]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
Merge tag 'pinctrl-v3.20-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 #define OO_SHIFT 16
173 #define OO_MASK ((1 << OO_SHIFT) - 1)
174 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
175
176 /* Internal SLUB flags */
177 #define __OBJECT_POISON 0x80000000UL /* Poison object */
178 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
179
180 #ifdef CONFIG_SMP
181 static struct notifier_block slab_notifier;
182 #endif
183
184 /*
185 * Tracking user of a slab.
186 */
187 #define TRACK_ADDRS_COUNT 16
188 struct track {
189 unsigned long addr; /* Called from address */
190 #ifdef CONFIG_STACKTRACE
191 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
192 #endif
193 int cpu; /* Was running on cpu */
194 int pid; /* Pid context */
195 unsigned long when; /* When did the operation occur */
196 };
197
198 enum track_item { TRACK_ALLOC, TRACK_FREE };
199
200 #ifdef CONFIG_SYSFS
201 static int sysfs_slab_add(struct kmem_cache *);
202 static int sysfs_slab_alias(struct kmem_cache *, const char *);
203 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
204 #else
205 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
206 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
207 { return 0; }
208 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
209 #endif
210
211 static inline void stat(const struct kmem_cache *s, enum stat_item si)
212 {
213 #ifdef CONFIG_SLUB_STATS
214 /*
215 * The rmw is racy on a preemptible kernel but this is acceptable, so
216 * avoid this_cpu_add()'s irq-disable overhead.
217 */
218 raw_cpu_inc(s->cpu_slab->stat[si]);
219 #endif
220 }
221
222 /********************************************************************
223 * Core slab cache functions
224 *******************************************************************/
225
226 /* Verify that a pointer has an address that is valid within a slab page */
227 static inline int check_valid_pointer(struct kmem_cache *s,
228 struct page *page, const void *object)
229 {
230 void *base;
231
232 if (!object)
233 return 1;
234
235 base = page_address(page);
236 if (object < base || object >= base + page->objects * s->size ||
237 (object - base) % s->size) {
238 return 0;
239 }
240
241 return 1;
242 }
243
244 static inline void *get_freepointer(struct kmem_cache *s, void *object)
245 {
246 return *(void **)(object + s->offset);
247 }
248
249 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
250 {
251 prefetch(object + s->offset);
252 }
253
254 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
255 {
256 void *p;
257
258 #ifdef CONFIG_DEBUG_PAGEALLOC
259 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
260 #else
261 p = get_freepointer(s, object);
262 #endif
263 return p;
264 }
265
266 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
267 {
268 *(void **)(object + s->offset) = fp;
269 }
270
271 /* Loop over all objects in a slab */
272 #define for_each_object(__p, __s, __addr, __objects) \
273 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 __p += (__s)->size)
275
276 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
277 for (__p = (__addr), __idx = 1; __idx <= __objects;\
278 __p += (__s)->size, __idx++)
279
280 /* Determine object index from a given position */
281 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
282 {
283 return (p - addr) / s->size;
284 }
285
286 static inline size_t slab_ksize(const struct kmem_cache *s)
287 {
288 #ifdef CONFIG_SLUB_DEBUG
289 /*
290 * Debugging requires use of the padding between object
291 * and whatever may come after it.
292 */
293 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294 return s->object_size;
295
296 #endif
297 /*
298 * If we have the need to store the freelist pointer
299 * back there or track user information then we can
300 * only use the space before that information.
301 */
302 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
303 return s->inuse;
304 /*
305 * Else we can use all the padding etc for the allocation
306 */
307 return s->size;
308 }
309
310 static inline int order_objects(int order, unsigned long size, int reserved)
311 {
312 return ((PAGE_SIZE << order) - reserved) / size;
313 }
314
315 static inline struct kmem_cache_order_objects oo_make(int order,
316 unsigned long size, int reserved)
317 {
318 struct kmem_cache_order_objects x = {
319 (order << OO_SHIFT) + order_objects(order, size, reserved)
320 };
321
322 return x;
323 }
324
325 static inline int oo_order(struct kmem_cache_order_objects x)
326 {
327 return x.x >> OO_SHIFT;
328 }
329
330 static inline int oo_objects(struct kmem_cache_order_objects x)
331 {
332 return x.x & OO_MASK;
333 }
334
335 /*
336 * Per slab locking using the pagelock
337 */
338 static __always_inline void slab_lock(struct page *page)
339 {
340 bit_spin_lock(PG_locked, &page->flags);
341 }
342
343 static __always_inline void slab_unlock(struct page *page)
344 {
345 __bit_spin_unlock(PG_locked, &page->flags);
346 }
347
348 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
349 {
350 struct page tmp;
351 tmp.counters = counters_new;
352 /*
353 * page->counters can cover frozen/inuse/objects as well
354 * as page->_count. If we assign to ->counters directly
355 * we run the risk of losing updates to page->_count, so
356 * be careful and only assign to the fields we need.
357 */
358 page->frozen = tmp.frozen;
359 page->inuse = tmp.inuse;
360 page->objects = tmp.objects;
361 }
362
363 /* Interrupts must be disabled (for the fallback code to work right) */
364 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
365 void *freelist_old, unsigned long counters_old,
366 void *freelist_new, unsigned long counters_new,
367 const char *n)
368 {
369 VM_BUG_ON(!irqs_disabled());
370 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
371 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372 if (s->flags & __CMPXCHG_DOUBLE) {
373 if (cmpxchg_double(&page->freelist, &page->counters,
374 freelist_old, counters_old,
375 freelist_new, counters_new))
376 return 1;
377 } else
378 #endif
379 {
380 slab_lock(page);
381 if (page->freelist == freelist_old &&
382 page->counters == counters_old) {
383 page->freelist = freelist_new;
384 set_page_slub_counters(page, counters_new);
385 slab_unlock(page);
386 return 1;
387 }
388 slab_unlock(page);
389 }
390
391 cpu_relax();
392 stat(s, CMPXCHG_DOUBLE_FAIL);
393
394 #ifdef SLUB_DEBUG_CMPXCHG
395 pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 #endif
397
398 return 0;
399 }
400
401 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
402 void *freelist_old, unsigned long counters_old,
403 void *freelist_new, unsigned long counters_new,
404 const char *n)
405 {
406 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
407 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408 if (s->flags & __CMPXCHG_DOUBLE) {
409 if (cmpxchg_double(&page->freelist, &page->counters,
410 freelist_old, counters_old,
411 freelist_new, counters_new))
412 return 1;
413 } else
414 #endif
415 {
416 unsigned long flags;
417
418 local_irq_save(flags);
419 slab_lock(page);
420 if (page->freelist == freelist_old &&
421 page->counters == counters_old) {
422 page->freelist = freelist_new;
423 set_page_slub_counters(page, counters_new);
424 slab_unlock(page);
425 local_irq_restore(flags);
426 return 1;
427 }
428 slab_unlock(page);
429 local_irq_restore(flags);
430 }
431
432 cpu_relax();
433 stat(s, CMPXCHG_DOUBLE_FAIL);
434
435 #ifdef SLUB_DEBUG_CMPXCHG
436 pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 #endif
438
439 return 0;
440 }
441
442 #ifdef CONFIG_SLUB_DEBUG
443 /*
444 * Determine a map of object in use on a page.
445 *
446 * Node listlock must be held to guarantee that the page does
447 * not vanish from under us.
448 */
449 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
450 {
451 void *p;
452 void *addr = page_address(page);
453
454 for (p = page->freelist; p; p = get_freepointer(s, p))
455 set_bit(slab_index(p, s, addr), map);
456 }
457
458 /*
459 * Debug settings:
460 */
461 #ifdef CONFIG_SLUB_DEBUG_ON
462 static int slub_debug = DEBUG_DEFAULT_FLAGS;
463 #else
464 static int slub_debug;
465 #endif
466
467 static char *slub_debug_slabs;
468 static int disable_higher_order_debug;
469
470 /*
471 * Object debugging
472 */
473 static void print_section(char *text, u8 *addr, unsigned int length)
474 {
475 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
476 length, 1);
477 }
478
479 static struct track *get_track(struct kmem_cache *s, void *object,
480 enum track_item alloc)
481 {
482 struct track *p;
483
484 if (s->offset)
485 p = object + s->offset + sizeof(void *);
486 else
487 p = object + s->inuse;
488
489 return p + alloc;
490 }
491
492 static void set_track(struct kmem_cache *s, void *object,
493 enum track_item alloc, unsigned long addr)
494 {
495 struct track *p = get_track(s, object, alloc);
496
497 if (addr) {
498 #ifdef CONFIG_STACKTRACE
499 struct stack_trace trace;
500 int i;
501
502 trace.nr_entries = 0;
503 trace.max_entries = TRACK_ADDRS_COUNT;
504 trace.entries = p->addrs;
505 trace.skip = 3;
506 save_stack_trace(&trace);
507
508 /* See rant in lockdep.c */
509 if (trace.nr_entries != 0 &&
510 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
511 trace.nr_entries--;
512
513 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
514 p->addrs[i] = 0;
515 #endif
516 p->addr = addr;
517 p->cpu = smp_processor_id();
518 p->pid = current->pid;
519 p->when = jiffies;
520 } else
521 memset(p, 0, sizeof(struct track));
522 }
523
524 static void init_tracking(struct kmem_cache *s, void *object)
525 {
526 if (!(s->flags & SLAB_STORE_USER))
527 return;
528
529 set_track(s, object, TRACK_FREE, 0UL);
530 set_track(s, object, TRACK_ALLOC, 0UL);
531 }
532
533 static void print_track(const char *s, struct track *t)
534 {
535 if (!t->addr)
536 return;
537
538 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
539 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
540 #ifdef CONFIG_STACKTRACE
541 {
542 int i;
543 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
544 if (t->addrs[i])
545 pr_err("\t%pS\n", (void *)t->addrs[i]);
546 else
547 break;
548 }
549 #endif
550 }
551
552 static void print_tracking(struct kmem_cache *s, void *object)
553 {
554 if (!(s->flags & SLAB_STORE_USER))
555 return;
556
557 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
558 print_track("Freed", get_track(s, object, TRACK_FREE));
559 }
560
561 static void print_page_info(struct page *page)
562 {
563 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
564 page, page->objects, page->inuse, page->freelist, page->flags);
565
566 }
567
568 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
569 {
570 struct va_format vaf;
571 va_list args;
572
573 va_start(args, fmt);
574 vaf.fmt = fmt;
575 vaf.va = &args;
576 pr_err("=============================================================================\n");
577 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
578 pr_err("-----------------------------------------------------------------------------\n\n");
579
580 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
581 va_end(args);
582 }
583
584 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
585 {
586 struct va_format vaf;
587 va_list args;
588
589 va_start(args, fmt);
590 vaf.fmt = fmt;
591 vaf.va = &args;
592 pr_err("FIX %s: %pV\n", s->name, &vaf);
593 va_end(args);
594 }
595
596 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
597 {
598 unsigned int off; /* Offset of last byte */
599 u8 *addr = page_address(page);
600
601 print_tracking(s, p);
602
603 print_page_info(page);
604
605 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
606 p, p - addr, get_freepointer(s, p));
607
608 if (p > addr + 16)
609 print_section("Bytes b4 ", p - 16, 16);
610
611 print_section("Object ", p, min_t(unsigned long, s->object_size,
612 PAGE_SIZE));
613 if (s->flags & SLAB_RED_ZONE)
614 print_section("Redzone ", p + s->object_size,
615 s->inuse - s->object_size);
616
617 if (s->offset)
618 off = s->offset + sizeof(void *);
619 else
620 off = s->inuse;
621
622 if (s->flags & SLAB_STORE_USER)
623 off += 2 * sizeof(struct track);
624
625 if (off != s->size)
626 /* Beginning of the filler is the free pointer */
627 print_section("Padding ", p + off, s->size - off);
628
629 dump_stack();
630 }
631
632 static void object_err(struct kmem_cache *s, struct page *page,
633 u8 *object, char *reason)
634 {
635 slab_bug(s, "%s", reason);
636 print_trailer(s, page, object);
637 }
638
639 static void slab_err(struct kmem_cache *s, struct page *page,
640 const char *fmt, ...)
641 {
642 va_list args;
643 char buf[100];
644
645 va_start(args, fmt);
646 vsnprintf(buf, sizeof(buf), fmt, args);
647 va_end(args);
648 slab_bug(s, "%s", buf);
649 print_page_info(page);
650 dump_stack();
651 }
652
653 static void init_object(struct kmem_cache *s, void *object, u8 val)
654 {
655 u8 *p = object;
656
657 if (s->flags & __OBJECT_POISON) {
658 memset(p, POISON_FREE, s->object_size - 1);
659 p[s->object_size - 1] = POISON_END;
660 }
661
662 if (s->flags & SLAB_RED_ZONE)
663 memset(p + s->object_size, val, s->inuse - s->object_size);
664 }
665
666 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
667 void *from, void *to)
668 {
669 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
670 memset(from, data, to - from);
671 }
672
673 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
674 u8 *object, char *what,
675 u8 *start, unsigned int value, unsigned int bytes)
676 {
677 u8 *fault;
678 u8 *end;
679
680 fault = memchr_inv(start, value, bytes);
681 if (!fault)
682 return 1;
683
684 end = start + bytes;
685 while (end > fault && end[-1] == value)
686 end--;
687
688 slab_bug(s, "%s overwritten", what);
689 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 fault, end - 1, fault[0], value);
691 print_trailer(s, page, object);
692
693 restore_bytes(s, what, value, fault, end);
694 return 0;
695 }
696
697 /*
698 * Object layout:
699 *
700 * object address
701 * Bytes of the object to be managed.
702 * If the freepointer may overlay the object then the free
703 * pointer is the first word of the object.
704 *
705 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
706 * 0xa5 (POISON_END)
707 *
708 * object + s->object_size
709 * Padding to reach word boundary. This is also used for Redzoning.
710 * Padding is extended by another word if Redzoning is enabled and
711 * object_size == inuse.
712 *
713 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
714 * 0xcc (RED_ACTIVE) for objects in use.
715 *
716 * object + s->inuse
717 * Meta data starts here.
718 *
719 * A. Free pointer (if we cannot overwrite object on free)
720 * B. Tracking data for SLAB_STORE_USER
721 * C. Padding to reach required alignment boundary or at mininum
722 * one word if debugging is on to be able to detect writes
723 * before the word boundary.
724 *
725 * Padding is done using 0x5a (POISON_INUSE)
726 *
727 * object + s->size
728 * Nothing is used beyond s->size.
729 *
730 * If slabcaches are merged then the object_size and inuse boundaries are mostly
731 * ignored. And therefore no slab options that rely on these boundaries
732 * may be used with merged slabcaches.
733 */
734
735 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
736 {
737 unsigned long off = s->inuse; /* The end of info */
738
739 if (s->offset)
740 /* Freepointer is placed after the object. */
741 off += sizeof(void *);
742
743 if (s->flags & SLAB_STORE_USER)
744 /* We also have user information there */
745 off += 2 * sizeof(struct track);
746
747 if (s->size == off)
748 return 1;
749
750 return check_bytes_and_report(s, page, p, "Object padding",
751 p + off, POISON_INUSE, s->size - off);
752 }
753
754 /* Check the pad bytes at the end of a slab page */
755 static int slab_pad_check(struct kmem_cache *s, struct page *page)
756 {
757 u8 *start;
758 u8 *fault;
759 u8 *end;
760 int length;
761 int remainder;
762
763 if (!(s->flags & SLAB_POISON))
764 return 1;
765
766 start = page_address(page);
767 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 end = start + length;
769 remainder = length % s->size;
770 if (!remainder)
771 return 1;
772
773 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 if (!fault)
775 return 1;
776 while (end > fault && end[-1] == POISON_INUSE)
777 end--;
778
779 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780 print_section("Padding ", end - remainder, remainder);
781
782 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783 return 0;
784 }
785
786 static int check_object(struct kmem_cache *s, struct page *page,
787 void *object, u8 val)
788 {
789 u8 *p = object;
790 u8 *endobject = object + s->object_size;
791
792 if (s->flags & SLAB_RED_ZONE) {
793 if (!check_bytes_and_report(s, page, object, "Redzone",
794 endobject, val, s->inuse - s->object_size))
795 return 0;
796 } else {
797 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
798 check_bytes_and_report(s, page, p, "Alignment padding",
799 endobject, POISON_INUSE,
800 s->inuse - s->object_size);
801 }
802 }
803
804 if (s->flags & SLAB_POISON) {
805 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
806 (!check_bytes_and_report(s, page, p, "Poison", p,
807 POISON_FREE, s->object_size - 1) ||
808 !check_bytes_and_report(s, page, p, "Poison",
809 p + s->object_size - 1, POISON_END, 1)))
810 return 0;
811 /*
812 * check_pad_bytes cleans up on its own.
813 */
814 check_pad_bytes(s, page, p);
815 }
816
817 if (!s->offset && val == SLUB_RED_ACTIVE)
818 /*
819 * Object and freepointer overlap. Cannot check
820 * freepointer while object is allocated.
821 */
822 return 1;
823
824 /* Check free pointer validity */
825 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
826 object_err(s, page, p, "Freepointer corrupt");
827 /*
828 * No choice but to zap it and thus lose the remainder
829 * of the free objects in this slab. May cause
830 * another error because the object count is now wrong.
831 */
832 set_freepointer(s, p, NULL);
833 return 0;
834 }
835 return 1;
836 }
837
838 static int check_slab(struct kmem_cache *s, struct page *page)
839 {
840 int maxobj;
841
842 VM_BUG_ON(!irqs_disabled());
843
844 if (!PageSlab(page)) {
845 slab_err(s, page, "Not a valid slab page");
846 return 0;
847 }
848
849 maxobj = order_objects(compound_order(page), s->size, s->reserved);
850 if (page->objects > maxobj) {
851 slab_err(s, page, "objects %u > max %u",
852 page->objects, maxobj);
853 return 0;
854 }
855 if (page->inuse > page->objects) {
856 slab_err(s, page, "inuse %u > max %u",
857 page->inuse, page->objects);
858 return 0;
859 }
860 /* Slab_pad_check fixes things up after itself */
861 slab_pad_check(s, page);
862 return 1;
863 }
864
865 /*
866 * Determine if a certain object on a page is on the freelist. Must hold the
867 * slab lock to guarantee that the chains are in a consistent state.
