(s->objsize, (int)size);
3236 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3237 up_write(&slub_lock);
3238
3239 if (sysfs_slab_alias(s, name)) {
3240 down_write(&slub_lock);
3241 s->refcount--;
3242 up_write(&slub_lock);
3243 goto err;
3244 }
3245 return s;
3246 }
3247
3248 s = kmalloc(kmem_size, GFP_KERNEL);
3249 if (s) {
3250 if (kmem_cache_open(s, GFP_KERNEL, name,
3251 size, align, flags, ctor)) {
3252 list_add(&s->list, &slab_caches);
3253 up_write(&slub_lock);
3254 if (sysfs_slab_add(s)) {
3255 down_write(&slub_lock);
3256 list_del(&s->list);
3257 up_write(&slub_lock);
3258 kfree(s);
3259 goto err;
3260 }
3261 return s;
3262 }
3263 kfree(s);
3264 }
3265 up_write(&slub_lock);
3266
3267 err:
3268 if (flags & SLAB_PANIC)
3269 panic("Cannot create slabcache %s\n", name);
3270 else
3271 s = NULL;
3272 return s;
3273 }
3274 EXPORT_SYMBOL(kmem_cache_create);
3275
3276 #ifdef CONFIG_SMP
3277 /*
3278 * Use the cpu notifier to insure that the cpu slabs are flushed when
3279 * necessary.
3280 */
3281 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3282 unsigned long action, void *hcpu)
3283 {
3284 long cpu = (long)hcpu;
3285 struct kmem_cache *s;
3286 unsigned long flags;
3287
3288 switch (action) {
3289 case CPU_UP_CANCELED:
3290 case CPU_UP_CANCELED_FROZEN:
3291 case CPU_DEAD:
3292 case CPU_DEAD_FROZEN:
3293 down_read(&slub_lock);
3294 list_for_each_entry(s, &slab_caches, list) {
3295 local_irq_save(flags);
3296 __flush_cpu_slab(s, cpu);
3297 local_irq_restore(flags);
3298 }
3299 up_read(&slub_lock);
3300 break;
3301 default:
3302 break;
3303 }
3304 return NOTIFY_OK;
3305 }
3306
3307 static struct notifier_block __cpuinitdata slab_notifier = {
3308 .notifier_call = slab_cpuup_callback
3309 };
3310
3311 #endif
3312
3313 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3314 {
3315 struct kmem_cache *s;
3316 void *ret;
3317
3318 if (unlikely(size > SLUB_MAX_SIZE))
3319 return kmalloc_large(size, gfpflags);
3320
3321 s = get_slab(size, gfpflags);
3322
3323 if (unlikely(ZERO_OR_NULL_PTR(s)))
3324 return s;
3325
3326 ret = slab_alloc(s, gfpflags, -1, caller);
3327
3328 /* Honor the call site pointer we recieved. */
3329 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3330
3331 return ret;
3332 }
3333
3334 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3335 int node, unsigned long caller)
3336 {
3337 struct kmem_cache *s;
3338 void *ret;
3339
3340 if (unlikely(size > SLUB_MAX_SIZE)) {
3341 ret = kmalloc_large_node(size, gfpflags, node);
3342
3343 trace_kmalloc_node(caller, ret,
3344 size, PAGE_SIZE << get_order(size),
3345 gfpflags, node);
3346
3347 return ret;
3348 }
3349
3350 s = get_slab(size, gfpflags);
3351
3352 if (unlikely(ZERO_OR_NULL_PTR(s)))
3353 return s;
3354
3355 ret = slab_alloc(s, gfpflags, node, caller);
3356
3357 /* Honor the call site pointer we recieved. */
3358 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3359
3360 return ret;
3361 }
3362
3363 #ifdef CONFIG_SLUB_DEBUG
3364 static int count_inuse(struct page *page)
3365 {
3366 return page->inuse;
3367 }
3368
3369 static int count_total(struct page *page)
3370 {
3371 return page->objects;
3372 }
3373
3374 static int validate_slab(struct kmem_cache *s, struct page *page,
3375 unsigned long *map)
3376 {
3377 void *p;
3378 void *addr = page_address(page);
3379
3380 if (!check_slab(s, page) ||
3381 !on_freelist(s, page, NULL))
3382 return 0;
3383
3384 /* Now we know that a valid freelist exists */
3385 bitmap_zero(map, page->objects);
3386
3387 for_each_free_object(p, s, page->freelist) {
3388 set_bit(slab_index(p, s, addr), map);
3389 if (!check_object(s, page, p, 0))
3390 return 0;
3391 }
3392
3393 for_each_object(p, s, addr, page->objects)
3394 if (!test_bit(slab_index(p, s, addr), map))
3395 if (!check_object(s, page, p, 1))
3396 return 0;
3397 return 1;
3398 }
3399
3400 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3401 unsigned long *map)
3402 {
3403 if (slab_trylock(page)) {
3404 validate_slab(s, page, map);
3405 slab_unlock(page);
3406 } else
3407 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3408 s->name, page);
3409
3410 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3411 if (!PageSlubDebug(page))
3412 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3413 "on slab 0x%p\n", s->name, page);
3414 } else {
3415 if (PageSlubDebug(page))
3416 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3417 "slab 0x%p\n", s->name, page);
3418 }
3419 }
3420
3421 static int validate_slab_node(struct kmem_cache *s,
3422 struct kmem_cache_node *n, unsigned long *map)
3423 {
3424 unsigned long count = 0;
3425 struct page *page;
