]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/slub.c
kernel: kmem_ptr_validate considered harmful
[mirror_ubuntu-bionic-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 */
10
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
30
31 /*
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
35 *
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
42 *
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
48 *
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
54 *
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
67 *
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
72 *
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
75 *
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
81 *
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
85 *
86 * Overloading of page flags that are otherwise used for LRU management.
87 *
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
96 *
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
103 *
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
107 */
108
109 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
111
112 static inline int kmem_cache_debug(struct kmem_cache *s)
113 {
114 #ifdef CONFIG_SLUB_DEBUG
115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
116 #else
117 return 0;
118 #endif
119 }
120
121 /*
122 * Issues still to be resolved:
123 *
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
125 *
126 * - Variable sizing of the per node arrays
127 */
128
129 /* Enable to test recovery from slab corruption on boot */
130 #undef SLUB_RESILIENCY_TEST
131
132 /*
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
135 */
136 #define MIN_PARTIAL 5
137
138 /*
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
142 */
143 #define MAX_PARTIAL 10
144
145 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
147
148 /*
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
152 */
153 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
154
155 /*
156 * Set of flags that will prevent slab merging
157 */
158 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
161
162 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163 SLAB_CACHE_DMA | SLAB_NOTRACK)
164
165 #define OO_SHIFT 16
166 #define OO_MASK ((1 << OO_SHIFT) - 1)
167 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
168
169 /* Internal SLUB flags */
170 #define __OBJECT_POISON 0x80000000UL /* Poison object */
171
172 static int kmem_size = sizeof(struct kmem_cache);
173
174 #ifdef CONFIG_SMP
175 static struct notifier_block slab_notifier;
176 #endif
177
178 static enum {
179 DOWN, /* No slab functionality available */
180 PARTIAL, /* Kmem_cache_node works */
181 UP, /* Everything works but does not show up in sysfs */
182 SYSFS /* Sysfs up */
183 } slab_state = DOWN;
184
185 /* A list of all slab caches on the system */
186 static DECLARE_RWSEM(slub_lock);
187 static LIST_HEAD(slab_caches);
188
189 /*
190 * Tracking user of a slab.
191 */
192 struct track {
193 unsigned long addr; /* Called from address */
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void sysfs_slab_remove(struct kmem_cache *);
205
206 #else
207 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
210 static inline void sysfs_slab_remove(struct kmem_cache *s)
211 {
212 kfree(s->name);
213 kfree(s);
214 }
215
216 #endif
217
218 static inline void stat(struct kmem_cache *s, enum stat_item si)
219 {
220 #ifdef CONFIG_SLUB_STATS
221 __this_cpu_inc(s->cpu_slab->stat[si]);
222 #endif
223 }
224
225 /********************************************************************
226 * Core slab cache functions
227 *******************************************************************/
228
229 int slab_is_available(void)
230 {
231 return slab_state >= UP;
232 }
233
234 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
235 {
236 return s->node[node];
237 }
238
239 /* Verify that a pointer has an address that is valid within a slab page */
240 static inline int check_valid_pointer(struct kmem_cache *s,
241 struct page *page, const void *object)
242 {
243 void *base;
244
245 if (!object)
246 return 1;
247
248 base = page_address(page);
249 if (object < base || object >= base + page->objects * s->size ||
250 (object - base) % s->size) {
251 return 0;
252 }
253
254 return 1;
255 }
256
257 static inline void *get_freepointer(struct kmem_cache *s, void *object)
258 {
259 return *(void **)(object + s->offset);
260 }
261
262 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263 {
264 *(void **)(object + s->offset) = fp;
265 }
266
267 /* Loop over all objects in a slab */
268 #define for_each_object(__p, __s, __addr, __objects) \
269 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
270 __p += (__s)->size)
271
272 /* Scan freelist */
273 #define for_each_free_object(__p, __s, __free) \
274 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
275
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278 {
279 return (p - addr) / s->size;
280 }
281
282 static inline struct kmem_cache_order_objects oo_make(int order,
283 unsigned long size)
284 {
285 struct kmem_cache_order_objects x = {
286 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
287 };
288
289 return x;
290 }
291
292 static inline int oo_order(struct kmem_cache_order_objects x)
293 {
294 return x.x >> OO_SHIFT;
295 }
296
297 static inline int oo_objects(struct kmem_cache_order_objects x)
298 {
299 return x.x & OO_MASK;
300 }
301
302 #ifdef CONFIG_SLUB_DEBUG
303 /*
304 * Debug settings:
305 */
306 #ifdef CONFIG_SLUB_DEBUG_ON
307 static int slub_debug = DEBUG_DEFAULT_FLAGS;
308 #else
309 static int slub_debug;
310 #endif
311
312 static char *slub_debug_slabs;
313 static int disable_higher_order_debug;
314
315 /*
316 * Object debugging
317 */
318 static void print_section(char *text, u8 *addr, unsigned int length)
319 {
320 int i, offset;
321 int newline = 1;
322 char ascii[17];
323
324 ascii[16] = 0;
325
326 for (i = 0; i < length; i++) {
327 if (newline) {
328 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
329 newline = 0;
330 }
331 printk(KERN_CONT " %02x", addr[i]);
332 offset = i % 16;
333 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334 if (offset == 15) {
335 printk(KERN_CONT " %s\n", ascii);
336 newline = 1;
337 }
338 }
339 if (!newline) {
340 i %= 16;
341 while (i < 16) {
342 printk(KERN_CONT " ");
343 ascii[i] = ' ';
344 i++;
345 }
346 printk(KERN_CONT " %s\n", ascii);
347 }
348 }
349
350 static struct track *get_track(struct kmem_cache *s, void *object,
351 enum track_item alloc)
352 {
353 struct track *p;
354
355 if (s->offset)
356 p = object + s->offset + sizeof(void *);
357 else
358 p = object + s->inuse;
359
360 return p + alloc;
361 }
362
363 static void set_track(struct kmem_cache *s, void *object,
364 enum track_item alloc, unsigned long addr)
365 {
366 struct track *p = get_track(s, object, alloc);
367
368 if (addr) {
369 p->addr = addr;
370 p->cpu = smp_processor_id();
371 p->pid = current->pid;
372 p->when = jiffies;
373 } else
374 memset(p, 0, sizeof(struct track));
375 }
376
377 static void init_tracking(struct kmem_cache *s, void *object)
378 {
379 if (!(s->flags & SLAB_STORE_USER))
380 return;
381
382 set_track(s, object, TRACK_FREE, 0UL);
383 set_track(s, object, TRACK_ALLOC, 0UL);
384 }
385
386 static void print_track(const char *s, struct track *t)
387 {
388 if (!t->addr)
389 return;
390
391 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
392 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
393 }
394
395 static void print_tracking(struct kmem_cache *s, void *object)
396 {
397 if (!(s->flags & SLAB_STORE_USER))
398 return;
399
400 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
401 print_track("Freed", get_track(s, object, TRACK_FREE));
402 }
403
404 static void print_page_info(struct page *page)
405 {
406 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
407 page, page->objects, page->inuse, page->freelist, page->flags);
408
409 }
410
411 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
412 {
413 va_list args;
414 char buf[100];
415
416 va_start(args, fmt);
417 vsnprintf(buf, sizeof(buf), fmt, args);
418 va_end(args);
419 printk(KERN_ERR "========================================"
420 "=====================================\n");
421 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
422 printk(KERN_ERR "----------------------------------------"
423 "-------------------------------------\n\n");
424 }
425
426 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
427 {
428 va_list args;
429 char buf[100];
430
431 va_start(args, fmt);
432 vsnprintf(buf, sizeof(buf), fmt, args);
433 va_end(args);
434 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
435 }
436
437 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
438 {
439 unsigned int off; /* Offset of last byte */
440 u8 *addr = page_address(page);
441
442 print_tracking(s, p);
443
444 print_page_info(page);
445
446 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
447 p, p - addr, get_freepointer(s, p));
448
449 if (p > addr + 16)
450 print_section("Bytes b4", p - 16, 16);
451
452 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
453
454 if (s->flags & SLAB_RED_ZONE)
455 print_section("Redzone", p + s->objsize,
456 s->inuse - s->objsize);
457
458 if (s->offset)
459 off = s->offset + sizeof(void *);
460 else
461 off = s->inuse;
462
463 if (s->flags & SLAB_STORE_USER)
464 off += 2 * sizeof(struct track);
465
466 if (off != s->size)
467 /* Beginning of the filler is the free pointer */
468 print_section("Padding", p + off, s->size - off);
469
470 dump_stack();
471 }
472
473 static void object_err(struct kmem_cache *s, struct page *page,
474 u8 *object, char *reason)
475 {
476 slab_bug(s, "%s", reason);
477 print_trailer(s, page, object);
478 }
479
480 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
481 {
482 va_list args;
483 char buf[100];
484
485 va_start(args, fmt);
486 vsnprintf(buf, sizeof(buf), fmt, args);
487 va_end(args);
488 slab_bug(s, "%s", buf);
489 print_page_info(page);
490 dump_stack();
491 }
492
493 static void init_object(struct kmem_cache *s, void *object, u8 val)
494 {
495 u8 *p = object;
496
497 if (s->flags & __OBJECT_POISON) {
498 memset(p, POISON_FREE, s->objsize - 1);
499 p[s->objsize - 1] = POISON_END;
500 }
501
502 if (s->flags & SLAB_RED_ZONE)
503 memset(p + s->objsize, val, s->inuse - s->objsize);
504 }
505
506 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
507 {
508 while (bytes) {
509 if (*start != (u8)value)
510 return start;
511 start++;
512 bytes--;
513 }
514 return NULL;
515 }
516
517 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
518 void *from, void *to)
519 {
520 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
521 memset(from, data, to - from);
522 }
523
524 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
525 u8 *object, char *what,
526 u8 *start, unsigned int value, unsigned int bytes)
527 {
528 u8 *fault;
529 u8 *end;
530
531 fault = check_bytes(start, value, bytes);
532 if (!fault)
533 return 1;
534
535 end = start + bytes;
536 while (end > fault && end[-1] == value)
537 end--;
538
539 slab_bug(s, "%s overwritten", what);
540 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
541 fault, end - 1, fault[0], value);
542 print_trailer(s, page, object);
543
544 restore_bytes(s, what, value, fault, end);
545 return 0;
546 }
547
548 /*
549 * Object layout:
550 *
551 * object address
552 * Bytes of the object to be managed.
553 * If the freepointer may overlay the object then the free
554 * pointer is the first word of the object.
555 *
556 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
557 * 0xa5 (POISON_END)
558 *
559 * object + s->objsize
560 * Padding to reach word boundary. This is also used for Redzoning.
561 * Padding is extended by another word if Redzoning is enabled and
562 * objsize == inuse.
563 *
564 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
565 * 0xcc (RED_ACTIVE) for objects in use.
566 *
567 * object + s->inuse
568 * Meta data starts here.
569 *
570 * A. Free pointer (if we cannot overwrite object on free)
571 * B. Tracking data for SLAB_STORE_USER
572 * C. Padding to reach required alignment boundary or at mininum
573 * one word if debugging is on to be able to detect writes
574 * before the word boundary.
575 *
576 * Padding is done using 0x5a (POISON_INUSE)
577 *
578 * object + s->size
579 * Nothing is used beyond s->size.
580 *
581 * If slabcaches are merged then the objsize and inuse boundaries are mostly
582 * ignored. And therefore no slab options that rely on these boundaries
583 * may be used with merged slabcaches.
584 */
585
586 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
587 {
588 unsigned long off = s->inuse; /* The end of info */
589
590 if (s->offset)
591 /* Freepointer is placed after the object. */
592 off += sizeof(void *);
593
594 if (s->flags & SLAB_STORE_USER)
595 /* We also have user information there */
596 off += 2 * sizeof(struct track);
597
598 if (s->size == off)
599 return 1;
600
601 return check_bytes_and_report(s, page, p, "Object padding",
602 p + off, POISON_INUSE, s->size - off);
603 }
604
605 /* Check the pad bytes at the end of a slab page */
606 static int slab_pad_check(struct kmem_cache *s, struct page *page)
607 {
608 u8 *start;
609 u8 *fault;
610 u8 *end;
611 int length;
612 int remainder;
613
614 if (!(s->flags & SLAB_POISON))
615 return 1;
616
617 start = page_address(page);
618 length = (PAGE_SIZE << compound_order(page));
619 end = start + length;
620 remainder = length % s->size;
621 if (!remainder)
622 return 1;
623
624 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
625 if (!fault)
626 return 1;
627 while (end > fault && end[-1] == POISON_INUSE)
628 end--;
629
630 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
631 print_section("Padding", end - remainder, remainder);
632
633 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
634 return 0;
635 }
636
637 static int check_object(struct kmem_cache *s, struct page *page,
638 void *object, u8 val)
639 {
640 u8 *p = object;
641 u8 *endobject = object + s->objsize;
642
643 if (s->flags & SLAB_RED_ZONE) {
644 if (!check_bytes_and_report(s, page, object, "Redzone",
645 endobject, val, s->inuse - s->objsize))
646 return 0;
647 } else {
648 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
649 check_bytes_and_report(s, page, p, "Alignment padding",
650 endobject, POISON_INUSE, s->inuse - s->objsize);
651 }
652 }
653
654 if (s->flags & SLAB_POISON) {
655 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
656 (!check_bytes_and_report(s, page, p, "Poison", p,
657 POISON_FREE, s->objsize - 1) ||
658 !check_bytes_and_report(s, page, p, "Poison",
659 p + s->objsize - 1, POISON_END, 1)))
660 return 0;
661 /*
662 * check_pad_bytes cleans up on its own.
663 */
664 check_pad_bytes(s, page, p);
665 }
666
667 if (!s->offset && val == SLUB_RED_ACTIVE)
668 /*
669 * Object and freepointer overlap. Cannot check
670 * freepointer while object is allocated.
671 */
672 return 1;
673
674 /* Check free pointer validity */
675 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
676 object_err(s, page, p, "Freepointer corrupt");
677 /*
678 * No choice but to zap it and thus lose the remainder
679 * of the free objects in this slab. May cause
680 * another error because the object count is now wrong.
681 */
682 set_freepointer(s, p, NULL);
683 return 0;
684 }
685 return 1;
686 }
687
688 static int check_slab(struct kmem_cache *s, struct page *page)
689 {
690 int maxobj;
691
692 VM_BUG_ON(!irqs_disabled());
693
694 if (!PageSlab(page)) {
695 slab_err(s, page, "Not a valid slab page");
696 return 0;
697 }
698
699 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
700 if (page->objects > maxobj) {
701 slab_err(s, page, "objects %u > max %u",
702 s->name, page->objects, maxobj);
703 return 0;
704 }
705 if (page->inuse > page->objects) {
706 slab_err(s, page, "inuse %u > max %u",
707 s->name, page->inuse, page->objects);
708 return 0;
709 }
710 /* Slab_pad_check fixes things up after itself */
711 slab_pad_check(s, page);
712 return 1;
713 }
714
715 /*
716 * Determine if a certain object on a page is on the freelist. Must hold the
717 * slab lock to guarantee that the chains are in a consistent state.