868 */
869 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
870 {
871 int nr = 0;
872 void *fp;
873 void *object = NULL;
874 int max_objects;
875
876 fp = page->freelist;
877 while (fp && nr <= page->objects) {
878 if (fp == search)
879 return 1;
880 if (!check_valid_pointer(s, page, fp)) {
881 if (object) {
882 object_err(s, page, object,
883 "Freechain corrupt");
884 set_freepointer(s, object, NULL);
885 } else {
886 slab_err(s, page, "Freepointer corrupt");
887 page->freelist = NULL;
888 page->inuse = page->objects;
889 slab_fix(s, "Freelist cleared");
890 return 0;
891 }
892 break;
893 }
894 object = fp;
895 fp = get_freepointer(s, object);
896 nr++;
897 }
898
899 max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 if (max_objects > MAX_OBJS_PER_PAGE)
901 max_objects = MAX_OBJS_PER_PAGE;
902
903 if (page->objects != max_objects) {
904 slab_err(s, page, "Wrong number of objects. Found %d but "
905 "should be %d", page->objects, max_objects);
906 page->objects = max_objects;
907 slab_fix(s, "Number of objects adjusted.");
908 }
909 if (page->inuse != page->objects - nr) {
910 slab_err(s, page, "Wrong object count. Counter is %d but "
911 "counted were %d", page->inuse, page->objects - nr);
912 page->inuse = page->objects - nr;
913 slab_fix(s, "Object count adjusted.");
914 }
915 return search == NULL;
916 }
917
918 static void trace(struct kmem_cache *s, struct page *page, void *object,
919 int alloc)
920 {
921 if (s->flags & SLAB_TRACE) {
922 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
923 s->name,
924 alloc ? "alloc" : "free",
925 object, page->inuse,
926 page->freelist);
927
928 if (!alloc)
929 print_section("Object ", (void *)object,
930 s->object_size);
931
932 dump_stack();
933 }
934 }
935
936 /*
937 * Tracking of fully allocated slabs for debugging purposes.
938 */
939 static void add_full(struct kmem_cache *s,
940 struct kmem_cache_node *n, struct page *page)
941 {
942 if (!(s->flags & SLAB_STORE_USER))
943 return;
944
945 lockdep_assert_held(&n->list_lock);
946 list_add(&page->lru, &n->full);
947 }
948
949 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
950 {
951 if (!(s->flags & SLAB_STORE_USER))
952 return;
953
954 lockdep_assert_held(&n->list_lock);
955 list_del(&page->lru);
956 }
957
958 /* Tracking of the number of slabs for debugging purposes */
959 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
960 {
961 struct kmem_cache_node *n = get_node(s, node);
962
963 return atomic_long_read(&n->nr_slabs);
964 }
965
966 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
967 {
968 return atomic_long_read(&n->nr_slabs);
969 }
970
971 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
972 {
973 struct kmem_cache_node *n = get_node(s, node);
974
975 /*
976 * May be called early in order to allocate a slab for the
977 * kmem_cache_node structure. Solve the chicken-egg
978 * dilemma by deferring the increment of the count during
979 * bootstrap (see early_kmem_cache_node_alloc).
980 */
981 if (likely(n)) {
982 atomic_long_inc(&n->nr_slabs);
983 atomic_long_add(objects, &n->total_objects);
984 }
985 }
986 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
987 {
988 struct kmem_cache_node *n = get_node(s, node);
989
990 atomic_long_dec(&n->nr_slabs);
991 atomic_long_sub(objects, &n->total_objects);
992 }
993
994 /* Object debug checks for alloc/free paths */
995 static void setup_object_debug(struct kmem_cache *s, struct page *page,
996 void *object)
997 {
998 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
999 return;
1000
1001 init_object(s, object, SLUB_RED_INACTIVE);
1002 init_tracking(s, object);
1003 }
1004
1005 static noinline int alloc_debug_processing(struct kmem_cache *s,
1006 struct page *page,
1007 void *object, unsigned long addr)
1008 {
1009 if (!check_slab(s, page))
1010 goto bad;
1011
1012 if (!check_valid_pointer(s, page, object)) {
1013 object_err(s, page, object, "Freelist Pointer check fails");
1014 goto bad;
1015 }
1016
1017 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1018 goto bad;
1019
1020 /* Success perform special debug activities for allocs */
1021 if (s->flags & SLAB_STORE_USER)
1022 set_track(s, object, TRACK_ALLOC, addr);
1023 trace(s, page, object, 1);
1024 init_object(s, object, SLUB_RED_ACTIVE);
1025 return 1;
1026
1027 bad:
1028 if (PageSlab(page)) {
1029 /*
1030 * If this is a slab page then lets do the best we can
1031 * to avoid issues in the future. Marking all objects
1032 * as used avoids touching the remaining objects.
1033 */
1034 slab_fix(s, "Marking all objects used");
1035 page->inuse = page->objects;
1036 page->freelist = NULL;
1037 }
1038 return 0;
1039 }
1040
1041 static noinline struct kmem_cache_node *free_debug_processing(
1042 struct kmem_cache *s, struct page *page, void *object,
1043 unsigned long addr, unsigned long *flags)
1044 {
1045 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1046
1047 spin_lock_irqsave(&n->list_lock, *flags);
1048 slab_lock(page);
1049
1050 if (!check_slab(s, page))
1051 goto fail;
1052
1053 if (!check_valid_pointer(s, page, object)) {
1054 slab_err(s, page, "Invalid object pointer 0x%p", object);
1055 goto fail;
1056 }
1057
1058 if (on_freelist(s, page, object)) {
1059 object_err(s, page, object, "Object already free");
1060 goto fail;
1061 }
1062
1063 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1064 goto out;
1065
1066 if (unlikely(s != page->slab_cache)) {
1067 if (!PageSlab(page)) {
1068 slab_err(s, page, "Attempt to free object(0x%p) "
1069 "outside of slab", object);
1070 } else if (!page->slab_cache) {
1071 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1072 object);
1073 dump_stack();
1074 } else
1075 object_err(s, page, object,
1076 "page slab pointer corrupt.");
1077 goto fail;
1078 }
1079
1080 if (s->flags & SLAB_STORE_USER)
1081 set_track(s, object, TRACK_FREE, addr);
1082 trace(s, page, object, 0);
1083 init_object(s, object, SLUB_RED_INACTIVE);
1084 out:
1085 slab_unlock(page);
1086 /*
1087 * Keep node_lock to preserve integrity
1088 * until the object is actually freed
1089 */
1090 return n;
1091
1092 fail:
1093 slab_unlock(page);
1094 spin_unlock_irqrestore(&n->list_lock, *flags);
1095 slab_fix(s, "Object at 0x%p not freed", object);
1096 return NULL;
1097 }
1098
1099 static int __init setup_slub_debug(char *str)
1100 {
1101 slub_debug = DEBUG_DEFAULT_FLAGS;
1102 if (*str++ != '=' || !*str)
1103 /*
1104 * No options specified. Switch on full debugging.
1105 */
1106 goto out;
1107
1108 if (*str == ',')
1109 /*
1110 * No options but restriction on slabs. This means full
1111 * debugging for slabs matching a pattern.
1112 */
1113 goto check_slabs;
1114
1115 if (tolower(*str) == 'o') {
1116 /*
1117 * Avoid enabling debugging on caches if its minimum order
1118 * would increase as a result.
1119 */
1120 disable_higher_order_debug = 1;
1121 goto out;
1122 }
1123
1124 slub_debug = 0;
1125 if (*str == '-')
1126 /*
1127 * Switch off all debugging measures.
1128 */
1129 goto out;
1130
1131 /*
1132 * Determine which debug features should be switched on
1133 */
1134 for (; *str && *str != ','; str++) {
1135 switch (tolower(*str)) {
1136 case 'f':
1137 slub_debug |= SLAB_DEBUG_FREE;
1138 break;
1139 case 'z':
1140 slub_debug |= SLAB_RED_ZONE;
1141 break;
1142 case 'p':
1143 slub_debug |= SLAB_POISON;
1144 break;
1145 case 'u':
1146 slub_debug |= SLAB_STORE_USER;
1147 break;
1148 case 't':
1149 slub_debug |= SLAB_TRACE;
1150 break;
1151 case 'a':
1152 slub_debug |= SLAB_FAILSLAB;
1153 break;
1154 default:
1155 pr_err("slub_debug option '%c' unknown. skipped\n",
1156 *str);
1157 }
1158 }
1159
1160 check_slabs:
1161 if (*str == ',')
1162 slub_debug_slabs = str + 1;
1163 out:
1164 return 1;
1165 }
1166
1167 __setup("slub_debug", setup_slub_debug);
1168
1169 unsigned long kmem_cache_flags(unsigned long object_size,
1170 unsigned long flags, const char *name,
1171 void (*ctor)(void *))
1172 {
1173 /*
1174 * Enable debugging if selected on the kernel commandline.
1175 */
1176 if (slub_debug && (!slub_debug_slabs || (name &&
1177 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1178 flags |= slub_debug;
1179
1180 return flags;
1181 }
1182 #else
1183 static inline void setup_object_debug(struct kmem_cache *s,
1184 struct page *page, void *object) {}
1185
1186 static inline int alloc_debug_processing(struct kmem_cache *s,
1187 struct page *page, void *object, unsigned long addr) { return 0; }
1188
1189 static inline struct kmem_cache_node *free_debug_processing(
1190 struct kmem_cache *s, struct page *page, void *object,
1191 unsigned long addr, unsigned long *flags) { return NULL; }
1192
1193 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1194 { return 1; }
1195 static inline int check_object(struct kmem_cache *s, struct page *page,
1196 void *object, u8 val) { return 1; }
1197 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1198 struct page *page) {}
1199 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1200 struct page *page) {}
1201 unsigned long kmem_cache_flags(unsigned long object_size,
1202 unsigned long flags, const char *name,
1203 void (*ctor)(void *))
1204 {
1205 return flags;
1206 }
1207 #define slub_debug 0
1208
1209 #define disable_higher_order_debug 0
1210
1211 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1212 { return 0; }
1213 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1214 { return 0; }
1215 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1216 int objects) {}
1217 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1218 int objects) {}
1219
1220 #endif /* CONFIG_SLUB_DEBUG */
1221
1222 /*
1223 * Hooks for other subsystems that check memory allocations. In a typical
1224 * production configuration these hooks all should produce no code at all.
1225 */
1226 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1227 {
1228 kmemleak_alloc(ptr, size, 1, flags);
1229 }
1230
1231 static inline void kfree_hook(const void *x)
1232 {
1233 kmemleak_free(x);
1234 }
1235
1236 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1237 gfp_t flags)
1238 {
1239 flags &= gfp_allowed_mask;
1240 lockdep_trace_alloc(flags);
1241 might_sleep_if(flags & __GFP_WAIT);
1242
1243 if (should_failslab(s->object_size, flags, s->flags))
1244 return NULL;
1245
1246 return memcg_kmem_get_cache(s, flags);
1247 }
1248
1249 static inline void slab_post_alloc_hook(struct kmem_cache *s,
1250 gfp_t flags, void *object)
1251 {
1252 flags &= gfp_allowed_mask;
1253 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1254 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1255 memcg_kmem_put_cache(s);
1256 }
1257
1258 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1259 {
1260 kmemleak_free_recursive(x, s->flags);
1261
1262 /*
1263 * Trouble is that we may no longer disable interrupts in the fast path
1264 * So in order to make the debug calls that expect irqs to be
1265 * disabled we need to disable interrupts temporarily.
1266 */
1267 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1268 {
1269 unsigned long flags;
1270
1271 local_irq_save(flags);
1272 kmemcheck_slab_free(s, x, s->object_size);
1273 debug_check_no_locks_freed(x, s->object_size);
1274 local_irq_restore(flags);
1275 }
1276 #endif
1277 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1278 debug_check_no_obj_freed(x, s->object_size);
1279 }
1280
1281 /*
1282 * Slab allocation and freeing
1283 */
1284 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1285 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1286 {
1287 struct page *page;
1288 int order = oo_order(oo);
1289
1290 flags |= __GFP_NOTRACK;
1291
1292 if (memcg_charge_slab(s, flags, order))
1293 return NULL;
1294
1295 if (node == NUMA_NO_NODE)
1296 page = alloc_pages(flags, order);
1297 else
1298 page = alloc_pages_exact_node(node, flags, order);
1299
1300 if (!page)
1301 memcg_uncharge_slab(s, order);
1302
1303 return page;
1304 }
1305
1306 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1307 {
1308 struct page *page;
1309 struct kmem_cache_order_objects oo = s->oo;
1310 gfp_t alloc_gfp;
1311
1312 flags &= gfp_allowed_mask;
1313
1314 if (flags & __GFP_WAIT)
1315 local_irq_enable();
1316
1317 flags |= s->allocflags;
1318
1319 /*
1320 * Let the initial higher-order allocation fail under memory pressure
1321 * so we fall-back to the minimum order allocation.
1322 */
1323 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1324
1325 page = alloc_slab_page(s, alloc_gfp, node, oo);
1326 if (unlikely(!page)) {
1327 oo = s->min;
1328 alloc_gfp = flags;
1329 /*
1330 * Allocation may have failed due to fragmentation.
1331 * Try a lower order alloc if possible
1332 */
1333 page = alloc_slab_page(s, alloc_gfp, node, oo);
1334
1335 if (page)
1336 stat(s, ORDER_FALLBACK);
1337 }
1338
1339 if (kmemcheck_enabled && page
1340 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1341 int pages = 1 << oo_order(oo);
1342
1343 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1344
1345 /*
1346 * Objects from caches that have a constructor don't get
1347 * cleared when they're allocated, so we need to do it here.
1348 */
1349 if (s->ctor)
1350 kmemcheck_mark_uninitialized_pages(page, pages);
1351 else
1352 kmemcheck_mark_unallocated_pages(page, pages);
1353 }
1354
1355 if (flags & __GFP_WAIT)
1356 local_irq_disable();
1357 if (!page)
1358 return NULL;
1359
1360 page->objects = oo_objects(oo);
1361 mod_zone_page_state(page_zone(page),
1362 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1363 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1364 1 << oo_order(oo));
1365
1366 return page;
1367 }
1368
1369 static void setup_object(struct kmem_cache *s, struct page *page,
1370 void *object)
1371 {
1372 setup_object_debug(s, page, object);
1373 if (unlikely(s->ctor))
1374 s->ctor(object);
1375 }
1376
1377 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1378 {
1379 struct page *page;
1380 void *start;
1381 void *p;
1382 int order;
1383 int idx;
1384
1385 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1386 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1387 BUG();
1388 }
1389
1390 page = allocate_slab(s,
1391 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1392 if (!page)
1393 goto out;
1394
1395 order = compound_order(page);
1396 inc_slabs_node(s, page_to_nid(page), page->objects);
1397 page->slab_cache = s;
1398 __SetPageSlab(page);
1399 if (page->pfmemalloc)
1400 SetPageSlabPfmemalloc(page);
1401
1402 start = page_address(page);
1403
1404 if (unlikely(s->flags & SLAB_POISON))
1405 memset(start, POISON_INUSE, PAGE_SIZE << order);
1406
1407 for_each_object_idx(p, idx, s, start, page->objects) {
1408 setup_object(s, page, p);
1409 if (likely(idx < page->objects))
1410 set_freepointer(s, p, p + s->size);
1411 else
1412 set_freepointer(s, p, NULL);
1413 }
1414
1415 page->freelist = start;
1416 page->inuse = page->objects;
1417 page->frozen = 1;
1418 out:
1419 return page;
1420 }
1421
1422 static void __free_slab(struct kmem_cache *s, struct page *page)
1423 {
1424 int order = compound_order(page);
1425 int pages = 1 << order;
1426
1427 if (kmem_cache_debug(s)) {
1428 void *p;
1429
1430 slab_pad_check(s, page);
1431 for_each_object(p, s, page_address(page),
1432 page->objects)
1433 check_object(s, page, p, SLUB_RED_INACTIVE);
1434 }
1435
1436 kmemcheck_free_shadow(page, compound_order(page));
1437
1438 mod_zone_page_state(page_zone(page),
1439 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1440 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1441 -pages);
1442
1443 __ClearPageSlabPfmemalloc(page);
1444 __ClearPageSlab(page);
1445
1446 page_mapcount_reset(page);
1447 if (current->reclaim_state)
1448 current->reclaim_state->reclaimed_slab += pages;
1449 __free_pages(page, order);
1450 memcg_uncharge_slab(s, order);
1451 }
1452
1453 #define need_reserve_slab_rcu \
1454 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1455
1456 static void rcu_free_slab(struct rcu_head *h)
1457 {
1458 struct page *page;
1459
1460 if (need_reserve_slab_rcu)
1461 page = virt_to_head_page(h);
1462 else
1463 page = container_of((struct list_head *)h, struct page, lru);
1464
1465 __free_slab(page->slab_cache, page);
1466 }
1467
1468 static void free_slab(struct kmem_cache *s, struct page *page)
1469 {
1470 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1471 struct rcu_head *head;
1472
1473 if (need_reserve_slab_rcu) {
1474 int order = compound_order(page);
1475 int offset = (PAGE_SIZE << order) - s->reserved;
1476
1477 VM_BUG_ON(s->reserved != sizeof(*head));
1478 head = page_address(page) + offset;
1479 } else {
1480 /*
1481 * RCU free overloads the RCU head over the LRU
1482 */
1483 head = (void *)&page->lru;
1484 }
1485
1486 call_rcu(head, rcu_free_slab);
1487 } else
1488 __free_slab(s, page);
1489 }
1490
1491 static void discard_slab(struct kmem_cache *s, struct page *page)
1492 {
1493 dec_slabs_node(s, page_to_nid(page), page->objects);
1494 free_slab(s, page);
1495 }
1496
1497 /*
1498 * Management of partially allocated slabs.