3426 unsigned long flags;
3427
3428 spin_lock_irqsave(&n->list_lock, flags);
3429
3430 list_for_each_entry(page, &n->partial, lru) {
3431 validate_slab_slab(s, page, map);
3432 count++;
3433 }
3434 if (count != n->nr_partial)
3435 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3436 "counter=%ld\n", s->name, count, n->nr_partial);
3437
3438 if (!(s->flags & SLAB_STORE_USER))
3439 goto out;
3440
3441 list_for_each_entry(page, &n->full, lru) {
3442 validate_slab_slab(s, page, map);
3443 count++;
3444 }
3445 if (count != atomic_long_read(&n->nr_slabs))
3446 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3447 "counter=%ld\n", s->name, count,
3448 atomic_long_read(&n->nr_slabs));
3449
3450 out:
3451 spin_unlock_irqrestore(&n->list_lock, flags);
3452 return count;
3453 }
3454
3455 static long validate_slab_cache(struct kmem_cache *s)
3456 {
3457 int node;
3458 unsigned long count = 0;
3459 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3460 sizeof(unsigned long), GFP_KERNEL);
3461
3462 if (!map)
3463 return -ENOMEM;
3464
3465 flush_all(s);
3466 for_each_node_state(node, N_NORMAL_MEMORY) {
3467 struct kmem_cache_node *n = get_node(s, node);
3468
3469 count += validate_slab_node(s, n, map);
3470 }
3471 kfree(map);
3472 return count;
3473 }
3474
3475 #ifdef SLUB_RESILIENCY_TEST
3476 static void resiliency_test(void)
3477 {
3478 u8 *p;
3479
3480 printk(KERN_ERR "SLUB resiliency testing\n");
3481 printk(KERN_ERR "-----------------------\n");
3482 printk(KERN_ERR "A. Corruption after allocation\n");
3483
3484 p = kzalloc(16, GFP_KERNEL);
3485 p[16] = 0x12;
3486 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3487 " 0x12->0x%p\n\n", p + 16);
3488
3489 validate_slab_cache(kmalloc_caches + 4);
3490
3491 /* Hmmm... The next two are dangerous */
3492 p = kzalloc(32, GFP_KERNEL);
3493 p[32 + sizeof(void *)] = 0x34;
3494 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3495 " 0x34 -> -0x%p\n", p);
3496 printk(KERN_ERR
3497 "If allocated object is overwritten then not detectable\n\n");
3498
3499 validate_slab_cache(kmalloc_caches + 5);
3500 p = kzalloc(64, GFP_KERNEL);
3501 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3502 *p = 0x56;
3503 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3504 p);
3505 printk(KERN_ERR
3506 "If allocated object is overwritten then not detectable\n\n");
3507 validate_slab_cache(kmalloc_caches + 6);
3508
3509 printk(KERN_ERR "\nB. Corruption after free\n");
3510 p = kzalloc(128, GFP_KERNEL);
3511 kfree(p);
3512 *p = 0x78;
3513 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3514 validate_slab_cache(kmalloc_caches + 7);
3515
3516 p = kzalloc(256, GFP_KERNEL);
3517 kfree(p);
3518 p[50] = 0x9a;
3519 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3520 p);
3521 validate_slab_cache(kmalloc_caches + 8);
3522
3523 p = kzalloc(512, GFP_KERNEL);
3524 kfree(p);
3525 p[512] = 0xab;
3526 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3527 validate_slab_cache(kmalloc_caches + 9);
3528 }
3529 #else
3530 static void resiliency_test(void) {};
3531 #endif
3532
3533 /*
3534 * Generate lists of code addresses where slabcache objects are allocated
3535 * and freed.
3536 */
3537
3538 struct location {
3539 unsigned long count;
3540 unsigned long addr;
3541 long long sum_time;
3542 long min_time;
3543 long max_time;
3544 long min_pid;
3545 long max_pid;
3546 DECLARE_BITMAP(cpus, NR_CPUS);
3547 nodemask_t nodes;
3548 };
3549
3550 struct loc_track {
3551 unsigned long max;
3552 unsigned long count;
3553 struct location *loc;
3554 };
3555
3556 static void free_loc_track(struct loc_track *t)
3557 {
3558 if (t->max)
3559 free_pages((unsigned long)t->loc,
3560 get_order(sizeof(struct location) * t->max));
3561 }
3562
3563 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3564 {
3565 struct location *l;
3566 int order;
3567
3568 order = get_order(sizeof(struct location) * max);
3569
3570 l = (void *)__get_free_pages(flags, order);
3571 if (!l)
3572 return 0;
3573
3574 if (t->count) {
3575 memcpy(l, t->loc, sizeof(struct location) * t->count);
3576 free_loc_track(t);
3577 }
3578 t->max = max;
3579 t->loc = l;
3580 return 1;
3581 }
3582
3583 static int add_location(struct loc_track *t, struct kmem_cache *s,
3584 const struct track *track)
3585 {
3586 long start, end, pos;
3587 struct location *l;
3588 unsigned long caddr;
3589 unsigned long age = jiffies - track->when;
3590
3591 start = -1;
3592 end = t->count;
3593
3594 for ( ; ; ) {
3595 pos = start + (end - start + 1) / 2;
3596
3597 /*
3598 * There is nothing at "end". If we end up there
3599 * we need to add something to before end.
