]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
87 * freed then the slab will show up again on the partial lists.
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
109 * freelist that allows lockless access to
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
115 * the fast path and disables lockless freelists.
116 */
117
118 static inline int kmem_cache_debug(struct kmem_cache *s)
119 {
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122 #else
123 return 0;
124 #endif
125 }
126
127 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
128 {
129 #ifdef CONFIG_SLUB_CPU_PARTIAL
130 return !kmem_cache_debug(s);
131 #else
132 return false;
133 #endif
134 }
135
136 /*
137 * Issues still to be resolved:
138 *
139 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
140 *
141 * - Variable sizing of the per node arrays
142 */
143
144 /* Enable to test recovery from slab corruption on boot */
145 #undef SLUB_RESILIENCY_TEST
146
147 /* Enable to log cmpxchg failures */
148 #undef SLUB_DEBUG_CMPXCHG
149
150 /*
151 * Mininum number of partial slabs. These will be left on the partial
152 * lists even if they are empty. kmem_cache_shrink may reclaim them.
153 */
154 #define MIN_PARTIAL 5
155
156 /*
157 * Maximum number of desirable partial slabs.
158 * The existence of more partial slabs makes kmem_cache_shrink
159 * sort the partial list by the number of objects in use.
160 */
161 #define MAX_PARTIAL 10
162
163 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
164 SLAB_POISON | SLAB_STORE_USER)
165
166 /*
167 * Debugging flags that require metadata to be stored in the slab. These get
168 * disabled when slub_debug=O is used and a cache's min order increases with
169 * metadata.
170 */
171 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
172
173 #define OO_SHIFT 16
174 #define OO_MASK ((1 << OO_SHIFT) - 1)
175 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
176
177 /* Internal SLUB flags */
178 #define __OBJECT_POISON 0x80000000UL /* Poison object */
179 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
180
181 #ifdef CONFIG_SMP
182 static struct notifier_block slab_notifier;
183 #endif
184
185 /*
186 * Tracking user of a slab.
187 */
188 #define TRACK_ADDRS_COUNT 16
189 struct track {
190 unsigned long addr; /* Called from address */
191 #ifdef CONFIG_STACKTRACE
192 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
193 #endif
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
197 };
198
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
200
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
205 #else
206 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
207 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
208 { return 0; }
209 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
210 #endif
211
212 static inline void stat(const struct kmem_cache *s, enum stat_item si)
213 {
214 #ifdef CONFIG_SLUB_STATS
215 /*
216 * The rmw is racy on a preemptible kernel but this is acceptable, so
217 * avoid this_cpu_add()'s irq-disable overhead.
218 */
219 raw_cpu_inc(s->cpu_slab->stat[si]);
220 #endif
221 }
222
223 /********************************************************************
224 * Core slab cache functions
225 *******************************************************************/
226
227 /* Verify that a pointer has an address that is valid within a slab page */
228 static inline int check_valid_pointer(struct kmem_cache *s,
229 struct page *page, const void *object)
230 {
231 void *base;
232
233 if (!object)
234 return 1;
235
236 base = page_address(page);
237 if (object < base || object >= base + page->objects * s->size ||
238 (object - base) % s->size) {
239 return 0;
240 }
241
242 return 1;
243 }
244
245 static inline void *get_freepointer(struct kmem_cache *s, void *object)
246 {
247 return *(void **)(object + s->offset);
248 }
249
250 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
251 {
252 prefetch(object + s->offset);
253 }
254
255 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
256 {
257 void *p;
258
259 #ifdef CONFIG_DEBUG_PAGEALLOC
260 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
261 #else
262 p = get_freepointer(s, object);
263 #endif
264 return p;
265 }
266
267 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
268 {
269 *(void **)(object + s->offset) = fp;
270 }
271
272 /* Loop over all objects in a slab */
273 #define for_each_object(__p, __s, __addr, __objects) \
274 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
275 __p += (__s)->size)
276
277 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
278 for (__p = (__addr), __idx = 1; __idx <= __objects;\
279 __p += (__s)->size, __idx++)
280
281 /* Determine object index from a given position */
282 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
283 {
284 return (p - addr) / s->size;
285 }
286
287 static inline size_t slab_ksize(const struct kmem_cache *s)
288 {
289 #ifdef CONFIG_SLUB_DEBUG
290 /*
291 * Debugging requires use of the padding between object
292 * and whatever may come after it.
293 */
294 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
295 return s->object_size;
296
297 #endif
298 /*
299 * If we have the need to store the freelist pointer
300 * back there or track user information then we can
301 * only use the space before that information.
302 */
303 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
304 return s->inuse;
305 /*
306 * Else we can use all the padding etc for the allocation
307 */
308 return s->size;
309 }
310
311 static inline int order_objects(int order, unsigned long size, int reserved)
312 {
313 return ((PAGE_SIZE << order) - reserved) / size;
314 }
315
316 static inline struct kmem_cache_order_objects oo_make(int order,
317 unsigned long size, int reserved)
318 {
319 struct kmem_cache_order_objects x = {
320 (order << OO_SHIFT) + order_objects(order, size, reserved)
321 };
322
323 return x;
324 }
325
326 static inline int oo_order(struct kmem_cache_order_objects x)
327 {
328 return x.x >> OO_SHIFT;
329 }
330
331 static inline int oo_objects(struct kmem_cache_order_objects x)
332 {
333 return x.x & OO_MASK;
334 }
335
336 /*
337 * Per slab locking using the pagelock
338 */
339 static __always_inline void slab_lock(struct page *page)
340 {
341 VM_BUG_ON_PAGE(PageTail(page), page);
342 bit_spin_lock(PG_locked, &page->flags);
343 }
344
345 static __always_inline void slab_unlock(struct page *page)
346 {
347 VM_BUG_ON_PAGE(PageTail(page), page);
348 __bit_spin_unlock(PG_locked, &page->flags);
349 }
350
351 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
352 {
353 struct page tmp;
354 tmp.counters = counters_new;
355 /*
356 * page->counters can cover frozen/inuse/objects as well
357 * as page->_count. If we assign to ->counters directly
358 * we run the risk of losing updates to page->_count, so
359 * be careful and only assign to the fields we need.
360 */
361 page->frozen = tmp.frozen;
362 page->inuse = tmp.inuse;
363 page->objects = tmp.objects;
364 }
365
366 /* Interrupts must be disabled (for the fallback code to work right) */
367 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
368 void *freelist_old, unsigned long counters_old,
369 void *freelist_new, unsigned long counters_new,
370 const char *n)
371 {
372 VM_BUG_ON(!irqs_disabled());
373 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
374 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
375 if (s->flags & __CMPXCHG_DOUBLE) {
376 if (cmpxchg_double(&page->freelist, &page->counters,
377 freelist_old, counters_old,
378 freelist_new, counters_new))
379 return true;
380 } else
381 #endif
382 {
383 slab_lock(page);
384 if (page->freelist == freelist_old &&
385 page->counters == counters_old) {
386 page->freelist = freelist_new;
387 set_page_slub_counters(page, counters_new);
388 slab_unlock(page);
389 return true;
390 }
391 slab_unlock(page);
392 }
393
394 cpu_relax();
395 stat(s, CMPXCHG_DOUBLE_FAIL);
396
397 #ifdef SLUB_DEBUG_CMPXCHG
398 pr_info("%s %s: cmpxchg double redo ", n, s->name);
399 #endif
400
401 return false;
402 }
403
404 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
405 void *freelist_old, unsigned long counters_old,
406 void *freelist_new, unsigned long counters_new,
407 const char *n)
408 {
409 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
410 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
411 if (s->flags & __CMPXCHG_DOUBLE) {
412 if (cmpxchg_double(&page->freelist, &page->counters,
413 freelist_old, counters_old,
414 freelist_new, counters_new))
415 return true;
416 } else
417 #endif
418 {
419 unsigned long flags;
420
421 local_irq_save(flags);
422 slab_lock(page);
423 if (page->freelist == freelist_old &&
424 page->counters == counters_old) {
425 page->freelist = freelist_new;
426 set_page_slub_counters(page, counters_new);
427 slab_unlock(page);
428 local_irq_restore(flags);
429 return true;
430 }
431 slab_unlock(page);
432 local_irq_restore(flags);
433 }
434
435 cpu_relax();
436 stat(s, CMPXCHG_DOUBLE_FAIL);
437
438 #ifdef SLUB_DEBUG_CMPXCHG
439 pr_info("%s %s: cmpxchg double redo ", n, s->name);
440 #endif
441
442 return false;
443 }
444
445 #ifdef CONFIG_SLUB_DEBUG
446 /*
447 * Determine a map of object in use on a page.
448 *
449 * Node listlock must be held to guarantee that the page does
450 * not vanish from under us.
451 */
452 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
453 {
454 void *p;
455 void *addr = page_address(page);
456
457 for (p = page->freelist; p; p = get_freepointer(s, p))
458 set_bit(slab_index(p, s, addr), map);
459 }
460
461 /*
462 * Debug settings:
463 */
464 #if defined(CONFIG_SLUB_DEBUG_ON)
465 static int slub_debug = DEBUG_DEFAULT_FLAGS;
466 #elif defined(CONFIG_KASAN)
467 static int slub_debug = SLAB_STORE_USER;
468 #else
469 static int slub_debug;
470 #endif
471
472 static char *slub_debug_slabs;
473 static int disable_higher_order_debug;
474
475 /*
476 * slub is about to manipulate internal object metadata. This memory lies
477 * outside the range of the allocated object, so accessing it would normally
478 * be reported by kasan as a bounds error. metadata_access_enable() is used
479 * to tell kasan that these accesses are OK.