1499 */
1500 static inline void
1501 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1502 {
1503 n->nr_partial++;
1504 if (tail == DEACTIVATE_TO_TAIL)
1505 list_add_tail(&page->lru, &n->partial);
1506 else
1507 list_add(&page->lru, &n->partial);
1508 }
1509
1510 static inline void add_partial(struct kmem_cache_node *n,
1511 struct page *page, int tail)
1512 {
1513 lockdep_assert_held(&n->list_lock);
1514 __add_partial(n, page, tail);
1515 }
1516
1517 static inline void
1518 __remove_partial(struct kmem_cache_node *n, struct page *page)
1519 {
1520 list_del(&page->lru);
1521 n->nr_partial--;
1522 }
1523
1524 static inline void remove_partial(struct kmem_cache_node *n,
1525 struct page *page)
1526 {
1527 lockdep_assert_held(&n->list_lock);
1528 __remove_partial(n, page);
1529 }
1530
1531 /*
1532 * Remove slab from the partial list, freeze it and
1533 * return the pointer to the freelist.
1534 *
1535 * Returns a list of objects or NULL if it fails.
1536 */
1537 static inline void *acquire_slab(struct kmem_cache *s,
1538 struct kmem_cache_node *n, struct page *page,
1539 int mode, int *objects)
1540 {
1541 void *freelist;
1542 unsigned long counters;
1543 struct page new;
1544
1545 lockdep_assert_held(&n->list_lock);
1546
1547 /*
1548 * Zap the freelist and set the frozen bit.
1549 * The old freelist is the list of objects for the
1550 * per cpu allocation list.
1551 */
1552 freelist = page->freelist;
1553 counters = page->counters;
1554 new.counters = counters;
1555 *objects = new.objects - new.inuse;
1556 if (mode) {
1557 new.inuse = page->objects;
1558 new.freelist = NULL;
1559 } else {
1560 new.freelist = freelist;
1561 }
1562
1563 VM_BUG_ON(new.frozen);
1564 new.frozen = 1;
1565
1566 if (!__cmpxchg_double_slab(s, page,
1567 freelist, counters,
1568 new.freelist, new.counters,
1569 "acquire_slab"))
1570 return NULL;
1571
1572 remove_partial(n, page);
1573 WARN_ON(!freelist);
1574 return freelist;
1575 }
1576
1577 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1578 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1579
1580 /*
1581 * Try to allocate a partial slab from a specific node.
1582 */
1583 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1584 struct kmem_cache_cpu *c, gfp_t flags)
1585 {
1586 struct page *page, *page2;
1587 void *object = NULL;
1588 int available = 0;
1589 int objects;
1590
1591 /*
1592 * Racy check. If we mistakenly see no partial slabs then we
1593 * just allocate an empty slab. If we mistakenly try to get a
1594 * partial slab and there is none available then get_partials()
1595 * will return NULL.
1596 */
1597 if (!n || !n->nr_partial)
1598 return NULL;
1599
1600 spin_lock(&n->list_lock);
1601 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1602 void *t;
1603
1604 if (!pfmemalloc_match(page, flags))
1605 continue;
1606
1607 t = acquire_slab(s, n, page, object == NULL, &objects);
1608 if (!t)
1609 break;
1610
1611 available += objects;
1612 if (!object) {
1613 c->page = page;
1614 stat(s, ALLOC_FROM_PARTIAL);
1615 object = t;
1616 } else {
1617 put_cpu_partial(s, page, 0);
1618 stat(s, CPU_PARTIAL_NODE);
1619 }
1620 if (!kmem_cache_has_cpu_partial(s)
1621 || available > s->cpu_partial / 2)
1622 break;
1623
1624 }
1625 spin_unlock(&n->list_lock);
1626 return object;
1627 }
1628
1629 /*
1630 * Get a page from somewhere. Search in increasing NUMA distances.
1631 */
1632 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1633 struct kmem_cache_cpu *c)
1634 {
1635 #ifdef CONFIG_NUMA
1636 struct zonelist *zonelist;
1637 struct zoneref *z;
1638 struct zone *zone;
1639 enum zone_type high_zoneidx = gfp_zone(flags);
1640 void *object;
1641 unsigned int cpuset_mems_cookie;
1642
1643 /*
1644 * The defrag ratio allows a configuration of the tradeoffs between
1645 * inter node defragmentation and node local allocations. A lower
1646 * defrag_ratio increases the tendency to do local allocations
1647 * instead of attempting to obtain partial slabs from other nodes.
1648 *
1649 * If the defrag_ratio is set to 0 then kmalloc() always
1650 * returns node local objects. If the ratio is higher then kmalloc()
1651 * may return off node objects because partial slabs are obtained
1652 * from other nodes and filled up.
1653 *
1654 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1655 * defrag_ratio = 1000) then every (well almost) allocation will
1656 * first attempt to defrag slab caches on other nodes. This means
1657 * scanning over all nodes to look for partial slabs which may be
1658 * expensive if we do it every time we are trying to find a slab
1659 * with available objects.
1660 */
1661 if (!s->remote_node_defrag_ratio ||
1662 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1663 return NULL;
1664
1665 do {
1666 cpuset_mems_cookie = read_mems_allowed_begin();
1667 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1668 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1669 struct kmem_cache_node *n;
1670
1671 n = get_node(s, zone_to_nid(zone));
1672
1673 if (n && cpuset_zone_allowed(zone, flags) &&
1674 n->nr_partial > s->min_partial) {
1675 object = get_partial_node(s, n, c, flags);
1676 if (object) {
1677 /*
1678 * Don't check read_mems_allowed_retry()
1679 * here - if mems_allowed was updated in
1680 * parallel, that was a harmless race
1681 * between allocation and the cpuset
1682 * update
1683 */
1684 return object;
1685 }
1686 }
1687 }
1688 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1689 #endif
1690 return NULL;
1691 }
1692
1693 /*
1694 * Get a partial page, lock it and return it.
1695 */
1696 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1697 struct kmem_cache_cpu *c)
1698 {
1699 void *object;
1700 int searchnode = node;
1701
1702 if (node == NUMA_NO_NODE)
1703 searchnode = numa_mem_id();
1704 else if (!node_present_pages(node))
1705 searchnode = node_to_mem_node(node);
1706
1707 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1708 if (object || node != NUMA_NO_NODE)
1709 return object;
1710
1711 return get_any_partial(s, flags, c);
1712 }
1713
1714 #ifdef CONFIG_PREEMPT
1715 /*
1716 * Calculate the next globally unique transaction for disambiguiation
1717 * during cmpxchg. The transactions start with the cpu number and are then
1718 * incremented by CONFIG_NR_CPUS.
1719 */
1720 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1721 #else
1722 /*
1723 * No preemption supported therefore also no need to check for
1724 * different cpus.
1725 */
1726 #define TID_STEP 1
1727 #endif
1728
1729 static inline unsigned long next_tid(unsigned long tid)
1730 {
1731 return tid + TID_STEP;
1732 }
1733
1734 static inline unsigned int tid_to_cpu(unsigned long tid)
1735 {
1736 return tid % TID_STEP;
1737 }
1738
1739 static inline unsigned long tid_to_event(unsigned long tid)
1740 {
1741 return tid / TID_STEP;
1742 }
1743
1744 static inline unsigned int init_tid(int cpu)
1745 {
1746 return cpu;
1747 }
1748
1749 static inline void note_cmpxchg_failure(const char *n,
1750 const struct kmem_cache *s, unsigned long tid)
1751 {
1752 #ifdef SLUB_DEBUG_CMPXCHG
1753 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1754
1755 pr_info("%s %s: cmpxchg redo ", n, s->name);
1756
1757 #ifdef CONFIG_PREEMPT
1758 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1759 pr_warn("due to cpu change %d -> %d\n",
1760 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1761 else
1762 #endif
1763 if (tid_to_event(tid) != tid_to_event(actual_tid))
1764 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1765 tid_to_event(tid), tid_to_event(actual_tid));
1766 else
1767 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1768 actual_tid, tid, next_tid(tid));
1769 #endif
1770 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1771 }
1772
1773 static void init_kmem_cache_cpus(struct kmem_cache *s)
1774 {
1775 int cpu;
1776
1777 for_each_possible_cpu(cpu)
1778 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1779 }
1780
1781 /*
1782 * Remove the cpu slab
1783 */
1784 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1785 void *freelist)
1786 {
1787 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1788 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1789 int lock = 0;
1790 enum slab_modes l = M_NONE, m = M_NONE;
1791 void *nextfree;
1792 int tail = DEACTIVATE_TO_HEAD;
1793 struct page new;
1794 struct page old;
1795
1796 if (page->freelist) {
1797 stat(s, DEACTIVATE_REMOTE_FREES);
1798 tail = DEACTIVATE_TO_TAIL;
1799 }
1800
1801 /*
1802 * Stage one: Free all available per cpu objects back
1803 * to the page freelist while it is still frozen. Leave the
1804 * last one.
1805 *
1806 * There is no need to take the list->lock because the page
1807 * is still frozen.
1808 */
1809 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1810 void *prior;
1811 unsigned long counters;
1812
1813 do {
1814 prior = page->freelist;
1815 counters = page->counters;
1816 set_freepointer(s, freelist, prior);
1817 new.counters = counters;
1818 new.inuse--;
1819 VM_BUG_ON(!new.frozen);
1820
1821 } while (!__cmpxchg_double_slab(s, page,
1822 prior, counters,
1823 freelist, new.counters,
1824 "drain percpu freelist"));
1825
1826 freelist = nextfree;
1827 }
1828
1829 /*
1830 * Stage two: Ensure that the page is unfrozen while the
1831 * list presence reflects the actual number of objects
1832 * during unfreeze.
1833 *
1834 * We setup the list membership and then perform a cmpxchg
1835 * with the count. If there is a mismatch then the page
1836 * is not unfrozen but the page is on the wrong list.
1837 *
1838 * Then we restart the process which may have to remove
1839 * the page from the list that we just put it on again
1840 * because the number of objects in the slab may have
1841 * changed.
1842 */
1843 redo:
1844
1845 old.freelist = page->freelist;
1846 old.counters = page->counters;
1847 VM_BUG_ON(!old.frozen);
1848
1849 /* Determine target state of the slab */
1850 new.counters = old.counters;
1851 if (freelist) {
1852 new.inuse--;
1853 set_freepointer(s, freelist, old.freelist);
1854 new.freelist = freelist;
1855 } else
1856 new.freelist = old.freelist;
1857
1858 new.frozen = 0;
1859
1860 if (!new.inuse && n->nr_partial >= s->min_partial)
1861 m = M_FREE;
1862 else if (new.freelist) {
1863 m = M_PARTIAL;
1864 if (!lock) {
1865 lock = 1;
1866 /*
1867 * Taking the spinlock removes the possiblity
1868 * that acquire_slab() will see a slab page that
1869 * is frozen
1870 */
1871 spin_lock(&n->list_lock);
1872 }
1873 } else {
1874 m = M_FULL;
1875 if (kmem_cache_debug(s) && !lock) {
1876 lock = 1;
1877 /*
1878 * This also ensures that the scanning of full
1879 * slabs from diagnostic functions will not see
1880 * any frozen slabs.
1881 */
1882 spin_lock(&n->list_lock);
1883 }
1884 }
1885
1886 if (l != m) {
1887
1888 if (l == M_PARTIAL)
1889
1890 remove_partial(n, page);
1891
1892 else if (l == M_FULL)
1893
1894 remove_full(s, n, page);
1895
1896 if (m == M_PARTIAL) {
1897
1898 add_partial(n, page, tail);
1899 stat(s, tail);
1900
1901 } else if (m == M_FULL) {
1902
1903 stat(s, DEACTIVATE_FULL);
1904 add_full(s, n, page);
1905
1906 }
1907 }
1908
1909 l = m;
1910 if (!__cmpxchg_double_slab(s, page,
1911 old.freelist, old.counters,
1912 new.freelist, new.counters,
1913 "unfreezing slab"))
1914 goto redo;
1915
1916 if (lock)
1917 spin_unlock(&n->list_lock);
1918
1919 if (m == M_FREE) {
1920 stat(s, DEACTIVATE_EMPTY);
1921 discard_slab(s, page);
1922 stat(s, FREE_SLAB);
1923 }
1924 }
1925
1926 /*
1927 * Unfreeze all the cpu partial slabs.
1928 *
1929 * This function must be called with interrupts disabled
1930 * for the cpu using c (or some other guarantee must be there
1931 * to guarantee no concurrent accesses).
1932 */
1933 static void unfreeze_partials(struct kmem_cache *s,
1934 struct kmem_cache_cpu *c)
1935 {
1936 #ifdef CONFIG_SLUB_CPU_PARTIAL
1937 struct kmem_cache_node *n = NULL, *n2 = NULL;
1938 struct page *page, *discard_page = NULL;
1939
1940 while ((page = c->partial)) {
1941 struct page new;
1942 struct page old;
1943
1944 c->partial = page->next;
1945
1946 n2 = get_node(s, page_to_nid(page));
1947 if (n != n2) {
1948 if (n)
1949 spin_unlock(&n->list_lock);
1950
1951 n = n2;
1952 spin_lock(&n->list_lock);
1953 }
1954
1955 do {
1956
1957 old.freelist = page->freelist;
1958 old.counters = page->counters;
1959 VM_BUG_ON(!old.frozen);
1960
1961 new.counters = old.counters;
1962 new.freelist = old.freelist;
1963
1964 new.frozen = 0;
1965
1966 } while (!__cmpxchg_double_slab(s, page,
1967 old.freelist, old.counters,
1968 new.freelist, new.counters,
1969 "unfreezing slab"));
1970
1971 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1972 page->next = discard_page;
1973 discard_page = page;
1974 } else {
1975 add_partial(n, page, DEACTIVATE_TO_TAIL);
1976 stat(s, FREE_ADD_PARTIAL);
1977 }
1978 }
1979
1980 if (n)
1981 spin_unlock(&n->list_lock);
1982
1983 while (discard_page) {
1984 page = discard_page;
1985 discard_page = discard_page->next;
1986
1987 stat(s, DEACTIVATE_EMPTY);
1988 discard_slab(s, page);
1989 stat(s, FREE_SLAB);
1990 }
1991 #endif
1992 }
1993
1994 /*
1995 * Put a page that was just frozen (in __slab_free) into a partial page
1996 * slot if available. This is done without interrupts disabled and without
1997 * preemption disabled. The cmpxchg is racy and may put the partial page
1998 * onto a random cpus partial slot.
1999 *
2000 * If we did not find a slot then simply move all the partials to the
2001 * per node partial list.
2002 */
2003 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2004 {
2005 #ifdef CONFIG_SLUB_CPU_PARTIAL
2006 struct page *oldpage;
2007 int pages;
2008 int pobjects;
2009
2010 do {
2011 pages = 0;
2012 pobjects = 0;
2013 oldpage = this_cpu_read(s->cpu_slab->partial);
2014
2015 if (oldpage) {
2016 pobjects = oldpage->pobjects;
2017 pages = oldpage->pages;
2018 if (drain && pobjects > s->cpu_partial) {
2019 unsigned long flags;
2020 /*
2021 * partial array is full. Move the existing
2022 * set to the per node partial list.
2023 */
2024 local_irq_save(flags);
2025 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2026 local_irq_restore(flags);
2027 oldpage = NULL;
2028 pobjects = 0;
2029 pages = 0;
2030 stat(s, CPU_PARTIAL_DRAIN);
2031 }
2032 }
2033
2034 pages++;
2035 pobjects += page->objects - page->inuse;
2036
2037 page->pages = pages;
2038 page->pobjects = pobjects;
2039 page->next = oldpage;
2040
2041 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2042 != oldpage);
2043 #endif
2044 }
2045
2046 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2047 {
2048 stat(s, CPUSLAB_FLUSH);
2049 deactivate_slab(s, c->page, c->freelist);
2050
2051 c->tid = next_tid(c->tid);
2052 c->page = NULL;
2053 c->freelist = NULL;
2054 }
2055
2056 /*
2057 * Flush cpu slab.
2058 *
2059 * Called from IPI handler with interrupts disabled.
2060 */
2061 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2062 {
2063 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2064
2065 if (likely(c)) {
2066 if (c->page)
2067 flush_slab(s, c);
2068
2069 unfreeze_partials(s, c);
2070 }
2071 }
2072
2073 static void flush_cpu_slab(void *d)
2074 {
2075 struct kmem_cache *s = d;
2076
2077 __flush_cpu_slab(s, smp_processor_id());
2078 }
2079
2080 static bool has_cpu_slab(int cpu, void *info)
2081 {
2082 struct kmem_cache *s = info;
2083 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2084
2085 return c->page || c->partial;
2086 }
2087
2088 static void flush_all(struct kmem_cache *s)
2089 {
2090 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2091 }
2092
2093 /*
2094 * Check if the objects in a per cpu structure fit numa
2095 * locality expectations.