3600 */
3601 if (pos == end)
3602 break;
3603
3604 caddr = t->loc[pos].addr;
3605 if (track->addr == caddr) {
3606
3607 l = &t->loc[pos];
3608 l->count++;
3609 if (track->when) {
3610 l->sum_time += age;
3611 if (age < l->min_time)
3612 l->min_time = age;
3613 if (age > l->max_time)
3614 l->max_time = age;
3615
3616 if (track->pid < l->min_pid)
3617 l->min_pid = track->pid;
3618 if (track->pid > l->max_pid)
3619 l->max_pid = track->pid;
3620
3621 cpumask_set_cpu(track->cpu,
3622 to_cpumask(l->cpus));
3623 }
3624 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3625 return 1;
3626 }
3627
3628 if (track->addr < caddr)
3629 end = pos;
3630 else
3631 start = pos;
3632 }
3633
3634 /*
3635 * Not found. Insert new tracking element.
3636 */
3637 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3638 return 0;
3639
3640 l = t->loc + pos;
3641 if (pos < t->count)
3642 memmove(l + 1, l,
3643 (t->count - pos) * sizeof(struct location));
3644 t->count++;
3645 l->count = 1;
3646 l->addr = track->addr;
3647 l->sum_time = age;
3648 l->min_time = age;
3649 l->max_time = age;
3650 l->min_pid = track->pid;
3651 l->max_pid = track->pid;
3652 cpumask_clear(to_cpumask(l->cpus));
3653 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3654 nodes_clear(l->nodes);
3655 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3656 return 1;
3657 }
3658
3659 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3660 struct page *page, enum track_item alloc,
3661 long *map)
3662 {
3663 void *addr = page_address(page);
3664 void *p;
3665
3666 bitmap_zero(map, page->objects);
3667 for_each_free_object(p, s, page->freelist)
3668 set_bit(slab_index(p, s, addr), map);
3669
3670 for_each_object(p, s, addr, page->objects)
3671 if (!test_bit(slab_index(p, s, addr), map))
3672 add_location(t, s, get_track(s, p, alloc));
3673 }
3674
3675 static int list_locations(struct kmem_cache *s, char *buf,
3676 enum track_item alloc)
3677 {
3678 int len = 0;
3679 unsigned long i;
3680 struct loc_track t = { 0, 0, NULL };
3681 int node;
3682 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3683 sizeof(unsigned long), GFP_KERNEL);
3684
3685 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3686 GFP_TEMPORARY)) {
3687 kfree(map);
3688 return sprintf(buf, "Out of memory\n");
3689 }
3690 /* Push back cpu slabs */
3691 flush_all(s);
3692
3693 for_each_node_state(node, N_NORMAL_MEMORY) {
3694 struct kmem_cache_node *n = get_node(s, node);
3695 unsigned long flags;
3696 struct page *page;
3697
3698 if (!atomic_long_read(&n->nr_slabs))
3699 continue;
3700
3701 spin_lock_irqsave(&n->list_lock, flags);
3702 list_for_each_entry(page, &n->partial, lru)
3703 process_slab(&t, s, page, alloc, map);
3704 list_for_each_entry(page, &n->full, lru)
3705 process_slab(&t, s, page, alloc, map);
3706 spin_unlock_irqrestore(&n->list_lock, flags);
3707 }
3708
3709 for (i = 0; i < t.count; i++) {
3710 struct location *l = &t.loc[i];
3711
3712 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3713 break;
3714 len += sprintf(buf + len, "%7ld ", l->count);
3715
3716 if (l->addr)
3717 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3718 else
3719 len += sprintf(buf + len, "<not-available>");
3720
3721 if (l->sum_time != l->min_time) {
3722 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3723 l->min_time,
3724 (long)div_u64(l->sum_time, l->count),
3725 l->max_time);
3726 } else
3727 len += sprintf(buf + len, " age=%ld",
3728 l->min_time);
3729
3730 if (l->min_pid != l->max_pid)
3731 len += sprintf(buf + len, " pid=%ld-%ld",
3732 l->min_pid, l->max_pid);
3733 else
3734 len += sprintf(buf + len, " pid=%ld",
3735 l->min_pid);
3736
3737 if (num_online_cpus() > 1 &&
3738 !cpumask_empty(to_cpumask(l->cpus)) &&
3739 len < PAGE_SIZE - 60) {
3740 len += sprintf(buf + len, " cpus=");
3741 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3742 to_cpumask(l->cpus));
3743 }
3744
3745 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3746 len < PAGE_SIZE - 60) {
3747 len += sprintf(buf + len, " nodes=");
3748 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3749 l->nodes);
3750 }
3751
3752 len += sprintf(buf + len, "\n");
3753 }
3754
3755 free_loc_track(&t);
3756 kfree(map);
3757 if (!t.count)
3758 len += sprintf(buf, "No data\n");
3759 return len;
3760 }
3761
3762 enum slab_stat_type {
3763 SL_ALL, /* All slabs */
3764 SL_PARTIAL, /* Only partially allocated slabs */
3765 SL_CPU, /* Only slabs used for cpu caches */
3766 SL_OBJECTS, /* Determine allocated objects not slabs */
3767 SL_TOTAL /* Determine object capacity not slabs */
3768 };
3769