718 */
719 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
720 {
721 int nr = 0;
722 void *fp = page->freelist;
723 void *object = NULL;
724 unsigned long max_objects;
725
726 while (fp && nr <= page->objects) {
727 if (fp == search)
728 return 1;
729 if (!check_valid_pointer(s, page, fp)) {
730 if (object) {
731 object_err(s, page, object,
732 "Freechain corrupt");
733 set_freepointer(s, object, NULL);
734 break;
735 } else {
736 slab_err(s, page, "Freepointer corrupt");
737 page->freelist = NULL;
738 page->inuse = page->objects;
739 slab_fix(s, "Freelist cleared");
740 return 0;
741 }
742 break;
743 }
744 object = fp;
745 fp = get_freepointer(s, object);
746 nr++;
747 }
748
749 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
750 if (max_objects > MAX_OBJS_PER_PAGE)
751 max_objects = MAX_OBJS_PER_PAGE;
752
753 if (page->objects != max_objects) {
754 slab_err(s, page, "Wrong number of objects. Found %d but "
755 "should be %d", page->objects, max_objects);
756 page->objects = max_objects;
757 slab_fix(s, "Number of objects adjusted.");
758 }
759 if (page->inuse != page->objects - nr) {
760 slab_err(s, page, "Wrong object count. Counter is %d but "
761 "counted were %d", page->inuse, page->objects - nr);
762 page->inuse = page->objects - nr;
763 slab_fix(s, "Object count adjusted.");
764 }
765 return search == NULL;
766 }
767
768 static void trace(struct kmem_cache *s, struct page *page, void *object,
769 int alloc)
770 {
771 if (s->flags & SLAB_TRACE) {
772 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
773 s->name,
774 alloc ? "alloc" : "free",
775 object, page->inuse,
776 page->freelist);
777
778 if (!alloc)
779 print_section("Object", (void *)object, s->objsize);
780
781 dump_stack();
782 }
783 }
784
785 /*
786 * Hooks for other subsystems that check memory allocations. In a typical
787 * production configuration these hooks all should produce no code at all.
788 */
789 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
790 {
791 flags &= gfp_allowed_mask;
792 lockdep_trace_alloc(flags);
793 might_sleep_if(flags & __GFP_WAIT);
794
795 return should_failslab(s->objsize, flags, s->flags);
796 }
797
798 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
799 {
800 flags &= gfp_allowed_mask;
801 kmemcheck_slab_alloc(s, flags, object, s->objsize);
802 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
803 }
804
805 static inline void slab_free_hook(struct kmem_cache *s, void *x)
806 {
807 kmemleak_free_recursive(x, s->flags);
808 }
809
810 static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
811 {
812 kmemcheck_slab_free(s, object, s->objsize);
813 debug_check_no_locks_freed(object, s->objsize);
814 if (!(s->flags & SLAB_DEBUG_OBJECTS))
815 debug_check_no_obj_freed(object, s->objsize);
816 }
817
818 /*
819 * Tracking of fully allocated slabs for debugging purposes.
820 */
821 static void add_full(struct kmem_cache_node *n, struct page *page)
822 {
823 spin_lock(&n->list_lock);
824 list_add(&page->lru, &n->full);
825 spin_unlock(&n->list_lock);
826 }
827
828 static void remove_full(struct kmem_cache *s, struct page *page)
829 {
830 struct kmem_cache_node *n;
831
832 if (!(s->flags & SLAB_STORE_USER))
833 return;
834
835 n = get_node(s, page_to_nid(page));
836
837 spin_lock(&n->list_lock);
838 list_del(&page->lru);
839 spin_unlock(&n->list_lock);
840 }
841
842 /* Tracking of the number of slabs for debugging purposes */
843 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
844 {
845 struct kmem_cache_node *n = get_node(s, node);
846
847 return atomic_long_read(&n->nr_slabs);
848 }
849
850 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
851 {
852 return atomic_long_read(&n->nr_slabs);
853 }
854
855 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
856 {
857 struct kmem_cache_node *n = get_node(s, node);
858
859 /*
860 * May be called early in order to allocate a slab for the
861 * kmem_cache_node structure. Solve the chicken-egg
862 * dilemma by deferring the increment of the count during
863 * bootstrap (see early_kmem_cache_node_alloc).
864 */
865 if (n) {
866 atomic_long_inc(&n->nr_slabs);
867 atomic_long_add(objects, &n->total_objects);
868 }
869 }
870 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
871 {
872 struct kmem_cache_node *n = get_node(s, node);
873
874 atomic_long_dec(&n->nr_slabs);
875 atomic_long_sub(objects, &n->total_objects);
876 }
877
878 /* Object debug checks for alloc/free paths */
879 static void setup_object_debug(struct kmem_cache *s, struct page *page,
880 void *object)
881 {
882 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
883 return;
884
885 init_object(s, object, SLUB_RED_INACTIVE);
886 init_tracking(s, object);
887 }
888
889 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
890 void *object, unsigned long addr)
891 {
892 if (!check_slab(s, page))
893 goto bad;
894
895 if (!on_freelist(s, page, object)) {
896 object_err(s, page, object, "Object already allocated");
897 goto bad;
898 }
899
900 if (!check_valid_pointer(s, page, object)) {
901 object_err(s, page, object, "Freelist Pointer check fails");
902 goto bad;
903 }
904
905 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
906 goto bad;
907
908 /* Success perform special debug activities for allocs */
909 if (s->flags & SLAB_STORE_USER)
910 set_track(s, object, TRACK_ALLOC, addr);
911 trace(s, page, object, 1);
912 init_object(s, object, SLUB_RED_ACTIVE);
913 return 1;
914
915 bad:
916 if (PageSlab(page)) {
917 /*
918 * If this is a slab page then lets do the best we can
919 * to avoid issues in the future. Marking all objects
920 * as used avoids touching the remaining objects.
921 */
922 slab_fix(s, "Marking all objects used");
923 page->inuse = page->objects;
924 page->freelist = NULL;
925 }
926 return 0;
927 }
928
929 static noinline int free_debug_processing(struct kmem_cache *s,
930 struct page *page, void *object, unsigned long addr)
931 {
932 if (!check_slab(s, page))
933 goto fail;
934
935 if (!check_valid_pointer(s, page, object)) {
936 slab_err(s, page, "Invalid object pointer 0x%p", object);
937 goto fail;
938 }
939
940 if (on_freelist(s, page, object)) {
941 object_err(s, page, object, "Object already free");
942 goto fail;
943 }
944
945 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
946 return 0;
947
948 if (unlikely(s != page->slab)) {
949 if (!PageSlab(page)) {
950 slab_err(s, page, "Attempt to free object(0x%p) "
951 "outside of slab", object);
952 } else if (!page->slab) {
953 printk(KERN_ERR
954 "SLUB <none>: no slab for object 0x%p.\n",
955 object);
956 dump_stack();
957 } else
958 object_err(s, page, object,
959 "page slab pointer corrupt.");
960 goto fail;
961 }
962
963 /* Special debug activities for freeing objects */
964 if (!PageSlubFrozen(page) && !page->freelist)
965 remove_full(s, page);
966 if (s->flags & SLAB_STORE_USER)
967 set_track(s, object, TRACK_FREE, addr);
968 trace(s, page, object, 0);
969 init_object(s, object, SLUB_RED_INACTIVE);
970 return 1;
971
972 fail:
973 slab_fix(s, "Object at 0x%p not freed", object);
974 return 0;
975 }
976
977 static int __init setup_slub_debug(char *str)
978 {
979 slub_debug = DEBUG_DEFAULT_FLAGS;
980 if (*str++ != '=' || !*str)
981 /*
982 * No options specified. Switch on full debugging.
983 */
984 goto out;
985
986 if (*str == ',')
987 /*
988 * No options but restriction on slabs. This means full
989 * debugging for slabs matching a pattern.
990 */
991 goto check_slabs;
992
993 if (tolower(*str) == 'o') {
994 /*
995 * Avoid enabling debugging on caches if its minimum order
996 * would increase as a result.
997 */
998 disable_higher_order_debug = 1;
999 goto out;
1000 }
1001
1002 slub_debug = 0;
1003 if (*str == '-')
1004 /*
1005 * Switch off all debugging measures.
1006 */
1007 goto out;
1008
1009 /*
1010 * Determine which debug features should be switched on
1011 */
1012 for (; *str && *str != ','; str++) {
1013 switch (tolower(*str)) {
1014 case 'f':
1015 slub_debug |= SLAB_DEBUG_FREE;
1016 break;
1017 case 'z':
1018 slub_debug |= SLAB_RED_ZONE;
1019 break;
1020 case 'p':
1021 slub_debug |= SLAB_POISON;
1022 break;
1023 case 'u':
1024 slub_debug |= SLAB_STORE_USER;
1025 break;
1026 case 't':
1027 slub_debug |= SLAB_TRACE;
1028 break;
1029 case 'a':
1030 slub_debug |= SLAB_FAILSLAB;
1031 break;
1032 default:
1033 printk(KERN_ERR "slub_debug option '%c' "
1034 "unknown. skipped\n", *str);
1035 }
1036 }
1037
1038 check_slabs:
1039 if (*str == ',')
1040 slub_debug_slabs = str + 1;
1041 out:
1042 return 1;
1043 }
1044
1045 __setup("slub_debug", setup_slub_debug);
1046
1047 static unsigned long kmem_cache_flags(unsigned long objsize,
1048 unsigned long flags, const char *name,
1049 void (*ctor)(void *))
1050 {
1051 /*
1052 * Enable debugging if selected on the kernel commandline.
1053 */
1054 if (slub_debug && (!slub_debug_slabs ||
1055 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1056 flags |= slub_debug;
1057
1058 return flags;
1059 }
1060 #else
1061 static inline void setup_object_debug(struct kmem_cache *s,
1062 struct page *page, void *object) {}
1063
1064 static inline int alloc_debug_processing(struct kmem_cache *s,
1065 struct page *page, void *object, unsigned long addr) { return 0; }
1066
1067 static inline int free_debug_processing(struct kmem_cache *s,
1068 struct page *page, void *object, unsigned long addr) { return 0; }
1069
1070 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1071 { return 1; }
1072 static inline int check_object(struct kmem_cache *s, struct page *page,
1073 void *object, u8 val) { return 1; }
1074 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1075 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1076 unsigned long flags, const char *name,
1077 void (*ctor)(void *))
1078 {
1079 return flags;
1080 }
1081 #define slub_debug 0
1082
1083 #define disable_higher_order_debug 0
1084
1085 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1086 { return 0; }
1087 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1088 { return 0; }
1089 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1090 int objects) {}
1091 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1092 int objects) {}
1093
1094 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1095 { return 0; }
1096
1097 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1098 void *object) {}
1099
1100 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1101
1102 static inline void slab_free_hook_irq(struct kmem_cache *s,
1103 void *object) {}
1104
1105 #endif /* CONFIG_SLUB_DEBUG */
1106
1107 /*
1108 * Slab allocation and freeing
1109 */
1110 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1111 struct kmem_cache_order_objects oo)
1112 {
1113 int order = oo_order(oo);
1114
1115 flags |= __GFP_NOTRACK;
1116
1117 if (node == NUMA_NO_NODE)
1118 return alloc_pages(flags, order);
1119 else
1120 return alloc_pages_exact_node(node, flags, order);
1121 }
1122
1123 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1124 {
1125 struct page *page;
1126 struct kmem_cache_order_objects oo = s->oo;
1127 gfp_t alloc_gfp;
1128
1129 flags |= s->allocflags;
1130
1131 /*
1132 * Let the initial higher-order allocation fail under memory pressure
1133 * so we fall-back to the minimum order allocation.
1134 */
1135 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1136
1137 page = alloc_slab_page(alloc_gfp, node, oo);
1138 if (unlikely(!page)) {
1139 oo = s->min;
1140 /*
1141 * Allocation may have failed due to fragmentation.
1142 * Try a lower order alloc if possible
1143 */
1144 page = alloc_slab_page(flags, node, oo);
1145 if (!page)
1146 return NULL;
1147
1148 stat(s, ORDER_FALLBACK);
1149 }
1150
1151 if (kmemcheck_enabled
1152 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1153 int pages = 1 << oo_order(oo);
1154
1155 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1156
1157 /*
1158 * Objects from caches that have a constructor don't get
1159 * cleared when they're allocated, so we need to do it here.
1160 */
1161 if (s->ctor)
1162 kmemcheck_mark_uninitialized_pages(page, pages);
1163 else
1164 kmemcheck_mark_unallocated_pages(page, pages);
1165 }
1166
1167 page->objects = oo_objects(oo);
1168 mod_zone_page_state(page_zone(page),
1169 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1170 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1171 1 << oo_order(oo));
1172
1173 return page;
1174 }
1175
1176 static void setup_object(struct kmem_cache *s, struct page *page,
1177 void *object)
1178 {
1179 setup_object_debug(s, page, object);
1180 if (unlikely(s->ctor))
1181 s->ctor(object);
1182 }
1183
1184 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1185 {
1186 struct page *page;
1187 void *start;
1188 void *last;
1189 void *p;
1190
1191 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1192
1193 page = allocate_slab(s,
1194 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1195 if (!page)
1196 goto out;
1197
1198 inc_slabs_node(s, page_to_nid(page), page->objects);
1199 page->slab = s;
1200 page->flags |= 1 << PG_slab;
1201
1202 start = page_address(page);
1203
1204 if (unlikely(s->flags & SLAB_POISON))
1205 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1206
1207 last = start;
1208 for_each_object(p, s, start, page->objects) {
1209 setup_object(s, page, last);
1210 set_freepointer(s, last, p);
1211 last = p;
1212 }
1213 setup_object(s, page, last);
1214 set_freepointer(s, last, NULL);
1215
1216 page->freelist = start;
1217 page->inuse = 0;
1218 out:
1219 return page;
1220 }
1221
1222 static void __free_slab(struct kmem_cache *s, struct page *page)
1223 {
1224 int order = compound_order(page);
1225 int pages = 1 << order;
1226
1227 if (kmem_cache_debug(s)) {
1228 void *p;
1229
1230 slab_pad_check(s, page);
1231 for_each_object(p, s, page_address(page),
1232 page->objects)
1233 check_object(s, page, p, SLUB_RED_INACTIVE);
1234 }
1235
1236 kmemcheck_free_shadow(page, compound_order(page));
1237
1238 mod_zone_page_state(page_zone(page),
1239 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1240 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1241 -pages);
1242
1243 __ClearPageSlab(page);
1244 reset_page_mapcount(page);
1245 if (current->reclaim_state)
1246 current->reclaim_state->reclaimed_slab += pages;
1247 __free_pages(page, order);
1248 }
1249
1250 static void rcu_free_slab(struct rcu_head *h)
1251 {
1252 struct page *page;
1253
1254 page = container_of((struct list_head *)h, struct page, lru);
1255 __free_slab(page->slab, page);
1256 }
1257
1258 static void free_slab(struct kmem_cache *s, struct page *page)
1259 {
1260 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1261 /*
1262 * RCU free overloads the RCU head over the LRU
1263 */
1264 struct rcu_head *head = (void *)&page->lru;
1265
1266 call_rcu(head, rcu_free_slab);
1267 } else
1268 __free_slab(s, page);
1269 }
1270
1271 static void discard_slab(struct kmem_cache *s, struct page *page)
1272 {
1273 dec_slabs_node(s, page_to_nid(page), page->objects);
1274 free_slab(s, page);
1275 }
1276
1277 /*
1278 * Per slab locking using the pagelock
1279 */
1280 static __always_inline void slab_lock(struct page *page)
1281 {
1282 bit_spin_lock(PG_locked, &page->flags);
1283 }
1284
1285 static __always_inline void slab_unlock(struct page *page)
1286 {
1287 __bit_spin_unlock(PG_locked, &page->flags);
1288 }
1289
1290 static __always_inline int slab_trylock(struct page *page)
1291 {
1292 int rc = 1;
1293
1294 rc = bit_spin_trylock(PG_locked, &page->flags);
1295 return rc;
1296 }
1297
1298 /*
1299 * Management of partially allocated slabs
1300 */
1301 static void add_partial(struct kmem_cache_node *n,
1302 struct page *page, int tail)
1303 {
1304 spin_lock(&n->list_lock);
1305 n->nr_partial++;
1306 if (tail)
1307 list_add_tail(&page->lru, &n->partial);
1308 else
1309 list_add(&page->lru, &n->partial);
1310 spin_unlock(&n->list_lock);
1311 }
1312
1313 static inline void __remove_partial(struct kmem_cache_node *n,
1314 struct page *page)
1315 {
1316 list_del(&page->lru);
1317 n->nr_partial--;
1318 }
1319
1320 static void remove_partial(struct kmem_cache *s, struct page *page)
1321 {
1322 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1323
1324 spin_lock(&n->list_lock);
1325 __remove_partial(n, page);
1326 spin_unlock(&n->list_lock);
1327 }
1328
1329 /*
1330 * Lock slab and remove from the partial list.
1331 *
1332 * Must hold list_lock.