2096 */
2097 static inline int node_match(struct page *page, int node)
2098 {
2099 #ifdef CONFIG_NUMA
2100 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2101 return 0;
2102 #endif
2103 return 1;
2104 }
2105
2106 #ifdef CONFIG_SLUB_DEBUG
2107 static int count_free(struct page *page)
2108 {
2109 return page->objects - page->inuse;
2110 }
2111
2112 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2113 {
2114 return atomic_long_read(&n->total_objects);
2115 }
2116 #endif /* CONFIG_SLUB_DEBUG */
2117
2118 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2119 static unsigned long count_partial(struct kmem_cache_node *n,
2120 int (*get_count)(struct page *))
2121 {
2122 unsigned long flags;
2123 unsigned long x = 0;
2124 struct page *page;
2125
2126 spin_lock_irqsave(&n->list_lock, flags);
2127 list_for_each_entry(page, &n->partial, lru)
2128 x += get_count(page);
2129 spin_unlock_irqrestore(&n->list_lock, flags);
2130 return x;
2131 }
2132 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2133
2134 static noinline void
2135 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2136 {
2137 #ifdef CONFIG_SLUB_DEBUG
2138 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2139 DEFAULT_RATELIMIT_BURST);
2140 int node;
2141 struct kmem_cache_node *n;
2142
2143 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2144 return;
2145
2146 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2147 nid, gfpflags);
2148 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2149 s->name, s->object_size, s->size, oo_order(s->oo),
2150 oo_order(s->min));
2151
2152 if (oo_order(s->min) > get_order(s->object_size))
2153 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2154 s->name);
2155
2156 for_each_kmem_cache_node(s, node, n) {
2157 unsigned long nr_slabs;
2158 unsigned long nr_objs;
2159 unsigned long nr_free;
2160
2161 nr_free = count_partial(n, count_free);
2162 nr_slabs = node_nr_slabs(n);
2163 nr_objs = node_nr_objs(n);
2164
2165 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2166 node, nr_slabs, nr_objs, nr_free);
2167 }
2168 #endif
2169 }
2170
2171 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2172 int node, struct kmem_cache_cpu **pc)
2173 {
2174 void *freelist;
2175 struct kmem_cache_cpu *c = *pc;
2176 struct page *page;
2177
2178 freelist = get_partial(s, flags, node, c);
2179
2180 if (freelist)
2181 return freelist;
2182
2183 page = new_slab(s, flags, node);
2184 if (page) {
2185 c = raw_cpu_ptr(s->cpu_slab);
2186 if (c->page)
2187 flush_slab(s, c);
2188
2189 /*
2190 * No other reference to the page yet so we can
2191 * muck around with it freely without cmpxchg
2192 */
2193 freelist = page->freelist;
2194 page->freelist = NULL;
2195
2196 stat(s, ALLOC_SLAB);
2197 c->page = page;
2198 *pc = c;
2199 } else
2200 freelist = NULL;
2201
2202 return freelist;
2203 }
2204
2205 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2206 {
2207 if (unlikely(PageSlabPfmemalloc(page)))
2208 return gfp_pfmemalloc_allowed(gfpflags);
2209
2210 return true;
2211 }
2212
2213 /*
2214 * Check the page->freelist of a page and either transfer the freelist to the
2215 * per cpu freelist or deactivate the page.
2216 *
2217 * The page is still frozen if the return value is not NULL.
2218 *
2219 * If this function returns NULL then the page has been unfrozen.
2220 *
2221 * This function must be called with interrupt disabled.
2222 */
2223 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2224 {
2225 struct page new;
2226 unsigned long counters;
2227 void *freelist;
2228
2229 do {
2230 freelist = page->freelist;
2231 counters = page->counters;
2232
2233 new.counters = counters;
2234 VM_BUG_ON(!new.frozen);
2235
2236 new.inuse = page->objects;
2237 new.frozen = freelist != NULL;
2238
2239 } while (!__cmpxchg_double_slab(s, page,
2240 freelist, counters,
2241 NULL, new.counters,
2242 "get_freelist"));
2243
2244 return freelist;
2245 }
2246
2247 /*
2248 * Slow path. The lockless freelist is empty or we need to perform
2249 * debugging duties.
2250 *
2251 * Processing is still very fast if new objects have been freed to the
2252 * regular freelist. In that case we simply take over the regular freelist
2253 * as the lockless freelist and zap the regular freelist.
2254 *
2255 * If that is not working then we fall back to the partial lists. We take the
2256 * first element of the freelist as the object to allocate now and move the
2257 * rest of the freelist to the lockless freelist.
2258 *
2259 * And if we were unable to get a new slab from the partial slab lists then
2260 * we need to allocate a new slab. This is the slowest path since it involves
2261 * a call to the page allocator and the setup of a new slab.
2262 */
2263 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2264 unsigned long addr, struct kmem_cache_cpu *c)
2265 {
2266 void *freelist;
2267 struct page *page;
2268 unsigned long flags;
2269
2270 local_irq_save(flags);
2271 #ifdef CONFIG_PREEMPT
2272 /*
2273 * We may have been preempted and rescheduled on a different
2274 * cpu before disabling interrupts. Need to reload cpu area
2275 * pointer.
2276 */
2277 c = this_cpu_ptr(s->cpu_slab);
2278 #endif
2279
2280 page = c->page;
2281 if (!page)
2282 goto new_slab;
2283 redo:
2284
2285 if (unlikely(!node_match(page, node))) {
2286 int searchnode = node;
2287
2288 if (node != NUMA_NO_NODE && !node_present_pages(node))
2289 searchnode = node_to_mem_node(node);
2290
2291 if (unlikely(!node_match(page, searchnode))) {
2292 stat(s, ALLOC_NODE_MISMATCH);
2293 deactivate_slab(s, page, c->freelist);
2294 c->page = NULL;
2295 c->freelist = NULL;
2296 goto new_slab;
2297 }
2298 }
2299
2300 /*
2301 * By rights, we should be searching for a slab page that was
2302 * PFMEMALLOC but right now, we are losing the pfmemalloc
2303 * information when the page leaves the per-cpu allocator
2304 */
2305 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2306 deactivate_slab(s, page, c->freelist);
2307 c->page = NULL;
2308 c->freelist = NULL;
2309 goto new_slab;
2310 }
2311
2312 /* must check again c->freelist in case of cpu migration or IRQ */
2313 freelist = c->freelist;
2314 if (freelist)
2315 goto load_freelist;
2316
2317 freelist = get_freelist(s, page);
2318
2319 if (!freelist) {
2320 c->page = NULL;
2321 stat(s, DEACTIVATE_BYPASS);
2322 goto new_slab;
2323 }
2324
2325 stat(s, ALLOC_REFILL);
2326
2327 load_freelist:
2328 /*
2329 * freelist is pointing to the list of objects to be used.
2330 * page is pointing to the page from which the objects are obtained.
2331 * That page must be frozen for per cpu allocations to work.
2332 */
2333 VM_BUG_ON(!c->page->frozen);
2334 c->freelist = get_freepointer(s, freelist);
2335 c->tid = next_tid(c->tid);
2336 local_irq_restore(flags);
2337 return freelist;
2338
2339 new_slab:
2340
2341 if (c->partial) {
2342 page = c->page = c->partial;
2343 c->partial = page->next;
2344 stat(s, CPU_PARTIAL_ALLOC);
2345 c->freelist = NULL;
2346 goto redo;
2347 }
2348
2349 freelist = new_slab_objects(s, gfpflags, node, &c);
2350
2351 if (unlikely(!freelist)) {
2352 slab_out_of_memory(s, gfpflags, node);
2353 local_irq_restore(flags);
2354 return NULL;
2355 }
2356
2357 page = c->page;
2358 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2359 goto load_freelist;
2360
2361 /* Only entered in the debug case */
2362 if (kmem_cache_debug(s) &&
2363 !alloc_debug_processing(s, page, freelist, addr))
2364 goto new_slab; /* Slab failed checks. Next slab needed */
2365
2366 deactivate_slab(s, page, get_freepointer(s, freelist));
2367 c->page = NULL;
2368 c->freelist = NULL;
2369 local_irq_restore(flags);
2370 return freelist;
2371 }
2372
2373 /*
2374 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2375 * have the fastpath folded into their functions. So no function call
2376 * overhead for requests that can be satisfied on the fastpath.
2377 *
2378 * The fastpath works by first checking if the lockless freelist can be used.
2379 * If not then __slab_alloc is called for slow processing.
2380 *
2381 * Otherwise we can simply pick the next object from the lockless free list.
2382 */
2383 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2384 gfp_t gfpflags, int node, unsigned long addr)
2385 {
2386 void **object;
2387 struct kmem_cache_cpu *c;
2388 struct page *page;
2389 unsigned long tid;
2390
2391 s = slab_pre_alloc_hook(s, gfpflags);
2392 if (!s)
2393 return NULL;
2394 redo:
2395 /*
2396 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2397 * enabled. We may switch back and forth between cpus while
2398 * reading from one cpu area. That does not matter as long
2399 * as we end up on the original cpu again when doing the cmpxchg.
2400 *
2401 * We should guarantee that tid and kmem_cache are retrieved on
2402 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2403 * to check if it is matched or not.
2404 */
2405 do {
2406 tid = this_cpu_read(s->cpu_slab->tid);
2407 c = raw_cpu_ptr(s->cpu_slab);
2408 } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
2409
2410 /*
2411 * Irqless object alloc/free algorithm used here depends on sequence
2412 * of fetching cpu_slab's data. tid should be fetched before anything
2413 * on c to guarantee that object and page associated with previous tid
2414 * won't be used with current tid. If we fetch tid first, object and
2415 * page could be one associated with next tid and our alloc/free
2416 * request will be failed. In this case, we will retry. So, no problem.
2417 */
2418 barrier();
2419
2420 /*
2421 * The transaction ids are globally unique per cpu and per operation on
2422 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2423 * occurs on the right processor and that there was no operation on the
2424 * linked list in between.
2425 */
2426
2427 object = c->freelist;
2428 page = c->page;
2429 if (unlikely(!object || !node_match(page, node))) {
2430 object = __slab_alloc(s, gfpflags, node, addr, c);
2431 stat(s, ALLOC_SLOWPATH);
2432 } else {
2433 void *next_object = get_freepointer_safe(s, object);
2434
2435 /*
2436 * The cmpxchg will only match if there was no additional
2437 * operation and if we are on the right processor.
2438 *
2439 * The cmpxchg does the following atomically (without lock
2440 * semantics!)
2441 * 1. Relocate first pointer to the current per cpu area.
2442 * 2. Verify that tid and freelist have not been changed
2443 * 3. If they were not changed replace tid and freelist
2444 *
2445 * Since this is without lock semantics the protection is only
2446 * against code executing on this cpu *not* from access by
2447 * other cpus.
2448 */
2449 if (unlikely(!this_cpu_cmpxchg_double(
2450 s->cpu_slab->freelist, s->cpu_slab->tid,
2451 object, tid,
2452 next_object, next_tid(tid)))) {
2453
2454 note_cmpxchg_failure("slab_alloc", s, tid);
2455 goto redo;
2456 }
2457 prefetch_freepointer(s, next_object);
2458 stat(s, ALLOC_FASTPATH);
2459 }
2460
2461 if (unlikely(gfpflags & __GFP_ZERO) && object)
2462 memset(object, 0, s->object_size);
2463
2464 slab_post_alloc_hook(s, gfpflags, object);
2465
2466 return object;
2467 }
2468
2469 static __always_inline void *slab_alloc(struct kmem_cache *s,
2470 gfp_t gfpflags, unsigned long addr)
2471 {
2472 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2473 }
2474
2475 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2476 {
2477 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2478
2479 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2480 s->size, gfpflags);
2481
2482 return ret;
2483 }
2484 EXPORT_SYMBOL(kmem_cache_alloc);
2485
2486 #ifdef CONFIG_TRACING
2487 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2488 {
2489 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2490 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2491 return ret;
2492 }
2493 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2494 #endif
2495
2496 #ifdef CONFIG_NUMA
2497 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2498 {
2499 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2500
2501 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2502 s->object_size, s->size, gfpflags, node);
2503
2504 return ret;
2505 }
2506 EXPORT_SYMBOL(kmem_cache_alloc_node);
2507
2508 #ifdef CONFIG_TRACING
2509 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2510 gfp_t gfpflags,
2511 int node, size_t size)
2512 {
2513 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2514
2515 trace_kmalloc_node(_RET_IP_, ret,
2516 size, s->size, gfpflags, node);
2517 return ret;
2518 }
2519 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2520 #endif
2521 #endif
2522
2523 /*
2524 * Slow path handling. This may still be called frequently since objects
2525 * have a longer lifetime than the cpu slabs in most processing loads.
2526 *
2527 * So we still attempt to reduce cache line usage. Just take the slab
2528 * lock and free the item. If there is no additional partial page
2529 * handling required then we can return immediately.
2530 */
2531 static void __slab_free(struct kmem_cache *s, struct page *page,
2532 void *x, unsigned long addr)
2533 {
2534 void *prior;
2535 void **object = (void *)x;
2536 int was_frozen;
2537 struct page new;
2538 unsigned long counters;
2539 struct kmem_cache_node *n = NULL;
2540 unsigned long uninitialized_var(flags);
2541
2542 stat(s, FREE_SLOWPATH);
2543
2544 if (kmem_cache_debug(s) &&
2545 !(n = free_debug_processing(s, page, x, addr, &flags)))
2546 return;
2547
2548 do {
2549 if (unlikely(n)) {
2550 spin_unlock_irqrestore(&n->list_lock, flags);
2551 n = NULL;
2552 }
2553 prior = page->freelist;
2554 counters = page->counters;
2555 set_freepointer(s, object, prior);
2556 new.counters = counters;
2557 was_frozen = new.frozen;
2558 new.inuse--;
2559 if ((!new.inuse || !prior) && !was_frozen) {
2560
2561 if (kmem_cache_has_cpu_partial(s) && !prior) {
2562
2563 /*
2564 * Slab was on no list before and will be
2565 * partially empty
2566 * We can defer the list move and instead
2567 * freeze it.
2568 */
2569 new.frozen = 1;
2570
2571 } else { /* Needs to be taken off a list */
2572
2573 n = get_node(s, page_to_nid(page));
2574 /*
2575 * Speculatively acquire the list_lock.
2576 * If the cmpxchg does not succeed then we may
2577 * drop the list_lock without any processing.
2578 *
2579 * Otherwise the list_lock will synchronize with
2580 * other processors updating the list of slabs.
2581 */
2582 spin_lock_irqsave(&n->list_lock, flags);
2583
2584 }
2585 }
2586
2587 } while (!cmpxchg_double_slab(s, page,
2588 prior, counters,
2589 object, new.counters,
2590 "__slab_free"));
2591
2592 if (likely(!n)) {
2593
2594 /*
2595 * If we just froze the page then put it onto the
2596 * per cpu partial list.
2597 */
2598 if (new.frozen && !was_frozen) {
2599 put_cpu_partial(s, page, 1);
2600 stat(s, CPU_PARTIAL_FREE);
2601 }
2602 /*
2603 * The list lock was not taken therefore no list
2604 * activity can be necessary.
2605 */
2606 if (was_frozen)
2607 stat(s, FREE_FROZEN);
2608 return;
2609 }
2610
2611 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2612 goto slab_empty;
2613
2614 /*
2615 * Objects left in the slab. If it was not on the partial list before
2616 * then add it.
2617 */
2618 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2619 if (kmem_cache_debug(s))
2620 remove_full(s, n, page);
2621 add_partial(n, page, DEACTIVATE_TO_TAIL);
2622 stat(s, FREE_ADD_PARTIAL);
2623 }
2624 spin_unlock_irqrestore(&n->list_lock, flags);
2625 return;
2626
2627 slab_empty:
2628 if (prior) {
2629 /*
2630 * Slab on the partial list.
2631 */
2632 remove_partial(n, page);
2633 stat(s, FREE_REMOVE_PARTIAL);
2634 } else {
2635 /* Slab must be on the full list */
2636 remove_full(s, n, page);
2637 }
2638
2639 spin_unlock_irqrestore(&n->list_lock, flags);
2640 stat(s, FREE_SLAB);
2641 discard_slab(s, page);
2642 }
2643
2644 /*
2645 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2646 * can perform fastpath freeing without additional function calls.
2647 *
2648 * The fastpath is only possible if we are freeing to the current cpu slab
2649 * of this processor. This typically the case if we have just allocated
2650 * the item before.
2651 *
2652 * If fastpath is not possible then fall back to __slab_free where we deal
2653 * with all sorts of special processing.
2654 */
2655 static __always_inline void slab_free(struct kmem_cache *s,
2656 struct page *page, void *x, unsigned long addr)
2657 {
2658 void **object = (void *)x;
2659 struct kmem_cache_cpu *c;
2660 unsigned long tid;
2661
2662 slab_free_hook(s, x);
2663
2664 redo:
2665 /*
2666 * Determine the currently cpus per cpu slab.
2667 * The cpu may change afterward. However that does not matter since
2668 * data is retrieved via this pointer. If we are on the same cpu
2669 * during the cmpxchg then the free will succedd.
2670 */
2671 do {
2672 tid = this_cpu_read(s->cpu_slab->tid);
2673 c = raw_cpu_ptr(s->cpu_slab);
2674 } while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
2675
2676 /* Same with comment on barrier() in slab_alloc_node() */
2677 barrier();
2678
2679 if (likely(page == c->page)) {
2680 set_freepointer(s, object, c->freelist);
2681
2682 if (unlikely(!this_cpu_cmpxchg_double(
2683 s->cpu_slab->freelist, s->cpu_slab->tid,
2684 c->freelist, tid,
2685 object, next_tid(tid)))) {
2686
2687 note_cmpxchg_failure("slab_free", s, tid);
2688 goto redo;
2689 }
2690 stat(s, FREE_FASTPATH);
2691 } else
2692 __slab_free(s, page, x, addr);
2693
2694 }
2695
2696 void kmem_cache_free(struct kmem_cache *s, void *x)
2697 {
2698 s = cache_from_obj(s, x);
2699 if (!s)
2700 return;
2701 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2702 trace_kmem_cache_free(_RET_IP_, x);
2703 }
2704 EXPORT_SYMBOL(kmem_cache_free);
2705
2706 /*
2707 * Object placement in a slab is made very easy because we always start at
2708 * offset 0. If we tune the size of the object to the alignment then we can
2709 * get the required alignment by putting one properly sized object after
2710 * another.
2711 *
2712 * Notice that the allocation order determines the sizes of the per cpu
2713 * caches. Each processor has always one slab available for allocations.
2714 * Increasing the allocation order reduces the number of times that slabs
2715 * must be moved on and off the partial lists and is therefore a factor in
2716 * locking overhead.
2717 */
2718
2719 /*
2720 * Mininum / Maximum order of slab pages. This influences locking overhead
2721 * and slab fragmentation. A higher order reduces the number of partial slabs
2722 * and increases the number of allocations possible without having to
2723 * take the list_lock.
2724 */
2725 static int slub_min_order;
2726 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2727 static int slub_min_objects;
2728
2729 /*
2730 * Calculate the order of allocation given an slab object size.
2731 *
2732 * The order of allocation has significant impact on performance and other
2733 * system components. Generally order 0 allocations should be preferred since
2734 * order 0 does not cause fragmentation in the page allocator. Larger objects
2735 * be problematic to put into order 0 slabs because there may be too much
2736 * unused space left. We go to a higher order if more than 1/16th of the slab
2737 * would be wasted.
2738 *
2739 * In order to reach satisfactory performance we must ensure that a minimum
2740 * number of objects is in one slab. Otherwise we may generate too much
2741 * activity on the partial lists which requires taking the list_lock. This is
2742 * less a concern for large slabs though which are rarely used.