3770 #define SO_ALL (1 << SL_ALL)
3771 #define SO_PARTIAL (1 << SL_PARTIAL)
3772 #define SO_CPU (1 << SL_CPU)
3773 #define SO_OBJECTS (1 << SL_OBJECTS)
3774 #define SO_TOTAL (1 << SL_TOTAL)
3775
3776 static ssize_t show_slab_objects(struct kmem_cache *s,
3777 char *buf, unsigned long flags)
3778 {
3779 unsigned long total = 0;
3780 int node;
3781 int x;
3782 unsigned long *nodes;
3783 unsigned long *per_cpu;
3784
3785 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3786 if (!nodes)
3787 return -ENOMEM;
3788 per_cpu = nodes + nr_node_ids;
3789
3790 if (flags & SO_CPU) {
3791 int cpu;
3792
3793 for_each_possible_cpu(cpu) {
3794 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3795
3796 if (!c || c->node < 0)
3797 continue;
3798
3799 if (c->page) {
3800 if (flags & SO_TOTAL)
3801 x = c->page->objects;
3802 else if (flags & SO_OBJECTS)
3803 x = c->page->inuse;
3804 else
3805 x = 1;
3806
3807 total += x;
3808 nodes[c->node] += x;
3809 }
3810 per_cpu[c->node]++;
3811 }
3812 }
3813
3814 if (flags & SO_ALL) {
3815 for_each_node_state(node, N_NORMAL_MEMORY) {
3816 struct kmem_cache_node *n = get_node(s, node);
3817
3818 if (flags & SO_TOTAL)
3819 x = atomic_long_read(&n->total_objects);
3820 else if (flags & SO_OBJECTS)
3821 x = atomic_long_read(&n->total_objects) -
3822 count_partial(n, count_free);
3823
3824 else
3825 x = atomic_long_read(&n->nr_slabs);
3826 total += x;
3827 nodes[node] += x;
3828 }
3829
3830 } else if (flags & SO_PARTIAL) {
3831 for_each_node_state(node, N_NORMAL_MEMORY) {
3832 struct kmem_cache_node *n = get_node(s, node);
3833
3834 if (flags & SO_TOTAL)
3835 x = count_partial(n, count_total);
3836 else if (flags & SO_OBJECTS)
3837 x = count_partial(n, count_inuse);
3838 else
3839 x = n->nr_partial;
3840 total += x;
3841 nodes[node] += x;
3842 }
3843 }
3844 x = sprintf(buf, "%lu", total);
3845 #ifdef CONFIG_NUMA
3846 for_each_node_state(node, N_NORMAL_MEMORY)
3847 if (nodes[node])
3848 x += sprintf(buf + x, " N%d=%lu",
3849 node, nodes[node]);
3850 #endif
3851 kfree(nodes);
3852 return x + sprintf(buf + x, "\n");
3853 }
3854
3855 static int any_slab_objects(struct kmem_cache *s)
3856 {
3857 int node;
3858
3859 for_each_online_node(node) {
3860 struct kmem_cache_node *n = get_node(s, node);
3861
3862 if (!n)
3863 continue;
3864
3865 if (atomic_long_read(&n->total_objects))
3866 return 1;
3867 }
3868 return 0;
3869 }
3870
3871 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3872 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3873
3874 struct slab_attribute {
3875 struct attribute attr;
3876 ssize_t (*show)(struct kmem_cache *s, char *buf);
3877 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3878 };
3879
3880 #define SLAB_ATTR_RO(_name) \
3881 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3882
3883 #define SLAB_ATTR(_name) \
3884 static struct slab_attribute _name##_attr = \
3885 __ATTR(_name, 0644, _name##_show, _name##_store)
3886
3887 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3888 {
3889 return sprintf(buf, "%d\n", s->size);
3890 }
3891 SLAB_ATTR_RO(slab_size);
3892
3893 static ssize_t align_show(struct kmem_cache *s, char *buf)
3894 {
3895 return sprintf(buf, "%d\n", s->align);
3896 }
3897 SLAB_ATTR_RO(align);
3898
3899 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3900 {
3901 return sprintf(buf, "%d\n", s->objsize);
3902 }
3903 SLAB_ATTR_RO(object_size);
3904
3905 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3906 {
3907 return sprintf(buf, "%d\n", oo_objects(s->oo));
3908 }
3909 SLAB_ATTR_RO(objs_per_slab);
3910
3911 static ssize_t order_store(struct kmem_cache *s,
3912 const char *buf, size_t length)
3913 {
3914 unsigned long order;
3915 int err;
3916
3917 err = strict_strtoul(buf, 10, &order);
3918 if (err)
3919 return err;
3920
3921 if (order > slub_max_order || order < slub_min_order)
3922 return -EINVAL;
3923
3924 calculate_sizes(s, order);
3925 return length;
3926 }
3927
3928 static ssize_t order_show(struct kmem_cache *s, char *buf)
3929 {
3930 return sprintf(buf, "%d\n", oo_order(s->oo));
3931 }
3932 SLAB_ATTR(order);
3933
3934 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3935 {
3936 return sprintf(buf, "%lu\n", s->min_partial);
3937 }
3938
3939 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3940 size_t length)
3941 {
3942 unsigned long min;
3943 int err;
3944
3945 err = strict_strtoul(buf, 10, &min);
3946 if (err)
3947 return err;
3948
3949 set_min_partial(s, min);
3950 return length;
3951 }
3952 SLAB_ATTR(min_partial);
3953
3954 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3955 {
3956 if (s->ctor) {