1333 */
1334 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1335 struct page *page)
1336 {
1337 if (slab_trylock(page)) {
1338 __remove_partial(n, page);
1339 __SetPageSlubFrozen(page);
1340 return 1;
1341 }
1342 return 0;
1343 }
1344
1345 /*
1346 * Try to allocate a partial slab from a specific node.
1347 */
1348 static struct page *get_partial_node(struct kmem_cache_node *n)
1349 {
1350 struct page *page;
1351
1352 /*
1353 * Racy check. If we mistakenly see no partial slabs then we
1354 * just allocate an empty slab. If we mistakenly try to get a
1355 * partial slab and there is none available then get_partials()
1356 * will return NULL.
1357 */
1358 if (!n || !n->nr_partial)
1359 return NULL;
1360
1361 spin_lock(&n->list_lock);
1362 list_for_each_entry(page, &n->partial, lru)
1363 if (lock_and_freeze_slab(n, page))
1364 goto out;
1365 page = NULL;
1366 out:
1367 spin_unlock(&n->list_lock);
1368 return page;
1369 }
1370
1371 /*
1372 * Get a page from somewhere. Search in increasing NUMA distances.
1373 */
1374 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1375 {
1376 #ifdef CONFIG_NUMA
1377 struct zonelist *zonelist;
1378 struct zoneref *z;
1379 struct zone *zone;
1380 enum zone_type high_zoneidx = gfp_zone(flags);
1381 struct page *page;
1382
1383 /*
1384 * The defrag ratio allows a configuration of the tradeoffs between
1385 * inter node defragmentation and node local allocations. A lower
1386 * defrag_ratio increases the tendency to do local allocations
1387 * instead of attempting to obtain partial slabs from other nodes.
1388 *
1389 * If the defrag_ratio is set to 0 then kmalloc() always
1390 * returns node local objects. If the ratio is higher then kmalloc()
1391 * may return off node objects because partial slabs are obtained
1392 * from other nodes and filled up.
1393 *
1394 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1395 * defrag_ratio = 1000) then every (well almost) allocation will
1396 * first attempt to defrag slab caches on other nodes. This means
1397 * scanning over all nodes to look for partial slabs which may be
1398 * expensive if we do it every time we are trying to find a slab
1399 * with available objects.
1400 */
1401 if (!s->remote_node_defrag_ratio ||
1402 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1403 return NULL;
1404
1405 get_mems_allowed();
1406 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1407 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1408 struct kmem_cache_node *n;
1409
1410 n = get_node(s, zone_to_nid(zone));
1411
1412 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1413 n->nr_partial > s->min_partial) {
1414 page = get_partial_node(n);
1415 if (page) {
1416 put_mems_allowed();
1417 return page;
1418 }
1419 }
1420 }
1421 put_mems_allowed();
1422 #endif
1423 return NULL;
1424 }
1425
1426 /*
1427 * Get a partial page, lock it and return it.
1428 */
1429 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1430 {
1431 struct page *page;
1432 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1433
1434 page = get_partial_node(get_node(s, searchnode));
1435 if (page || node != -1)
1436 return page;
1437
1438 return get_any_partial(s, flags);
1439 }
1440
1441 /*
1442 * Move a page back to the lists.
1443 *
1444 * Must be called with the slab lock held.
1445 *
1446 * On exit the slab lock will have been dropped.
1447 */
1448 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1449 __releases(bitlock)
1450 {
1451 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1452
1453 __ClearPageSlubFrozen(page);
1454 if (page->inuse) {
1455
1456 if (page->freelist) {
1457 add_partial(n, page, tail);
1458 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1459 } else {
1460 stat(s, DEACTIVATE_FULL);
1461 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1462 add_full(n, page);
1463 }
1464 slab_unlock(page);
1465 } else {
1466 stat(s, DEACTIVATE_EMPTY);
1467 if (n->nr_partial < s->min_partial) {
1468 /*
1469 * Adding an empty slab to the partial slabs in order
1470 * to avoid page allocator overhead. This slab needs
1471 * to come after the other slabs with objects in
1472 * so that the others get filled first. That way the
1473 * size of the partial list stays small.
1474 *
1475 * kmem_cache_shrink can reclaim any empty slabs from
1476 * the partial list.
1477 */
1478 add_partial(n, page, 1);
1479 slab_unlock(page);
1480 } else {
1481 slab_unlock(page);
1482 stat(s, FREE_SLAB);
1483 discard_slab(s, page);
1484 }
1485 }
1486 }
1487
1488 /*
1489 * Remove the cpu slab
1490 */
1491 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1492 __releases(bitlock)
1493 {
1494 struct page *page = c->page;
1495 int tail = 1;
1496
1497 if (page->freelist)
1498 stat(s, DEACTIVATE_REMOTE_FREES);
1499 /*
1500 * Merge cpu freelist into slab freelist. Typically we get here
1501 * because both freelists are empty. So this is unlikely
1502 * to occur.
1503 */
1504 while (unlikely(c->freelist)) {
1505 void **object;
1506
1507 tail = 0; /* Hot objects. Put the slab first */
1508
1509 /* Retrieve object from cpu_freelist */
1510 object = c->freelist;
1511 c->freelist = get_freepointer(s, c->freelist);
1512
1513 /* And put onto the regular freelist */
1514 set_freepointer(s, object, page->freelist);
1515 page->freelist = object;
1516 page->inuse--;
1517 }
1518 c->page = NULL;
1519 unfreeze_slab(s, page, tail);
1520 }
1521
1522 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1523 {
1524 stat(s, CPUSLAB_FLUSH);
1525 slab_lock(c->page);
1526 deactivate_slab(s, c);
1527 }
1528
1529 /*
1530 * Flush cpu slab.
1531 *
1532 * Called from IPI handler with interrupts disabled.
1533 */
1534 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1535 {
1536 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1537
1538 if (likely(c && c->page))
1539 flush_slab(s, c);
1540 }
1541
1542 static void flush_cpu_slab(void *d)
1543 {
1544 struct kmem_cache *s = d;
1545
1546 __flush_cpu_slab(s, smp_processor_id());
1547 }
1548
1549 static void flush_all(struct kmem_cache *s)
1550 {
1551 on_each_cpu(flush_cpu_slab, s, 1);
1552 }
1553
1554 /*
1555 * Check if the objects in a per cpu structure fit numa
1556 * locality expectations.
1557 */
1558 static inline int node_match(struct kmem_cache_cpu *c, int node)
1559 {
1560 #ifdef CONFIG_NUMA
1561 if (node != NUMA_NO_NODE && c->node != node)
1562 return 0;
1563 #endif
1564 return 1;
1565 }
1566
1567 static int count_free(struct page *page)
1568 {
1569 return page->objects - page->inuse;
1570 }
1571
1572 static unsigned long count_partial(struct kmem_cache_node *n,
1573 int (*get_count)(struct page *))
1574 {
1575 unsigned long flags;
1576 unsigned long x = 0;
1577 struct page *page;
1578
1579 spin_lock_irqsave(&n->list_lock, flags);
1580 list_for_each_entry(page, &n->partial, lru)
1581 x += get_count(page);
1582 spin_unlock_irqrestore(&n->list_lock, flags);
1583 return x;
1584 }
1585
1586 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1587 {
1588 #ifdef CONFIG_SLUB_DEBUG
1589 return atomic_long_read(&n->total_objects);
1590 #else
1591 return 0;
1592 #endif
1593 }
1594
1595 static noinline void
1596 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1597 {
1598 int node;
1599
1600 printk(KERN_WARNING
1601 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1602 nid, gfpflags);
1603 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1604 "default order: %d, min order: %d\n", s->name, s->objsize,
1605 s->size, oo_order(s->oo), oo_order(s->min));
1606
1607 if (oo_order(s->min) > get_order(s->objsize))
1608 printk(KERN_WARNING " %s debugging increased min order, use "
1609 "slub_debug=O to disable.\n", s->name);
1610
1611 for_each_online_node(node) {
1612 struct kmem_cache_node *n = get_node(s, node);
1613 unsigned long nr_slabs;
1614 unsigned long nr_objs;
1615 unsigned long nr_free;
1616
1617 if (!n)
1618 continue;
1619
1620 nr_free = count_partial(n, count_free);
1621 nr_slabs = node_nr_slabs(n);
1622 nr_objs = node_nr_objs(n);
1623
1624 printk(KERN_WARNING
1625 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1626 node, nr_slabs, nr_objs, nr_free);
1627 }
1628 }
1629
1630 /*
1631 * Slow path. The lockless freelist is empty or we need to perform
1632 * debugging duties.
1633 *
1634 * Interrupts are disabled.
1635 *
1636 * Processing is still very fast if new objects have been freed to the
1637 * regular freelist. In that case we simply take over the regular freelist
1638 * as the lockless freelist and zap the regular freelist.
1639 *
1640 * If that is not working then we fall back to the partial lists. We take the
1641 * first element of the freelist as the object to allocate now and move the
1642 * rest of the freelist to the lockless freelist.
1643 *
1644 * And if we were unable to get a new slab from the partial slab lists then
1645 * we need to allocate a new slab. This is the slowest path since it involves
1646 * a call to the page allocator and the setup of a new slab.
1647 */
1648 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1649 unsigned long addr, struct kmem_cache_cpu *c)
1650 {
1651 void **object;
1652 struct page *new;
1653
1654 /* We handle __GFP_ZERO in the caller */
1655 gfpflags &= ~__GFP_ZERO;
1656
1657 if (!c->page)
1658 goto new_slab;
1659
1660 slab_lock(c->page);
1661 if (unlikely(!node_match(c, node)))
1662 goto another_slab;
1663
1664 stat(s, ALLOC_REFILL);
1665
1666 load_freelist:
1667 object = c->page->freelist;
1668 if (unlikely(!object))
1669 goto another_slab;
1670 if (kmem_cache_debug(s))
1671 goto debug;
1672
1673 c->freelist = get_freepointer(s, object);
1674 c->page->inuse = c->page->objects;
1675 c->page->freelist = NULL;
1676 c->node = page_to_nid(c->page);
1677 unlock_out:
1678 slab_unlock(c->page);
1679 stat(s, ALLOC_SLOWPATH);
1680 return object;
1681
1682 another_slab:
1683 deactivate_slab(s, c);
1684
1685 new_slab:
1686 new = get_partial(s, gfpflags, node);
1687 if (new) {
1688 c->page = new;
1689 stat(s, ALLOC_FROM_PARTIAL);
1690 goto load_freelist;
1691 }
1692
1693 gfpflags &= gfp_allowed_mask;
1694 if (gfpflags & __GFP_WAIT)
1695 local_irq_enable();
1696
1697 new = new_slab(s, gfpflags, node);
1698
1699 if (gfpflags & __GFP_WAIT)
1700 local_irq_disable();
1701
1702 if (new) {
1703 c = __this_cpu_ptr(s->cpu_slab);
1704 stat(s, ALLOC_SLAB);
1705 if (c->page)
1706 flush_slab(s, c);
1707 slab_lock(new);
1708 __SetPageSlubFrozen(new);
1709 c->page = new;
1710 goto load_freelist;
1711 }
1712 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1713 slab_out_of_memory(s, gfpflags, node);
1714 return NULL;
1715 debug:
1716 if (!alloc_debug_processing(s, c->page, object, addr))
1717 goto another_slab;
1718
1719 c->page->inuse++;
1720 c->page->freelist = get_freepointer(s, object);
1721 c->node = NUMA_NO_NODE;
1722 goto unlock_out;
1723 }
1724
1725 /*
1726 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1727 * have the fastpath folded into their functions. So no function call
1728 * overhead for requests that can be satisfied on the fastpath.
1729 *
1730 * The fastpath works by first checking if the lockless freelist can be used.
1731 * If not then __slab_alloc is called for slow processing.
1732 *
1733 * Otherwise we can simply pick the next object from the lockless free list.
1734 */
1735 static __always_inline void *slab_alloc(struct kmem_cache *s,
1736 gfp_t gfpflags, int node, unsigned long addr)
1737 {
1738 void **object;
1739 struct kmem_cache_cpu *c;
1740 unsigned long flags;
1741
1742 if (slab_pre_alloc_hook(s, gfpflags))
1743 return NULL;
1744
1745 local_irq_save(flags);
1746 c = __this_cpu_ptr(s->cpu_slab);
1747 object = c->freelist;
1748 if (unlikely(!object || !node_match(c, node)))
1749
1750 object = __slab_alloc(s, gfpflags, node, addr, c);
1751
1752 else {
1753 c->freelist = get_freepointer(s, object);
1754 stat(s, ALLOC_FASTPATH);
1755 }
1756 local_irq_restore(flags);
1757
1758 if (unlikely(gfpflags & __GFP_ZERO) && object)
1759 memset(object, 0, s->objsize);
1760
1761 slab_post_alloc_hook(s, gfpflags, object);
1762
1763 return object;
1764 }
1765
1766 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1767 {
1768 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1769
1770 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1771
1772 return ret;
1773 }
1774 EXPORT_SYMBOL(kmem_cache_alloc);
1775
1776 #ifdef CONFIG_TRACING
1777 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1778 {
1779 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1780 }
1781 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1782 #endif
1783
1784 #ifdef CONFIG_NUMA
1785 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1786 {
1787 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1788
1789 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1790 s->objsize, s->size, gfpflags, node);
1791
1792 return ret;
1793 }
1794 EXPORT_SYMBOL(kmem_cache_alloc_node);
1795
1796 #ifdef CONFIG_TRACING
1797 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1798 gfp_t gfpflags,
1799 int node)
1800 {
1801 return slab_alloc(s, gfpflags, node, _RET_IP_);
1802 }
1803 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1804 #endif
1805 #endif
1806
1807 /*
1808 * Slow patch handling. This may still be called frequently since objects
1809 * have a longer lifetime than the cpu slabs in most processing loads.
1810 *
1811 * So we still attempt to reduce cache line usage. Just take the slab
1812 * lock and free the item. If there is no additional partial page
1813 * handling required then we can return immediately.
1814 */
1815 static void __slab_free(struct kmem_cache *s, struct page *page,
1816 void *x, unsigned long addr)
1817 {
1818 void *prior;
1819 void **object = (void *)x;
1820
1821 stat(s, FREE_SLOWPATH);
1822 slab_lock(page);
1823
1824 if (kmem_cache_debug(s))
1825 goto debug;
1826
1827 checks_ok:
1828 prior = page->freelist;
1829 set_freepointer(s, object, prior);
1830 page->freelist = object;
1831 page->inuse--;
1832
1833 if (unlikely(PageSlubFrozen(page))) {
1834 stat(s, FREE_FROZEN);
1835 goto out_unlock;
1836 }
1837
1838 if (unlikely(!page->inuse))
1839 goto slab_empty;
1840
1841 /*
1842 * Objects left in the slab. If it was not on the partial list before
1843 * then add it.
1844 */
1845 if (unlikely(!prior)) {
1846 add_partial(get_node(s, page_to_nid(page)), page, 1);
1847 stat(s, FREE_ADD_PARTIAL);
1848 }
1849
1850 out_unlock:
1851 slab_unlock(page);
1852 return;
1853
1854 slab_empty:
1855 if (prior) {
1856 /*
1857 * Slab still on the partial list.
1858 */
1859 remove_partial(s, page);
1860 stat(s, FREE_REMOVE_PARTIAL);
1861 }
1862 slab_unlock(page);
1863 stat(s, FREE_SLAB);
1864 discard_slab(s, page);
1865 return;
1866
1867 debug:
1868 if (!free_debug_processing(s, page, x, addr))
1869 goto out_unlock;
1870 goto checks_ok;
1871 }
1872
1873 /*
1874 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1875 * can perform fastpath freeing without additional function calls.
1876 *
1877 * The fastpath is only possible if we are freeing to the current cpu slab
1878 * of this processor. This typically the case if we have just allocated
1879 * the item before.
1880 *
1881 * If fastpath is not possible then fall back to __slab_free where we deal
1882 * with all sorts of special processing.