480 */
481 static inline void metadata_access_enable(void)
482 {
483 kasan_disable_current();
484 }
485
486 static inline void metadata_access_disable(void)
487 {
488 kasan_enable_current();
489 }
490
491 /*
492 * Object debugging
493 */
494 static void print_section(char *text, u8 *addr, unsigned int length)
495 {
496 metadata_access_enable();
497 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
498 length, 1);
499 metadata_access_disable();
500 }
501
502 static struct track *get_track(struct kmem_cache *s, void *object,
503 enum track_item alloc)
504 {
505 struct track *p;
506
507 if (s->offset)
508 p = object + s->offset + sizeof(void *);
509 else
510 p = object + s->inuse;
511
512 return p + alloc;
513 }
514
515 static void set_track(struct kmem_cache *s, void *object,
516 enum track_item alloc, unsigned long addr)
517 {
518 struct track *p = get_track(s, object, alloc);
519
520 if (addr) {
521 #ifdef CONFIG_STACKTRACE
522 struct stack_trace trace;
523 int i;
524
525 trace.nr_entries = 0;
526 trace.max_entries = TRACK_ADDRS_COUNT;
527 trace.entries = p->addrs;
528 trace.skip = 3;
529 metadata_access_enable();
530 save_stack_trace(&trace);
531 metadata_access_disable();
532
533 /* See rant in lockdep.c */
534 if (trace.nr_entries != 0 &&
535 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
536 trace.nr_entries--;
537
538 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
539 p->addrs[i] = 0;
540 #endif
541 p->addr = addr;
542 p->cpu = smp_processor_id();
543 p->pid = current->pid;
544 p->when = jiffies;
545 } else
546 memset(p, 0, sizeof(struct track));
547 }
548
549 static void init_tracking(struct kmem_cache *s, void *object)
550 {
551 if (!(s->flags & SLAB_STORE_USER))
552 return;
553
554 set_track(s, object, TRACK_FREE, 0UL);
555 set_track(s, object, TRACK_ALLOC, 0UL);
556 }
557
558 static void print_track(const char *s, struct track *t)
559 {
560 if (!t->addr)
561 return;
562
563 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
564 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
565 #ifdef CONFIG_STACKTRACE
566 {
567 int i;
568 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
569 if (t->addrs[i])
570 pr_err("\t%pS\n", (void *)t->addrs[i]);
571 else
572 break;
573 }
574 #endif
575 }
576
577 static void print_tracking(struct kmem_cache *s, void *object)
578 {
579 if (!(s->flags & SLAB_STORE_USER))
580 return;
581
582 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
583 print_track("Freed", get_track(s, object, TRACK_FREE));
584 }
585
586 static void print_page_info(struct page *page)
587 {
588 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
589 page, page->objects, page->inuse, page->freelist, page->flags);
590
591 }
592
593 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
594 {
595 struct va_format vaf;
596 va_list args;
597
598 va_start(args, fmt);
599 vaf.fmt = fmt;
600 vaf.va = &args;
601 pr_err("=============================================================================\n");
602 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
603 pr_err("-----------------------------------------------------------------------------\n\n");
604
605 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
606 va_end(args);
607 }
608
609 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
610 {
611 struct va_format vaf;
612 va_list args;
613
614 va_start(args, fmt);
615 vaf.fmt = fmt;
616 vaf.va = &args;
617 pr_err("FIX %s: %pV\n", s->name, &vaf);
618 va_end(args);
619 }
620
621 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
622 {
623 unsigned int off; /* Offset of last byte */
624 u8 *addr = page_address(page);
625
626 print_tracking(s, p);
627
628 print_page_info(page);
629
630 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
631 p, p - addr, get_freepointer(s, p));
632
633 if (p > addr + 16)
634 print_section("Bytes b4 ", p - 16, 16);
635
636 print_section("Object ", p, min_t(unsigned long, s->object_size,
637 PAGE_SIZE));
638 if (s->flags & SLAB_RED_ZONE)
639 print_section("Redzone ", p + s->object_size,
640 s->inuse - s->object_size);
641
642 if (s->offset)
643 off = s->offset + sizeof(void *);
644 else
645 off = s->inuse;
646
647 if (s->flags & SLAB_STORE_USER)
648 off += 2 * sizeof(struct track);
649
650 if (off != s->size)
651 /* Beginning of the filler is the free pointer */
652 print_section("Padding ", p + off, s->size - off);
653
654 dump_stack();
655 }
656
657 void object_err(struct kmem_cache *s, struct page *page,
658 u8 *object, char *reason)
659 {
660 slab_bug(s, "%s", reason);
661 print_trailer(s, page, object);
662 }
663
664 static void slab_err(struct kmem_cache *s, struct page *page,
665 const char *fmt, ...)
666 {
667 va_list args;
668 char buf[100];
669
670 va_start(args, fmt);
671 vsnprintf(buf, sizeof(buf), fmt, args);
672 va_end(args);
673 slab_bug(s, "%s", buf);
674 print_page_info(page);
675 dump_stack();
676 }
677
678 static void init_object(struct kmem_cache *s, void *object, u8 val)
679 {
680 u8 *p = object;
681
682 if (s->flags & __OBJECT_POISON) {
683 memset(p, POISON_FREE, s->object_size - 1);
684 p[s->object_size - 1] = POISON_END;
685 }
686
687 if (s->flags & SLAB_RED_ZONE)
688 memset(p + s->object_size, val, s->inuse - s->object_size);
689 }
690
691 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
692 void *from, void *to)
693 {
694 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
695 memset(from, data, to - from);
696 }
697
698 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
699 u8 *object, char *what,
700 u8 *start, unsigned int value, unsigned int bytes)
701 {
702 u8 *fault;
703 u8 *end;
704
705 metadata_access_enable();
706 fault = memchr_inv(start, value, bytes);
707 metadata_access_disable();
708 if (!fault)
709 return 1;
710
711 end = start + bytes;
712 while (end > fault && end[-1] == value)
713 end--;
714
715 slab_bug(s, "%s overwritten", what);
716 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
717 fault, end - 1, fault[0], value);
718 print_trailer(s, page, object);
719
720 restore_bytes(s, what, value, fault, end);
721 return 0;
722 }
723
724 /*
725 * Object layout:
726 *
727 * object address
728 * Bytes of the object to be managed.
729 * If the freepointer may overlay the object then the free
730 * pointer is the first word of the object.
731 *
732 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
733 * 0xa5 (POISON_END)
734 *
735 * object + s->object_size
736 * Padding to reach word boundary. This is also used for Redzoning.
737 * Padding is extended by another word if Redzoning is enabled and
738 * object_size == inuse.
739 *
740 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
741 * 0xcc (RED_ACTIVE) for objects in use.
742 *
743 * object + s->inuse
744 * Meta data starts here.
745 *
746 * A. Free pointer (if we cannot overwrite object on free)
747 * B. Tracking data for SLAB_STORE_USER
748 * C. Padding to reach required alignment boundary or at mininum
749 * one word if debugging is on to be able to detect writes
750 * before the word boundary.
751 *
752 * Padding is done using 0x5a (POISON_INUSE)
753 *
754 * object + s->size
755 * Nothing is used beyond s->size.
756 *
757 * If slabcaches are merged then the object_size and inuse boundaries are mostly
758 * ignored. And therefore no slab options that rely on these boundaries
759 * may be used with merged slabcaches.
760 */
761
762 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
763 {
764 unsigned long off = s->inuse; /* The end of info */
765
766 if (s->offset)
767 /* Freepointer is placed after the object. */
768 off += sizeof(void *);
769
770 if (s->flags & SLAB_STORE_USER)
771 /* We also have user information there */
772 off += 2 * sizeof(struct track);
773
774 if (s->size == off)
775 return 1;
776
777 return check_bytes_and_report(s, page, p, "Object padding",
778 p + off, POISON_INUSE, s->size - off);
779 }
780
781 /* Check the pad bytes at the end of a slab page */
782 static int slab_pad_check(struct kmem_cache *s, struct page *page)
783 {
784 u8 *start;
785 u8 *fault;
786 u8 *end;
787 int length;
788 int remainder;
789
790 if (!(s->flags & SLAB_POISON))
791 return 1;
792
793 start = page_address(page);
794 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
795 end = start + length;
796 remainder = length % s->size;
797 if (!remainder)
798 return 1;
799
800 metadata_access_enable();
801 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
802 metadata_access_disable();
803 if (!fault)
804 return 1;
805 while (end > fault && end[-1] == POISON_INUSE)
806 end--;
807
808 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
809 print_section("Padding ", end - remainder, remainder);
810
811 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
812 return 0;
813 }
814
815 static int check_object(struct kmem_cache *s, struct page *page,
816 void *object, u8 val)
817 {
818 u8 *p = object;
819 u8 *endobject = object + s->object_size;
820
821 if (s->flags & SLAB_RED_ZONE) {
822 if (!check_bytes_and_report(s, page, object, "Redzone",
823 endobject, val, s->inuse - s->object_size))
824 return 0;
825 } else {
826 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
827 check_bytes_and_report(s, page, p, "Alignment padding",
828 endobject, POISON_INUSE,
829 s->inuse - s->object_size);
830 }
831 }
832
833 if (s->flags & SLAB_POISON) {
834 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
835 (!check_bytes_and_report(s, page, p, "Poison", p,
836 POISON_FREE, s->object_size - 1) ||
837 !check_bytes_and_report(s, page, p, "Poison",
838 p + s->object_size - 1, POISON_END, 1)))
839 return 0;
840 /*
841 * check_pad_bytes cleans up on its own.