3957 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3958
3959 return n + sprintf(buf + n, "\n");
3960 }
3961 return 0;
3962 }
3963 SLAB_ATTR_RO(ctor);
3964
3965 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3966 {
3967 return sprintf(buf, "%d\n", s->refcount - 1);
3968 }
3969 SLAB_ATTR_RO(aliases);
3970
3971 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3972 {
3973 return show_slab_objects(s, buf, SO_ALL);
3974 }
3975 SLAB_ATTR_RO(slabs);
3976
3977 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3978 {
3979 return show_slab_objects(s, buf, SO_PARTIAL);
3980 }
3981 SLAB_ATTR_RO(partial);
3982
3983 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3984 {
3985 return show_slab_objects(s, buf, SO_CPU);
3986 }
3987 SLAB_ATTR_RO(cpu_slabs);
3988
3989 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3990 {
3991 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3992 }
3993 SLAB_ATTR_RO(objects);
3994
3995 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3996 {
3997 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3998 }
3999 SLAB_ATTR_RO(objects_partial);
4000
4001 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4002 {
4003 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4004 }
4005 SLAB_ATTR_RO(total_objects);
4006
4007 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4008 {
4009 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4010 }
4011
4012 static ssize_t sanity_checks_store(struct kmem_cache *s,
4013 const char *buf, size_t length)
4014 {
4015 s->flags &= ~SLAB_DEBUG_FREE;
4016 if (buf[0] == '1')
4017 s->flags |= SLAB_DEBUG_FREE;
4018 return length;
4019 }
4020 SLAB_ATTR(sanity_checks);
4021
4022 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4023 {
4024 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4025 }
4026
4027 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4028 size_t length)
4029 {
4030 s->flags &= ~SLAB_TRACE;
4031 if (buf[0] == '1')
4032 s->flags |= SLAB_TRACE;
4033 return length;
4034 }
4035 SLAB_ATTR(trace);
4036
4037 #ifdef CONFIG_FAILSLAB
4038 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4039 {
4040 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4041 }
4042
4043 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4044 size_t length)
4045 {
4046 s->flags &= ~SLAB_FAILSLAB;
4047 if (buf[0] == '1')
4048 s->flags |= SLAB_FAILSLAB;
4049 return length;
4050 }
4051 SLAB_ATTR(failslab);
4052 #endif
4053
4054 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4055 {
4056 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4057 }
4058
4059 static ssize_t reclaim_account_store(struct kmem_cache *s,
4060 const char *buf, size_t length)
4061 {
4062 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4063 if (buf[0] == '1')
4064 s->flags |= SLAB_RECLAIM_ACCOUNT;
4065 return length;
4066 }
4067 SLAB_ATTR(reclaim_account);
4068
4069 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4070 {
4071 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4072 }
4073 SLAB_ATTR_RO(hwcache_align);
4074
4075 #ifdef CONFIG_ZONE_DMA
4076 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4077 {
4078 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4079 }
4080 SLAB_ATTR_RO(cache_dma);
4081 #endif
4082
4083 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4084 {
4085 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4086 }
4087 SLAB_ATTR_RO(destroy_by_rcu);
4088
4089 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4090 {
4091 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4092 }
4093
4094 static ssize_t red_zone_store(struct kmem_cache *s,
4095 const char *buf, size_t length)
4096 {
4097 if (any_slab_objects(s))
4098 return -EBUSY;
4099
4100 s->flags &= ~SLAB_RED_ZONE;
4101 if (buf[0] == '1')
4102 s->flags |= SLAB_RED_ZONE;
4103 calculate_sizes(s, -1);
4104 return length;
4105 }
4106 SLAB_ATTR(red_zone);
4107
4108 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4109 {
4110 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4111 }
4112
4113 static ssize_t poison_store(struct kmem_cache *s,
4114 const char *buf, size_t length)
4115 {
4116 if (any_slab_objects(s))
4117 return -EBUSY;
4118
4119 s->flags &= ~SLAB_POISON;
4120 if (buf[0] == '1')
4121 s->flags |= SLAB_POISON;
4122 calculate_sizes(s, -1);
4123 return length;
4124 }
4125 SLAB_ATTR(poison);
4126
4127 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4128 {
4129 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4130 }
4131
4132 static ssize_t store_user_store(struct kmem_cache *s,
4133 const char *buf, size_t length)