1883 */
1884 static __always_inline void slab_free(struct kmem_cache *s,
1885 struct page *page, void *x, unsigned long addr)
1886 {
1887 void **object = (void *)x;
1888 struct kmem_cache_cpu *c;
1889 unsigned long flags;
1890
1891 slab_free_hook(s, x);
1892
1893 local_irq_save(flags);
1894 c = __this_cpu_ptr(s->cpu_slab);
1895
1896 slab_free_hook_irq(s, x);
1897
1898 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
1899 set_freepointer(s, object, c->freelist);
1900 c->freelist = object;
1901 stat(s, FREE_FASTPATH);
1902 } else
1903 __slab_free(s, page, x, addr);
1904
1905 local_irq_restore(flags);
1906 }
1907
1908 void kmem_cache_free(struct kmem_cache *s, void *x)
1909 {
1910 struct page *page;
1911
1912 page = virt_to_head_page(x);
1913
1914 slab_free(s, page, x, _RET_IP_);
1915
1916 trace_kmem_cache_free(_RET_IP_, x);
1917 }
1918 EXPORT_SYMBOL(kmem_cache_free);
1919
1920 /*
1921 * Object placement in a slab is made very easy because we always start at
1922 * offset 0. If we tune the size of the object to the alignment then we can
1923 * get the required alignment by putting one properly sized object after
1924 * another.
1925 *
1926 * Notice that the allocation order determines the sizes of the per cpu
1927 * caches. Each processor has always one slab available for allocations.
1928 * Increasing the allocation order reduces the number of times that slabs
1929 * must be moved on and off the partial lists and is therefore a factor in
1930 * locking overhead.
1931 */
1932
1933 /*
1934 * Mininum / Maximum order of slab pages. This influences locking overhead
1935 * and slab fragmentation. A higher order reduces the number of partial slabs
1936 * and increases the number of allocations possible without having to
1937 * take the list_lock.
1938 */
1939 static int slub_min_order;
1940 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1941 static int slub_min_objects;
1942
1943 /*
1944 * Merge control. If this is set then no merging of slab caches will occur.
1945 * (Could be removed. This was introduced to pacify the merge skeptics.)
1946 */
1947 static int slub_nomerge;
1948
1949 /*
1950 * Calculate the order of allocation given an slab object size.
1951 *
1952 * The order of allocation has significant impact on performance and other
1953 * system components. Generally order 0 allocations should be preferred since
1954 * order 0 does not cause fragmentation in the page allocator. Larger objects
1955 * be problematic to put into order 0 slabs because there may be too much
1956 * unused space left. We go to a higher order if more than 1/16th of the slab
1957 * would be wasted.
1958 *
1959 * In order to reach satisfactory performance we must ensure that a minimum
1960 * number of objects is in one slab. Otherwise we may generate too much
1961 * activity on the partial lists which requires taking the list_lock. This is
1962 * less a concern for large slabs though which are rarely used.
1963 *
1964 * slub_max_order specifies the order where we begin to stop considering the
1965 * number of objects in a slab as critical. If we reach slub_max_order then
1966 * we try to keep the page order as low as possible. So we accept more waste
1967 * of space in favor of a small page order.
1968 *
1969 * Higher order allocations also allow the placement of more objects in a
1970 * slab and thereby reduce object handling overhead. If the user has
1971 * requested a higher mininum order then we start with that one instead of
1972 * the smallest order which will fit the object.
1973 */
1974 static inline int slab_order(int size, int min_objects,
1975 int max_order, int fract_leftover)
1976 {
1977 int order;
1978 int rem;
1979 int min_order = slub_min_order;
1980
1981 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1982 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1983
1984 for (order = max(min_order,
1985 fls(min_objects * size - 1) - PAGE_SHIFT);
1986 order <= max_order; order++) {
1987
1988 unsigned long slab_size = PAGE_SIZE << order;
1989
1990 if (slab_size < min_objects * size)
1991 continue;
1992
1993 rem = slab_size % size;
1994
1995 if (rem <= slab_size / fract_leftover)
1996 break;
1997
1998 }
1999
2000 return order;
2001 }
2002
2003 static inline int calculate_order(int size)
2004 {
2005 int order;
2006 int min_objects;
2007 int fraction;
2008 int max_objects;
2009
2010 /*
2011 * Attempt to find best configuration for a slab. This
2012 * works by first attempting to generate a layout with
2013 * the best configuration and backing off gradually.
2014 *
2015 * First we reduce the acceptable waste in a slab. Then
2016 * we reduce the minimum objects required in a slab.
2017 */
2018 min_objects = slub_min_objects;
2019 if (!min_objects)
2020 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2021 max_objects = (PAGE_SIZE << slub_max_order)/size;
2022 min_objects = min(min_objects, max_objects);
2023
2024 while (min_objects > 1) {
2025 fraction = 16;
2026 while (fraction >= 4) {
2027 order = slab_order(size, min_objects,
2028 slub_max_order, fraction);
2029 if (order <= slub_max_order)
2030 return order;
2031 fraction /= 2;
2032 }
2033 min_objects--;
2034 }
2035
2036 /*
2037 * We were unable to place multiple objects in a slab. Now
2038 * lets see if we can place a single object there.
2039 */
2040 order = slab_order(size, 1, slub_max_order, 1);
2041 if (order <= slub_max_order)
2042 return order;
2043
2044 /*
2045 * Doh this slab cannot be placed using slub_max_order.
2046 */
2047 order = slab_order(size, 1, MAX_ORDER, 1);
2048 if (order < MAX_ORDER)
2049 return order;
2050 return -ENOSYS;
2051 }
2052
2053 /*
2054 * Figure out what the alignment of the objects will be.
2055 */
2056 static unsigned long calculate_alignment(unsigned long flags,
2057 unsigned long align, unsigned long size)
2058 {
2059 /*
2060 * If the user wants hardware cache aligned objects then follow that
2061 * suggestion if the object is sufficiently large.
2062 *
2063 * The hardware cache alignment cannot override the specified
2064 * alignment though. If that is greater then use it.
2065 */
2066 if (flags & SLAB_HWCACHE_ALIGN) {
2067 unsigned long ralign = cache_line_size();
2068 while (size <= ralign / 2)
2069 ralign /= 2;
2070 align = max(align, ralign);
2071 }
2072
2073 if (align < ARCH_SLAB_MINALIGN)
2074 align = ARCH_SLAB_MINALIGN;
2075
2076 return ALIGN(align, sizeof(void *));
2077 }
2078
2079 static void
2080 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2081 {
2082 n->nr_partial = 0;
2083 spin_lock_init(&n->list_lock);
2084 INIT_LIST_HEAD(&n->partial);
2085 #ifdef CONFIG_SLUB_DEBUG
2086 atomic_long_set(&n->nr_slabs, 0);
2087 atomic_long_set(&n->total_objects, 0);
2088 INIT_LIST_HEAD(&n->full);
2089 #endif
2090 }
2091
2092 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2093 {
2094 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2095 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2096
2097 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2098
2099 return s->cpu_slab != NULL;
2100 }
2101
2102 static struct kmem_cache *kmem_cache_node;
2103
2104 /*
2105 * No kmalloc_node yet so do it by hand. We know that this is the first
2106 * slab on the node for this slabcache. There are no concurrent accesses
2107 * possible.
2108 *
2109 * Note that this function only works on the kmalloc_node_cache
2110 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2111 * memory on a fresh node that has no slab structures yet.
2112 */
2113 static void early_kmem_cache_node_alloc(int node)
2114 {
2115 struct page *page;
2116 struct kmem_cache_node *n;
2117 unsigned long flags;
2118
2119 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2120
2121 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2122
2123 BUG_ON(!page);
2124 if (page_to_nid(page) != node) {
2125 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2126 "node %d\n", node);
2127 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2128 "in order to be able to continue\n");
2129 }
2130
2131 n = page->freelist;
2132 BUG_ON(!n);
2133 page->freelist = get_freepointer(kmem_cache_node, n);
2134 page->inuse++;
2135 kmem_cache_node->node[node] = n;
2136 #ifdef CONFIG_SLUB_DEBUG
2137 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2138 init_tracking(kmem_cache_node, n);
2139 #endif
2140 init_kmem_cache_node(n, kmem_cache_node);
2141 inc_slabs_node(kmem_cache_node, node, page->objects);
2142
2143 /*
2144 * lockdep requires consistent irq usage for each lock
2145 * so even though there cannot be a race this early in
2146 * the boot sequence, we still disable irqs.
2147 */
2148 local_irq_save(flags);
2149 add_partial(n, page, 0);
2150 local_irq_restore(flags);
2151 }
2152
2153 static void free_kmem_cache_nodes(struct kmem_cache *s)
2154 {
2155 int node;
2156
2157 for_each_node_state(node, N_NORMAL_MEMORY) {
2158 struct kmem_cache_node *n = s->node[node];
2159
2160 if (n)
2161 kmem_cache_free(kmem_cache_node, n);
2162
2163 s->node[node] = NULL;
2164 }
2165 }
2166
2167 static int init_kmem_cache_nodes(struct kmem_cache *s)
2168 {
2169 int node;
2170
2171 for_each_node_state(node, N_NORMAL_MEMORY) {
2172 struct kmem_cache_node *n;
2173
2174 if (slab_state == DOWN) {
2175 early_kmem_cache_node_alloc(node);
2176 continue;
2177 }
2178 n = kmem_cache_alloc_node(kmem_cache_node,
2179 GFP_KERNEL, node);
2180
2181 if (!n) {
2182 free_kmem_cache_nodes(s);
2183 return 0;
2184 }
2185
2186 s->node[node] = n;
2187 init_kmem_cache_node(n, s);
2188 }
2189 return 1;
2190 }
2191
2192 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2193 {
2194 if (min < MIN_PARTIAL)
2195 min = MIN_PARTIAL;
2196 else if (min > MAX_PARTIAL)
2197 min = MAX_PARTIAL;
2198 s->min_partial = min;
2199 }
2200
2201 /*
2202 * calculate_sizes() determines the order and the distribution of data within
2203 * a slab object.
2204 */
2205 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2206 {
2207 unsigned long flags = s->flags;
2208 unsigned long size = s->objsize;
2209 unsigned long align = s->align;
2210 int order;
2211
2212 /*
2213 * Round up object size to the next word boundary. We can only
2214 * place the free pointer at word boundaries and this determines
2215 * the possible location of the free pointer.
2216 */
2217 size = ALIGN(size, sizeof(void *));
2218
2219 #ifdef CONFIG_SLUB_DEBUG
2220 /*
2221 * Determine if we can poison the object itself. If the user of
2222 * the slab may touch the object after free or before allocation
2223 * then we should never poison the object itself.
2224 */
2225 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2226 !s->ctor)
2227 s->flags |= __OBJECT_POISON;
2228 else
2229 s->flags &= ~__OBJECT_POISON;
2230
2231
2232 /*
2233 * If we are Redzoning then check if there is some space between the
2234 * end of the object and the free pointer. If not then add an
2235 * additional word to have some bytes to store Redzone information.
2236 */
2237 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2238 size += sizeof(void *);
2239 #endif
2240
2241 /*
2242 * With that we have determined the number of bytes in actual use
2243 * by the object. This is the potential offset to the free pointer.
2244 */
2245 s->inuse = size;
2246
2247 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2248 s->ctor)) {
2249 /*
2250 * Relocate free pointer after the object if it is not
2251 * permitted to overwrite the first word of the object on
2252 * kmem_cache_free.
2253 *
2254 * This is the case if we do RCU, have a constructor or
2255 * destructor or are poisoning the objects.
2256 */
2257 s->offset = size;
2258 size += sizeof(void *);
2259 }
2260
2261 #ifdef CONFIG_SLUB_DEBUG
2262 if (flags & SLAB_STORE_USER)
2263 /*
2264 * Need to store information about allocs and frees after
2265 * the object.
2266 */
2267 size += 2 * sizeof(struct track);
2268
2269 if (flags & SLAB_RED_ZONE)
2270 /*
2271 * Add some empty padding so that we can catch
2272 * overwrites from earlier objects rather than let
2273 * tracking information or the free pointer be
2274 * corrupted if a user writes before the start
2275 * of the object.
2276 */
2277 size += sizeof(void *);
2278 #endif
2279
2280 /*
2281 * Determine the alignment based on various parameters that the
2282 * user specified and the dynamic determination of cache line size
2283 * on bootup.
2284 */
2285 align = calculate_alignment(flags, align, s->objsize);
2286 s->align = align;
2287
2288 /*
2289 * SLUB stores one object immediately after another beginning from
2290 * offset 0. In order to align the objects we have to simply size
2291 * each object to conform to the alignment.
2292 */
2293 size = ALIGN(size, align);
2294 s->size = size;
2295 if (forced_order >= 0)
2296 order = forced_order;
2297 else
2298 order = calculate_order(size);
2299
2300 if (order < 0)
2301 return 0;
2302
2303 s->allocflags = 0;
2304 if (order)
2305 s->allocflags |= __GFP_COMP;
2306
2307 if (s->flags & SLAB_CACHE_DMA)
2308 s->allocflags |= SLUB_DMA;
2309
2310 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2311 s->allocflags |= __GFP_RECLAIMABLE;
2312
2313 /*
2314 * Determine the number of objects per slab
2315 */
2316 s->oo = oo_make(order, size);
2317 s->min = oo_make(get_order(size), size);
2318 if (oo_objects(s->oo) > oo_objects(s->max))
2319 s->max = s->oo;
2320
2321 return !!oo_objects(s->oo);
2322
2323 }
2324
2325 static int kmem_cache_open(struct kmem_cache *s,
2326 const char *name, size_t size,
2327 size_t align, unsigned long flags,
2328 void (*ctor)(void *))
2329 {
2330 memset(s, 0, kmem_size);
2331 s->name = name;
2332 s->ctor = ctor;
2333 s->objsize = size;
2334 s->align = align;
2335 s->flags = kmem_cache_flags(size, flags, name, ctor);
2336
2337 if (!calculate_sizes(s, -1))
2338 goto error;
2339 if (disable_higher_order_debug) {
2340 /*
2341 * Disable debugging flags that store metadata if the min slab
2342 * order increased.
2343 */
2344 if (get_order(s->size) > get_order(s->objsize)) {
2345 s->flags &= ~DEBUG_METADATA_FLAGS;
2346 s->offset = 0;
2347 if (!calculate_sizes(s, -1))
2348 goto error;
2349 }
2350 }
2351
2352 /*
2353 * The larger the object size is, the more pages we want on the partial
2354 * list to avoid pounding the page allocator excessively.
2355 */
2356 set_min_partial(s, ilog2(s->size));
2357 s->refcount = 1;
2358 #ifdef CONFIG_NUMA
2359 s->remote_node_defrag_ratio = 1000;
2360 #endif
2361 if (!init_kmem_cache_nodes(s))
2362 goto error;
2363
2364 if (alloc_kmem_cache_cpus(s))
2365 return 1;
2366
2367 free_kmem_cache_nodes(s);
2368 error:
2369 if (flags & SLAB_PANIC)
2370 panic("Cannot create slab %s size=%lu realsize=%u "
2371 "order=%u offset=%u flags=%lx\n",
2372 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2373 s->offset, flags);
2374 return 0;
2375 }
2376
2377 /*
2378 * Determine the size of a slab object
2379 */
2380 unsigned int kmem_cache_size(struct kmem_cache *s)
2381 {
2382 return s->objsize;
2383 }
2384 EXPORT_SYMBOL(kmem_cache_size);
2385
2386 const char *kmem_cache_name(struct kmem_cache *s)
2387 {
2388 return s->name;
2389 }
2390 EXPORT_SYMBOL(kmem_cache_name);
2391
2392 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2393 const char *text)
2394 {
2395 #ifdef CONFIG_SLUB_DEBUG
2396 void *addr = page_address(page);
2397 void *p;
2398 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2399 sizeof(long), GFP_ATOMIC);
2400 if (!map)
2401 return;
2402 slab_err(s, page, "%s", text);
2403 slab_lock(page);
2404 for_each_free_object(p, s, page->freelist)
2405 set_bit(slab_index(p, s, addr), map);
2406
2407 for_each_object(p, s, addr, page->objects) {
2408
2409 if (!test_bit(slab_index(p, s, addr), map)) {
2410 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2411 p, p - addr);
2412 print_tracking(s, p);
2413 }
2414 }
2415 slab_unlock(page);
2416 kfree(map);
2417 #endif
2418 }
2419
2420 /*
2421 * Attempt to free all partial slabs on a node.