842 */
843 check_pad_bytes(s, page, p);
844 }
845
846 if (!s->offset && val == SLUB_RED_ACTIVE)
847 /*
848 * Object and freepointer overlap. Cannot check
849 * freepointer while object is allocated.
850 */
851 return 1;
852
853 /* Check free pointer validity */
854 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
855 object_err(s, page, p, "Freepointer corrupt");
856 /*
857 * No choice but to zap it and thus lose the remainder
858 * of the free objects in this slab. May cause
859 * another error because the object count is now wrong.
860 */
861 set_freepointer(s, p, NULL);
862 return 0;
863 }
864 return 1;
865 }
866
867 static int check_slab(struct kmem_cache *s, struct page *page)
868 {
869 int maxobj;
870
871 VM_BUG_ON(!irqs_disabled());
872
873 if (!PageSlab(page)) {
874 slab_err(s, page, "Not a valid slab page");
875 return 0;
876 }
877
878 maxobj = order_objects(compound_order(page), s->size, s->reserved);
879 if (page->objects > maxobj) {
880 slab_err(s, page, "objects %u > max %u",
881 page->objects, maxobj);
882 return 0;
883 }
884 if (page->inuse > page->objects) {
885 slab_err(s, page, "inuse %u > max %u",
886 page->inuse, page->objects);
887 return 0;
888 }
889 /* Slab_pad_check fixes things up after itself */
890 slab_pad_check(s, page);
891 return 1;
892 }
893
894 /*
895 * Determine if a certain object on a page is on the freelist. Must hold the
896 * slab lock to guarantee that the chains are in a consistent state.
897 */
898 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
899 {
900 int nr = 0;
901 void *fp;
902 void *object = NULL;
903 int max_objects;
904
905 fp = page->freelist;
906 while (fp && nr <= page->objects) {
907 if (fp == search)
908 return 1;
909 if (!check_valid_pointer(s, page, fp)) {
910 if (object) {
911 object_err(s, page, object,
912 "Freechain corrupt");
913 set_freepointer(s, object, NULL);
914 } else {
915 slab_err(s, page, "Freepointer corrupt");
916 page->freelist = NULL;
917 page->inuse = page->objects;
918 slab_fix(s, "Freelist cleared");
919 return 0;
920 }
921 break;
922 }
923 object = fp;
924 fp = get_freepointer(s, object);
925 nr++;
926 }
927
928 max_objects = order_objects(compound_order(page), s->size, s->reserved);
929 if (max_objects > MAX_OBJS_PER_PAGE)
930 max_objects = MAX_OBJS_PER_PAGE;
931
932 if (page->objects != max_objects) {
933 slab_err(s, page, "Wrong number of objects. Found %d but "
934 "should be %d", page->objects, max_objects);
935 page->objects = max_objects;
936 slab_fix(s, "Number of objects adjusted.");
937 }
938 if (page->inuse != page->objects - nr) {
939 slab_err(s, page, "Wrong object count. Counter is %d but "
940 "counted were %d", page->inuse, page->objects - nr);
941 page->inuse = page->objects - nr;
942 slab_fix(s, "Object count adjusted.");
943 }
944 return search == NULL;
945 }
946
947 static void trace(struct kmem_cache *s, struct page *page, void *object,
948 int alloc)
949 {
950 if (s->flags & SLAB_TRACE) {
951 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
952 s->name,
953 alloc ? "alloc" : "free",
954 object, page->inuse,
955 page->freelist);
956
957 if (!alloc)
958 print_section("Object ", (void *)object,
959 s->object_size);
960
961 dump_stack();
962 }
963 }
964
965 /*
966 * Tracking of fully allocated slabs for debugging purposes.
967 */
968 static void add_full(struct kmem_cache *s,
969 struct kmem_cache_node *n, struct page *page)
970 {
971 if (!(s->flags & SLAB_STORE_USER))
972 return;
973
974 lockdep_assert_held(&n->list_lock);
975 list_add(&page->lru, &n->full);
976 }
977
978 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
979 {
980 if (!(s->flags & SLAB_STORE_USER))
981 return;
982
983 lockdep_assert_held(&n->list_lock);
984 list_del(&page->lru);
985 }
986
987 /* Tracking of the number of slabs for debugging purposes */
988 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
989 {
990 struct kmem_cache_node *n = get_node(s, node);
991
992 return atomic_long_read(&n->nr_slabs);
993 }
994
995 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
996 {
997 return atomic_long_read(&n->nr_slabs);
998 }
999
1000 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1001 {
1002 struct kmem_cache_node *n = get_node(s, node);
1003
1004 /*
1005 * May be called early in order to allocate a slab for the
1006 * kmem_cache_node structure. Solve the chicken-egg
1007 * dilemma by deferring the increment of the count during
1008 * bootstrap (see early_kmem_cache_node_alloc).
1009 */
1010 if (likely(n)) {
1011 atomic_long_inc(&n->nr_slabs);
1012 atomic_long_add(objects, &n->total_objects);
1013 }
1014 }
1015 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1016 {
1017 struct kmem_cache_node *n = get_node(s, node);
1018
1019 atomic_long_dec(&n->nr_slabs);
1020 atomic_long_sub(objects, &n->total_objects);
1021 }
1022
1023 /* Object debug checks for alloc/free paths */
1024 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1025 void *object)
1026 {
1027 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1028 return;
1029
1030 init_object(s, object, SLUB_RED_INACTIVE);
1031 init_tracking(s, object);
1032 }
1033
1034 static noinline int alloc_debug_processing(struct kmem_cache *s,
1035 struct page *page,
1036 void *object, unsigned long addr)
1037 {
1038 if (!check_slab(s, page))
1039 goto bad;
1040
1041 if (!check_valid_pointer(s, page, object)) {
1042 object_err(s, page, object, "Freelist Pointer check fails");
1043 goto bad;
1044 }
1045
1046 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1047 goto bad;
1048
1049 /* Success perform special debug activities for allocs */
1050 if (s->flags & SLAB_STORE_USER)
1051 set_track(s, object, TRACK_ALLOC, addr);
1052 trace(s, page, object, 1);
1053 init_object(s, object, SLUB_RED_ACTIVE);
1054 return 1;
1055
1056 bad:
1057 if (PageSlab(page)) {
1058 /*
1059 * If this is a slab page then lets do the best we can
1060 * to avoid issues in the future. Marking all objects
1061 * as used avoids touching the remaining objects.
1062 */
1063 slab_fix(s, "Marking all objects used");
1064 page->inuse = page->objects;
1065 page->freelist = NULL;
1066 }
1067 return 0;
1068 }
1069
1070 /* Supports checking bulk free of a constructed freelist */
1071 static noinline struct kmem_cache_node *free_debug_processing(
1072 struct kmem_cache *s, struct page *page,
1073 void *head, void *tail, int bulk_cnt,
1074 unsigned long addr, unsigned long *flags)
1075 {
1076 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1077 void *object = head;
1078 int cnt = 0;
1079
1080 spin_lock_irqsave(&n->list_lock, *flags);
1081 slab_lock(page);
1082
1083 if (!check_slab(s, page))
1084 goto fail;
1085
1086 next_object:
1087 cnt++;
1088
1089 if (!check_valid_pointer(s, page, object)) {
1090 slab_err(s, page, "Invalid object pointer 0x%p", object);
1091 goto fail;
1092 }
1093
1094 if (on_freelist(s, page, object)) {
1095 object_err(s, page, object, "Object already free");
1096 goto fail;
1097 }
1098
1099 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100 goto out;
1101
1102 if (unlikely(s != page->slab_cache)) {
1103 if (!PageSlab(page)) {
1104 slab_err(s, page, "Attempt to free object(0x%p) "
1105 "outside of slab", object);
1106 } else if (!page->slab_cache) {
1107 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1108 object);
1109 dump_stack();
1110 } else
1111 object_err(s, page, object,
1112 "page slab pointer corrupt.");
1113 goto fail;
1114 }
1115
1116 if (s->flags & SLAB_STORE_USER)
1117 set_track(s, object, TRACK_FREE, addr);
1118 trace(s, page, object, 0);
1119 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1120 init_object(s, object, SLUB_RED_INACTIVE);
1121
1122 /* Reached end of constructed freelist yet? */
1123 if (object != tail) {
1124 object = get_freepointer(s, object);
1125 goto next_object;
1126 }
1127 out:
1128 if (cnt != bulk_cnt)
1129 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1130 bulk_cnt, cnt);
1131
1132 slab_unlock(page);
1133 /*
1134 * Keep node_lock to preserve integrity
1135 * until the object is actually freed
1136 */
1137 return n;
1138
1139 fail:
1140 slab_unlock(page);
1141 spin_unlock_irqrestore(&n->list_lock, *flags);
1142 slab_fix(s, "Object at 0x%p not freed", object);
1143 return NULL;
1144 }
1145
1146 static int __init setup_slub_debug(char *str)
1147 {
1148 slub_debug = DEBUG_DEFAULT_FLAGS;
1149 if (*str++ != '=' || !*str)
1150 /*
1151 * No options specified. Switch on full debugging.