4134 {
4135 if (any_slab_objects(s))
4136 return -EBUSY;
4137
4138 s->flags &= ~SLAB_STORE_USER;
4139 if (buf[0] == '1')
4140 s->flags |= SLAB_STORE_USER;
4141 calculate_sizes(s, -1);
4142 return length;
4143 }
4144 SLAB_ATTR(store_user);
4145
4146 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4147 {
4148 return 0;
4149 }
4150
4151 static ssize_t validate_store(struct kmem_cache *s,
4152 const char *buf, size_t length)
4153 {
4154 int ret = -EINVAL;
4155
4156 if (buf[0] == '1') {
4157 ret = validate_slab_cache(s);
4158 if (ret >= 0)
4159 ret = length;
4160 }
4161 return ret;
4162 }
4163 SLAB_ATTR(validate);
4164
4165 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4166 {
4167 return 0;
4168 }
4169
4170 static ssize_t shrink_store(struct kmem_cache *s,
4171 const char *buf, size_t length)
4172 {
4173 if (buf[0] == '1') {
4174 int rc = kmem_cache_shrink(s);
4175
4176 if (rc)
4177 return rc;
4178 } else
4179 return -EINVAL;
4180 return length;
4181 }
4182 SLAB_ATTR(shrink);
4183
4184 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4185 {
4186 if (!(s->flags & SLAB_STORE_USER))
4187 return -ENOSYS;
4188 return list_locations(s, buf, TRACK_ALLOC);
4189 }
4190 SLAB_ATTR_RO(alloc_calls);
4191
4192 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4193 {
4194 if (!(s->flags & SLAB_STORE_USER))
4195 return -ENOSYS;
4196 return list_locations(s, buf, TRACK_FREE);
4197 }
4198 SLAB_ATTR_RO(free_calls);
4199
4200 #ifdef CONFIG_NUMA
4201 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4202 {
4203 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4204 }
4205
4206 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4207 const char *buf, size_t length)
4208 {
4209 unsigned long ratio;
4210 int err;
4211
4212 err = strict_strtoul(buf, 10, &ratio);
4213 if (err)
4214 return err;
4215
4216 if (ratio <= 100)
4217 s->remote_node_defrag_ratio = ratio * 10;
4218
4219 return length;
4220 }
4221 SLAB_ATTR(remote_node_defrag_ratio);
4222 #endif
4223
4224 #ifdef CONFIG_SLUB_STATS
4225 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4226 {
4227 unsigned long sum = 0;
4228 int cpu;
4229 int len;
4230 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4231
4232 if (!data)
4233 return -ENOMEM;
4234
4235 for_each_online_cpu(cpu) {
4236 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4237
4238 data[cpu] = x;
4239 sum += x;
4240 }
4241
4242 len = sprintf(buf, "%lu", sum);
4243
4244 #ifdef CONFIG_SMP
4245 for_each_online_cpu(cpu) {
4246 if (data[cpu] && len < PAGE_SIZE - 20)
4247 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4248 }
4249 #endif
4250 kfree(data);
4251 return len + sprintf(buf + len, "\n");
4252 }
4253
4254 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4255 {
4256 int cpu;
4257
4258 for_each_online_cpu(cpu)
4259 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4260 }
4261
4262 #define STAT_ATTR(si, text) \
4263 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4264 { \
4265 return show_stat(s, buf, si); \
4266 } \
4267 static ssize_t text##_store(struct kmem_cache *s, \
4268 const char *buf, size_t length) \
4269 { \
4270 if (buf[0] != '0') \
4271 return -EINVAL; \
4272 clear_stat(s, si); \
4273 return length; \
4274 } \
4275 SLAB_ATTR(text); \
4276
4277 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4278 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4279 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4280 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4281 STAT_ATTR(FREE_FROZEN, free_frozen);
4282 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4283 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4284 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4285 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4286 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4287 STAT_ATTR(FREE_SLAB, free_slab);
4288 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4289 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4290 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4291 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4292 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4293 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4294 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4295 #endif
4296
4297 static struct attribute *slab_attrs[] = {
4298 &slab_size_attr.attr,
4299 &object_size_attr.attr,
4300 &objs_per_slab_attr.attr,
4301 &order_attr.attr,
4302 &min_partial_attr.attr,
4303 &objects_attr.attr,
4304 &objects_partial_attr.attr,
4305 &total_objects_attr.attr,
4306 &slabs_attr.attr,