2743 *
2744 * slub_max_order specifies the order where we begin to stop considering the
2745 * number of objects in a slab as critical. If we reach slub_max_order then
2746 * we try to keep the page order as low as possible. So we accept more waste
2747 * of space in favor of a small page order.
2748 *
2749 * Higher order allocations also allow the placement of more objects in a
2750 * slab and thereby reduce object handling overhead. If the user has
2751 * requested a higher mininum order then we start with that one instead of
2752 * the smallest order which will fit the object.
2753 */
2754 static inline int slab_order(int size, int min_objects,
2755 int max_order, int fract_leftover, int reserved)
2756 {
2757 int order;
2758 int rem;
2759 int min_order = slub_min_order;
2760
2761 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2762 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2763
2764 for (order = max(min_order,
2765 fls(min_objects * size - 1) - PAGE_SHIFT);
2766 order <= max_order; order++) {
2767
2768 unsigned long slab_size = PAGE_SIZE << order;
2769
2770 if (slab_size < min_objects * size + reserved)
2771 continue;
2772
2773 rem = (slab_size - reserved) % size;
2774
2775 if (rem <= slab_size / fract_leftover)
2776 break;
2777
2778 }
2779
2780 return order;
2781 }
2782
2783 static inline int calculate_order(int size, int reserved)
2784 {
2785 int order;
2786 int min_objects;
2787 int fraction;
2788 int max_objects;
2789
2790 /*
2791 * Attempt to find best configuration for a slab. This
2792 * works by first attempting to generate a layout with
2793 * the best configuration and backing off gradually.
2794 *
2795 * First we reduce the acceptable waste in a slab. Then
2796 * we reduce the minimum objects required in a slab.
2797 */
2798 min_objects = slub_min_objects;
2799 if (!min_objects)
2800 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2801 max_objects = order_objects(slub_max_order, size, reserved);
2802 min_objects = min(min_objects, max_objects);
2803
2804 while (min_objects > 1) {
2805 fraction = 16;
2806 while (fraction >= 4) {
2807 order = slab_order(size, min_objects,
2808 slub_max_order, fraction, reserved);
2809 if (order <= slub_max_order)
2810 return order;
2811 fraction /= 2;
2812 }
2813 min_objects--;
2814 }
2815
2816 /*
2817 * We were unable to place multiple objects in a slab. Now
2818 * lets see if we can place a single object there.
2819 */
2820 order = slab_order(size, 1, slub_max_order, 1, reserved);
2821 if (order <= slub_max_order)
2822 return order;
2823
2824 /*
2825 * Doh this slab cannot be placed using slub_max_order.
2826 */
2827 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2828 if (order < MAX_ORDER)
2829 return order;
2830 return -ENOSYS;
2831 }
2832
2833 static void
2834 init_kmem_cache_node(struct kmem_cache_node *n)
2835 {
2836 n->nr_partial = 0;
2837 spin_lock_init(&n->list_lock);
2838 INIT_LIST_HEAD(&n->partial);
2839 #ifdef CONFIG_SLUB_DEBUG
2840 atomic_long_set(&n->nr_slabs, 0);
2841 atomic_long_set(&n->total_objects, 0);
2842 INIT_LIST_HEAD(&n->full);
2843 #endif
2844 }
2845
2846 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2847 {
2848 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2849 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2850
2851 /*
2852 * Must align to double word boundary for the double cmpxchg
2853 * instructions to work; see __pcpu_double_call_return_bool().
2854 */
2855 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2856 2 * sizeof(void *));
2857
2858 if (!s->cpu_slab)
2859 return 0;
2860
2861 init_kmem_cache_cpus(s);
2862
2863 return 1;
2864 }
2865
2866 static struct kmem_cache *kmem_cache_node;
2867
2868 /*
2869 * No kmalloc_node yet so do it by hand. We know that this is the first
2870 * slab on the node for this slabcache. There are no concurrent accesses
2871 * possible.
2872 *
2873 * Note that this function only works on the kmem_cache_node
2874 * when allocating for the kmem_cache_node. This is used for bootstrapping
2875 * memory on a fresh node that has no slab structures yet.
2876 */
2877 static void early_kmem_cache_node_alloc(int node)
2878 {
2879 struct page *page;
2880 struct kmem_cache_node *n;
2881
2882 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2883
2884 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2885
2886 BUG_ON(!page);
2887 if (page_to_nid(page) != node) {
2888 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
2889 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2890 }
2891
2892 n = page->freelist;
2893 BUG_ON(!n);
2894 page->freelist = get_freepointer(kmem_cache_node, n);
2895 page->inuse = 1;
2896 page->frozen = 0;
2897 kmem_cache_node->node[node] = n;
2898 #ifdef CONFIG_SLUB_DEBUG
2899 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2900 init_tracking(kmem_cache_node, n);
2901 #endif
2902 init_kmem_cache_node(n);
2903 inc_slabs_node(kmem_cache_node, node, page->objects);
2904
2905 /*
2906 * No locks need to be taken here as it has just been
2907 * initialized and there is no concurrent access.
2908 */
2909 __add_partial(n, page, DEACTIVATE_TO_HEAD);
2910 }
2911
2912 static void free_kmem_cache_nodes(struct kmem_cache *s)
2913 {
2914 int node;
2915 struct kmem_cache_node *n;
2916
2917 for_each_kmem_cache_node(s, node, n) {
2918 kmem_cache_free(kmem_cache_node, n);
2919 s->node[node] = NULL;
2920 }
2921 }
2922
2923 static int init_kmem_cache_nodes(struct kmem_cache *s)
2924 {
2925 int node;
2926
2927 for_each_node_state(node, N_NORMAL_MEMORY) {
2928 struct kmem_cache_node *n;
2929
2930 if (slab_state == DOWN) {
2931 early_kmem_cache_node_alloc(node);
2932 continue;
2933 }
2934 n = kmem_cache_alloc_node(kmem_cache_node,
2935 GFP_KERNEL, node);
2936
2937 if (!n) {
2938 free_kmem_cache_nodes(s);
2939 return 0;
2940 }
2941
2942 s->node[node] = n;
2943 init_kmem_cache_node(n);
2944 }
2945 return 1;
2946 }
2947
2948 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2949 {
2950 if (min < MIN_PARTIAL)
2951 min = MIN_PARTIAL;
2952 else if (min > MAX_PARTIAL)
2953 min = MAX_PARTIAL;
2954 s->min_partial = min;
2955 }
2956
2957 /*
2958 * calculate_sizes() determines the order and the distribution of data within
2959 * a slab object.
2960 */
2961 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2962 {
2963 unsigned long flags = s->flags;
2964 unsigned long size = s->object_size;
2965 int order;
2966
2967 /*
2968 * Round up object size to the next word boundary. We can only
2969 * place the free pointer at word boundaries and this determines
2970 * the possible location of the free pointer.
2971 */
2972 size = ALIGN(size, sizeof(void *));
2973
2974 #ifdef CONFIG_SLUB_DEBUG
2975 /*
2976 * Determine if we can poison the object itself. If the user of
2977 * the slab may touch the object after free or before allocation
2978 * then we should never poison the object itself.
2979 */
2980 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2981 !s->ctor)
2982 s->flags |= __OBJECT_POISON;
2983 else
2984 s->flags &= ~__OBJECT_POISON;
2985
2986
2987 /*
2988 * If we are Redzoning then check if there is some space between the
2989 * end of the object and the free pointer. If not then add an
2990 * additional word to have some bytes to store Redzone information.
2991 */
2992 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2993 size += sizeof(void *);
2994 #endif
2995
2996 /*
2997 * With that we have determined the number of bytes in actual use
2998 * by the object. This is the potential offset to the free pointer.
2999 */
3000 s->inuse = size;
3001
3002 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3003 s->ctor)) {
3004 /*
3005 * Relocate free pointer after the object if it is not
3006 * permitted to overwrite the first word of the object on
3007 * kmem_cache_free.
3008 *
3009 * This is the case if we do RCU, have a constructor or
3010 * destructor or are poisoning the objects.
3011 */
3012 s->offset = size;
3013 size += sizeof(void *);
3014 }
3015
3016 #ifdef CONFIG_SLUB_DEBUG
3017 if (flags & SLAB_STORE_USER)
3018 /*
3019 * Need to store information about allocs and frees after
3020 * the object.
3021 */
3022 size += 2 * sizeof(struct track);
3023
3024 if (flags & SLAB_RED_ZONE)
3025 /*
3026 * Add some empty padding so that we can catch
3027 * overwrites from earlier objects rather than let
3028 * tracking information or the free pointer be
3029 * corrupted if a user writes before the start
3030 * of the object.
3031 */
3032 size += sizeof(void *);
3033 #endif
3034
3035 /*
3036 * SLUB stores one object immediately after another beginning from
3037 * offset 0. In order to align the objects we have to simply size
3038 * each object to conform to the alignment.
3039 */
3040 size = ALIGN(size, s->align);
3041 s->size = size;
3042 if (forced_order >= 0)
3043 order = forced_order;
3044 else
3045 order = calculate_order(size, s->reserved);
3046
3047 if (order < 0)
3048 return 0;
3049
3050 s->allocflags = 0;
3051 if (order)
3052 s->allocflags |= __GFP_COMP;
3053
3054 if (s->flags & SLAB_CACHE_DMA)
3055 s->allocflags |= GFP_DMA;
3056
3057 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3058 s->allocflags |= __GFP_RECLAIMABLE;
3059
3060 /*
3061 * Determine the number of objects per slab
3062 */
3063 s->oo = oo_make(order, size, s->reserved);
3064 s->min = oo_make(get_order(size), size, s->reserved);
3065 if (oo_objects(s->oo) > oo_objects(s->max))
3066 s->max = s->oo;
3067
3068 return !!oo_objects(s->oo);
3069 }
3070
3071 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3072 {
3073 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3074 s->reserved = 0;
3075
3076 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3077 s->reserved = sizeof(struct rcu_head);
3078
3079 if (!calculate_sizes(s, -1))
3080 goto error;
3081 if (disable_higher_order_debug) {
3082 /*
3083 * Disable debugging flags that store metadata if the min slab
3084 * order increased.
3085 */
3086 if (get_order(s->size) > get_order(s->object_size)) {
3087 s->flags &= ~DEBUG_METADATA_FLAGS;
3088 s->offset = 0;
3089 if (!calculate_sizes(s, -1))
3090 goto error;
3091 }
3092 }
3093
3094 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3095 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3096 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3097 /* Enable fast mode */
3098 s->flags |= __CMPXCHG_DOUBLE;
3099 #endif
3100
3101 /*
3102 * The larger the object size is, the more pages we want on the partial
3103 * list to avoid pounding the page allocator excessively.
3104 */
3105 set_min_partial(s, ilog2(s->size) / 2);
3106
3107 /*
3108 * cpu_partial determined the maximum number of objects kept in the
3109 * per cpu partial lists of a processor.
3110 *
3111 * Per cpu partial lists mainly contain slabs that just have one
3112 * object freed. If they are used for allocation then they can be
3113 * filled up again with minimal effort. The slab will never hit the
3114 * per node partial lists and therefore no locking will be required.
3115 *
3116 * This setting also determines
3117 *
3118 * A) The number of objects from per cpu partial slabs dumped to the
3119 * per node list when we reach the limit.
3120 * B) The number of objects in cpu partial slabs to extract from the
3121 * per node list when we run out of per cpu objects. We only fetch
3122 * 50% to keep some capacity around for frees.
3123 */
3124 if (!kmem_cache_has_cpu_partial(s))
3125 s->cpu_partial = 0;
3126 else if (s->size >= PAGE_SIZE)
3127 s->cpu_partial = 2;
3128 else if (s->size >= 1024)
3129 s->cpu_partial = 6;
3130 else if (s->size >= 256)
3131 s->cpu_partial = 13;
3132 else
3133 s->cpu_partial = 30;
3134
3135 #ifdef CONFIG_NUMA
3136 s->remote_node_defrag_ratio = 1000;
3137 #endif
3138 if (!init_kmem_cache_nodes(s))
3139 goto error;
3140
3141 if (alloc_kmem_cache_cpus(s))
3142 return 0;
3143
3144 free_kmem_cache_nodes(s);
3145 error:
3146 if (flags & SLAB_PANIC)
3147 panic("Cannot create slab %s size=%lu realsize=%u "
3148 "order=%u offset=%u flags=%lx\n",
3149 s->name, (unsigned long)s->size, s->size,
3150 oo_order(s->oo), s->offset, flags);
3151 return -EINVAL;
3152 }
3153
3154 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3155 const char *text)
3156 {
3157 #ifdef CONFIG_SLUB_DEBUG
3158 void *addr = page_address(page);
3159 void *p;
3160 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3161 sizeof(long), GFP_ATOMIC);
3162 if (!map)
3163 return;
3164 slab_err(s, page, text, s->name);
3165 slab_lock(page);
3166
3167 get_map(s, page, map);
3168 for_each_object(p, s, addr, page->objects) {
3169
3170 if (!test_bit(slab_index(p, s, addr), map)) {
3171 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3172 print_tracking(s, p);
3173 }
3174 }
3175 slab_unlock(page);
3176 kfree(map);
3177 #endif
3178 }
3179
3180 /*
3181 * Attempt to free all partial slabs on a node.
3182 * This is called from kmem_cache_close(). We must be the last thread
3183 * using the cache and therefore we do not need to lock anymore.
3184 */
3185 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3186 {
3187 struct page *page, *h;
3188
3189 list_for_each_entry_safe(page, h, &n->partial, lru) {
3190 if (!page->inuse) {
3191 __remove_partial(n, page);
3192 discard_slab(s, page);
3193 } else {
3194 list_slab_objects(s, page,
3195 "Objects remaining in %s on kmem_cache_close()");
3196 }
3197 }
3198 }
3199
3200 /*
3201 * Release all resources used by a slab cache.
3202 */
3203 static inline int kmem_cache_close(struct kmem_cache *s)
3204 {
3205 int node;
3206 struct kmem_cache_node *n;
3207
3208 flush_all(s);
3209 /* Attempt to free all objects */
3210 for_each_kmem_cache_node(s, node, n) {
3211 free_partial(s, n);
3212 if (n->nr_partial || slabs_node(s, node))
3213 return 1;
3214 }
3215 free_percpu(s->cpu_slab);
3216 free_kmem_cache_nodes(s);
3217 return 0;
3218 }
3219
3220 int __kmem_cache_shutdown(struct kmem_cache *s)
3221 {
3222 return kmem_cache_close(s);
3223 }
3224
3225 /********************************************************************
3226 * Kmalloc subsystem
3227 *******************************************************************/
3228
3229 static int __init setup_slub_min_order(char *str)
3230 {
3231 get_option(&str, &slub_min_order);
3232
3233 return 1;
3234 }
3235
3236 __setup("slub_min_order=", setup_slub_min_order);
3237
3238 static int __init setup_slub_max_order(char *str)
3239 {
3240 get_option(&str, &slub_max_order);
3241 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3242
3243 return 1;
3244 }
3245
3246 __setup("slub_max_order=", setup_slub_max_order);
3247
3248 static int __init setup_slub_min_objects(char *str)
3249 {
3250 get_option(&str, &slub_min_objects);
3251
3252 return 1;
3253 }
3254
3255 __setup("slub_min_objects=", setup_slub_min_objects);
3256
3257 void *__kmalloc(size_t size, gfp_t flags)
3258 {
3259 struct kmem_cache *s;
3260 void *ret;
3261
3262 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3263 return kmalloc_large(size, flags);
3264
3265 s = kmalloc_slab(size, flags);
3266
3267 if (unlikely(ZERO_OR_NULL_PTR(s)))
3268 return s;
3269
3270 ret = slab_alloc(s, flags, _RET_IP_);
3271
3272 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3273
3274 return ret;
3275 }
3276 EXPORT_SYMBOL(__kmalloc);
3277
3278 #ifdef CONFIG_NUMA
3279 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3280 {
3281 struct page *page;
3282 void *ptr = NULL;
3283
3284 flags |= __GFP_COMP | __GFP_NOTRACK;
3285 page = alloc_kmem_pages_node(node, flags, get_order(size));
3286 if (page)
3287 ptr = page_address(page);
3288
3289 kmalloc_large_node_hook(ptr, size, flags);
3290 return ptr;
3291 }
3292
3293 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3294 {
3295 struct kmem_cache *s;
3296 void *ret;
3297
3298 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3299 ret = kmalloc_large_node(size, flags, node);
3300
3301 trace_kmalloc_node(_RET_IP_, ret,
3302 size, PAGE_SIZE << get_order(size),
3303 flags, node);
3304
3305 return ret;
3306 }
3307
3308 s = kmalloc_slab(size, flags);
3309
3310 if (unlikely(ZERO_OR_NULL_PTR(s)))
3311 return s;
3312
3313 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3314
3315 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3316
3317 return ret;
3318 }
3319 EXPORT_SYMBOL(__kmalloc_node);
3320 #endif
3321
3322 size_t ksize(const void *object)
3323 {
3324 struct page *page;
3325
3326 if (unlikely(object == ZERO_SIZE_PTR))
3327 return 0;
3328
3329 page = virt_to_head_page(object);
3330
3331 if (unlikely(!PageSlab(page))) {
3332 WARN_ON(!PageCompound(page));
3333 return PAGE_SIZE << compound_order(page);
3334 }
3335
3336 return slab_ksize(page->slab_cache);
3337 }
3338 EXPORT_SYMBOL(ksize);
3339
3340 void kfree(const void *x)
3341 {
3342 struct page *page;
3343 void *object = (void *)x;
3344
3345 trace_kfree(_RET_IP_, x);
3346
3347 if (unlikely(ZERO_OR_NULL_PTR(x)))
3348 return;
3349
3350 page = virt_to_head_page(x);
3351 if (unlikely(!PageSlab(page))) {
3352 BUG_ON(!PageCompound(page));
3353 kfree_hook(x);
3354 __free_kmem_pages(page, compound_order(page));
3355 return;
3356 }
3357 slab_free(page->slab_cache, page, object, _RET_IP_);
3358 }
3359 EXPORT_SYMBOL(kfree);
3360
3361 /*
3362 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3363 * the remaining slabs by the number of items in use. The slabs with the
3364 * most items in use come first. New allocations will then fill those up
3365 * and thus they can be removed from the partial lists.