2422 */
2423 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2424 {
2425 unsigned long flags;
2426 struct page *page, *h;
2427
2428 spin_lock_irqsave(&n->list_lock, flags);
2429 list_for_each_entry_safe(page, h, &n->partial, lru) {
2430 if (!page->inuse) {
2431 __remove_partial(n, page);
2432 discard_slab(s, page);
2433 } else {
2434 list_slab_objects(s, page,
2435 "Objects remaining on kmem_cache_close()");
2436 }
2437 }
2438 spin_unlock_irqrestore(&n->list_lock, flags);
2439 }
2440
2441 /*
2442 * Release all resources used by a slab cache.
2443 */
2444 static inline int kmem_cache_close(struct kmem_cache *s)
2445 {
2446 int node;
2447
2448 flush_all(s);
2449 free_percpu(s->cpu_slab);
2450 /* Attempt to free all objects */
2451 for_each_node_state(node, N_NORMAL_MEMORY) {
2452 struct kmem_cache_node *n = get_node(s, node);
2453
2454 free_partial(s, n);
2455 if (n->nr_partial || slabs_node(s, node))
2456 return 1;
2457 }
2458 free_kmem_cache_nodes(s);
2459 return 0;
2460 }
2461
2462 /*
2463 * Close a cache and release the kmem_cache structure
2464 * (must be used for caches created using kmem_cache_create)
2465 */
2466 void kmem_cache_destroy(struct kmem_cache *s)
2467 {
2468 down_write(&slub_lock);
2469 s->refcount--;
2470 if (!s->refcount) {
2471 list_del(&s->list);
2472 if (kmem_cache_close(s)) {
2473 printk(KERN_ERR "SLUB %s: %s called for cache that "
2474 "still has objects.\n", s->name, __func__);
2475 dump_stack();
2476 }
2477 if (s->flags & SLAB_DESTROY_BY_RCU)
2478 rcu_barrier();
2479 sysfs_slab_remove(s);
2480 }
2481 up_write(&slub_lock);
2482 }
2483 EXPORT_SYMBOL(kmem_cache_destroy);
2484
2485 /********************************************************************
2486 * Kmalloc subsystem
2487 *******************************************************************/
2488
2489 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2490 EXPORT_SYMBOL(kmalloc_caches);
2491
2492 static struct kmem_cache *kmem_cache;
2493
2494 #ifdef CONFIG_ZONE_DMA
2495 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2496 #endif
2497
2498 static int __init setup_slub_min_order(char *str)
2499 {
2500 get_option(&str, &slub_min_order);
2501
2502 return 1;
2503 }
2504
2505 __setup("slub_min_order=", setup_slub_min_order);
2506
2507 static int __init setup_slub_max_order(char *str)
2508 {
2509 get_option(&str, &slub_max_order);
2510 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2511
2512 return 1;
2513 }
2514
2515 __setup("slub_max_order=", setup_slub_max_order);
2516
2517 static int __init setup_slub_min_objects(char *str)
2518 {
2519 get_option(&str, &slub_min_objects);
2520
2521 return 1;
2522 }
2523
2524 __setup("slub_min_objects=", setup_slub_min_objects);
2525
2526 static int __init setup_slub_nomerge(char *str)
2527 {
2528 slub_nomerge = 1;
2529 return 1;
2530 }
2531
2532 __setup("slub_nomerge", setup_slub_nomerge);
2533
2534 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2535 int size, unsigned int flags)
2536 {
2537 struct kmem_cache *s;
2538
2539 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2540
2541 /*
2542 * This function is called with IRQs disabled during early-boot on
2543 * single CPU so there's no need to take slub_lock here.
2544 */
2545 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2546 flags, NULL))
2547 goto panic;
2548
2549 list_add(&s->list, &slab_caches);
2550 return s;
2551
2552 panic:
2553 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2554 return NULL;
2555 }
2556
2557 /*
2558 * Conversion table for small slabs sizes / 8 to the index in the
2559 * kmalloc array. This is necessary for slabs < 192 since we have non power
2560 * of two cache sizes there. The size of larger slabs can be determined using
2561 * fls.
2562 */
2563 static s8 size_index[24] = {
2564 3, /* 8 */
2565 4, /* 16 */
2566 5, /* 24 */
2567 5, /* 32 */
2568 6, /* 40 */
2569 6, /* 48 */
2570 6, /* 56 */
2571 6, /* 64 */
2572 1, /* 72 */
2573 1, /* 80 */
2574 1, /* 88 */
2575 1, /* 96 */
2576 7, /* 104 */
2577 7, /* 112 */
2578 7, /* 120 */
2579 7, /* 128 */
2580 2, /* 136 */
2581 2, /* 144 */
2582 2, /* 152 */
2583 2, /* 160 */
2584 2, /* 168 */
2585 2, /* 176 */
2586 2, /* 184 */
2587 2 /* 192 */
2588 };
2589
2590 static inline int size_index_elem(size_t bytes)
2591 {
2592 return (bytes - 1) / 8;
2593 }
2594
2595 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2596 {
2597 int index;
2598
2599 if (size <= 192) {
2600 if (!size)
2601 return ZERO_SIZE_PTR;
2602
2603 index = size_index[size_index_elem(size)];
2604 } else
2605 index = fls(size - 1);
2606
2607 #ifdef CONFIG_ZONE_DMA
2608 if (unlikely((flags & SLUB_DMA)))
2609 return kmalloc_dma_caches[index];
2610
2611 #endif
2612 return kmalloc_caches[index];
2613 }
2614
2615 void *__kmalloc(size_t size, gfp_t flags)
2616 {
2617 struct kmem_cache *s;
2618 void *ret;
2619
2620 if (unlikely(size > SLUB_MAX_SIZE))
2621 return kmalloc_large(size, flags);
2622
2623 s = get_slab(size, flags);
2624
2625 if (unlikely(ZERO_OR_NULL_PTR(s)))
2626 return s;
2627
2628 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2629
2630 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2631
2632 return ret;
2633 }
2634 EXPORT_SYMBOL(__kmalloc);
2635
2636 #ifdef CONFIG_NUMA
2637 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2638 {
2639 struct page *page;
2640 void *ptr = NULL;
2641
2642 flags |= __GFP_COMP | __GFP_NOTRACK;
2643 page = alloc_pages_node(node, flags, get_order(size));
2644 if (page)
2645 ptr = page_address(page);
2646
2647 kmemleak_alloc(ptr, size, 1, flags);
2648 return ptr;
2649 }
2650
2651 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2652 {
2653 struct kmem_cache *s;
2654 void *ret;
2655
2656 if (unlikely(size > SLUB_MAX_SIZE)) {
2657 ret = kmalloc_large_node(size, flags, node);
2658
2659 trace_kmalloc_node(_RET_IP_, ret,
2660 size, PAGE_SIZE << get_order(size),
2661 flags, node);
2662
2663 return ret;
2664 }
2665
2666 s = get_slab(size, flags);
2667
2668 if (unlikely(ZERO_OR_NULL_PTR(s)))
2669 return s;
2670
2671 ret = slab_alloc(s, flags, node, _RET_IP_);
2672
2673 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2674
2675 return ret;
2676 }
2677 EXPORT_SYMBOL(__kmalloc_node);
2678 #endif
2679
2680 size_t ksize(const void *object)
2681 {
2682 struct page *page;
2683 struct kmem_cache *s;
2684
2685 if (unlikely(object == ZERO_SIZE_PTR))
2686 return 0;
2687
2688 page = virt_to_head_page(object);
2689
2690 if (unlikely(!PageSlab(page))) {
2691 WARN_ON(!PageCompound(page));
2692 return PAGE_SIZE << compound_order(page);
2693 }
2694 s = page->slab;
2695
2696 #ifdef CONFIG_SLUB_DEBUG
2697 /*
2698 * Debugging requires use of the padding between object
2699 * and whatever may come after it.
2700 */
2701 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2702 return s->objsize;
2703
2704 #endif
2705 /*
2706 * If we have the need to store the freelist pointer
2707 * back there or track user information then we can
2708 * only use the space before that information.
2709 */
2710 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2711 return s->inuse;
2712 /*
2713 * Else we can use all the padding etc for the allocation
2714 */
2715 return s->size;
2716 }
2717 EXPORT_SYMBOL(ksize);
2718
2719 void kfree(const void *x)
2720 {
2721 struct page *page;
2722 void *object = (void *)x;
2723
2724 trace_kfree(_RET_IP_, x);
2725
2726 if (unlikely(ZERO_OR_NULL_PTR(x)))
2727 return;
2728
2729 page = virt_to_head_page(x);
2730 if (unlikely(!PageSlab(page))) {
2731 BUG_ON(!PageCompound(page));
2732 kmemleak_free(x);
2733 put_page(page);
2734 return;
2735 }
2736 slab_free(page->slab, page, object, _RET_IP_);
2737 }
2738 EXPORT_SYMBOL(kfree);
2739
2740 /*
2741 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2742 * the remaining slabs by the number of items in use. The slabs with the
2743 * most items in use come first. New allocations will then fill those up
2744 * and thus they can be removed from the partial lists.
2745 *
2746 * The slabs with the least items are placed last. This results in them
2747 * being allocated from last increasing the chance that the last objects
2748 * are freed in them.
2749 */
2750 int kmem_cache_shrink(struct kmem_cache *s)
2751 {
2752 int node;
2753 int i;
2754 struct kmem_cache_node *n;
2755 struct page *page;
2756 struct page *t;
2757 int objects = oo_objects(s->max);
2758 struct list_head *slabs_by_inuse =
2759 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2760 unsigned long flags;
2761
2762 if (!slabs_by_inuse)
2763 return -ENOMEM;
2764
2765 flush_all(s);
2766 for_each_node_state(node, N_NORMAL_MEMORY) {
2767 n = get_node(s, node);
2768
2769 if (!n->nr_partial)
2770 continue;
2771
2772 for (i = 0; i < objects; i++)
2773 INIT_LIST_HEAD(slabs_by_inuse + i);
2774
2775 spin_lock_irqsave(&n->list_lock, flags);
2776
2777 /*
2778 * Build lists indexed by the items in use in each slab.
2779 *
2780 * Note that concurrent frees may occur while we hold the
2781 * list_lock. page->inuse here is the upper limit.
2782 */
2783 list_for_each_entry_safe(page, t, &n->partial, lru) {
2784 if (!page->inuse && slab_trylock(page)) {
2785 /*
2786 * Must hold slab lock here because slab_free
2787 * may have freed the last object and be
2788 * waiting to release the slab.
2789 */
2790 __remove_partial(n, page);
2791 slab_unlock(page);
2792 discard_slab(s, page);
2793 } else {
2794 list_move(&page->lru,
2795 slabs_by_inuse + page->inuse);
2796 }
2797 }
2798
2799 /*
2800 * Rebuild the partial list with the slabs filled up most
2801 * first and the least used slabs at the end.
2802 */
2803 for (i = objects - 1; i >= 0; i--)
2804 list_splice(slabs_by_inuse + i, n->partial.prev);
2805
2806 spin_unlock_irqrestore(&n->list_lock, flags);
2807 }
2808
2809 kfree(slabs_by_inuse);
2810 return 0;
2811 }
2812 EXPORT_SYMBOL(kmem_cache_shrink);
2813
2814 #if defined(CONFIG_MEMORY_HOTPLUG)
2815 static int slab_mem_going_offline_callback(void *arg)
2816 {
2817 struct kmem_cache *s;
2818
2819 down_read(&slub_lock);
2820 list_for_each_entry(s, &slab_caches, list)
2821 kmem_cache_shrink(s);
2822 up_read(&slub_lock);
2823
2824 return 0;
2825 }
2826
2827 static void slab_mem_offline_callback(void *arg)
2828 {
2829 struct kmem_cache_node *n;
2830 struct kmem_cache *s;
2831 struct memory_notify *marg = arg;
2832 int offline_node;
2833
2834 offline_node = marg->status_change_nid;
2835
2836 /*
2837 * If the node still has available memory. we need kmem_cache_node
2838 * for it yet.
2839 */
2840 if (offline_node < 0)
2841 return;
2842
2843 down_read(&slub_lock);
2844 list_for_each_entry(s, &slab_caches, list) {
2845 n = get_node(s, offline_node);
2846 if (n) {
2847 /*
2848 * if n->nr_slabs > 0, slabs still exist on the node
2849 * that is going down. We were unable to free them,
2850 * and offline_pages() function shouldn't call this
2851 * callback. So, we must fail.
2852 */
2853 BUG_ON(slabs_node(s, offline_node));
2854
2855 s->node[offline_node] = NULL;
2856 kmem_cache_free(kmem_cache_node, n);
2857 }
2858 }
2859 up_read(&slub_lock);
2860 }
2861
2862 static int slab_mem_going_online_callback(void *arg)
2863 {
2864 struct kmem_cache_node *n;
2865 struct kmem_cache *s;
2866 struct memory_notify *marg = arg;
2867 int nid = marg->status_change_nid;
2868 int ret = 0;
2869
2870 /*
2871 * If the node's memory is already available, then kmem_cache_node is
2872 * already created. Nothing to do.
2873 */
2874 if (nid < 0)
2875 return 0;
2876
2877 /*
2878 * We are bringing a node online. No memory is available yet. We must
2879 * allocate a kmem_cache_node structure in order to bring the node
2880 * online.
2881 */
2882 down_read(&slub_lock);
2883 list_for_each_entry(s, &slab_caches, list) {
2884 /*
2885 * XXX: kmem_cache_alloc_node will fallback to other nodes
2886 * since memory is not yet available from the node that
2887 * is brought up.
2888 */
2889 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
2890 if (!n) {
2891 ret = -ENOMEM;
2892 goto out;
2893 }
2894 init_kmem_cache_node(n, s);
2895 s->node[nid] = n;
2896 }
2897 out:
2898 up_read(&slub_lock);
2899 return ret;
2900 }
2901
2902 static int slab_memory_callback(struct notifier_block *self,
2903 unsigned long action, void *arg)
2904 {
2905 int ret = 0;
2906
2907 switch (action) {
2908 case MEM_GOING_ONLINE:
2909 ret = slab_mem_going_online_callback(arg);
2910 break;
2911 case MEM_GOING_OFFLINE:
2912 ret = slab_mem_going_offline_callback(arg);
2913 break;
2914 case MEM_OFFLINE:
2915 case MEM_CANCEL_ONLINE:
2916 slab_mem_offline_callback(arg);
2917 break;
2918 case MEM_ONLINE:
2919 case MEM_CANCEL_OFFLINE:
2920 break;
2921 }
2922 if (ret)
2923 ret = notifier_from_errno(ret);
2924 else
2925 ret = NOTIFY_OK;
2926 return ret;
2927 }
2928
2929 #endif /* CONFIG_MEMORY_HOTPLUG */
2930
2931 /********************************************************************
2932 * Basic setup of slabs
2933 *******************************************************************/
2934
2935 /*
2936 * Used for early kmem_cache structures that were allocated using
2937 * the page allocator
2938 */
2939
2940 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2941 {
2942 int node;
2943
2944 list_add(&s->list, &slab_caches);
2945 s->refcount = -1;
2946
2947 for_each_node_state(node, N_NORMAL_MEMORY) {
2948 struct kmem_cache_node *n = get_node(s, node);
2949 struct page *p;
2950
2951 if (n) {
2952 list_for_each_entry(p, &n->partial, lru)
2953 p->slab = s;
2954
2955 #ifdef CONFIG_SLAB_DEBUG
2956 list_for_each_entry(p, &n->full, lru)
2957 p->slab = s;
2958 #endif
2959 }
2960 }
2961 }
2962
2963 void __init kmem_cache_init(void)
2964 {
2965 int i;
2966 int caches = 0;
2967 struct kmem_cache *temp_kmem_cache;
2968 int order;
2969 struct kmem_cache *temp_kmem_cache_node;
2970 unsigned long kmalloc_size;
2971
2972 kmem_size = offsetof(struct kmem_cache, node) +
2973 nr_node_ids * sizeof(struct kmem_cache_node *);
2974
2975 /* Allocate two kmem_caches from the page allocator */
2976 kmalloc_size = ALIGN(kmem_size, cache_line_size());
2977 order = get_order(2 * kmalloc_size);
2978 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
2979
2980 /*
2981 * Must first have the slab cache available for the allocations of the
2982 * struct kmem_cache_node's. There is special bootstrap code in
2983 * kmem_cache_open for slab_state == DOWN.