4307 &partial_attr.attr,
4308 &cpu_slabs_attr.attr,
4309 &ctor_attr.attr,
4310 &aliases_attr.attr,
4311 &align_attr.attr,
4312 &sanity_checks_attr.attr,
4313 &trace_attr.attr,
4314 &hwcache_align_attr.attr,
4315 &reclaim_account_attr.attr,
4316 &destroy_by_rcu_attr.attr,
4317 &red_zone_attr.attr,
4318 &poison_attr.attr,
4319 &store_user_attr.attr,
4320 &validate_attr.attr,
4321 &shrink_attr.attr,
4322 &alloc_calls_attr.attr,
4323 &free_calls_attr.attr,
4324 #ifdef CONFIG_ZONE_DMA
4325 &cache_dma_attr.attr,
4326 #endif
4327 #ifdef CONFIG_NUMA
4328 &remote_node_defrag_ratio_attr.attr,
4329 #endif
4330 #ifdef CONFIG_SLUB_STATS
4331 &alloc_fastpath_attr.attr,
4332 &alloc_slowpath_attr.attr,
4333 &free_fastpath_attr.attr,
4334 &free_slowpath_attr.attr,
4335 &free_frozen_attr.attr,
4336 &free_add_partial_attr.attr,
4337 &free_remove_partial_attr.attr,
4338 &alloc_from_partial_attr.attr,
4339 &alloc_slab_attr.attr,
4340 &alloc_refill_attr.attr,
4341 &free_slab_attr.attr,
4342 &cpuslab_flush_attr.attr,
4343 &deactivate_full_attr.attr,
4344 &deactivate_empty_attr.attr,
4345 &deactivate_to_head_attr.attr,
4346 &deactivate_to_tail_attr.attr,
4347 &deactivate_remote_frees_attr.attr,
4348 &order_fallback_attr.attr,
4349 #endif
4350 #ifdef CONFIG_FAILSLAB
4351 &failslab_attr.attr,
4352 #endif
4353
4354 NULL
4355 };
4356
4357 static struct attribute_group slab_attr_group = {
4358 .attrs = slab_attrs,
4359 };
4360
4361 static ssize_t slab_attr_show(struct kobject *kobj,
4362 struct attribute *attr,
4363 char *buf)
4364 {
4365 struct slab_attribute *attribute;
4366 struct kmem_cache *s;
4367 int err;
4368
4369 attribute = to_slab_attr(attr);
4370 s = to_slab(kobj);
4371
4372 if (!attribute->show)
4373 return -EIO;
4374
4375 err = attribute->show(s, buf);
4376
4377 return err;
4378 }
4379
4380 static ssize_t slab_attr_store(struct kobject *kobj,
4381 struct attribute *attr,
4382 const char *buf, size_t len)
4383 {
4384 struct slab_attribute *attribute;
4385 struct kmem_cache *s;
4386 int err;
4387
4388 attribute = to_slab_attr(attr);
4389 s = to_slab(kobj);
4390
4391 if (!attribute->store)
4392 return -EIO;
4393
4394 err = attribute->store(s, buf, len);
4395
4396 return err;
4397 }
4398
4399 static void kmem_cache_release(struct kobject *kobj)
4400 {
4401 struct kmem_cache *s = to_slab(kobj);
4402
4403 kfree(s);
4404 }
4405
4406 static const struct sysfs_ops slab_sysfs_ops = {
4407 .show = slab_attr_show,
4408 .store = slab_attr_store,
4409 };
4410
4411 static struct kobj_type slab_ktype = {
4412 .sysfs_ops = &slab_sysfs_ops,
4413 .release = kmem_cache_release
4414 };
4415
4416 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4417 {
4418 struct kobj_type *ktype = get_ktype(kobj);
4419
4420 if (ktype == &slab_ktype)
4421 return 1;
4422 return 0;
4423 }
4424
4425 static const struct kset_uevent_ops slab_uevent_ops = {
4426 .filter = uevent_filter,
4427 };
4428
4429 static struct kset *slab_kset;
4430
4431 #define ID_STR_LENGTH 64
4432
4433 /* Create a unique string id for a slab cache:
4434 *
4435 * Format :[flags-]size
4436 */
4437 static char *create_unique_id(struct kmem_cache *s)
4438 {
4439 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4440 char *p = name;
4441
4442 BUG_ON(!name);
4443
4444 *p++ = ':';
4445 /*
4446 * First flags affecting slabcache operations. We will only
4447 * get here for aliasable slabs so we do not need to support
4448 * too many flags. The flags here must cover all flags that
4449 * are matched during merging to guarantee that the id is
4450 * unique.
4451 */
4452 if (s->flags & SLAB_CACHE_DMA)
4453 *p++ = 'd';
4454 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4455 *p++ = 'a';
4456 if (s->flags & SLAB_DEBUG_FREE)
4457 *p++ = 'F';
4458 if (!(s->flags & SLAB_NOTRACK))
4459 *p++ = 't';
4460 if (p != name + 1)
4461 *p++ = '-';
4462 p += sprintf(p, "%07d", s->size);
4463 BUG_ON(p > name + ID_STR_LENGTH - 1);
4464 return name;
4465 }
4466
4467 static int sysfs_slab_add(struct kmem_cache *s)
4468 {
4469 int err;
4470 const char *name;
4471 int unmergeable;
4472
4473 if (slab_state < SYSFS)
4474 /* Defer until later */
4475 return 0;
4476
4477 unmergeable = slab_unmergeable(s);
4478 if (unmergeable) {
4479 /*
4480 * Slabcache can never be merged so we can use the name proper.
4481 * This is typically the case for debug situations. In that
4482 * case we can catch duplicate names easily.
4483 */
4484 sysfs_remove_link(&slab_kset->kobj, s->name);
4485 name = s->name;
4486 } else {
4487 /*
4488 * Create a unique name for the slab as a target
4489 * for the symlinks.