1152 */
1153 goto out;
1154
1155 if (*str == ',')
1156 /*
1157 * No options but restriction on slabs. This means full
1158 * debugging for slabs matching a pattern.
1159 */
1160 goto check_slabs;
1161
1162 slub_debug = 0;
1163 if (*str == '-')
1164 /*
1165 * Switch off all debugging measures.
1166 */
1167 goto out;
1168
1169 /*
1170 * Determine which debug features should be switched on
1171 */
1172 for (; *str && *str != ','; str++) {
1173 switch (tolower(*str)) {
1174 case 'f':
1175 slub_debug |= SLAB_DEBUG_FREE;
1176 break;
1177 case 'z':
1178 slub_debug |= SLAB_RED_ZONE;
1179 break;
1180 case 'p':
1181 slub_debug |= SLAB_POISON;
1182 break;
1183 case 'u':
1184 slub_debug |= SLAB_STORE_USER;
1185 break;
1186 case 't':
1187 slub_debug |= SLAB_TRACE;
1188 break;
1189 case 'a':
1190 slub_debug |= SLAB_FAILSLAB;
1191 break;
1192 case 'o':
1193 /*
1194 * Avoid enabling debugging on caches if its minimum
1195 * order would increase as a result.
1196 */
1197 disable_higher_order_debug = 1;
1198 break;
1199 default:
1200 pr_err("slub_debug option '%c' unknown. skipped\n",
1201 *str);
1202 }
1203 }
1204
1205 check_slabs:
1206 if (*str == ',')
1207 slub_debug_slabs = str + 1;
1208 out:
1209 return 1;
1210 }
1211
1212 __setup("slub_debug", setup_slub_debug);
1213
1214 unsigned long kmem_cache_flags(unsigned long object_size,
1215 unsigned long flags, const char *name,
1216 void (*ctor)(void *))
1217 {
1218 /*
1219 * Enable debugging if selected on the kernel commandline.
1220 */
1221 if (slub_debug && (!slub_debug_slabs || (name &&
1222 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1223 flags |= slub_debug;
1224
1225 return flags;
1226 }
1227 #else /* !CONFIG_SLUB_DEBUG */
1228 static inline void setup_object_debug(struct kmem_cache *s,
1229 struct page *page, void *object) {}
1230
1231 static inline int alloc_debug_processing(struct kmem_cache *s,
1232 struct page *page, void *object, unsigned long addr) { return 0; }
1233
1234 static inline struct kmem_cache_node *free_debug_processing(
1235 struct kmem_cache *s, struct page *page,
1236 void *head, void *tail, int bulk_cnt,
1237 unsigned long addr, unsigned long *flags) { return NULL; }
1238
1239 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1240 { return 1; }
1241 static inline int check_object(struct kmem_cache *s, struct page *page,
1242 void *object, u8 val) { return 1; }
1243 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1244 struct page *page) {}
1245 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1246 struct page *page) {}
1247 unsigned long kmem_cache_flags(unsigned long object_size,
1248 unsigned long flags, const char *name,
1249 void (*ctor)(void *))
1250 {
1251 return flags;
1252 }
1253 #define slub_debug 0
1254
1255 #define disable_higher_order_debug 0
1256
1257 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1258 { return 0; }
1259 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1260 { return 0; }
1261 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1262 int objects) {}
1263 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1264 int objects) {}
1265
1266 #endif /* CONFIG_SLUB_DEBUG */
1267
1268 /*
1269 * Hooks for other subsystems that check memory allocations. In a typical
1270 * production configuration these hooks all should produce no code at all.
1271 */
1272 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1273 {
1274 kmemleak_alloc(ptr, size, 1, flags);
1275 kasan_kmalloc_large(ptr, size);
1276 }
1277
1278 static inline void kfree_hook(const void *x)
1279 {
1280 kmemleak_free(x);
1281 kasan_kfree_large(x);
1282 }
1283
1284 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
1285 gfp_t flags)
1286 {
1287 flags &= gfp_allowed_mask;
1288 lockdep_trace_alloc(flags);
1289 might_sleep_if(gfpflags_allow_blocking(flags));
1290
1291 if (should_failslab(s->object_size, flags, s->flags))
1292 return NULL;
1293
1294 return memcg_kmem_get_cache(s, flags);
1295 }
1296
1297 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1298 size_t size, void **p)
1299 {
1300 size_t i;
1301
1302 flags &= gfp_allowed_mask;
1303 for (i = 0; i < size; i++) {
1304 void *object = p[i];
1305
1306 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
1307 kmemleak_alloc_recursive(object, s->object_size, 1,
1308 s->flags, flags);
1309 kasan_slab_alloc(s, object);
1310 }
1311 memcg_kmem_put_cache(s);
1312 }
1313
1314 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1315 {
1316 kmemleak_free_recursive(x, s->flags);
1317
1318 /*
1319 * Trouble is that we may no longer disable interrupts in the fast path
1320 * So in order to make the debug calls that expect irqs to be
1321 * disabled we need to disable interrupts temporarily.
1322 */
1323 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1324 {
1325 unsigned long flags;
1326
1327 local_irq_save(flags);
1328 kmemcheck_slab_free(s, x, s->object_size);
1329 debug_check_no_locks_freed(x, s->object_size);
1330 local_irq_restore(flags);
1331 }
1332 #endif
1333 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1334 debug_check_no_obj_freed(x, s->object_size);
1335
1336 kasan_slab_free(s, x);
1337 }
1338
1339 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1340 void *head, void *tail)
1341 {
1342 /*
1343 * Compiler cannot detect this function can be removed if slab_free_hook()
1344 * evaluates to nothing. Thus, catch all relevant config debug options here.
1345 */
1346 #if defined(CONFIG_KMEMCHECK) || \
1347 defined(CONFIG_LOCKDEP) || \
1348 defined(CONFIG_DEBUG_KMEMLEAK) || \
1349 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1350 defined(CONFIG_KASAN)
1351
1352 void *object = head;
1353 void *tail_obj = tail ? : head;
1354
1355 do {
1356 slab_free_hook(s, object);
1357 } while ((object != tail_obj) &&
1358 (object = get_freepointer(s, object)));
1359 #endif
1360 }
1361
1362 static void setup_object(struct kmem_cache *s, struct page *page,
1363 void *object)
1364 {
1365 setup_object_debug(s, page, object);
1366 if (unlikely(s->ctor)) {
1367 kasan_unpoison_object_data(s, object);
1368 s->ctor(object);
1369 kasan_poison_object_data(s, object);
1370 }
1371 }
1372
1373 /*
1374 * Slab allocation and freeing
1375 */
1376 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1377 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1378 {
1379 struct page *page;
1380 int order = oo_order(oo);
1381
1382 flags |= __GFP_NOTRACK;
1383
1384 if (node == NUMA_NO_NODE)
1385 page = alloc_pages(flags, order);
1386 else
1387 page = __alloc_pages_node(node, flags, order);
1388
1389 if (page && memcg_charge_slab(page, flags, order, s)) {
1390 __free_pages(page, order);
1391 page = NULL;
1392 }
1393
1394 return page;
1395 }
1396
1397 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1398 {
1399 struct page *page;
1400 struct kmem_cache_order_objects oo = s->oo;
1401 gfp_t alloc_gfp;
1402 void *start, *p;
1403 int idx, order;
1404
1405 flags &= gfp_allowed_mask;
1406
1407 if (gfpflags_allow_blocking(flags))
1408 local_irq_enable();
1409
1410 flags |= s->allocflags;
1411
1412 /*
1413 * Let the initial higher-order allocation fail under memory pressure
1414 * so we fall-back to the minimum order allocation.
1415 */
1416 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1417 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1418 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_DIRECT_RECLAIM;
1419
1420 page = alloc_slab_page(s, alloc_gfp, node, oo);
1421 if (unlikely(!page)) {
1422 oo = s->min;
1423 alloc_gfp = flags;
1424 /*
1425 * Allocation may have failed due to fragmentation.
1426 * Try a lower order alloc if possible
1427 */
1428 page = alloc_slab_page(s, alloc_gfp, node, oo);
1429 if (unlikely(!page))
1430 goto out;
1431 stat(s, ORDER_FALLBACK);
1432 }
1433
1434 if (kmemcheck_enabled &&
1435 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1436 int pages = 1 << oo_order(oo);
1437
1438 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1439
1440 /*
1441 * Objects from caches that have a constructor don't get
1442 * cleared when they're allocated, so we need to do it here.