2984 */
2985 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
2986
2987 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
2988 sizeof(struct kmem_cache_node),
2989 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2990
2991 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2992
2993 /* Able to allocate the per node structures */
2994 slab_state = PARTIAL;
2995
2996 temp_kmem_cache = kmem_cache;
2997 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
2998 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2999 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3000 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3001
3002 /*
3003 * Allocate kmem_cache_node properly from the kmem_cache slab.
3004 * kmem_cache_node is separately allocated so no need to
3005 * update any list pointers.
3006 */
3007 temp_kmem_cache_node = kmem_cache_node;
3008
3009 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3010 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3011
3012 kmem_cache_bootstrap_fixup(kmem_cache_node);
3013
3014 caches++;
3015 kmem_cache_bootstrap_fixup(kmem_cache);
3016 caches++;
3017 /* Free temporary boot structure */
3018 free_pages((unsigned long)temp_kmem_cache, order);
3019
3020 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3021
3022 /*
3023 * Patch up the size_index table if we have strange large alignment
3024 * requirements for the kmalloc array. This is only the case for
3025 * MIPS it seems. The standard arches will not generate any code here.
3026 *
3027 * Largest permitted alignment is 256 bytes due to the way we
3028 * handle the index determination for the smaller caches.
3029 *
3030 * Make sure that nothing crazy happens if someone starts tinkering
3031 * around with ARCH_KMALLOC_MINALIGN
3032 */
3033 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3034 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3035
3036 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3037 int elem = size_index_elem(i);
3038 if (elem >= ARRAY_SIZE(size_index))
3039 break;
3040 size_index[elem] = KMALLOC_SHIFT_LOW;
3041 }
3042
3043 if (KMALLOC_MIN_SIZE == 64) {
3044 /*
3045 * The 96 byte size cache is not used if the alignment
3046 * is 64 byte.
3047 */
3048 for (i = 64 + 8; i <= 96; i += 8)
3049 size_index[size_index_elem(i)] = 7;
3050 } else if (KMALLOC_MIN_SIZE == 128) {
3051 /*
3052 * The 192 byte sized cache is not used if the alignment
3053 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3054 * instead.
3055 */
3056 for (i = 128 + 8; i <= 192; i += 8)
3057 size_index[size_index_elem(i)] = 8;
3058 }
3059
3060 /* Caches that are not of the two-to-the-power-of size */
3061 if (KMALLOC_MIN_SIZE <= 32) {
3062 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3063 caches++;
3064 }
3065
3066 if (KMALLOC_MIN_SIZE <= 64) {
3067 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3068 caches++;
3069 }
3070
3071 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3072 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3073 caches++;
3074 }
3075
3076 slab_state = UP;
3077
3078 /* Provide the correct kmalloc names now that the caches are up */
3079 if (KMALLOC_MIN_SIZE <= 32) {
3080 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3081 BUG_ON(!kmalloc_caches[1]->name);
3082 }
3083
3084 if (KMALLOC_MIN_SIZE <= 64) {
3085 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3086 BUG_ON(!kmalloc_caches[2]->name);
3087 }
3088
3089 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3090 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3091
3092 BUG_ON(!s);
3093 kmalloc_caches[i]->name = s;
3094 }
3095
3096 #ifdef CONFIG_SMP
3097 register_cpu_notifier(&slab_notifier);
3098 #endif
3099
3100 #ifdef CONFIG_ZONE_DMA
3101 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3102 struct kmem_cache *s = kmalloc_caches[i];
3103
3104 if (s && s->size) {
3105 char *name = kasprintf(GFP_NOWAIT,
3106 "dma-kmalloc-%d", s->objsize);
3107
3108 BUG_ON(!name);
3109 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3110 s->objsize, SLAB_CACHE_DMA);
3111 }
3112 }
3113 #endif
3114 printk(KERN_INFO
3115 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3116 " CPUs=%d, Nodes=%d\n",
3117 caches, cache_line_size(),
3118 slub_min_order, slub_max_order, slub_min_objects,
3119 nr_cpu_ids, nr_node_ids);
3120 }
3121
3122 void __init kmem_cache_init_late(void)
3123 {
3124 }
3125
3126 /*
3127 * Find a mergeable slab cache
3128 */
3129 static int slab_unmergeable(struct kmem_cache *s)
3130 {
3131 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3132 return 1;
3133
3134 if (s->ctor)
3135 return 1;
3136
3137 /*
3138 * We may have set a slab to be unmergeable during bootstrap.
3139 */
3140 if (s->refcount < 0)
3141 return 1;
3142
3143 return 0;
3144 }
3145
3146 static struct kmem_cache *find_mergeable(size_t size,
3147 size_t align, unsigned long flags, const char *name,
3148 void (*ctor)(void *))
3149 {
3150 struct kmem_cache *s;
3151
3152 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3153 return NULL;
3154
3155 if (ctor)
3156 return NULL;
3157
3158 size = ALIGN(size, sizeof(void *));
3159 align = calculate_alignment(flags, align, size);
3160 size = ALIGN(size, align);
3161 flags = kmem_cache_flags(size, flags, name, NULL);
3162
3163 list_for_each_entry(s, &slab_caches, list) {
3164 if (slab_unmergeable(s))
3165 continue;
3166
3167 if (size > s->size)
3168 continue;
3169
3170 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3171 continue;
3172 /*
3173 * Check if alignment is compatible.
3174 * Courtesy of Adrian Drzewiecki
3175 */
3176 if ((s->size & ~(align - 1)) != s->size)
3177 continue;
3178
3179 if (s->size - size >= sizeof(void *))
3180 continue;
3181
3182 return s;
3183 }
3184 return NULL;
3185 }
3186
3187 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3188 size_t align, unsigned long flags, void (*ctor)(void *))
3189 {
3190 struct kmem_cache *s;
3191 char *n;
3192
3193 if (WARN_ON(!name))
3194 return NULL;
3195
3196 down_write(&slub_lock);
3197 s = find_mergeable(size, align, flags, name, ctor);
3198 if (s) {
3199 s->refcount++;
3200 /*
3201 * Adjust the object sizes so that we clear
3202 * the complete object on kzalloc.
3203 */
3204 s->objsize = max(s->objsize, (int)size);
3205 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3206
3207 if (sysfs_slab_alias(s, name)) {
3208 s->refcount--;
3209 goto err;
3210 }
3211 up_write(&slub_lock);
3212 return s;
3213 }
3214
3215 n = kstrdup(name, GFP_KERNEL);
3216 if (!n)
3217 goto err;
3218
3219 s = kmalloc(kmem_size, GFP_KERNEL);
3220 if (s) {
3221 if (kmem_cache_open(s, n,
3222 size, align, flags, ctor)) {
3223 list_add(&s->list, &slab_caches);
3224 if (sysfs_slab_add(s)) {
3225 list_del(&s->list);
3226 kfree(n);
3227 kfree(s);
3228 goto err;
3229 }
3230 up_write(&slub_lock);
3231 return s;
3232 }
3233 kfree(n);
3234 kfree(s);
3235 }
3236 err:
3237 up_write(&slub_lock);
3238
3239 if (flags & SLAB_PANIC)
3240 panic("Cannot create slabcache %s\n", name);
3241 else
3242 s = NULL;
3243 return s;
3244 }
3245 EXPORT_SYMBOL(kmem_cache_create);
3246
3247 #ifdef CONFIG_SMP
3248 /*
3249 * Use the cpu notifier to insure that the cpu slabs are flushed when
3250 * necessary.
3251 */
3252 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3253 unsigned long action, void *hcpu)
3254 {
3255 long cpu = (long)hcpu;
3256 struct kmem_cache *s;
3257 unsigned long flags;
3258
3259 switch (action) {
3260 case CPU_UP_CANCELED:
3261 case CPU_UP_CANCELED_FROZEN:
3262 case CPU_DEAD:
3263 case CPU_DEAD_FROZEN:
3264 down_read(&slub_lock);
3265 list_for_each_entry(s, &slab_caches, list) {
3266 local_irq_save(flags);
3267 __flush_cpu_slab(s, cpu);
3268 local_irq_restore(flags);
3269 }
3270 up_read(&slub_lock);
3271 break;
3272 default:
3273 break;
3274 }
3275 return NOTIFY_OK;
3276 }
3277
3278 static struct notifier_block __cpuinitdata slab_notifier = {
3279 .notifier_call = slab_cpuup_callback
3280 };
3281
3282 #endif
3283
3284 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3285 {
3286 struct kmem_cache *s;
3287 void *ret;
3288
3289 if (unlikely(size > SLUB_MAX_SIZE))
3290 return kmalloc_large(size, gfpflags);
3291
3292 s = get_slab(size, gfpflags);
3293
3294 if (unlikely(ZERO_OR_NULL_PTR(s)))
3295 return s;
3296
3297 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3298
3299 /* Honor the call site pointer we recieved. */
3300 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3301
3302 return ret;
3303 }
3304
3305 #ifdef CONFIG_NUMA
3306 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3307 int node, unsigned long caller)
3308 {
3309 struct kmem_cache *s;
3310 void *ret;
3311
3312 if (unlikely(size > SLUB_MAX_SIZE)) {
3313 ret = kmalloc_large_node(size, gfpflags, node);
3314
3315 trace_kmalloc_node(caller, ret,
3316 size, PAGE_SIZE << get_order(size),
3317 gfpflags, node);
3318
3319 return ret;
3320 }
3321
3322 s = get_slab(size, gfpflags);
3323
3324 if (unlikely(ZERO_OR_NULL_PTR(s)))
3325 return s;
3326
3327 ret = slab_alloc(s, gfpflags, node, caller);
3328
3329 /* Honor the call site pointer we recieved. */
3330 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3331
3332 return ret;
3333 }
3334 #endif
3335
3336 #ifdef CONFIG_SYSFS
3337 static int count_inuse(struct page *page)
3338 {
3339 return page->inuse;
3340 }
3341
3342 static int count_total(struct page *page)
3343 {
3344 return page->objects;
3345 }
3346 #endif
3347
3348 #ifdef CONFIG_SLUB_DEBUG
3349 static int validate_slab(struct kmem_cache *s, struct page *page,
3350 unsigned long *map)
3351 {
3352 void *p;
3353 void *addr = page_address(page);
3354
3355 if (!check_slab(s, page) ||
3356 !on_freelist(s, page, NULL))
3357 return 0;
3358
3359 /* Now we know that a valid freelist exists */
3360 bitmap_zero(map, page->objects);
3361
3362 for_each_free_object(p, s, page->freelist) {
3363 set_bit(slab_index(p, s, addr), map);
3364 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3365 return 0;
3366 }
3367
3368 for_each_object(p, s, addr, page->objects)
3369 if (!test_bit(slab_index(p, s, addr), map))
3370 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3371 return 0;
3372 return 1;
3373 }
3374
3375 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3376 unsigned long *map)
3377 {
3378 if (slab_trylock(page)) {
3379 validate_slab(s, page, map);
3380 slab_unlock(page);
3381 } else
3382 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3383 s->name, page);
3384 }
3385
3386 static int validate_slab_node(struct kmem_cache *s,
3387 struct kmem_cache_node *n, unsigned long *map)
3388 {
3389 unsigned long count = 0;
3390 struct page *page;
3391 unsigned long flags;
3392
3393 spin_lock_irqsave(&n->list_lock, flags);
3394
3395 list_for_each_entry(page, &n->partial, lru) {
3396 validate_slab_slab(s, page, map);
3397 count++;
3398 }
3399 if (count != n->nr_partial)
3400 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3401 "counter=%ld\n", s->name, count, n->nr_partial);
3402
3403 if (!(s->flags & SLAB_STORE_USER))
3404 goto out;
3405
3406 list_for_each_entry(page, &n->full, lru) {
3407 validate_slab_slab(s, page, map);
3408 count++;
3409 }
3410 if (count != atomic_long_read(&n->nr_slabs))
3411 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3412 "counter=%ld\n", s->name, count,
3413 atomic_long_read(&n->nr_slabs));
3414
3415 out:
3416 spin_unlock_irqrestore(&n->list_lock, flags);
3417 return count;
3418 }
3419
3420 static long validate_slab_cache(struct kmem_cache *s)
3421 {
3422 int node;
3423 unsigned long count = 0;
3424 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3425 sizeof(unsigned long), GFP_KERNEL);
3426
3427 if (!map)
3428 return -ENOMEM;
3429
3430 flush_all(s);
3431 for_each_node_state(node, N_NORMAL_MEMORY) {
3432 struct kmem_cache_node *n = get_node(s, node);
3433
3434 count += validate_slab_node(s, n, map);
3435 }
3436 kfree(map);
3437 return count;
3438 }
3439 /*
3440 * Generate lists of code addresses where slabcache objects are allocated
3441 * and freed.
3442 */
3443
3444 struct location {
3445 unsigned long count;
3446 unsigned long addr;
3447 long long sum_time;
3448 long min_time;
3449 long max_time;
3450 long min_pid;
3451 long max_pid;
3452 DECLARE_BITMAP(cpus, NR_CPUS);
3453 nodemask_t nodes;
3454 };
3455
3456 struct loc_track {
3457 unsigned long max;
3458 unsigned long count;
3459 struct location *loc;
3460 };
3461
3462 static void free_loc_track(struct loc_track *t)
3463 {
3464 if (t->max)
3465 free_pages((unsigned long)t->loc,
3466 get_order(sizeof(struct location) * t->max));
3467 }
3468
3469 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3470 {
3471 struct location *l;
3472 int order;
3473
3474 order = get_order(sizeof(struct location) * max);
3475
3476 l = (void *)__get_free_pages(flags, order);
3477 if (!l)
3478 return 0;
3479
3480 if (t->count) {
3481 memcpy(l, t->loc, sizeof(struct location) * t->count);
3482 free_loc_track(t);
3483 }
3484 t->max = max;
3485 t->loc = l;
3486 return 1;
3487 }
3488
3489 static int add_location(struct loc_track *t, struct kmem_cache *s,
3490 const struct track *track)
3491 {
3492 long start, end, pos;
3493 struct location *l;
3494 unsigned long caddr;
3495 unsigned long age = jiffies - track->when;
3496
3497 start = -1;
3498 end = t->count;
3499
3500 for ( ; ; ) {
3501 pos = start + (end - start + 1) / 2;
3502
3503 /*
3504 * There is nothing at "end". If we end up there
3505 * we need to add something to before end.
3506 */
3507 if (pos == end)
3508 break;
3509
3510 caddr = t->loc[pos].addr;
3511 if (track->addr == caddr) {
3512
3513 l = &t->loc[pos];
3514 l->count++;
3515 if (track->when) {
3516 l->sum_time += age;
3517 if (age < l->min_time)
3518 l->min_time = age;
3519 if (age > l->max_time)
3520 l->max_time = age;
3521
3522 if (track->pid < l->min_pid)
3523 l->min_pid = track->pid;
3524 if (track->pid > l->max_pid)
3525 l->max_pid = track->pid;
3526
3527 cpumask_set_cpu(track->cpu,
3528 to_cpumask(l->cpus));
3529 }
3530 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3531 return 1;
3532 }
3533
3534 if (track->addr < caddr)
3535 end = pos;
3536 else
3537 start = pos;
3538 }
3539
3540 /*
3541 * Not found. Insert new tracking element.