3366 *
3367 * The slabs with the least items are placed last. This results in them
3368 * being allocated from last increasing the chance that the last objects
3369 * are freed in them.
3370 */
3371 int __kmem_cache_shrink(struct kmem_cache *s)
3372 {
3373 int node;
3374 int i;
3375 struct kmem_cache_node *n;
3376 struct page *page;
3377 struct page *t;
3378 int objects = oo_objects(s->max);
3379 struct list_head *slabs_by_inuse =
3380 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3381 unsigned long flags;
3382
3383 if (!slabs_by_inuse)
3384 return -ENOMEM;
3385
3386 flush_all(s);
3387 for_each_kmem_cache_node(s, node, n) {
3388 if (!n->nr_partial)
3389 continue;
3390
3391 for (i = 0; i < objects; i++)
3392 INIT_LIST_HEAD(slabs_by_inuse + i);
3393
3394 spin_lock_irqsave(&n->list_lock, flags);
3395
3396 /*
3397 * Build lists indexed by the items in use in each slab.
3398 *
3399 * Note that concurrent frees may occur while we hold the
3400 * list_lock. page->inuse here is the upper limit.
3401 */
3402 list_for_each_entry_safe(page, t, &n->partial, lru) {
3403 list_move(&page->lru, slabs_by_inuse + page->inuse);
3404 if (!page->inuse)
3405 n->nr_partial--;
3406 }
3407
3408 /*
3409 * Rebuild the partial list with the slabs filled up most
3410 * first and the least used slabs at the end.
3411 */
3412 for (i = objects - 1; i > 0; i--)
3413 list_splice(slabs_by_inuse + i, n->partial.prev);
3414
3415 spin_unlock_irqrestore(&n->list_lock, flags);
3416
3417 /* Release empty slabs */
3418 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3419 discard_slab(s, page);
3420 }
3421
3422 kfree(slabs_by_inuse);
3423 return 0;
3424 }
3425
3426 static int slab_mem_going_offline_callback(void *arg)
3427 {
3428 struct kmem_cache *s;
3429
3430 mutex_lock(&slab_mutex);
3431 list_for_each_entry(s, &slab_caches, list)
3432 __kmem_cache_shrink(s);
3433 mutex_unlock(&slab_mutex);
3434
3435 return 0;
3436 }
3437
3438 static void slab_mem_offline_callback(void *arg)
3439 {
3440 struct kmem_cache_node *n;
3441 struct kmem_cache *s;
3442 struct memory_notify *marg = arg;
3443 int offline_node;
3444
3445 offline_node = marg->status_change_nid_normal;
3446
3447 /*
3448 * If the node still has available memory. we need kmem_cache_node
3449 * for it yet.
3450 */
3451 if (offline_node < 0)
3452 return;
3453
3454 mutex_lock(&slab_mutex);
3455 list_for_each_entry(s, &slab_caches, list) {
3456 n = get_node(s, offline_node);
3457 if (n) {
3458 /*
3459 * if n->nr_slabs > 0, slabs still exist on the node
3460 * that is going down. We were unable to free them,
3461 * and offline_pages() function shouldn't call this
3462 * callback. So, we must fail.
3463 */
3464 BUG_ON(slabs_node(s, offline_node));
3465
3466 s->node[offline_node] = NULL;
3467 kmem_cache_free(kmem_cache_node, n);
3468 }
3469 }
3470 mutex_unlock(&slab_mutex);
3471 }
3472
3473 static int slab_mem_going_online_callback(void *arg)
3474 {
3475 struct kmem_cache_node *n;
3476 struct kmem_cache *s;
3477 struct memory_notify *marg = arg;
3478 int nid = marg->status_change_nid_normal;
3479 int ret = 0;
3480
3481 /*
3482 * If the node's memory is already available, then kmem_cache_node is
3483 * already created. Nothing to do.
3484 */
3485 if (nid < 0)
3486 return 0;
3487
3488 /*
3489 * We are bringing a node online. No memory is available yet. We must
3490 * allocate a kmem_cache_node structure in order to bring the node
3491 * online.
3492 */
3493 mutex_lock(&slab_mutex);
3494 list_for_each_entry(s, &slab_caches, list) {
3495 /*
3496 * XXX: kmem_cache_alloc_node will fallback to other nodes
3497 * since memory is not yet available from the node that
3498 * is brought up.
3499 */
3500 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3501 if (!n) {
3502 ret = -ENOMEM;
3503 goto out;
3504 }
3505 init_kmem_cache_node(n);
3506 s->node[nid] = n;
3507 }
3508 out:
3509 mutex_unlock(&slab_mutex);
3510 return ret;
3511 }
3512
3513 static int slab_memory_callback(struct notifier_block *self,
3514 unsigned long action, void *arg)
3515 {
3516 int ret = 0;
3517
3518 switch (action) {
3519 case MEM_GOING_ONLINE:
3520 ret = slab_mem_going_online_callback(arg);
3521 break;
3522 case MEM_GOING_OFFLINE:
3523 ret = slab_mem_going_offline_callback(arg);
3524 break;
3525 case MEM_OFFLINE:
3526 case MEM_CANCEL_ONLINE:
3527 slab_mem_offline_callback(arg);
3528 break;
3529 case MEM_ONLINE:
3530 case MEM_CANCEL_OFFLINE:
3531 break;
3532 }
3533 if (ret)
3534 ret = notifier_from_errno(ret);
3535 else
3536 ret = NOTIFY_OK;
3537 return ret;
3538 }
3539
3540 static struct notifier_block slab_memory_callback_nb = {
3541 .notifier_call = slab_memory_callback,
3542 .priority = SLAB_CALLBACK_PRI,
3543 };
3544
3545 /********************************************************************
3546 * Basic setup of slabs
3547 *******************************************************************/
3548
3549 /*
3550 * Used for early kmem_cache structures that were allocated using
3551 * the page allocator. Allocate them properly then fix up the pointers
3552 * that may be pointing to the wrong kmem_cache structure.
3553 */
3554
3555 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3556 {
3557 int node;
3558 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3559 struct kmem_cache_node *n;
3560
3561 memcpy(s, static_cache, kmem_cache->object_size);
3562
3563 /*
3564 * This runs very early, and only the boot processor is supposed to be
3565 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3566 * IPIs around.
3567 */
3568 __flush_cpu_slab(s, smp_processor_id());
3569 for_each_kmem_cache_node(s, node, n) {
3570 struct page *p;
3571
3572 list_for_each_entry(p, &n->partial, lru)
3573 p->slab_cache = s;
3574
3575 #ifdef CONFIG_SLUB_DEBUG
3576 list_for_each_entry(p, &n->full, lru)
3577 p->slab_cache = s;
3578 #endif
3579 }
3580 list_add(&s->list, &slab_caches);
3581 return s;
3582 }
3583
3584 void __init kmem_cache_init(void)
3585 {
3586 static __initdata struct kmem_cache boot_kmem_cache,
3587 boot_kmem_cache_node;
3588
3589 if (debug_guardpage_minorder())
3590 slub_max_order = 0;
3591
3592 kmem_cache_node = &boot_kmem_cache_node;
3593 kmem_cache = &boot_kmem_cache;
3594
3595 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3596 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3597
3598 register_hotmemory_notifier(&slab_memory_callback_nb);
3599
3600 /* Able to allocate the per node structures */
3601 slab_state = PARTIAL;
3602
3603 create_boot_cache(kmem_cache, "kmem_cache",
3604 offsetof(struct kmem_cache, node) +
3605 nr_node_ids * sizeof(struct kmem_cache_node *),
3606 SLAB_HWCACHE_ALIGN);
3607
3608 kmem_cache = bootstrap(&boot_kmem_cache);
3609
3610 /*
3611 * Allocate kmem_cache_node properly from the kmem_cache slab.
3612 * kmem_cache_node is separately allocated so no need to
3613 * update any list pointers.
3614 */
3615 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3616
3617 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3618 create_kmalloc_caches(0);
3619
3620 #ifdef CONFIG_SMP
3621 register_cpu_notifier(&slab_notifier);
3622 #endif
3623
3624 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3625 cache_line_size(),
3626 slub_min_order, slub_max_order, slub_min_objects,
3627 nr_cpu_ids, nr_node_ids);
3628 }
3629
3630 void __init kmem_cache_init_late(void)
3631 {
3632 }
3633
3634 struct kmem_cache *
3635 __kmem_cache_alias(const char *name, size_t size, size_t align,
3636 unsigned long flags, void (*ctor)(void *))
3637 {
3638 struct kmem_cache *s;
3639
3640 s = find_mergeable(size, align, flags, name, ctor);
3641 if (s) {
3642 int i;
3643 struct kmem_cache *c;
3644
3645 s->refcount++;
3646
3647 /*
3648 * Adjust the object sizes so that we clear
3649 * the complete object on kzalloc.
3650 */
3651 s->object_size = max(s->object_size, (int)size);
3652 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3653
3654 for_each_memcg_cache_index(i) {
3655 c = cache_from_memcg_idx(s, i);
3656 if (!c)
3657 continue;
3658 c->object_size = s->object_size;
3659 c->inuse = max_t(int, c->inuse,
3660 ALIGN(size, sizeof(void *)));
3661 }
3662
3663 if (sysfs_slab_alias(s, name)) {
3664 s->refcount--;
3665 s = NULL;
3666 }
3667 }
3668
3669 return s;
3670 }
3671
3672 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3673 {
3674 int err;
3675
3676 err = kmem_cache_open(s, flags);
3677 if (err)
3678 return err;
3679
3680 /* Mutex is not taken during early boot */
3681 if (slab_state <= UP)
3682 return 0;
3683
3684 memcg_propagate_slab_attrs(s);
3685 err = sysfs_slab_add(s);
3686 if (err)
3687 kmem_cache_close(s);
3688
3689 return err;
3690 }
3691
3692 #ifdef CONFIG_SMP
3693 /*
3694 * Use the cpu notifier to insure that the cpu slabs are flushed when
3695 * necessary.
3696 */
3697 static int slab_cpuup_callback(struct notifier_block *nfb,
3698 unsigned long action, void *hcpu)
3699 {
3700 long cpu = (long)hcpu;
3701 struct kmem_cache *s;
3702 unsigned long flags;
3703
3704 switch (action) {
3705 case CPU_UP_CANCELED:
3706 case CPU_UP_CANCELED_FROZEN:
3707 case CPU_DEAD:
3708 case CPU_DEAD_FROZEN:
3709 mutex_lock(&slab_mutex);
3710 list_for_each_entry(s, &slab_caches, list) {
3711 local_irq_save(flags);
3712 __flush_cpu_slab(s, cpu);
3713 local_irq_restore(flags);
3714 }
3715 mutex_unlock(&slab_mutex);
3716 break;
3717 default:
3718 break;
3719 }
3720 return NOTIFY_OK;
3721 }
3722
3723 static struct notifier_block slab_notifier = {
3724 .notifier_call = slab_cpuup_callback
3725 };
3726
3727 #endif
3728
3729 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3730 {
3731 struct kmem_cache *s;
3732 void *ret;
3733
3734 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3735 return kmalloc_large(size, gfpflags);
3736
3737 s = kmalloc_slab(size, gfpflags);
3738
3739 if (unlikely(ZERO_OR_NULL_PTR(s)))
3740 return s;
3741
3742 ret = slab_alloc(s, gfpflags, caller);
3743
3744 /* Honor the call site pointer we received. */
3745 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3746
3747 return ret;
3748 }
3749
3750 #ifdef CONFIG_NUMA
3751 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3752 int node, unsigned long caller)
3753 {
3754 struct kmem_cache *s;
3755 void *ret;
3756
3757 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3758 ret = kmalloc_large_node(size, gfpflags, node);
3759
3760 trace_kmalloc_node(caller, ret,
3761 size, PAGE_SIZE << get_order(size),
3762 gfpflags, node);
3763
3764 return ret;
3765 }
3766
3767 s = kmalloc_slab(size, gfpflags);
3768
3769 if (unlikely(ZERO_OR_NULL_PTR(s)))
3770 return s;
3771
3772 ret = slab_alloc_node(s, gfpflags, node, caller);
3773
3774 /* Honor the call site pointer we received. */
3775 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3776
3777 return ret;
3778 }
3779 #endif
3780
3781 #ifdef CONFIG_SYSFS
3782 static int count_inuse(struct page *page)
3783 {
3784 return page->inuse;
3785 }
3786
3787 static int count_total(struct page *page)
3788 {
3789 return page->objects;
3790 }
3791 #endif
3792
3793 #ifdef CONFIG_SLUB_DEBUG
3794 static int validate_slab(struct kmem_cache *s, struct page *page,
3795 unsigned long *map)
3796 {
3797 void *p;
3798 void *addr = page_address(page);
3799
3800 if (!check_slab(s, page) ||
3801 !on_freelist(s, page, NULL))
3802 return 0;
3803
3804 /* Now we know that a valid freelist exists */
3805 bitmap_zero(map, page->objects);
3806
3807 get_map(s, page, map);
3808 for_each_object(p, s, addr, page->objects) {
3809 if (test_bit(slab_index(p, s, addr), map))
3810 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3811 return 0;
3812 }
3813
3814 for_each_object(p, s, addr, page->objects)
3815 if (!test_bit(slab_index(p, s, addr), map))
3816 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3817 return 0;
3818 return 1;
3819 }
3820
3821 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3822 unsigned long *map)
3823 {
3824 slab_lock(page);
3825 validate_slab(s, page, map);
3826 slab_unlock(page);
3827 }
3828
3829 static int validate_slab_node(struct kmem_cache *s,
3830 struct kmem_cache_node *n, unsigned long *map)
3831 {
3832 unsigned long count = 0;
3833 struct page *page;
3834 unsigned long flags;
3835
3836 spin_lock_irqsave(&n->list_lock, flags);
3837
3838 list_for_each_entry(page, &n->partial, lru) {
3839 validate_slab_slab(s, page, map);
3840 count++;
3841 }
3842 if (count != n->nr_partial)
3843 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
3844 s->name, count, n->nr_partial);
3845
3846 if (!(s->flags & SLAB_STORE_USER))
3847 goto out;
3848
3849 list_for_each_entry(page, &n->full, lru) {
3850 validate_slab_slab(s, page, map);
3851 count++;
3852 }
3853 if (count != atomic_long_read(&n->nr_slabs))
3854 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
3855 s->name, count, atomic_long_read(&n->nr_slabs));
3856
3857 out:
3858 spin_unlock_irqrestore(&n->list_lock, flags);
3859 return count;
3860 }
3861
3862 static long validate_slab_cache(struct kmem_cache *s)
3863 {
3864 int node;
3865 unsigned long count = 0;
3866 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3867 sizeof(unsigned long), GFP_KERNEL);
3868 struct kmem_cache_node *n;
3869
3870 if (!map)
3871 return -ENOMEM;
3872
3873 flush_all(s);
3874 for_each_kmem_cache_node(s, node, n)
3875 count += validate_slab_node(s, n, map);
3876 kfree(map);
3877 return count;
3878 }
3879 /*
3880 * Generate lists of code addresses where slabcache objects are allocated
3881 * and freed.
3882 */
3883
3884 struct location {
3885 unsigned long count;
3886 unsigned long addr;
3887 long long sum_time;
3888 long min_time;
3889 long max_time;
3890 long min_pid;
3891 long max_pid;
3892 DECLARE_BITMAP(cpus, NR_CPUS);
3893 nodemask_t nodes;
3894 };
3895
3896 struct loc_track {
3897 unsigned long max;
3898 unsigned long count;
3899 struct location *loc;
3900 };
3901
3902 static void free_loc_track(struct loc_track *t)
3903 {
3904 if (t->max)
3905 free_pages((unsigned long)t->loc,
3906 get_order(sizeof(struct location) * t->max));
3907 }
3908
3909 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3910 {
3911 struct location *l;
3912 int order;
3913
3914 order = get_order(sizeof(struct location) * max);
3915
3916 l = (void *)__get_free_pages(flags, order);
3917 if (!l)
3918 return 0;
3919
3920 if (t->count) {
3921 memcpy(l, t->loc, sizeof(struct location) * t->count);
3922 free_loc_track(t);
3923 }
3924 t->max = max;
3925 t->loc = l;
3926 return 1;
3927 }
3928
3929 static int add_location(struct loc_track *t, struct kmem_cache *s,
3930 const struct track *track)
3931 {
3932 long start, end, pos;
3933 struct location *l;
3934 unsigned long caddr;
3935 unsigned long age = jiffies - track->when;
3936
3937 start = -1;
3938 end = t->count;
3939
3940 for ( ; ; ) {
3941 pos = start + (end - start + 1) / 2;
3942
3943 /*
3944 * There is nothing at "end". If we end up there
3945 * we need to add something to before end.
3946 */
3947 if (pos == end)
3948 break;
3949
3950 caddr = t->loc[pos].addr;
3951 if (track->addr == caddr) {
3952
3953 l = &t->loc[pos];
3954 l->count++;
3955 if (track->when) {
3956 l->sum_time += age;
3957 if (age < l->min_time)
3958 l->min_time = age;
3959 if (age > l->max_time)
3960 l->max_time = age;
3961
3962 if (track->pid < l->min_pid)
3963 l->min_pid = track->pid;
3964 if (track->pid > l->max_pid)
3965 l->max_pid = track->pid;
3966
3967 cpumask_set_cpu(track->cpu,
3968 to_cpumask(l->cpus));
3969 }
3970 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3971 return 1;
3972 }
3973
3974 if (track->addr < caddr)
3975 end = pos;
3976 else
3977 start = pos;
3978 }
3979
3980 /*
3981 * Not found. Insert new tracking element.