1443 */
1444 if (s->ctor)
1445 kmemcheck_mark_uninitialized_pages(page, pages);
1446 else
1447 kmemcheck_mark_unallocated_pages(page, pages);
1448 }
1449
1450 page->objects = oo_objects(oo);
1451
1452 order = compound_order(page);
1453 page->slab_cache = s;
1454 __SetPageSlab(page);
1455 if (page_is_pfmemalloc(page))
1456 SetPageSlabPfmemalloc(page);
1457
1458 start = page_address(page);
1459
1460 if (unlikely(s->flags & SLAB_POISON))
1461 memset(start, POISON_INUSE, PAGE_SIZE << order);
1462
1463 kasan_poison_slab(page);
1464
1465 for_each_object_idx(p, idx, s, start, page->objects) {
1466 setup_object(s, page, p);
1467 if (likely(idx < page->objects))
1468 set_freepointer(s, p, p + s->size);
1469 else
1470 set_freepointer(s, p, NULL);
1471 }
1472
1473 page->freelist = start;
1474 page->inuse = page->objects;
1475 page->frozen = 1;
1476
1477 out:
1478 if (gfpflags_allow_blocking(flags))
1479 local_irq_disable();
1480 if (!page)
1481 return NULL;
1482
1483 mod_zone_page_state(page_zone(page),
1484 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1485 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1486 1 << oo_order(oo));
1487
1488 inc_slabs_node(s, page_to_nid(page), page->objects);
1489
1490 return page;
1491 }
1492
1493 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1494 {
1495 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1496 pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
1497 BUG();
1498 }
1499
1500 return allocate_slab(s,
1501 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1502 }
1503
1504 static void __free_slab(struct kmem_cache *s, struct page *page)
1505 {
1506 int order = compound_order(page);
1507 int pages = 1 << order;
1508
1509 if (kmem_cache_debug(s)) {
1510 void *p;
1511
1512 slab_pad_check(s, page);
1513 for_each_object(p, s, page_address(page),
1514 page->objects)
1515 check_object(s, page, p, SLUB_RED_INACTIVE);
1516 }
1517
1518 kmemcheck_free_shadow(page, compound_order(page));
1519
1520 mod_zone_page_state(page_zone(page),
1521 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1522 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1523 -pages);
1524
1525 __ClearPageSlabPfmemalloc(page);
1526 __ClearPageSlab(page);
1527
1528 page_mapcount_reset(page);
1529 if (current->reclaim_state)
1530 current->reclaim_state->reclaimed_slab += pages;
1531 __free_kmem_pages(page, order);
1532 }
1533
1534 #define need_reserve_slab_rcu \
1535 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1536
1537 static void rcu_free_slab(struct rcu_head *h)
1538 {
1539 struct page *page;
1540
1541 if (need_reserve_slab_rcu)
1542 page = virt_to_head_page(h);
1543 else
1544 page = container_of((struct list_head *)h, struct page, lru);
1545
1546 __free_slab(page->slab_cache, page);
1547 }
1548
1549 static void free_slab(struct kmem_cache *s, struct page *page)
1550 {
1551 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1552 struct rcu_head *head;
1553
1554 if (need_reserve_slab_rcu) {
1555 int order = compound_order(page);
1556 int offset = (PAGE_SIZE << order) - s->reserved;
1557
1558 VM_BUG_ON(s->reserved != sizeof(*head));
1559 head = page_address(page) + offset;
1560 } else {
1561 head = &page->rcu_head;
1562 }
1563
1564 call_rcu(head, rcu_free_slab);
1565 } else
1566 __free_slab(s, page);
1567 }
1568
1569 static void discard_slab(struct kmem_cache *s, struct page *page)
1570 {
1571 dec_slabs_node(s, page_to_nid(page), page->objects);
1572 free_slab(s, page);
1573 }
1574
1575 /*
1576 * Management of partially allocated slabs.
1577 */
1578 static inline void
1579 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1580 {
1581 n->nr_partial++;
1582 if (tail == DEACTIVATE_TO_TAIL)
1583 list_add_tail(&page->lru, &n->partial);
1584 else
1585 list_add(&page->lru, &n->partial);
1586 }
1587
1588 static inline void add_partial(struct kmem_cache_node *n,
1589 struct page *page, int tail)
1590 {
1591 lockdep_assert_held(&n->list_lock);
1592 __add_partial(n, page, tail);
1593 }
1594
1595 static inline void
1596 __remove_partial(struct kmem_cache_node *n, struct page *page)
1597 {
1598 list_del(&page->lru);
1599 n->nr_partial--;
1600 }
1601
1602 static inline void remove_partial(struct kmem_cache_node *n,
1603 struct page *page)
1604 {
1605 lockdep_assert_held(&n->list_lock);
1606 __remove_partial(n, page);
1607 }
1608
1609 /*
1610 * Remove slab from the partial list, freeze it and
1611 * return the pointer to the freelist.
1612 *
1613 * Returns a list of objects or NULL if it fails.
1614 */
1615 static inline void *acquire_slab(struct kmem_cache *s,
1616 struct kmem_cache_node *n, struct page *page,
1617 int mode, int *objects)
1618 {
1619 void *freelist;
1620 unsigned long counters;
1621 struct page new;
1622
1623 lockdep_assert_held(&n->list_lock);
1624
1625 /*
1626 * Zap the freelist and set the frozen bit.
1627 * The old freelist is the list of objects for the
1628 * per cpu allocation list.
1629 */
1630 freelist = page->freelist;
1631 counters = page->counters;
1632 new.counters = counters;
1633 *objects = new.objects - new.inuse;
1634 if (mode) {
1635 new.inuse = page->objects;
1636 new.freelist = NULL;
1637 } else {
1638 new.freelist = freelist;
1639 }
1640
1641 VM_BUG_ON(new.frozen);
1642 new.frozen = 1;
1643
1644 if (!__cmpxchg_double_slab(s, page,
1645 freelist, counters,
1646 new.freelist, new.counters,
1647 "acquire_slab"))
1648 return NULL;
1649
1650 remove_partial(n, page);
1651 WARN_ON(!freelist);
1652 return freelist;
1653 }
1654
1655 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1656 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1657
1658 /*
1659 * Try to allocate a partial slab from a specific node.
1660 */
1661 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1662 struct kmem_cache_cpu *c, gfp_t flags)
1663 {
1664 struct page *page, *page2;
1665 void *object = NULL;
1666 int available = 0;
1667 int objects;
1668
1669 /*
1670 * Racy check. If we mistakenly see no partial slabs then we
1671 * just allocate an empty slab. If we mistakenly try to get a
1672 * partial slab and there is none available then get_partials()
1673 * will return NULL.
1674 */
1675 if (!n || !n->nr_partial)
1676 return NULL;
1677
1678 spin_lock(&n->list_lock);
1679 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1680 void *t;
1681
1682 if (!pfmemalloc_match(page, flags))
1683 continue;
1684
1685 t = acquire_slab(s, n, page, object == NULL, &objects);
1686 if (!t)
1687 break;
1688
1689 available += objects;
1690 if (!object) {
1691 c->page = page;
1692 stat(s, ALLOC_FROM_PARTIAL);
1693 object = t;
1694 } else {
1695 put_cpu_partial(s, page, 0);
1696 stat(s, CPU_PARTIAL_NODE);
1697 }
1698 if (!kmem_cache_has_cpu_partial(s)
1699 || available > s->cpu_partial / 2)
1700 break;
1701
1702 }
1703 spin_unlock(&n->list_lock);
1704 return object;
1705 }
1706
1707 /*
1708 * Get a page from somewhere. Search in increasing NUMA distances.
1709 */
1710 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1711 struct kmem_cache_cpu *c)
1712 {
1713 #ifdef CONFIG_NUMA
1714 struct zonelist *zonelist;
1715 struct zoneref *z;
1716 struct zone *zone;
1717 enum zone_type high_zoneidx = gfp_zone(flags);
1718 void *object;
1719 unsigned int cpuset_mems_cookie;
1720
1721 /*
1722 * The defrag ratio allows a configuration of the tradeoffs between
1723 * inter node defragmentation and node local allocations. A lower
1724 * defrag_ratio increases the tendency to do local allocations
1725 * instead of attempting to obtain partial slabs from other nodes.
1726 *
1727 * If the defrag_ratio is set to 0 then kmalloc() always
1728 * returns node local objects. If the ratio is higher then kmalloc()
1729 * may return off node objects because partial slabs are obtained
1730 * from other nodes and filled up.
1731 *
1732 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1733 * defrag_ratio = 1000) then every (well almost) allocation will
1734 * first attempt to defrag slab caches on other nodes. This means
1735 * scanning over all nodes to look for partial slabs which may be
1736 * expensive if we do it every time we are trying to find a slab
1737 * with available objects.
1738 */
1739 if (!s->remote_node_defrag_ratio ||
1740 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1741 return NULL;
1742
1743 do {
1744 cpuset_mems_cookie = read_mems_allowed_begin();
1745 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1746 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1747 struct kmem_cache_node *n;
1748
1749 n = get_node(s, zone_to_nid(zone));
1750
1751 if (n && cpuset_zone_allowed(zone, flags) &&
1752 n->nr_partial > s->min_partial) {
1753 object = get_partial_node(s, n, c, flags);
1754 if (object) {
1755 /*
1756 * Don't check read_mems_allowed_retry()
1757 * here - if mems_allowed was updated in
1758 * parallel, that was a harmless race
1759 * between allocation and the cpuset
1760 * update
1761 */
1762 return object;
1763 }
1764 }
1765 }
1766 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1767 #endif
1768 return NULL;
1769 }
1770
1771 /*
1772 * Get a partial page, lock it and return it.
1773 */
1774 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1775 struct kmem_cache_cpu *c)
1776 {
1777 void *object;
1778 int searchnode = node;
1779
1780 if (node == NUMA_NO_NODE)
1781 searchnode = numa_mem_id();
1782 else if (!node_present_pages(node))
1783 searchnode = node_to_mem_node(node);
1784
1785 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1786 if (object || node != NUMA_NO_NODE)
1787 return object;
1788
1789 return get_any_partial(s, flags, c);
1790 }
1791
1792 #ifdef CONFIG_PREEMPT
1793 /*
1794 * Calculate the next globally unique transaction for disambiguiation
1795 * during cmpxchg. The transactions start with the cpu number and are then
1796 * incremented by CONFIG_NR_CPUS.