3542 */
3543 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3544 return 0;
3545
3546 l = t->loc + pos;
3547 if (pos < t->count)
3548 memmove(l + 1, l,
3549 (t->count - pos) * sizeof(struct location));
3550 t->count++;
3551 l->count = 1;
3552 l->addr = track->addr;
3553 l->sum_time = age;
3554 l->min_time = age;
3555 l->max_time = age;
3556 l->min_pid = track->pid;
3557 l->max_pid = track->pid;
3558 cpumask_clear(to_cpumask(l->cpus));
3559 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3560 nodes_clear(l->nodes);
3561 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3562 return 1;
3563 }
3564
3565 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3566 struct page *page, enum track_item alloc,
3567 unsigned long *map)
3568 {
3569 void *addr = page_address(page);
3570 void *p;
3571
3572 bitmap_zero(map, page->objects);
3573 for_each_free_object(p, s, page->freelist)
3574 set_bit(slab_index(p, s, addr), map);
3575
3576 for_each_object(p, s, addr, page->objects)
3577 if (!test_bit(slab_index(p, s, addr), map))
3578 add_location(t, s, get_track(s, p, alloc));
3579 }
3580
3581 static int list_locations(struct kmem_cache *s, char *buf,
3582 enum track_item alloc)
3583 {
3584 int len = 0;
3585 unsigned long i;
3586 struct loc_track t = { 0, 0, NULL };
3587 int node;
3588 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3589 sizeof(unsigned long), GFP_KERNEL);
3590
3591 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3592 GFP_TEMPORARY)) {
3593 kfree(map);
3594 return sprintf(buf, "Out of memory\n");
3595 }
3596 /* Push back cpu slabs */
3597 flush_all(s);
3598
3599 for_each_node_state(node, N_NORMAL_MEMORY) {
3600 struct kmem_cache_node *n = get_node(s, node);
3601 unsigned long flags;
3602 struct page *page;
3603
3604 if (!atomic_long_read(&n->nr_slabs))
3605 continue;
3606
3607 spin_lock_irqsave(&n->list_lock, flags);
3608 list_for_each_entry(page, &n->partial, lru)
3609 process_slab(&t, s, page, alloc, map);
3610 list_for_each_entry(page, &n->full, lru)
3611 process_slab(&t, s, page, alloc, map);
3612 spin_unlock_irqrestore(&n->list_lock, flags);
3613 }
3614
3615 for (i = 0; i < t.count; i++) {
3616 struct location *l = &t.loc[i];
3617
3618 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3619 break;
3620 len += sprintf(buf + len, "%7ld ", l->count);
3621
3622 if (l->addr)
3623 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3624 else
3625 len += sprintf(buf + len, "<not-available>");
3626
3627 if (l->sum_time != l->min_time) {
3628 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3629 l->min_time,
3630 (long)div_u64(l->sum_time, l->count),
3631 l->max_time);
3632 } else
3633 len += sprintf(buf + len, " age=%ld",
3634 l->min_time);
3635
3636 if (l->min_pid != l->max_pid)
3637 len += sprintf(buf + len, " pid=%ld-%ld",
3638 l->min_pid, l->max_pid);
3639 else
3640 len += sprintf(buf + len, " pid=%ld",
3641 l->min_pid);
3642
3643 if (num_online_cpus() > 1 &&
3644 !cpumask_empty(to_cpumask(l->cpus)) &&
3645 len < PAGE_SIZE - 60) {
3646 len += sprintf(buf + len, " cpus=");
3647 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3648 to_cpumask(l->cpus));
3649 }
3650
3651 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3652 len < PAGE_SIZE - 60) {
3653 len += sprintf(buf + len, " nodes=");
3654 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3655 l->nodes);
3656 }
3657
3658 len += sprintf(buf + len, "\n");
3659 }
3660
3661 free_loc_track(&t);
3662 kfree(map);
3663 if (!t.count)
3664 len += sprintf(buf, "No data\n");
3665 return len;
3666 }
3667 #endif
3668
3669 #ifdef SLUB_RESILIENCY_TEST
3670 static void resiliency_test(void)
3671 {
3672 u8 *p;
3673
3674 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3675
3676 printk(KERN_ERR "SLUB resiliency testing\n");
3677 printk(KERN_ERR "-----------------------\n");
3678 printk(KERN_ERR "A. Corruption after allocation\n");
3679
3680 p = kzalloc(16, GFP_KERNEL);
3681 p[16] = 0x12;
3682 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3683 " 0x12->0x%p\n\n", p + 16);
3684
3685 validate_slab_cache(kmalloc_caches[4]);
3686
3687 /* Hmmm... The next two are dangerous */
3688 p = kzalloc(32, GFP_KERNEL);
3689 p[32 + sizeof(void *)] = 0x34;
3690 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3691 " 0x34 -> -0x%p\n", p);
3692 printk(KERN_ERR
3693 "If allocated object is overwritten then not detectable\n\n");
3694
3695 validate_slab_cache(kmalloc_caches[5]);
3696 p = kzalloc(64, GFP_KERNEL);
3697 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3698 *p = 0x56;
3699 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3700 p);
3701 printk(KERN_ERR
3702 "If allocated object is overwritten then not detectable\n\n");
3703 validate_slab_cache(kmalloc_caches[6]);
3704
3705 printk(KERN_ERR "\nB. Corruption after free\n");
3706 p = kzalloc(128, GFP_KERNEL);
3707 kfree(p);
3708 *p = 0x78;
3709 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3710 validate_slab_cache(kmalloc_caches[7]);
3711
3712 p = kzalloc(256, GFP_KERNEL);
3713 kfree(p);
3714 p[50] = 0x9a;
3715 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3716 p);
3717 validate_slab_cache(kmalloc_caches[8]);
3718
3719 p = kzalloc(512, GFP_KERNEL);
3720 kfree(p);
3721 p[512] = 0xab;
3722 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3723 validate_slab_cache(kmalloc_caches[9]);
3724 }
3725 #else
3726 #ifdef CONFIG_SYSFS
3727 static void resiliency_test(void) {};
3728 #endif
3729 #endif
3730
3731 #ifdef CONFIG_SYSFS
3732 enum slab_stat_type {
3733 SL_ALL, /* All slabs */
3734 SL_PARTIAL, /* Only partially allocated slabs */
3735 SL_CPU, /* Only slabs used for cpu caches */
3736 SL_OBJECTS, /* Determine allocated objects not slabs */
3737 SL_TOTAL /* Determine object capacity not slabs */
3738 };
3739
3740 #define SO_ALL (1 << SL_ALL)
3741 #define SO_PARTIAL (1 << SL_PARTIAL)
3742 #define SO_CPU (1 << SL_CPU)
3743 #define SO_OBJECTS (1 << SL_OBJECTS)
3744 #define SO_TOTAL (1 << SL_TOTAL)
3745
3746 static ssize_t show_slab_objects(struct kmem_cache *s,
3747 char *buf, unsigned long flags)
3748 {
3749 unsigned long total = 0;
3750 int node;
3751 int x;
3752 unsigned long *nodes;
3753 unsigned long *per_cpu;
3754
3755 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3756 if (!nodes)
3757 return -ENOMEM;
3758 per_cpu = nodes + nr_node_ids;
3759
3760 if (flags & SO_CPU) {
3761 int cpu;
3762
3763 for_each_possible_cpu(cpu) {
3764 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3765
3766 if (!c || c->node < 0)
3767 continue;
3768
3769 if (c->page) {
3770 if (flags & SO_TOTAL)
3771 x = c->page->objects;
3772 else if (flags & SO_OBJECTS)
3773 x = c->page->inuse;
3774 else
3775 x = 1;
3776
3777 total += x;
3778 nodes[c->node] += x;
3779 }
3780 per_cpu[c->node]++;
3781 }
3782 }
3783
3784 down_read(&slub_lock);
3785 #ifdef CONFIG_SLUB_DEBUG
3786 if (flags & SO_ALL) {
3787 for_each_node_state(node, N_NORMAL_MEMORY) {
3788 struct kmem_cache_node *n = get_node(s, node);
3789
3790 if (flags & SO_TOTAL)
3791 x = atomic_long_read(&n->total_objects);
3792 else if (flags & SO_OBJECTS)
3793 x = atomic_long_read(&n->total_objects) -
3794 count_partial(n, count_free);
3795
3796 else
3797 x = atomic_long_read(&n->nr_slabs);
3798 total += x;
3799 nodes[node] += x;
3800 }
3801
3802 } else
3803 #endif
3804 if (flags & SO_PARTIAL) {
3805 for_each_node_state(node, N_NORMAL_MEMORY) {
3806 struct kmem_cache_node *n = get_node(s, node);
3807
3808 if (flags & SO_TOTAL)
3809 x = count_partial(n, count_total);
3810 else if (flags & SO_OBJECTS)
3811 x = count_partial(n, count_inuse);
3812 else
3813 x = n->nr_partial;
3814 total += x;
3815 nodes[node] += x;
3816 }
3817 }
3818 x = sprintf(buf, "%lu", total);
3819 #ifdef CONFIG_NUMA
3820 for_each_node_state(node, N_NORMAL_MEMORY)
3821 if (nodes[node])
3822 x += sprintf(buf + x, " N%d=%lu",
3823 node, nodes[node]);
3824 #endif
3825 up_read(&slub_lock);
3826 kfree(nodes);
3827 return x + sprintf(buf + x, "\n");
3828 }
3829
3830 #ifdef CONFIG_SLUB_DEBUG
3831 static int any_slab_objects(struct kmem_cache *s)
3832 {
3833 int node;
3834
3835 for_each_online_node(node) {
3836 struct kmem_cache_node *n = get_node(s, node);
3837
3838 if (!n)
3839 continue;
3840
3841 if (atomic_long_read(&n->total_objects))
3842 return 1;
3843 }
3844 return 0;
3845 }
3846 #endif
3847
3848 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3849 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3850
3851 struct slab_attribute {
3852 struct attribute attr;
3853 ssize_t (*show)(struct kmem_cache *s, char *buf);
3854 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3855 };
3856
3857 #define SLAB_ATTR_RO(_name) \
3858 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3859
3860 #define SLAB_ATTR(_name) \
3861 static struct slab_attribute _name##_attr = \
3862 __ATTR(_name, 0644, _name##_show, _name##_store)
3863
3864 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3865 {
3866 return sprintf(buf, "%d\n", s->size);
3867 }
3868 SLAB_ATTR_RO(slab_size);
3869
3870 static ssize_t align_show(struct kmem_cache *s, char *buf)
3871 {
3872 return sprintf(buf, "%d\n", s->align);
3873 }
3874 SLAB_ATTR_RO(align);
3875
3876 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3877 {
3878 return sprintf(buf, "%d\n", s->objsize);
3879 }
3880 SLAB_ATTR_RO(object_size);
3881
3882 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3883 {
3884 return sprintf(buf, "%d\n", oo_objects(s->oo));
3885 }
3886 SLAB_ATTR_RO(objs_per_slab);
3887
3888 static ssize_t order_store(struct kmem_cache *s,
3889 const char *buf, size_t length)
3890 {
3891 unsigned long order;
3892 int err;
3893
3894 err = strict_strtoul(buf, 10, &order);
3895 if (err)
3896 return err;
3897
3898 if (order > slub_max_order || order < slub_min_order)
3899 return -EINVAL;
3900
3901 calculate_sizes(s, order);
3902 return length;
3903 }
3904
3905 static ssize_t order_show(struct kmem_cache *s, char *buf)
3906 {
3907 return sprintf(buf, "%d\n", oo_order(s->oo));
3908 }
3909 SLAB_ATTR(order);
3910
3911 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3912 {
3913 return sprintf(buf, "%lu\n", s->min_partial);
3914 }
3915
3916 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3917 size_t length)
3918 {
3919 unsigned long min;
3920 int err;
3921
3922 err = strict_strtoul(buf, 10, &min);
3923 if (err)
3924 return err;
3925
3926 set_min_partial(s, min);
3927 return length;
3928 }
3929 SLAB_ATTR(min_partial);
3930
3931 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3932 {
3933 if (s->ctor) {
3934 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3935
3936 return n + sprintf(buf + n, "\n");
3937 }
3938 return 0;
3939 }
3940 SLAB_ATTR_RO(ctor);
3941
3942 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3943 {
3944 return sprintf(buf, "%d\n", s->refcount - 1);
3945 }
3946 SLAB_ATTR_RO(aliases);
3947
3948 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3949 {
3950 return show_slab_objects(s, buf, SO_PARTIAL);
3951 }
3952 SLAB_ATTR_RO(partial);
3953
3954 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3955 {
3956 return show_slab_objects(s, buf, SO_CPU);
3957 }
3958 SLAB_ATTR_RO(cpu_slabs);
3959
3960 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3961 {
3962 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3963 }
3964 SLAB_ATTR_RO(objects);
3965
3966 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3967 {
3968 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3969 }
3970 SLAB_ATTR_RO(objects_partial);
3971
3972 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3973 {
3974 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3975 }
3976
3977 static ssize_t reclaim_account_store(struct kmem_cache *s,
3978 const char *buf, size_t length)
3979 {
3980 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3981 if (buf[0] == '1')
3982 s->flags |= SLAB_RECLAIM_ACCOUNT;
3983 return length;
3984 }
3985 SLAB_ATTR(reclaim_account);
3986
3987 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3988 {
3989 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3990 }
3991 SLAB_ATTR_RO(hwcache_align);
3992
3993 #ifdef CONFIG_ZONE_DMA
3994 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3995 {
3996 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3997 }
3998 SLAB_ATTR_RO(cache_dma);
3999 #endif
4000
4001 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4002 {
4003 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4004 }
4005 SLAB_ATTR_RO(destroy_by_rcu);
4006
4007 #ifdef CONFIG_SLUB_DEBUG
4008 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4009 {
4010 return show_slab_objects(s, buf, SO_ALL);
4011 }
4012 SLAB_ATTR_RO(slabs);
4013
4014 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4015 {
4016 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4017 }
4018 SLAB_ATTR_RO(total_objects);
4019
4020 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4021 {
4022 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4023 }
4024
4025 static ssize_t sanity_checks_store(struct kmem_cache *s,
4026 const char *buf, size_t length)
4027 {
4028 s->flags &= ~SLAB_DEBUG_FREE;
4029 if (buf[0] == '1')
4030 s->flags |= SLAB_DEBUG_FREE;
4031 return length;
4032 }
4033 SLAB_ATTR(sanity_checks);
4034
4035 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4036 {
4037 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4038 }
4039
4040 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4041 size_t length)
4042 {
4043 s->flags &= ~SLAB_TRACE;
4044 if (buf[0] == '1')
4045 s->flags |= SLAB_TRACE;
4046 return length;
4047 }
4048 SLAB_ATTR(trace);
4049
4050 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4051 {
4052 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4053 }
4054
4055 static ssize_t red_zone_store(struct kmem_cache *s,
4056 const char *buf, size_t length)
4057 {
4058 if (any_slab_objects(s))
4059 return -EBUSY;
4060
4061 s->flags &= ~SLAB_RED_ZONE;
4062 if (buf[0] == '1')
4063 s->flags |= SLAB_RED_ZONE;
4064 calculate_sizes(s, -1);
4065 return length;
4066 }
4067 SLAB_ATTR(red_zone);
4068
4069 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4070 {
4071 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4072 }
4073
4074 static ssize_t poison_store(struct kmem_cache *s,
4075 const char *buf, size_t length)
4076 {
4077 if (any_slab_objects(s))
4078 return -EBUSY;
4079
4080 s->flags &= ~SLAB_POISON;
4081 if (buf[0] == '1')
4082 s->flags |= SLAB_POISON;
4083 calculate_sizes(s, -1);
4084 return length;
4085 }
4086 SLAB_ATTR(poison);
4087
4088 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4089 {
4090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4091 }
4092
4093 static ssize_t store_user_store(struct kmem_cache *s,
4094 const char *buf, size_t length)
4095 {
4096 if (any_slab_objects(s))
4097 return -EBUSY;
4098
4099 s->flags &= ~SLAB_STORE_USER;
4100 if (buf[0] == '1')