4490 */
4491 name = create_unique_id(s);
4492 }
4493
4494 s->kobj.kset = slab_kset;
4495 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4496 if (err) {
4497 kobject_put(&s->kobj);
4498 return err;
4499 }
4500
4501 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4502 if (err) {
4503 kobject_del(&s->kobj);
4504 kobject_put(&s->kobj);
4505 return err;
4506 }
4507 kobject_uevent(&s->kobj, KOBJ_ADD);
4508 if (!unmergeable) {
4509 /* Setup first alias */
4510 sysfs_slab_alias(s, s->name);
4511 kfree(name);
4512 }
4513 return 0;
4514 }
4515
4516 static void sysfs_slab_remove(struct kmem_cache *s)
4517 {
4518 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4519 kobject_del(&s->kobj);
4520 kobject_put(&s->kobj);
4521 }
4522
4523 /*
4524 * Need to buffer aliases during bootup until sysfs becomes
4525 * available lest we lose that information.
4526 */
4527 struct saved_alias {
4528 struct kmem_cache *s;
4529 const char *name;
4530 struct saved_alias *next;
4531 };
4532
4533 static struct saved_alias *alias_list;
4534
4535 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4536 {
4537 struct saved_alias *al;
4538
4539 if (slab_state == SYSFS) {
4540 /*
4541 * If we have a leftover link then remove it.
4542 */
4543 sysfs_remove_link(&slab_kset->kobj, name);
4544 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4545 }
4546
4547 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4548 if (!al)
4549 return -ENOMEM;
4550
4551 al->s = s;
4552 al->name = name;
4553 al->next = alias_list;
4554 alias_list = al;
4555 return 0;
4556 }
4557
4558 static int __init slab_sysfs_init(void)
4559 {
4560 struct kmem_cache *s;
4561 int err;
4562
4563 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4564 if (!slab_kset) {
4565 printk(KERN_ERR "Cannot register slab subsystem.\n");
4566 return -ENOSYS;
4567 }
4568
4569 slab_state = SYSFS;
4570
4571 list_for_each_entry(s, &slab_caches, list) {
4572 err = sysfs_slab_add(s);
4573 if (err)
4574 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4575 " to sysfs\n", s->name);
4576 }
4577
4578 while (alias_list) {
4579 struct saved_alias *al = alias_list;
4580
4581 alias_list = alias_list->next;
4582 err = sysfs_slab_alias(al->s, al->name);
4583 if (err)
4584 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4585 " %s to sysfs\n", s->name);
4586 kfree(al);
4587 }
4588
4589 resiliency_test();
4590 return 0;
4591 }
4592
4593 __initcall(slab_sysfs_init);
4594 #endif
4595
4596 /*
4597 * The /proc/slabinfo ABI
4598 */
4599 #ifdef CONFIG_SLABINFO
4600 static void print_slabinfo_header(struct seq_file *m)
4601 {
4602 seq_puts(m, "slabinfo - version: 2.1\n");
4603 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4604 "<objperslab> <pagesperslab>");
4605 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4606 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4607 seq_putc(m, '\n');
4608 }
4609
4610 static void *s_start(struct seq_file *m, loff_t *pos)
4611 {
4612 loff_t n = *pos;
4613
4614 down_read(&slub_lock);
4615 if (!n)
4616 print_slabinfo_header(m);
4617
4618 return seq_list_start(&slab_caches, *pos);
4619 }
4620
4621 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4622 {
4623 return seq_list_next(p, &slab_caches, pos);
4624 }
4625
4626 static void s_stop(struct seq_file *m, void *p)
4627 {
4628 up_read(&slub_lock);
4629 }
4630
4631 static int s_show(struct seq_file *m, void *p)
4632 {
4633 unsigned long nr_partials = 0;
4634 unsigned long nr_slabs = 0;
4635 unsigned long nr_inuse = 0;
4636 unsigned long nr_objs = 0;
4637 unsigned long nr_free = 0;
4638 struct kmem_cache *s;
4639 int node;
4640
4641 s = list_entry(p, struct kmem_cache, list);
4642
4643 for_each_online_node(node) {
4644 struct kmem_cache_node *n = get_node(s, node);
4645
4646 if (!n)
4647 continue;
4648
4649 nr_partials += n->nr_partial;
4650 nr_slabs += atomic_long_read(&n->nr_slabs);
4651 nr_objs += atomic_long_read(&n->total_objects);
4652 nr_free += count_partial(n, count_free);
4653 }
4654
4655 nr_inuse = nr_objs - nr_free;
4656
4657 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4658 nr_objs, s->size, oo_objects(s->oo),
4659 (1 << oo_order(s->oo)));
4660 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4661 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4662 0UL);
4663 seq_putc(m, '\n');
4664 return 0;
4665 }
4666
4667 static const struct seq_operations slabinfo_op = {
4668 .start = s_start,
4669 .next = s_next,
4670 .stop = s_stop,
4671 .show = s_show,
4672 };
4673
4674 static int slabinfo_open(struct inode *inode, struct file *file)
4675 {
4676 return seq_open(file, &slabinfo_op);
4677 }
4678
4679 static const struct file_operations proc_slabinfo_operations = {
4680 .open = slabinfo_open,
4681 .read = seq_read,
4682 .llseek = seq_lseek,
4683 .release = seq_release,
4684 };
4685
4686 static int __init slab_proc_init(void)
4687 {
4688 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4689 return 0;
4690 }
4691 module_init(slab_proc_init);
4692 #endif /* CONFIG_SLABINFO */