3982 */
3983 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3984 return 0;
3985
3986 l = t->loc + pos;
3987 if (pos < t->count)
3988 memmove(l + 1, l,
3989 (t->count - pos) * sizeof(struct location));
3990 t->count++;
3991 l->count = 1;
3992 l->addr = track->addr;
3993 l->sum_time = age;
3994 l->min_time = age;
3995 l->max_time = age;
3996 l->min_pid = track->pid;
3997 l->max_pid = track->pid;
3998 cpumask_clear(to_cpumask(l->cpus));
3999 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4000 nodes_clear(l->nodes);
4001 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4002 return 1;
4003 }
4004
4005 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4006 struct page *page, enum track_item alloc,
4007 unsigned long *map)
4008 {
4009 void *addr = page_address(page);
4010 void *p;
4011
4012 bitmap_zero(map, page->objects);
4013 get_map(s, page, map);
4014
4015 for_each_object(p, s, addr, page->objects)
4016 if (!test_bit(slab_index(p, s, addr), map))
4017 add_location(t, s, get_track(s, p, alloc));
4018 }
4019
4020 static int list_locations(struct kmem_cache *s, char *buf,
4021 enum track_item alloc)
4022 {
4023 int len = 0;
4024 unsigned long i;
4025 struct loc_track t = { 0, 0, NULL };
4026 int node;
4027 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4028 sizeof(unsigned long), GFP_KERNEL);
4029 struct kmem_cache_node *n;
4030
4031 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4032 GFP_TEMPORARY)) {
4033 kfree(map);
4034 return sprintf(buf, "Out of memory\n");
4035 }
4036 /* Push back cpu slabs */
4037 flush_all(s);
4038
4039 for_each_kmem_cache_node(s, node, n) {
4040 unsigned long flags;
4041 struct page *page;
4042
4043 if (!atomic_long_read(&n->nr_slabs))
4044 continue;
4045
4046 spin_lock_irqsave(&n->list_lock, flags);
4047 list_for_each_entry(page, &n->partial, lru)
4048 process_slab(&t, s, page, alloc, map);
4049 list_for_each_entry(page, &n->full, lru)
4050 process_slab(&t, s, page, alloc, map);
4051 spin_unlock_irqrestore(&n->list_lock, flags);
4052 }
4053
4054 for (i = 0; i < t.count; i++) {
4055 struct location *l = &t.loc[i];
4056
4057 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4058 break;
4059 len += sprintf(buf + len, "%7ld ", l->count);
4060
4061 if (l->addr)
4062 len += sprintf(buf + len, "%pS", (void *)l->addr);
4063 else
4064 len += sprintf(buf + len, "<not-available>");
4065
4066 if (l->sum_time != l->min_time) {
4067 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4068 l->min_time,
4069 (long)div_u64(l->sum_time, l->count),
4070 l->max_time);
4071 } else
4072 len += sprintf(buf + len, " age=%ld",
4073 l->min_time);
4074
4075 if (l->min_pid != l->max_pid)
4076 len += sprintf(buf + len, " pid=%ld-%ld",
4077 l->min_pid, l->max_pid);
4078 else
4079 len += sprintf(buf + len, " pid=%ld",
4080 l->min_pid);
4081
4082 if (num_online_cpus() > 1 &&
4083 !cpumask_empty(to_cpumask(l->cpus)) &&
4084 len < PAGE_SIZE - 60) {
4085 len += sprintf(buf + len, " cpus=");
4086 len += cpulist_scnprintf(buf + len,
4087 PAGE_SIZE - len - 50,
4088 to_cpumask(l->cpus));
4089 }
4090
4091 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4092 len < PAGE_SIZE - 60) {
4093 len += sprintf(buf + len, " nodes=");
4094 len += nodelist_scnprintf(buf + len,
4095 PAGE_SIZE - len - 50,
4096 l->nodes);
4097 }
4098
4099 len += sprintf(buf + len, "\n");
4100 }
4101
4102 free_loc_track(&t);
4103 kfree(map);
4104 if (!t.count)
4105 len += sprintf(buf, "No data\n");
4106 return len;
4107 }
4108 #endif
4109
4110 #ifdef SLUB_RESILIENCY_TEST
4111 static void __init resiliency_test(void)
4112 {
4113 u8 *p;
4114
4115 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4116
4117 pr_err("SLUB resiliency testing\n");
4118 pr_err("-----------------------\n");
4119 pr_err("A. Corruption after allocation\n");
4120
4121 p = kzalloc(16, GFP_KERNEL);
4122 p[16] = 0x12;
4123 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4124 p + 16);
4125
4126 validate_slab_cache(kmalloc_caches[4]);
4127
4128 /* Hmmm... The next two are dangerous */
4129 p = kzalloc(32, GFP_KERNEL);
4130 p[32 + sizeof(void *)] = 0x34;
4131 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4132 p);
4133 pr_err("If allocated object is overwritten then not detectable\n\n");
4134
4135 validate_slab_cache(kmalloc_caches[5]);
4136 p = kzalloc(64, GFP_KERNEL);
4137 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4138 *p = 0x56;
4139 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4140 p);
4141 pr_err("If allocated object is overwritten then not detectable\n\n");
4142 validate_slab_cache(kmalloc_caches[6]);
4143
4144 pr_err("\nB. Corruption after free\n");
4145 p = kzalloc(128, GFP_KERNEL);
4146 kfree(p);
4147 *p = 0x78;
4148 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4149 validate_slab_cache(kmalloc_caches[7]);
4150
4151 p = kzalloc(256, GFP_KERNEL);
4152 kfree(p);
4153 p[50] = 0x9a;
4154 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4155 validate_slab_cache(kmalloc_caches[8]);
4156
4157 p = kzalloc(512, GFP_KERNEL);
4158 kfree(p);
4159 p[512] = 0xab;
4160 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4161 validate_slab_cache(kmalloc_caches[9]);
4162 }
4163 #else
4164 #ifdef CONFIG_SYSFS
4165 static void resiliency_test(void) {};
4166 #endif
4167 #endif
4168
4169 #ifdef CONFIG_SYSFS
4170 enum slab_stat_type {
4171 SL_ALL, /* All slabs */
4172 SL_PARTIAL, /* Only partially allocated slabs */
4173 SL_CPU, /* Only slabs used for cpu caches */
4174 SL_OBJECTS, /* Determine allocated objects not slabs */
4175 SL_TOTAL /* Determine object capacity not slabs */
4176 };
4177
4178 #define SO_ALL (1 << SL_ALL)
4179 #define SO_PARTIAL (1 << SL_PARTIAL)
4180 #define SO_CPU (1 << SL_CPU)
4181 #define SO_OBJECTS (1 << SL_OBJECTS)
4182 #define SO_TOTAL (1 << SL_TOTAL)
4183
4184 static ssize_t show_slab_objects(struct kmem_cache *s,
4185 char *buf, unsigned long flags)
4186 {
4187 unsigned long total = 0;
4188 int node;
4189 int x;
4190 unsigned long *nodes;
4191
4192 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4193 if (!nodes)
4194 return -ENOMEM;
4195
4196 if (flags & SO_CPU) {
4197 int cpu;
4198
4199 for_each_possible_cpu(cpu) {
4200 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4201 cpu);
4202 int node;
4203 struct page *page;
4204
4205 page = ACCESS_ONCE(c->page);
4206 if (!page)
4207 continue;
4208
4209 node = page_to_nid(page);
4210 if (flags & SO_TOTAL)
4211 x = page->objects;
4212 else if (flags & SO_OBJECTS)
4213 x = page->inuse;
4214 else
4215 x = 1;
4216
4217 total += x;
4218 nodes[node] += x;
4219
4220 page = ACCESS_ONCE(c->partial);
4221 if (page) {
4222 node = page_to_nid(page);
4223 if (flags & SO_TOTAL)
4224 WARN_ON_ONCE(1);
4225 else if (flags & SO_OBJECTS)
4226 WARN_ON_ONCE(1);
4227 else
4228 x = page->pages;
4229 total += x;
4230 nodes[node] += x;
4231 }
4232 }
4233 }
4234
4235 get_online_mems();
4236 #ifdef CONFIG_SLUB_DEBUG
4237 if (flags & SO_ALL) {
4238 struct kmem_cache_node *n;
4239
4240 for_each_kmem_cache_node(s, node, n) {
4241
4242 if (flags & SO_TOTAL)
4243 x = atomic_long_read(&n->total_objects);
4244 else if (flags & SO_OBJECTS)
4245 x = atomic_long_read(&n->total_objects) -
4246 count_partial(n, count_free);
4247 else
4248 x = atomic_long_read(&n->nr_slabs);
4249 total += x;
4250 nodes[node] += x;
4251 }
4252
4253 } else
4254 #endif
4255 if (flags & SO_PARTIAL) {
4256 struct kmem_cache_node *n;
4257
4258 for_each_kmem_cache_node(s, node, n) {
4259 if (flags & SO_TOTAL)
4260 x = count_partial(n, count_total);
4261 else if (flags & SO_OBJECTS)
4262 x = count_partial(n, count_inuse);
4263 else
4264 x = n->nr_partial;
4265 total += x;
4266 nodes[node] += x;
4267 }
4268 }
4269 x = sprintf(buf, "%lu", total);
4270 #ifdef CONFIG_NUMA
4271 for (node = 0; node < nr_node_ids; node++)
4272 if (nodes[node])
4273 x += sprintf(buf + x, " N%d=%lu",
4274 node, nodes[node]);
4275 #endif
4276 put_online_mems();
4277 kfree(nodes);
4278 return x + sprintf(buf + x, "\n");
4279 }
4280
4281 #ifdef CONFIG_SLUB_DEBUG
4282 static int any_slab_objects(struct kmem_cache *s)
4283 {
4284 int node;
4285 struct kmem_cache_node *n;
4286
4287 for_each_kmem_cache_node(s, node, n)
4288 if (atomic_long_read(&n->total_objects))
4289 return 1;
4290
4291 return 0;
4292 }
4293 #endif
4294
4295 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4296 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4297
4298 struct slab_attribute {
4299 struct attribute attr;
4300 ssize_t (*show)(struct kmem_cache *s, char *buf);
4301 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4302 };
4303
4304 #define SLAB_ATTR_RO(_name) \
4305 static struct slab_attribute _name##_attr = \
4306 __ATTR(_name, 0400, _name##_show, NULL)
4307
4308 #define SLAB_ATTR(_name) \
4309 static struct slab_attribute _name##_attr = \
4310 __ATTR(_name, 0600, _name##_show, _name##_store)
4311
4312 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4313 {
4314 return sprintf(buf, "%d\n", s->size);
4315 }
4316 SLAB_ATTR_RO(slab_size);
4317
4318 static ssize_t align_show(struct kmem_cache *s, char *buf)
4319 {
4320 return sprintf(buf, "%d\n", s->align);
4321 }
4322 SLAB_ATTR_RO(align);
4323
4324 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4325 {
4326 return sprintf(buf, "%d\n", s->object_size);
4327 }
4328 SLAB_ATTR_RO(object_size);
4329
4330 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4331 {
4332 return sprintf(buf, "%d\n", oo_objects(s->oo));
4333 }
4334 SLAB_ATTR_RO(objs_per_slab);
4335
4336 static ssize_t order_store(struct kmem_cache *s,
4337 const char *buf, size_t length)
4338 {
4339 unsigned long order;
4340 int err;
4341
4342 err = kstrtoul(buf, 10, &order);
4343 if (err)
4344 return err;
4345
4346 if (order > slub_max_order || order < slub_min_order)
4347 return -EINVAL;
4348
4349 calculate_sizes(s, order);
4350 return length;
4351 }
4352
4353 static ssize_t order_show(struct kmem_cache *s, char *buf)
4354 {
4355 return sprintf(buf, "%d\n", oo_order(s->oo));
4356 }
4357 SLAB_ATTR(order);
4358
4359 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4360 {
4361 return sprintf(buf, "%lu\n", s->min_partial);
4362 }
4363
4364 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4365 size_t length)
4366 {
4367 unsigned long min;
4368 int err;
4369
4370 err = kstrtoul(buf, 10, &min);
4371 if (err)
4372 return err;
4373
4374 set_min_partial(s, min);
4375 return length;
4376 }
4377 SLAB_ATTR(min_partial);
4378
4379 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4380 {
4381 return sprintf(buf, "%u\n", s->cpu_partial);
4382 }
4383
4384 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4385 size_t length)
4386 {
4387 unsigned long objects;
4388 int err;
4389
4390 err = kstrtoul(buf, 10, &objects);
4391 if (err)
4392 return err;
4393 if (objects && !kmem_cache_has_cpu_partial(s))
4394 return -EINVAL;
4395
4396 s->cpu_partial = objects;
4397 flush_all(s);
4398 return length;
4399 }
4400 SLAB_ATTR(cpu_partial);
4401
4402 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4403 {
4404 if (!s->ctor)
4405 return 0;
4406 return sprintf(buf, "%pS\n", s->ctor);
4407 }
4408 SLAB_ATTR_RO(ctor);
4409
4410 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4411 {
4412 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4413 }
4414 SLAB_ATTR_RO(aliases);
4415
4416 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4417 {
4418 return show_slab_objects(s, buf, SO_PARTIAL);
4419 }
4420 SLAB_ATTR_RO(partial);
4421
4422 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4423 {
4424 return show_slab_objects(s, buf, SO_CPU);
4425 }
4426 SLAB_ATTR_RO(cpu_slabs);
4427
4428 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4429 {
4430 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4431 }
4432 SLAB_ATTR_RO(objects);
4433
4434 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4435 {
4436 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4437 }
4438 SLAB_ATTR_RO(objects_partial);
4439
4440 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4441 {
4442 int objects = 0;
4443 int pages = 0;
4444 int cpu;
4445 int len;
4446
4447 for_each_online_cpu(cpu) {
4448 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4449
4450 if (page) {
4451 pages += page->pages;
4452 objects += page->pobjects;
4453 }
4454 }
4455
4456 len = sprintf(buf, "%d(%d)", objects, pages);
4457
4458 #ifdef CONFIG_SMP
4459 for_each_online_cpu(cpu) {
4460 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4461
4462 if (page && len < PAGE_SIZE - 20)
4463 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4464 page->pobjects, page->pages);
4465 }
4466 #endif
4467 return len + sprintf(buf + len, "\n");
4468 }
4469 SLAB_ATTR_RO(slabs_cpu_partial);
4470
4471 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4472 {
4473 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4474 }
4475
4476 static ssize_t reclaim_account_store(struct kmem_cache *s,
4477 const char *buf, size_t length)
4478 {
4479 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4480 if (buf[0] == '1')
4481 s->flags |= SLAB_RECLAIM_ACCOUNT;
4482 return length;
4483 }
4484 SLAB_ATTR(reclaim_account);
4485
4486 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4487 {
4488 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4489 }
4490 SLAB_ATTR_RO(hwcache_align);
4491
4492 #ifdef CONFIG_ZONE_DMA
4493 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4494 {
4495 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4496 }
4497 SLAB_ATTR_RO(cache_dma);
4498 #endif
4499
4500 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4501 {
4502 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4503 }
4504 SLAB_ATTR_RO(destroy_by_rcu);
4505
4506 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4507 {
4508 return sprintf(buf, "%d\n", s->reserved);
4509 }
4510 SLAB_ATTR_RO(reserved);
4511
4512 #ifdef CONFIG_SLUB_DEBUG
4513 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4514 {
4515 return show_slab_objects(s, buf, SO_ALL);
4516 }
4517 SLAB_ATTR_RO(slabs);
4518
4519 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4520 {
4521 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4522 }
4523 SLAB_ATTR_RO(total_objects);
4524
4525 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4526 {
4527 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4528 }
4529
4530 static ssize_t sanity_checks_store(struct kmem_cache *s,
4531 const char *buf, size_t length)
4532 {
4533 s->flags &= ~SLAB_DEBUG_FREE;
4534 if (buf[0] == '1') {
4535 s->flags &= ~__CMPXCHG_DOUBLE;
4536 s->flags |= SLAB_DEBUG_FREE;
4537 }
4538 return length;
4539 }
4540 SLAB_ATTR(sanity_checks);
4541
4542 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4543 {
4544 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4545 }
4546
4547 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4548 size_t length)
4549 {
4550 /*
4551 * Tracing a merged cache is going to give confusing results
4552 * as well as cause other issues like converting a mergeable
4553 * cache into an umergeable one.