1797 */
1798 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1799 #else
1800 /*
1801 * No preemption supported therefore also no need to check for
1802 * different cpus.
1803 */
1804 #define TID_STEP 1
1805 #endif
1806
1807 static inline unsigned long next_tid(unsigned long tid)
1808 {
1809 return tid + TID_STEP;
1810 }
1811
1812 static inline unsigned int tid_to_cpu(unsigned long tid)
1813 {
1814 return tid % TID_STEP;
1815 }
1816
1817 static inline unsigned long tid_to_event(unsigned long tid)
1818 {
1819 return tid / TID_STEP;
1820 }
1821
1822 static inline unsigned int init_tid(int cpu)
1823 {
1824 return cpu;
1825 }
1826
1827 static inline void note_cmpxchg_failure(const char *n,
1828 const struct kmem_cache *s, unsigned long tid)
1829 {
1830 #ifdef SLUB_DEBUG_CMPXCHG
1831 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1832
1833 pr_info("%s %s: cmpxchg redo ", n, s->name);
1834
1835 #ifdef CONFIG_PREEMPT
1836 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1837 pr_warn("due to cpu change %d -> %d\n",
1838 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1839 else
1840 #endif
1841 if (tid_to_event(tid) != tid_to_event(actual_tid))
1842 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1843 tid_to_event(tid), tid_to_event(actual_tid));
1844 else
1845 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1846 actual_tid, tid, next_tid(tid));
1847 #endif
1848 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1849 }
1850
1851 static void init_kmem_cache_cpus(struct kmem_cache *s)
1852 {
1853 int cpu;
1854
1855 for_each_possible_cpu(cpu)
1856 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1857 }
1858
1859 /*
1860 * Remove the cpu slab
1861 */
1862 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1863 void *freelist)
1864 {
1865 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1866 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1867 int lock = 0;
1868 enum slab_modes l = M_NONE, m = M_NONE;
1869 void *nextfree;
1870 int tail = DEACTIVATE_TO_HEAD;
1871 struct page new;
1872 struct page old;
1873
1874 if (page->freelist) {
1875 stat(s, DEACTIVATE_REMOTE_FREES);
1876 tail = DEACTIVATE_TO_TAIL;
1877 }
1878
1879 /*
1880 * Stage one: Free all available per cpu objects back
1881 * to the page freelist while it is still frozen. Leave the
1882 * last one.
1883 *
1884 * There is no need to take the list->lock because the page
1885 * is still frozen.
1886 */
1887 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1888 void *prior;
1889 unsigned long counters;
1890
1891 do {
1892 prior = page->freelist;
1893 counters = page->counters;
1894 set_freepointer(s, freelist, prior);
1895 new.counters = counters;
1896 new.inuse--;
1897 VM_BUG_ON(!new.frozen);
1898
1899 } while (!__cmpxchg_double_slab(s, page,
1900 prior, counters,
1901 freelist, new.counters,
1902 "drain percpu freelist"));
1903
1904 freelist = nextfree;
1905 }
1906
1907 /*
1908 * Stage two: Ensure that the page is unfrozen while the
1909 * list presence reflects the actual number of objects
1910 * during unfreeze.
1911 *
1912 * We setup the list membership and then perform a cmpxchg
1913 * with the count. If there is a mismatch then the page
1914 * is not unfrozen but the page is on the wrong list.
1915 *
1916 * Then we restart the process which may have to remove
1917 * the page from the list that we just put it on again
1918 * because the number of objects in the slab may have
1919 * changed.
1920 */
1921 redo:
1922
1923 old.freelist = page->freelist;
1924 old.counters = page->counters;
1925 VM_BUG_ON(!old.frozen);
1926
1927 /* Determine target state of the slab */
1928 new.counters = old.counters;
1929 if (freelist) {
1930 new.inuse--;
1931 set_freepointer(s, freelist, old.freelist);
1932 new.freelist = freelist;
1933 } else
1934 new.freelist = old.freelist;
1935
1936 new.frozen = 0;
1937
1938 if (!new.inuse && n->nr_partial >= s->min_partial)
1939 m = M_FREE;
1940 else if (new.freelist) {
1941 m = M_PARTIAL;
1942 if (!lock) {
1943 lock = 1;
1944 /*
1945 * Taking the spinlock removes the possiblity
1946 * that acquire_slab() will see a slab page that
1947 * is frozen
1948 */
1949 spin_lock(&n->list_lock);
1950 }
1951 } else {
1952 m = M_FULL;
1953 if (kmem_cache_debug(s) && !lock) {
1954 lock = 1;
1955 /*
1956 * This also ensures that the scanning of full
1957 * slabs from diagnostic functions will not see
1958 * any frozen slabs.
1959 */
1960 spin_lock(&n->list_lock);
1961 }
1962 }
1963
1964 if (l != m) {
1965
1966 if (l == M_PARTIAL)
1967
1968 remove_partial(n, page);
1969
1970 else if (l == M_FULL)
1971
1972 remove_full(s, n, page);
1973
1974 if (m == M_PARTIAL) {
1975
1976 add_partial(n, page, tail);
1977 stat(s, tail);
1978
1979 } else if (m == M_FULL) {
1980
1981 stat(s, DEACTIVATE_FULL);
1982 add_full(s, n, page);
1983
1984 }
1985 }
1986
1987 l = m;
1988 if (!__cmpxchg_double_slab(s, page,
1989 old.freelist, old.counters,
1990 new.freelist, new.counters,
1991 "unfreezing slab"))
1992 goto redo;
1993
1994 if (lock)
1995 spin_unlock(&n->list_lock);
1996
1997 if (m == M_FREE) {
1998 stat(s, DEACTIVATE_EMPTY);
1999 discard_slab(s, page);
2000 stat(s, FREE_SLAB);
2001 }
2002 }
2003
2004 /*
2005 * Unfreeze all the cpu partial slabs.
2006 *
2007 * This function must be called with interrupts disabled
2008 * for the cpu using c (or some other guarantee must be there
2009 * to guarantee no concurrent accesses).
2010 */
2011 static void unfreeze_partials(struct kmem_cache *s,
2012 struct kmem_cache_cpu *c)
2013 {
2014 #ifdef CONFIG_SLUB_CPU_PARTIAL
2015 struct kmem_cache_node *n = NULL, *n2 = NULL;
2016 struct page *page, *discard_page = NULL;
2017
2018 while ((page = c->partial)) {
2019 struct page new;
2020 struct page old;
2021
2022 c->partial = page->next;
2023
2024 n2 = get_node(s, page_to_nid(page));
2025 if (n != n2) {
2026 if (n)
2027 spin_unlock(&n->list_lock);
2028
2029 n = n2;
2030 spin_lock(&n->list_lock);
2031 }
2032
2033 do {
2034
2035 old.freelist = page->freelist;
2036 old.counters = page->counters;
2037 VM_BUG_ON(!old.frozen);
2038
2039 new.counters = old.counters;
2040 new.freelist = old.freelist;
2041
2042 new.frozen = 0;
2043
2044 } while (!__cmpxchg_double_slab(s, page,
2045 old.freelist, old.counters,
2046 new.freelist, new.counters,
2047 "unfreezing slab"));
2048
2049 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2050 page->next = discard_page;
2051 discard_page = page;
2052 } else {
2053 add_partial(n, page, DEACTIVATE_TO_TAIL);
2054 stat(s, FREE_ADD_PARTIAL);
2055 }
2056 }
2057
2058 if (n)
2059 spin_unlock(&n->list_lock);
2060
2061 while (discard_page) {
2062 page = discard_page;
2063 discard_page = discard_page->next;
2064
2065 stat(s, DEACTIVATE_EMPTY);
2066 discard_slab(s, page);
2067 stat(s, FREE_SLAB);
2068 }
2069 #endif
2070 }
2071
2072 /*
2073 * Put a page that was just frozen (in __slab_free) into a partial page
2074 * slot if available. This is done without interrupts disabled and without
2075 * preemption disabled. The cmpxchg is racy and may put the partial page
2076 * onto a random cpus partial slot.
2077 *
2078 * If we did not find a slot then simply move all the partials to the
2079 * per node partial list.
2080 */
2081 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2082 {
2083 #ifdef CONFIG_SLUB_CPU_PARTIAL
2084 struct page *oldpage;
2085 int pages;
2086 int pobjects;
2087
2088 preempt_disable();
2089 do {
2090 pages = 0;
2091 pobjects = 0;
2092 oldpage = this_cpu_read(s->cpu_slab->partial);
2093
2094 if (oldpage) {
2095 pobjects = oldpage->pobjects;
2096 pages = oldpage->pages;
2097 if (drain && pobjects > s->cpu_partial) {
2098 unsigned long flags;
2099 /*
2100 * partial array is full. Move the existing
2101 * set to the per node partial list.
2102 */
2103 local_irq_save(flags);
2104 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2105 local_irq_restore(flags);
2106 oldpage = NULL;
2107 pobjects = 0;
2108 pages = 0;
2109 stat(s, CPU_PARTIAL_DRAIN);
2110 }
2111 }
2112
2113 pages++;
2114 pobjects += page->objects - page->inuse;
2115
2116 page->pages = pages;
2117 page->pobjects = pobjects;
2118 page->next = oldpage;
2119
2120 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2121 != oldpage);
2122 if (unlikely(!s->cpu_partial)) {
2123 unsigned long flags;
2124
2125 local_irq_save(flags);
2126 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2127 local_irq_restore(flags);
2128 }
2129 preempt_enable();
2130 #endif
2131 }
2132
2133 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2134 {
2135 stat(s, CPUSLAB_FLUSH);
2136 deactivate_slab(s, c->page, c->freelist);
2137
2138 c->tid = next_tid(c->tid);
2139 c->page = NULL;
2140 c->freelist = NULL;
2141 }
2142
2143 /*
2144 * Flush cpu slab.