4101 s->flags |= SLAB_STORE_USER;
4102 calculate_sizes(s, -1);
4103 return length;
4104 }
4105 SLAB_ATTR(store_user);
4106
4107 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4108 {
4109 return 0;
4110 }
4111
4112 static ssize_t validate_store(struct kmem_cache *s,
4113 const char *buf, size_t length)
4114 {
4115 int ret = -EINVAL;
4116
4117 if (buf[0] == '1') {
4118 ret = validate_slab_cache(s);
4119 if (ret >= 0)
4120 ret = length;
4121 }
4122 return ret;
4123 }
4124 SLAB_ATTR(validate);
4125
4126 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4127 {
4128 if (!(s->flags & SLAB_STORE_USER))
4129 return -ENOSYS;
4130 return list_locations(s, buf, TRACK_ALLOC);
4131 }
4132 SLAB_ATTR_RO(alloc_calls);
4133
4134 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4135 {
4136 if (!(s->flags & SLAB_STORE_USER))
4137 return -ENOSYS;
4138 return list_locations(s, buf, TRACK_FREE);
4139 }
4140 SLAB_ATTR_RO(free_calls);
4141 #endif /* CONFIG_SLUB_DEBUG */
4142
4143 #ifdef CONFIG_FAILSLAB
4144 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4145 {
4146 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4147 }
4148
4149 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4150 size_t length)
4151 {
4152 s->flags &= ~SLAB_FAILSLAB;
4153 if (buf[0] == '1')
4154 s->flags |= SLAB_FAILSLAB;
4155 return length;
4156 }
4157 SLAB_ATTR(failslab);
4158 #endif
4159
4160 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4161 {
4162 return 0;
4163 }
4164
4165 static ssize_t shrink_store(struct kmem_cache *s,
4166 const char *buf, size_t length)
4167 {
4168 if (buf[0] == '1') {
4169 int rc = kmem_cache_shrink(s);
4170
4171 if (rc)
4172 return rc;
4173 } else
4174 return -EINVAL;
4175 return length;
4176 }
4177 SLAB_ATTR(shrink);
4178
4179 #ifdef CONFIG_NUMA
4180 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4181 {
4182 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4183 }
4184
4185 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4186 const char *buf, size_t length)
4187 {
4188 unsigned long ratio;
4189 int err;
4190
4191 err = strict_strtoul(buf, 10, &ratio);
4192 if (err)
4193 return err;
4194
4195 if (ratio <= 100)
4196 s->remote_node_defrag_ratio = ratio * 10;
4197
4198 return length;
4199 }
4200 SLAB_ATTR(remote_node_defrag_ratio);
4201 #endif
4202
4203 #ifdef CONFIG_SLUB_STATS
4204 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4205 {
4206 unsigned long sum = 0;
4207 int cpu;
4208 int len;
4209 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4210
4211 if (!data)
4212 return -ENOMEM;
4213
4214 for_each_online_cpu(cpu) {
4215 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4216
4217 data[cpu] = x;
4218 sum += x;
4219 }
4220
4221 len = sprintf(buf, "%lu", sum);
4222
4223 #ifdef CONFIG_SMP
4224 for_each_online_cpu(cpu) {
4225 if (data[cpu] && len < PAGE_SIZE - 20)
4226 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4227 }
4228 #endif
4229 kfree(data);
4230 return len + sprintf(buf + len, "\n");
4231 }
4232
4233 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4234 {
4235 int cpu;
4236
4237 for_each_online_cpu(cpu)
4238 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4239 }
4240
4241 #define STAT_ATTR(si, text) \
4242 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4243 { \
4244 return show_stat(s, buf, si); \
4245 } \
4246 static ssize_t text##_store(struct kmem_cache *s, \
4247 const char *buf, size_t length) \
4248 { \
4249 if (buf[0] != '0') \
4250 return -EINVAL; \
4251 clear_stat(s, si); \
4252 return length; \
4253 } \
4254 SLAB_ATTR(text); \
4255
4256 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4257 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4258 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4259 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4260 STAT_ATTR(FREE_FROZEN, free_frozen);
4261 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4262 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4263 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4264 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4265 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4266 STAT_ATTR(FREE_SLAB, free_slab);
4267 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4268 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4269 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4270 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4271 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4272 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4273 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4274 #endif
4275
4276 static struct attribute *slab_attrs[] = {
4277 &slab_size_attr.attr,
4278 &object_size_attr.attr,
4279 &objs_per_slab_attr.attr,
4280 &order_attr.attr,
4281 &min_partial_attr.attr,
4282 &objects_attr.attr,
4283 &objects_partial_attr.attr,
4284 &partial_attr.attr,
4285 &cpu_slabs_attr.attr,
4286 &ctor_attr.attr,
4287 &aliases_attr.attr,
4288 &align_attr.attr,
4289 &hwcache_align_attr.attr,
4290 &reclaim_account_attr.attr,
4291 &destroy_by_rcu_attr.attr,
4292 &shrink_attr.attr,
4293 #ifdef CONFIG_SLUB_DEBUG
4294 &total_objects_attr.attr,
4295 &slabs_attr.attr,
4296 &sanity_checks_attr.attr,
4297 &trace_attr.attr,
4298 &red_zone_attr.attr,
4299 &poison_attr.attr,
4300 &store_user_attr.attr,
4301 &validate_attr.attr,
4302 &alloc_calls_attr.attr,
4303 &free_calls_attr.attr,
4304 #endif
4305 #ifdef CONFIG_ZONE_DMA
4306 &cache_dma_attr.attr,
4307 #endif
4308 #ifdef CONFIG_NUMA
4309 &remote_node_defrag_ratio_attr.attr,
4310 #endif
4311 #ifdef CONFIG_SLUB_STATS
4312 &alloc_fastpath_attr.attr,
4313 &alloc_slowpath_attr.attr,
4314 &free_fastpath_attr.attr,
4315 &free_slowpath_attr.attr,
4316 &free_frozen_attr.attr,
4317 &free_add_partial_attr.attr,
4318 &free_remove_partial_attr.attr,
4319 &alloc_from_partial_attr.attr,
4320 &alloc_slab_attr.attr,
4321 &alloc_refill_attr.attr,
4322 &free_slab_attr.attr,
4323 &cpuslab_flush_attr.attr,
4324 &deactivate_full_attr.attr,
4325 &deactivate_empty_attr.attr,
4326 &deactivate_to_head_attr.attr,
4327 &deactivate_to_tail_attr.attr,
4328 &deactivate_remote_frees_attr.attr,
4329 &order_fallback_attr.attr,
4330 #endif
4331 #ifdef CONFIG_FAILSLAB
4332 &failslab_attr.attr,
4333 #endif
4334
4335 NULL
4336 };
4337
4338 static struct attribute_group slab_attr_group = {
4339 .attrs = slab_attrs,
4340 };
4341
4342 static ssize_t slab_attr_show(struct kobject *kobj,
4343 struct attribute *attr,
4344 char *buf)
4345 {
4346 struct slab_attribute *attribute;
4347 struct kmem_cache *s;
4348 int err;
4349
4350 attribute = to_slab_attr(attr);
4351 s = to_slab(kobj);
4352
4353 if (!attribute->show)
4354 return -EIO;
4355
4356 err = attribute->show(s, buf);
4357
4358 return err;
4359 }
4360
4361 static ssize_t slab_attr_store(struct kobject *kobj,
4362 struct attribute *attr,
4363 const char *buf, size_t len)
4364 {
4365 struct slab_attribute *attribute;
4366 struct kmem_cache *s;
4367 int err;
4368
4369 attribute = to_slab_attr(attr);
4370 s = to_slab(kobj);
4371
4372 if (!attribute->store)
4373 return -EIO;
4374
4375 err = attribute->store(s, buf, len);
4376
4377 return err;
4378 }
4379
4380 static void kmem_cache_release(struct kobject *kobj)
4381 {
4382 struct kmem_cache *s = to_slab(kobj);
4383
4384 kfree(s->name);
4385 kfree(s);
4386 }
4387
4388 static const struct sysfs_ops slab_sysfs_ops = {
4389 .show = slab_attr_show,
4390 .store = slab_attr_store,
4391 };
4392
4393 static struct kobj_type slab_ktype = {
4394 .sysfs_ops = &slab_sysfs_ops,
4395 .release = kmem_cache_release
4396 };
4397
4398 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4399 {
4400 struct kobj_type *ktype = get_ktype(kobj);
4401
4402 if (ktype == &slab_ktype)
4403 return 1;
4404 return 0;
4405 }
4406
4407 static const struct kset_uevent_ops slab_uevent_ops = {
4408 .filter = uevent_filter,
4409 };
4410
4411 static struct kset *slab_kset;
4412
4413 #define ID_STR_LENGTH 64
4414
4415 /* Create a unique string id for a slab cache:
4416 *
4417 * Format :[flags-]size
4418 */
4419 static char *create_unique_id(struct kmem_cache *s)
4420 {
4421 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4422 char *p = name;
4423
4424 BUG_ON(!name);
4425
4426 *p++ = ':';
4427 /*
4428 * First flags affecting slabcache operations. We will only
4429 * get here for aliasable slabs so we do not need to support
4430 * too many flags. The flags here must cover all flags that
4431 * are matched during merging to guarantee that the id is
4432 * unique.
4433 */
4434 if (s->flags & SLAB_CACHE_DMA)
4435 *p++ = 'd';
4436 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4437 *p++ = 'a';
4438 if (s->flags & SLAB_DEBUG_FREE)
4439 *p++ = 'F';
4440 if (!(s->flags & SLAB_NOTRACK))
4441 *p++ = 't';
4442 if (p != name + 1)
4443 *p++ = '-';
4444 p += sprintf(p, "%07d", s->size);
4445 BUG_ON(p > name + ID_STR_LENGTH - 1);
4446 return name;
4447 }
4448
4449 static int sysfs_slab_add(struct kmem_cache *s)
4450 {
4451 int err;
4452 const char *name;
4453 int unmergeable;
4454
4455 if (slab_state < SYSFS)
4456 /* Defer until later */
4457 return 0;
4458
4459 unmergeable = slab_unmergeable(s);
4460 if (unmergeable) {
4461 /*
4462 * Slabcache can never be merged so we can use the name proper.
4463 * This is typically the case for debug situations. In that
4464 * case we can catch duplicate names easily.
4465 */
4466 sysfs_remove_link(&slab_kset->kobj, s->name);
4467 name = s->name;
4468 } else {
4469 /*
4470 * Create a unique name for the slab as a target
4471 * for the symlinks.
4472 */
4473 name = create_unique_id(s);
4474 }
4475
4476 s->kobj.kset = slab_kset;
4477 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4478 if (err) {
4479 kobject_put(&s->kobj);
4480 return err;
4481 }
4482
4483 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4484 if (err) {
4485 kobject_del(&s->kobj);
4486 kobject_put(&s->kobj);
4487 return err;
4488 }
4489 kobject_uevent(&s->kobj, KOBJ_ADD);
4490 if (!unmergeable) {
4491 /* Setup first alias */
4492 sysfs_slab_alias(s, s->name);
4493 kfree(name);
4494 }
4495 return 0;
4496 }
4497
4498 static void sysfs_slab_remove(struct kmem_cache *s)
4499 {
4500 if (slab_state < SYSFS)
4501 /*
4502 * Sysfs has not been setup yet so no need to remove the
4503 * cache from sysfs.
4504 */
4505 return;
4506
4507 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4508 kobject_del(&s->kobj);
4509 kobject_put(&s->kobj);
4510 }
4511
4512 /*
4513 * Need to buffer aliases during bootup until sysfs becomes
4514 * available lest we lose that information.
4515 */
4516 struct saved_alias {
4517 struct kmem_cache *s;
4518 const char *name;
4519 struct saved_alias *next;
4520 };
4521
4522 static struct saved_alias *alias_list;
4523
4524 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4525 {
4526 struct saved_alias *al;
4527
4528 if (slab_state == SYSFS) {
4529 /*
4530 * If we have a leftover link then remove it.
4531 */
4532 sysfs_remove_link(&slab_kset->kobj, name);
4533 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4534 }
4535
4536 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4537 if (!al)
4538 return -ENOMEM;
4539
4540 al->s = s;
4541 al->name = name;
4542 al->next = alias_list;
4543 alias_list = al;
4544 return 0;
4545 }
4546
4547 static int __init slab_sysfs_init(void)
4548 {
4549 struct kmem_cache *s;
4550 int err;
4551
4552 down_write(&slub_lock);
4553
4554 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4555 if (!slab_kset) {
4556 up_write(&slub_lock);
4557 printk(KERN_ERR "Cannot register slab subsystem.\n");
4558 return -ENOSYS;
4559 }
4560
4561 slab_state = SYSFS;
4562
4563 list_for_each_entry(s, &slab_caches, list) {
4564 err = sysfs_slab_add(s);
4565 if (err)
4566 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4567 " to sysfs\n", s->name);
4568 }
4569
4570 while (alias_list) {
4571 struct saved_alias *al = alias_list;
4572
4573 alias_list = alias_list->next;
4574 err = sysfs_slab_alias(al->s, al->name);
4575 if (err)
4576 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4577 " %s to sysfs\n", s->name);
4578 kfree(al);
4579 }
4580
4581 up_write(&slub_lock);
4582 resiliency_test();
4583 return 0;
4584 }
4585
4586 __initcall(slab_sysfs_init);
4587 #endif /* CONFIG_SYSFS */
4588
4589 /*
4590 * The /proc/slabinfo ABI
4591 */
4592 #ifdef CONFIG_SLABINFO
4593 static void print_slabinfo_header(struct seq_file *m)
4594 {
4595 seq_puts(m, "slabinfo - version: 2.1\n");
4596 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4597 "<objperslab> <pagesperslab>");
4598 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4599 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4600 seq_putc(m, '\n');
4601 }
4602
4603 static void *s_start(struct seq_file *m, loff_t *pos)
4604 {
4605 loff_t n = *pos;
4606
4607 down_read(&slub_lock);
4608 if (!n)
4609 print_slabinfo_header(m);
4610
4611 return seq_list_start(&slab_caches, *pos);
4612 }
4613
4614 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4615 {
4616 return seq_list_next(p, &slab_caches, pos);
4617 }
4618
4619 static void s_stop(struct seq_file *m, void *p)
4620 {
4621 up_read(&slub_lock);
4622 }
4623
4624 static int s_show(struct seq_file *m, void *p)
4625 {
4626 unsigned long nr_partials = 0;
4627 unsigned long nr_slabs = 0;
4628 unsigned long nr_inuse = 0;
4629 unsigned long nr_objs = 0;
4630 unsigned long nr_free = 0;
4631 struct kmem_cache *s;
4632 int node;
4633
4634 s = list_entry(p, struct kmem_cache, list);
4635
4636 for_each_online_node(node) {
4637 struct kmem_cache_node *n = get_node(s, node);
4638
4639 if (!n)
4640 continue;
4641
4642 nr_partials += n->nr_partial;
4643 nr_slabs += atomic_long_read(&n->nr_slabs);
4644 nr_objs += atomic_long_read(&n->total_objects);
4645 nr_free += count_partial(n, count_free);
4646 }
4647
4648 nr_inuse = nr_objs - nr_free;
4649
4650 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4651 nr_objs, s->size, oo_objects(s->oo),
4652 (1 << oo_order(s->oo)));
4653 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4654 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4655 0UL);
4656 seq_putc(m, '\n');
4657 return 0;
4658 }
4659
4660 static const struct seq_operations slabinfo_op = {
4661 .start = s_start,
4662 .next = s_next,
4663 .stop = s_stop,
4664 .show = s_show,
4665 };
4666
4667 static int slabinfo_open(struct inode *inode, struct file *file)
4668 {
4669 return seq_open(file, &slabinfo_op);
4670 }
4671
4672 static const struct file_operations proc_slabinfo_operations = {
4673 .open = slabinfo_open,
4674 .read = seq_read,
4675 .llseek = seq_lseek,
4676 .release = seq_release,
4677 };
4678
4679 static int __init slab_proc_init(void)
4680 {
4681 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4682 return 0;
4683 }
4684 module_init(slab_proc_init);
4685 #endif /* CONFIG_SLABINFO */