4554 */
4555 if (s->refcount > 1)
4556 return -EINVAL;
4557
4558 s->flags &= ~SLAB_TRACE;
4559 if (buf[0] == '1') {
4560 s->flags &= ~__CMPXCHG_DOUBLE;
4561 s->flags |= SLAB_TRACE;
4562 }
4563 return length;
4564 }
4565 SLAB_ATTR(trace);
4566
4567 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4568 {
4569 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4570 }
4571
4572 static ssize_t red_zone_store(struct kmem_cache *s,
4573 const char *buf, size_t length)
4574 {
4575 if (any_slab_objects(s))
4576 return -EBUSY;
4577
4578 s->flags &= ~SLAB_RED_ZONE;
4579 if (buf[0] == '1') {
4580 s->flags &= ~__CMPXCHG_DOUBLE;
4581 s->flags |= SLAB_RED_ZONE;
4582 }
4583 calculate_sizes(s, -1);
4584 return length;
4585 }
4586 SLAB_ATTR(red_zone);
4587
4588 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4589 {
4590 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4591 }
4592
4593 static ssize_t poison_store(struct kmem_cache *s,
4594 const char *buf, size_t length)
4595 {
4596 if (any_slab_objects(s))
4597 return -EBUSY;
4598
4599 s->flags &= ~SLAB_POISON;
4600 if (buf[0] == '1') {
4601 s->flags &= ~__CMPXCHG_DOUBLE;
4602 s->flags |= SLAB_POISON;
4603 }
4604 calculate_sizes(s, -1);
4605 return length;
4606 }
4607 SLAB_ATTR(poison);
4608
4609 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4610 {
4611 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4612 }
4613
4614 static ssize_t store_user_store(struct kmem_cache *s,
4615 const char *buf, size_t length)
4616 {
4617 if (any_slab_objects(s))
4618 return -EBUSY;
4619
4620 s->flags &= ~SLAB_STORE_USER;
4621 if (buf[0] == '1') {
4622 s->flags &= ~__CMPXCHG_DOUBLE;
4623 s->flags |= SLAB_STORE_USER;
4624 }
4625 calculate_sizes(s, -1);
4626 return length;
4627 }
4628 SLAB_ATTR(store_user);
4629
4630 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4631 {
4632 return 0;
4633 }
4634
4635 static ssize_t validate_store(struct kmem_cache *s,
4636 const char *buf, size_t length)
4637 {
4638 int ret = -EINVAL;
4639
4640 if (buf[0] == '1') {
4641 ret = validate_slab_cache(s);
4642 if (ret >= 0)
4643 ret = length;
4644 }
4645 return ret;
4646 }
4647 SLAB_ATTR(validate);
4648
4649 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4650 {
4651 if (!(s->flags & SLAB_STORE_USER))
4652 return -ENOSYS;
4653 return list_locations(s, buf, TRACK_ALLOC);
4654 }
4655 SLAB_ATTR_RO(alloc_calls);
4656
4657 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4658 {
4659 if (!(s->flags & SLAB_STORE_USER))
4660 return -ENOSYS;
4661 return list_locations(s, buf, TRACK_FREE);
4662 }
4663 SLAB_ATTR_RO(free_calls);
4664 #endif /* CONFIG_SLUB_DEBUG */
4665
4666 #ifdef CONFIG_FAILSLAB
4667 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4668 {
4669 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4670 }
4671
4672 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4673 size_t length)
4674 {
4675 if (s->refcount > 1)
4676 return -EINVAL;
4677
4678 s->flags &= ~SLAB_FAILSLAB;
4679 if (buf[0] == '1')
4680 s->flags |= SLAB_FAILSLAB;
4681 return length;
4682 }
4683 SLAB_ATTR(failslab);
4684 #endif
4685
4686 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4687 {
4688 return 0;
4689 }
4690
4691 static ssize_t shrink_store(struct kmem_cache *s,
4692 const char *buf, size_t length)
4693 {
4694 if (buf[0] == '1') {
4695 int rc = kmem_cache_shrink(s);
4696
4697 if (rc)
4698 return rc;
4699 } else
4700 return -EINVAL;
4701 return length;
4702 }
4703 SLAB_ATTR(shrink);
4704
4705 #ifdef CONFIG_NUMA
4706 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4707 {
4708 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4709 }
4710
4711 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4712 const char *buf, size_t length)
4713 {
4714 unsigned long ratio;
4715 int err;
4716
4717 err = kstrtoul(buf, 10, &ratio);
4718 if (err)
4719 return err;
4720
4721 if (ratio <= 100)
4722 s->remote_node_defrag_ratio = ratio * 10;
4723
4724 return length;
4725 }
4726 SLAB_ATTR(remote_node_defrag_ratio);
4727 #endif
4728
4729 #ifdef CONFIG_SLUB_STATS
4730 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4731 {
4732 unsigned long sum = 0;
4733 int cpu;
4734 int len;
4735 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4736
4737 if (!data)
4738 return -ENOMEM;
4739
4740 for_each_online_cpu(cpu) {
4741 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4742
4743 data[cpu] = x;
4744 sum += x;
4745 }
4746
4747 len = sprintf(buf, "%lu", sum);
4748
4749 #ifdef CONFIG_SMP
4750 for_each_online_cpu(cpu) {
4751 if (data[cpu] && len < PAGE_SIZE - 20)
4752 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4753 }
4754 #endif
4755 kfree(data);
4756 return len + sprintf(buf + len, "\n");
4757 }
4758
4759 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4760 {
4761 int cpu;
4762
4763 for_each_online_cpu(cpu)
4764 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4765 }
4766
4767 #define STAT_ATTR(si, text) \
4768 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4769 { \
4770 return show_stat(s, buf, si); \
4771 } \
4772 static ssize_t text##_store(struct kmem_cache *s, \
4773 const char *buf, size_t length) \
4774 { \
4775 if (buf[0] != '0') \
4776 return -EINVAL; \
4777 clear_stat(s, si); \
4778 return length; \
4779 } \
4780 SLAB_ATTR(text); \
4781
4782 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4783 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4784 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4785 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4786 STAT_ATTR(FREE_FROZEN, free_frozen);
4787 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4788 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4789 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4790 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4791 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4792 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4793 STAT_ATTR(FREE_SLAB, free_slab);
4794 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4795 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4796 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4797 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4798 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4799 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4800 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4801 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4802 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4803 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4804 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4805 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4806 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4807 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4808 #endif
4809
4810 static struct attribute *slab_attrs[] = {
4811 &slab_size_attr.attr,
4812 &object_size_attr.attr,
4813 &objs_per_slab_attr.attr,
4814 &order_attr.attr,
4815 &min_partial_attr.attr,
4816 &cpu_partial_attr.attr,
4817 &objects_attr.attr,
4818 &objects_partial_attr.attr,
4819 &partial_attr.attr,
4820 &cpu_slabs_attr.attr,
4821 &ctor_attr.attr,
4822 &aliases_attr.attr,
4823 &align_attr.attr,
4824 &hwcache_align_attr.attr,
4825 &reclaim_account_attr.attr,
4826 &destroy_by_rcu_attr.attr,
4827 &shrink_attr.attr,
4828 &reserved_attr.attr,
4829 &slabs_cpu_partial_attr.attr,
4830 #ifdef CONFIG_SLUB_DEBUG
4831 &total_objects_attr.attr,
4832 &slabs_attr.attr,
4833 &sanity_checks_attr.attr,
4834 &trace_attr.attr,
4835 &red_zone_attr.attr,
4836 &poison_attr.attr,
4837 &store_user_attr.attr,
4838 &validate_attr.attr,
4839 &alloc_calls_attr.attr,
4840 &free_calls_attr.attr,
4841 #endif
4842 #ifdef CONFIG_ZONE_DMA
4843 &cache_dma_attr.attr,
4844 #endif
4845 #ifdef CONFIG_NUMA
4846 &remote_node_defrag_ratio_attr.attr,
4847 #endif
4848 #ifdef CONFIG_SLUB_STATS
4849 &alloc_fastpath_attr.attr,
4850 &alloc_slowpath_attr.attr,
4851 &free_fastpath_attr.attr,
4852 &free_slowpath_attr.attr,
4853 &free_frozen_attr.attr,
4854 &free_add_partial_attr.attr,
4855 &free_remove_partial_attr.attr,
4856 &alloc_from_partial_attr.attr,
4857 &alloc_slab_attr.attr,
4858 &alloc_refill_attr.attr,
4859 &alloc_node_mismatch_attr.attr,
4860 &free_slab_attr.attr,
4861 &cpuslab_flush_attr.attr,
4862 &deactivate_full_attr.attr,
4863 &deactivate_empty_attr.attr,
4864 &deactivate_to_head_attr.attr,
4865 &deactivate_to_tail_attr.attr,
4866 &deactivate_remote_frees_attr.attr,
4867 &deactivate_bypass_attr.attr,
4868 &order_fallback_attr.attr,
4869 &cmpxchg_double_fail_attr.attr,
4870 &cmpxchg_double_cpu_fail_attr.attr,
4871 &cpu_partial_alloc_attr.attr,
4872 &cpu_partial_free_attr.attr,
4873 &cpu_partial_node_attr.attr,
4874 &cpu_partial_drain_attr.attr,
4875 #endif
4876 #ifdef CONFIG_FAILSLAB
4877 &failslab_attr.attr,
4878 #endif
4879
4880 NULL
4881 };
4882
4883 static struct attribute_group slab_attr_group = {
4884 .attrs = slab_attrs,
4885 };
4886
4887 static ssize_t slab_attr_show(struct kobject *kobj,
4888 struct attribute *attr,
4889 char *buf)
4890 {
4891 struct slab_attribute *attribute;
4892 struct kmem_cache *s;
4893 int err;
4894
4895 attribute = to_slab_attr(attr);
4896 s = to_slab(kobj);
4897
4898 if (!attribute->show)
4899 return -EIO;
4900
4901 err = attribute->show(s, buf);
4902
4903 return err;
4904 }
4905
4906 static ssize_t slab_attr_store(struct kobject *kobj,
4907 struct attribute *attr,
4908 const char *buf, size_t len)
4909 {
4910 struct slab_attribute *attribute;
4911 struct kmem_cache *s;
4912 int err;
4913
4914 attribute = to_slab_attr(attr);
4915 s = to_slab(kobj);
4916
4917 if (!attribute->store)
4918 return -EIO;
4919
4920 err = attribute->store(s, buf, len);
4921 #ifdef CONFIG_MEMCG_KMEM
4922 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
4923 int i;
4924
4925 mutex_lock(&slab_mutex);
4926 if (s->max_attr_size < len)
4927 s->max_attr_size = len;
4928
4929 /*
4930 * This is a best effort propagation, so this function's return
4931 * value will be determined by the parent cache only. This is
4932 * basically because not all attributes will have a well
4933 * defined semantics for rollbacks - most of the actions will
4934 * have permanent effects.
4935 *
4936 * Returning the error value of any of the children that fail
4937 * is not 100 % defined, in the sense that users seeing the
4938 * error code won't be able to know anything about the state of
4939 * the cache.
4940 *
4941 * Only returning the error code for the parent cache at least
4942 * has well defined semantics. The cache being written to
4943 * directly either failed or succeeded, in which case we loop
4944 * through the descendants with best-effort propagation.
4945 */
4946 for_each_memcg_cache_index(i) {
4947 struct kmem_cache *c = cache_from_memcg_idx(s, i);
4948 if (c)
4949 attribute->store(c, buf, len);
4950 }
4951 mutex_unlock(&slab_mutex);
4952 }
4953 #endif
4954 return err;
4955 }
4956
4957 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
4958 {
4959 #ifdef CONFIG_MEMCG_KMEM
4960 int i;
4961 char *buffer = NULL;
4962 struct kmem_cache *root_cache;
4963
4964 if (is_root_cache(s))
4965 return;
4966
4967 root_cache = s->memcg_params->root_cache;
4968
4969 /*
4970 * This mean this cache had no attribute written. Therefore, no point
4971 * in copying default values around
4972 */
4973 if (!root_cache->max_attr_size)
4974 return;
4975
4976 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
4977 char mbuf[64];
4978 char *buf;
4979 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
4980
4981 if (!attr || !attr->store || !attr->show)
4982 continue;
4983
4984 /*
4985 * It is really bad that we have to allocate here, so we will
4986 * do it only as a fallback. If we actually allocate, though,
4987 * we can just use the allocated buffer until the end.
4988 *
4989 * Most of the slub attributes will tend to be very small in
4990 * size, but sysfs allows buffers up to a page, so they can
4991 * theoretically happen.
4992 */
4993 if (buffer)
4994 buf = buffer;
4995 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
4996 buf = mbuf;
4997 else {
4998 buffer = (char *) get_zeroed_page(GFP_KERNEL);
4999 if (WARN_ON(!buffer))
5000 continue;
5001 buf = buffer;
5002 }
5003
5004 attr->show(root_cache, buf);
5005 attr->store(s, buf, strlen(buf));
5006 }
5007
5008 if (buffer)
5009 free_page((unsigned long)buffer);
5010 #endif
5011 }
5012
5013 static void kmem_cache_release(struct kobject *k)
5014 {
5015 slab_kmem_cache_release(to_slab(k));
5016 }
5017
5018 static const struct sysfs_ops slab_sysfs_ops = {
5019 .show = slab_attr_show,
5020 .store = slab_attr_store,
5021 };
5022
5023 static struct kobj_type slab_ktype = {
5024 .sysfs_ops = &slab_sysfs_ops,
5025 .release = kmem_cache_release,
5026 };
5027
5028 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5029 {
5030 struct kobj_type *ktype = get_ktype(kobj);
5031
5032 if (ktype == &slab_ktype)
5033 return 1;
5034 return 0;
5035 }
5036
5037 static const struct kset_uevent_ops slab_uevent_ops = {
5038 .filter = uevent_filter,
5039 };
5040
5041 static struct kset *slab_kset;
5042
5043 static inline struct kset *cache_kset(struct kmem_cache *s)
5044 {
5045 #ifdef CONFIG_MEMCG_KMEM
5046 if (!is_root_cache(s))
5047 return s->memcg_params->root_cache->memcg_kset;
5048 #endif
5049 return slab_kset;
5050 }
5051
5052 #define ID_STR_LENGTH 64
5053
5054 /* Create a unique string id for a slab cache:
5055 *
5056 * Format :[flags-]size
5057 */
5058 static char *create_unique_id(struct kmem_cache *s)
5059 {
5060 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5061 char *p = name;
5062
5063 BUG_ON(!name);
5064
5065 *p++ = ':';
5066 /*
5067 * First flags affecting slabcache operations. We will only
5068 * get here for aliasable slabs so we do not need to support
5069 * too many flags. The flags here must cover all flags that
5070 * are matched during merging to guarantee that the id is
5071 * unique.
5072 */
5073 if (s->flags & SLAB_CACHE_DMA)
5074 *p++ = 'd';
5075 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5076 *p++ = 'a';
5077 if (s->flags & SLAB_DEBUG_FREE)
5078 *p++ = 'F';
5079 if (!(s->flags & SLAB_NOTRACK))
5080 *p++ = 't';
5081 if (p != name + 1)
5082 *p++ = '-';
5083 p += sprintf(p, "%07d", s->size);
5084
5085 BUG_ON(p > name + ID_STR_LENGTH - 1);
5086 return name;
5087 }
5088
5089 static int sysfs_slab_add(struct kmem_cache *s)
5090 {
5091 int err;
5092 const char *name;
5093 int unmergeable = slab_unmergeable(s);
5094
5095 if (unmergeable) {
5096 /*
5097 * Slabcache can never be merged so we can use the name proper.
5098 * This is typically the case for debug situations. In that
5099 * case we can catch duplicate names easily.
5100 */
5101 sysfs_remove_link(&slab_kset->kobj, s->name);
5102 name = s->name;
5103 } else {
5104 /*
5105 * Create a unique name for the slab as a target
5106 * for the symlinks.
5107 */
5108 name = create_unique_id(s);
5109 }
5110
5111 s->kobj.kset = cache_kset(s);
5112 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5113 if (err)
5114 goto out_put_kobj;
5115
5116 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5117 if (err)
5118 goto out_del_kobj;
5119
5120 #ifdef CONFIG_MEMCG_KMEM
5121 if (is_root_cache(s)) {
5122 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5123 if (!s->memcg_kset) {
5124 err = -ENOMEM;
5125 goto out_del_kobj;
5126 }
5127 }
5128 #endif
5129
5130 kobject_uevent(&s->kobj, KOBJ_ADD);
5131 if (!unmergeable) {
5132 /* Setup first alias */
5133 sysfs_slab_alias(s, s->name);
5134 }
5135 out:
5136 if (!unmergeable)
5137 kfree(name);
5138 return err;
5139 out_del_kobj:
5140 kobject_del(&s->kobj);
5141 out_put_kobj:
5142 kobject_put(&s->kobj);
5143 goto out;
5144 }
5145
5146 void sysfs_slab_remove(struct kmem_cache *s)
5147 {
5148 if (slab_state < FULL)
5149 /*
5150 * Sysfs has not been setup yet so no need to remove the
5151 * cache from sysfs.
5152 */
5153 return;
5154
5155 #ifdef CONFIG_MEMCG_KMEM
5156 kset_unregister(s->memcg_kset);
5157 #endif
5158 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5159 kobject_del(&s->kobj);
5160 kobject_put(&s->kobj);
5161 }
5162
5163 /*
5164 * Need to buffer aliases during bootup until sysfs becomes
5165 * available lest we lose that information.
5166 */
5167 struct saved_alias {
5168 struct kmem_cache *s;
5169 const char *name;
5170 struct saved_alias *next;
5171 };
5172
5173 static struct saved_alias *alias_list;
5174
5175 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5176 {
5177 struct saved_alias *al;
5178
5179 if (slab_state == FULL) {
5180 /*
5181 * If we have a leftover link then remove it.
5182 */
5183 sysfs_remove_link(&slab_kset->kobj, name);
5184 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5185 }
5186
5187 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5188 if (!al)
5189 return -ENOMEM;
5190
5191 al->s = s;
5192 al->name = name;
5193 al->next = alias_list;
5194 alias_list = al;
5195 return 0;
5196 }
5197
5198 static int __init slab_sysfs_init(void)
5199 {
5200 struct kmem_cache *s;
5201 int err;
5202
5203 mutex_lock(&slab_mutex);
5204
5205 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5206 if (!slab_kset) {
5207 mutex_unlock(&slab_mutex);
5208 pr_err("Cannot register slab subsystem.\n");
5209 return -ENOSYS;
5210 }
5211
5212 slab_state = FULL;
5213
5214 list_for_each_entry(s, &slab_caches, list) {
5215 err = sysfs_slab_add(s);
5216 if (err)
5217 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5218 s->name);
5219 }
5220
5221 while (alias_list) {
5222 struct saved_alias *al = alias_list;
5223
5224 alias_list = alias_list->next;
5225 err = sysfs_slab_alias(al->s, al->name);
5226 if (err)
5227 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5228 al->name);
5229 kfree(al);
5230 }
5231
5232 mutex_unlock(&slab_mutex);
5233 resiliency_test();
5234 return 0;
5235 }
5236
5237 __initcall(slab_sysfs_init);
5238 #endif /* CONFIG_SYSFS */
5239
5240 /*
5241 * The /proc/slabinfo ABI
5242 */
5243 #ifdef CONFIG_SLABINFO
5244 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5245 {
5246 unsigned long nr_slabs = 0;
5247 unsigned long nr_objs = 0;
5248 unsigned long nr_free = 0;
5249 int node;
5250 struct kmem_cache_node *n;
5251
5252 for_each_kmem_cache_node(s, node, n) {
5253 nr_slabs += node_nr_slabs(n);
5254 nr_objs += node_nr_objs(n);
5255 nr_free += count_partial(n, count_free);
5256 }
5257
5258 sinfo->active_objs = nr_objs - nr_free;
5259 sinfo->num_objs = nr_objs;
5260 sinfo->active_slabs = nr_slabs;
5261 sinfo->num_slabs = nr_slabs;
5262 sinfo->objects_per_slab = oo_objects(s->oo);
5263 sinfo->cache_order = oo_order(s->oo);
5264 }
5265
5266 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5267 {
5268 }
5269
5270 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5271 size_t count, loff_t *ppos)
5272 {
5273 return -EIO;
5274 }
5275 #endif /* CONFIG_SLABINFO */