2145 *
2146 * Called from IPI handler with interrupts disabled.
2147 */
2148 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2149 {
2150 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2151
2152 if (likely(c)) {
2153 if (c->page)
2154 flush_slab(s, c);
2155
2156 unfreeze_partials(s, c);
2157 }
2158 }
2159
2160 static void flush_cpu_slab(void *d)
2161 {
2162 struct kmem_cache *s = d;
2163
2164 __flush_cpu_slab(s, smp_processor_id());
2165 }
2166
2167 static bool has_cpu_slab(int cpu, void *info)
2168 {
2169 struct kmem_cache *s = info;
2170 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2171
2172 return c->page || c->partial;
2173 }
2174
2175 static void flush_all(struct kmem_cache *s)
2176 {
2177 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2178 }
2179
2180 /*
2181 * Check if the objects in a per cpu structure fit numa
2182 * locality expectations.
2183 */
2184 static inline int node_match(struct page *page, int node)
2185 {
2186 #ifdef CONFIG_NUMA
2187 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2188 return 0;
2189 #endif
2190 return 1;
2191 }
2192
2193 #ifdef CONFIG_SLUB_DEBUG
2194 static int count_free(struct page *page)
2195 {
2196 return page->objects - page->inuse;
2197 }
2198
2199 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2200 {
2201 return atomic_long_read(&n->total_objects);
2202 }
2203 #endif /* CONFIG_SLUB_DEBUG */
2204
2205 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2206 static unsigned long count_partial(struct kmem_cache_node *n,
2207 int (*get_count)(struct page *))
2208 {
2209 unsigned long flags;
2210 unsigned long x = 0;
2211 struct page *page;
2212
2213 spin_lock_irqsave(&n->list_lock, flags);
2214 list_for_each_entry(page, &n->partial, lru)
2215 x += get_count(page);
2216 spin_unlock_irqrestore(&n->list_lock, flags);
2217 return x;
2218 }
2219 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2220
2221 static noinline void
2222 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2223 {
2224 #ifdef CONFIG_SLUB_DEBUG
2225 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2226 DEFAULT_RATELIMIT_BURST);
2227 int node;
2228 struct kmem_cache_node *n;
2229
2230 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2231 return;
2232
2233 pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2234 nid, gfpflags);
2235 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2236 s->name, s->object_size, s->size, oo_order(s->oo),
2237 oo_order(s->min));
2238
2239 if (oo_order(s->min) > get_order(s->object_size))
2240 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2241 s->name);
2242
2243 for_each_kmem_cache_node(s, node, n) {
2244 unsigned long nr_slabs;
2245 unsigned long nr_objs;
2246 unsigned long nr_free;
2247
2248 nr_free = count_partial(n, count_free);
2249 nr_slabs = node_nr_slabs(n);
2250 nr_objs = node_nr_objs(n);
2251
2252 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2253 node, nr_slabs, nr_objs, nr_free);
2254 }
2255 #endif
2256 }
2257
2258 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2259 int node, struct kmem_cache_cpu **pc)
2260 {
2261 void *freelist;
2262 struct kmem_cache_cpu *c = *pc;
2263 struct page *page;
2264
2265 freelist = get_partial(s, flags, node, c);
2266
2267 if (freelist)
2268 return freelist;
2269
2270 page = new_slab(s, flags, node);
2271 if (page) {
2272 c = raw_cpu_ptr(s->cpu_slab);
2273 if (c->page)
2274 flush_slab(s, c);
2275
2276 /*
2277 * No other reference to the page yet so we can
2278 * muck around with it freely without cmpxchg
2279 */
2280 freelist = page->freelist;
2281 page->freelist = NULL;
2282
2283 stat(s, ALLOC_SLAB);
2284 c->page = page;
2285 *pc = c;
2286 } else
2287 freelist = NULL;
2288
2289 return freelist;
2290 }
2291
2292 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2293 {
2294 if (unlikely(PageSlabPfmemalloc(page)))
2295 return gfp_pfmemalloc_allowed(gfpflags);
2296
2297 return true;
2298 }
2299
2300 /*
2301 * Check the page->freelist of a page and either transfer the freelist to the
2302 * per cpu freelist or deactivate the page.
2303 *
2304 * The page is still frozen if the return value is not NULL.
2305 *
2306 * If this function returns NULL then the page has been unfrozen.
2307 *
2308 * This function must be called with interrupt disabled.
2309 */
2310 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2311 {
2312 struct page new;
2313 unsigned long counters;
2314 void *freelist;
2315
2316 do {
2317 freelist = page->freelist;
2318 counters = page->counters;
2319
2320 new.counters = counters;
2321 VM_BUG_ON(!new.frozen);
2322
2323 new.inuse = page->objects;
2324 new.frozen = freelist != NULL;
2325
2326 } while (!__cmpxchg_double_slab(s, page,
2327 freelist, counters,
2328 NULL, new.counters,
2329 "get_freelist"));
2330
2331 return freelist;
2332 }
2333
2334 /*
2335 * Slow path. The lockless freelist is empty or we need to perform
2336 * debugging duties.
2337 *
2338 * Processing is still very fast if new objects have been freed to the
2339 * regular freelist. In that case we simply take over the regular freelist
2340 * as the lockless freelist and zap the regular freelist.
2341 *
2342 * If that is not working then we fall back to the partial lists. We take the
2343 * first element of the freelist as the object to allocate now and move the
2344 * rest of the freelist to the lockless freelist.
2345 *
2346 * And if we were unable to get a new slab from the partial slab lists then
2347 * we need to allocate a new slab. This is the slowest path since it involves
2348 * a call to the page allocator and the setup of a new slab.
2349 *
2350 * Version of __slab_alloc to use when we know that interrupts are
2351 * already disabled (which is the case for bulk allocation).
2352 */
2353 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2354 unsigned long addr, struct kmem_cache_cpu *c)
2355 {
2356 void *freelist;
2357 struct page *page;
2358
2359 page = c->page;
2360 if (!page)
2361 goto new_slab;
2362 redo:
2363
2364 if (unlikely(!node_match(page, node))) {
2365 int searchnode = node;
2366
2367 if (node != NUMA_NO_NODE && !node_present_pages(node))
2368 searchnode = node_to_mem_node(node);
2369
2370 if (unlikely(!node_match(page, searchnode))) {
2371 stat(s, ALLOC_NODE_MISMATCH);
2372 deactivate_slab(s, page, c->freelist);
2373 c->page = NULL;
2374 c->freelist = NULL;
2375 goto new_slab;
2376 }
2377 }
2378
2379 /*
2380 * By rights, we should be searching for a slab page that was
2381 * PFMEMALLOC but right now, we are losing the pfmemalloc
2382 * information when the page leaves the per-cpu allocator
2383 */
2384 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2385 deactivate_slab(s, page, c->freelist);
2386 c->page = NULL;
2387 c->freelist = NULL;
2388 goto new_slab;
2389 }
2390
2391 /* must check again c->freelist in case of cpu migration or IRQ */
2392 freelist = c->freelist;
2393 if (freelist)
2394 goto load_freelist;
2395
2396 freelist = get_freelist(s, page);
2397
2398 if (!freelist) {
2399 c->page = NULL;
2400 stat(s, DEACTIVATE_BYPASS);
2401 goto new_slab;
2402 }
2403
2404 stat(s, ALLOC_REFILL);
2405
2406 load_freelist:
2407 /*
2408 * freelist is pointing to the list of objects to be used.
2409 * page is pointing to the page from which the objects are obtained.
2410 * That page must be frozen for per cpu allocations to work.
2411 */
2412 VM_BUG_ON(!c->page->frozen);
2413 c->freelist = get_freepointer(s, freelist);
2414 c->tid = next_tid(c->tid);
2415 return freelist;
2416
2417 new_slab:
2418
2419 if (c->partial) {
2420 page = c->page = c->partial;
2421 c->partial = page->next;
2422 stat(s, CPU_PARTIAL_ALLOC);
2423 c->freelist = NULL;
2424 goto redo;
2425 }
2426
2427 freelist = new_slab_objects(s, gfpflags, node, &c);
2428
2429 if (unlikely(!freelist)) {
2430 slab_out_of_memory(s, gfpflags, node);
2431 return NULL;
2432 }
2433
2434 page = c->page;
2435 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2436 goto load_freelist;
2437
2438 /* Only entered in the debug case */
2439 if (kmem_cache_debug(s) &&
2440 !alloc_debug_processing(s, page, freelist, addr))
2441 goto new_slab; /* Slab failed checks. Next slab needed */
2442
2443 deactivate_slab(s, page, get_freepointer(s, freelist));
2444 c->page = NULL;
2445 c->freelist = NULL;
2446 return freelist;
2447 }
2448
2449 /*
2450 * Another one that disabled interrupt and compensates for possible
2451 * cpu changes by refetching the per cpu area pointer.
2452 */
2453 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2454 unsigned long addr, struct kmem_cache_cpu *c)
2455 {
2456 void *p;
2457 unsigned long flags;
2458
2459 local_irq_save(flags);
2460 #ifdef CONFIG_PREEMPT
2461 /*
2462 * We may have been preempted and rescheduled on a different
2463 * cpu before disabling interrupts. Need to reload cpu area
2464 * pointer.
2465 */
2466 c = this_cpu_ptr(s->cpu_slab);
2467 #endif
2468
2469 p = ___slab_alloc(s, gfpflags, node, addr, c);
2470 local_irq_restore(flags);
2471 return p;
2472 }
2473
2474 /*
2475 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2476 * have the fastpath folded into their functions. So no function call
2477 * overhead for requests that can be satisfied on the fastpath.
2478 *
2479 * The fastpath works by first checking if the lockless freelist can be used.
2480 * If not then __slab_alloc is called for slow processing.
2481 *
2482 * Otherwise we can simply pick the next object from the lockless free list.
2483 */
2484 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2485 gfp_t gfpflags, int node, unsigned long addr)
2486 {
2487 void *object;
2488 struct kmem_cache_cpu *c;
2489 struct page *page;
2490 unsigned long tid;
2491
2492 s = slab_pre_alloc_hook(s, gfpflags);
2493 if (!s)
2494 return NULL;
2495 redo:
2496 /*
2497 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2498 * enabled. We may switch back and forth between cpus while
2499 * reading from one cpu area. That does not matter as long
2500 * as we end up on the original cpu again when doing the cmpxchg.
2501 *
2502 * We should guarantee that tid and kmem_cache are retrieved on
2503 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2504 * to check if it is matched or not.
2505 */
2506 do {
2507 tid = this_cpu_read(s->cpu_slab->tid);
2508 c = raw_cpu_ptr(s->cpu_slab);
2509 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2510 unlikely(tid != READ_ONCE(c->tid)));
2511
2512 /*
2513 * Irqless object alloc/free algorithm used here depends on sequence
2514 * of fetching cpu_slab's data. tid should be fetched before anything
2515 * on c to guarantee that object and page associated with previous tid
2516 * won't be used with current tid. If we fetch tid first, object and
2517 * page could be one associated with next tid and our alloc/free
2518 * request will be failed. In this case, we will retry. So, no problem.
2519 */
2520 barrier();
2521
2522 /*
2523 * The transaction ids are globally unique per cpu and per operation on
2524 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2525 * occurs on the right processor and that there was no operation on the
2526 * linked list in between.
2527 */
2528
2529 object = c->freelist;
2530 page = c->page;
2531 if (unlikely(!object || !node_match(page, node))) {
2532 object = __slab_alloc(s, gfpflags, node, addr, c);
2533 stat(s, ALLOC_SLOWPATH);
2534 } else {
2535 void *next_object = get_freepointer_safe(s, object);
2536
2537 /*
2538 * The cmpxchg will only match if there was no additional
2539 * operation and if we are on the right processor.
2540 *
2541 * The cmpxchg does the following atomically (without lock
2542 * semantics!)
2543 * 1. Relocate first pointer to the current per cpu area.
2544 * 2. Verify that tid and freelist have not been changed
2545 * 3. If they were not changed replace tid and freelist
2546 *
2547 * Since this is without lock semantics the protection is only
2548 * against code executing on this cpu *not* from access by
2549 * other cpus.
2550 */
2551 if (unlikely(!this_cpu_cmpxchg_double(
2552 s->cpu_slab->freelist, s->cpu_slab->tid,
2553 object, tid,
2554 next_object, next_tid(tid)))) {
2555
2556 note_cmpxchg_failure("slab_alloc", s, tid);
2557 goto redo;
2558 }
2559 prefetch_freepointer(s, next_object);
2560 stat(s, ALLOC_FASTPATH);
2561 }
2562
2563 if (unlikely(gfpflags & __GFP_ZERO) && object)
2564 memset(object, 0, s->object_size);
2565
2566 slab_post_alloc_hook(s, gfpflags, 1, &object);
2567
2568 return object;
2569 }
2570
2571 static __always_inline void *slab_alloc(struct kmem_cache *s,
2572 gfp_t gfpflags, unsigned long addr)
2573 {
2574 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2575 }
2576
2577 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2578 {
2579 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2580
2581 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2582 s->size, gfpflags);
2583
2584 return ret;
2585 }
2586 EXPORT_SYMBOL(kmem_cache_alloc);
2587
2588 #ifdef CONFIG_TRACING
2589 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2590 {
2591 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2592 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2593 kasan_kmalloc(s, ret, size);
2594 return ret;
2595 }
2596 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2597 #endif
2598
2599 #ifdef CONFIG_NUMA
2600 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2601 {
2602 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2603
2604 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2605 s->object_size, s->size, gfpflags, node);
2606
2607 return ret;
2608 }
2609 EXPORT_SYMBOL(kmem_cache_alloc_node);
2610
2611 #ifdef CONFIG_TRACING
2612 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2613 gfp_t gfpflags,
2614 int node, size_t size)
2615 {
2616 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2617
2618 trace_kmalloc_node(_RET_IP_, ret,
2619 size, s->size, gfpflags, node);
2620
2621 kasan_kmalloc(s, ret, size);
2622 return ret;
2623 }
2624 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2625 #endif
2626 #endif
2627
2628 /*
2629 * Slow path handling. This may still be called frequently since objects
2630 * have a longer lifetime than the cpu slabs in most processing loads.
2631 *
2632 * So we still attempt to reduce cache line usage. Just take the slab
2633 * lock and free the item. If there is no additional partial page
2634 * handling required then we can return immediately.
2635 */
2636 static void __slab_free(struct kmem_cache *s, struct page *page,
2637 void *head, void *tail, int cnt,
2638 unsigned long addr)
2639
2640 {
2641 void *prior;
2642 int was_frozen;
2643 struct page new;
2644 unsigned long counters;
2645 struct kmem_cache_node *n = NULL;
2646 unsigned long uninitialized_var(flags);
2647
2648 stat(s, FREE_SLOWPATH);
2649
2650 if (kmem_cache_debug(s) &&
2651 !(n = free_debug_processing(s, page, head, tail, cnt,
2652 addr, &flags)))
2653 return;
2654
2655 do {
2656 if (unlikely(n)) {
2657 spin_unlock_irqrestore(&n->list_lock, flags);
2658 n = NULL;
2659 }
2660 prior = page->freelist;
2661 counters = page->counters;
2662 set_freepointer(s, tail, prior);
2663 new.counters = counters;
2664 was_frozen = new.frozen;
2665 new.inuse -= cnt;
2666 if ((!new.inuse || !prior) && !was_frozen) {
2667
2668 if (kmem_cache_has_cpu_partial(s) && !prior) {
2669
2670 /*
2671 * Slab was on no list before and will be
2672 * partially empty
2673 * We can defer the list move and instead
2674 * freeze it.
2675 */
2676 new.frozen = 1;
2677
2678 } else { /* Needs to be taken off a list */
2679
2680 n = get_node(s, page_to_nid(page));
2681 /*
2682 * Speculatively acquire the list_lock.
2683 * If the cmpxchg does not succeed then we may
2684 * drop the list_lock without any processing.
2685 *
2686 * Otherwise the list_lock will synchronize with
2687 * other processors updating the list of slabs.
2688 */
2689 spin_lock_irqsave(&n->list_lock, flags);
2690
2691 }
2692 }
2693
2694 } while (!cmpxchg_double_slab(s, page,
2695 prior, counters,
2696 head, new.counters,
2697 "__slab_free"));
2698
2699 if (likely(!n)) {
2700
2701 /*
2702 * If we just froze the page then put it onto the
2703 * per cpu partial list.
2704 */
2705 if (new.frozen && !was_frozen) {
2706 put_cpu_partial(s, page, 1);
2707 stat(s, CPU_PARTIAL_FREE);
2708 }
2709 /*
2710 * The list lock was not taken therefore no list
2711 * activity can be necessary.
2712 */
2713 if (was_frozen)
2714 stat(s, FREE_FROZEN);
2715 return;
2716 }
2717
2718 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2719 goto slab_empty;
2720
2721 /*
2722 * Objects left in the slab. If it was not on the partial list before
2723 * then add it.
2724 */
2725 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2726 if (kmem_cache_debug(s))
2727 remove_full(s, n, page);
2728 add_partial(n, page, DEACTIVATE_TO_TAIL);
2729 stat(s, FREE_ADD_PARTIAL);
2730 }
2731 spin_unlock_irqrestore(&n->list_lock, flags);
2732 return;
2733
2734 slab_empty:
2735 if (prior) {
2736 /*
2737 * Slab on the partial list.
2738 */
2739 remove_partial(n, page);
2740 stat(s, FREE_REMOVE_PARTIAL);
2741 } else {
2742 /* Slab must be on the full list */
2743 remove_full(s, n, page);
2744 }
2745
2746 spin_unlock_irqrestore(&n->list_lock, flags);
2747 stat(s, FREE_SLAB);
2748 discard_slab(s, page);
2749 }
2750
2751 /*
2752 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2753 * can perform fastpath freeing without additional function calls.
2754 *
2755 * The fastpath is only possible if we are freeing to the current cpu slab
2756 * of this processor. This typically the case if we have just allocated
2757 * the item before.
2758 *
2759 * If fastpath is not possible then fall back to __slab_free where we deal
2760 * with all sorts of special processing.
2761 *
2762 * Bulk free of a freelist with several objects (all pointing to the
2763 * same page) possible by specifying head and tail ptr, plus objects
2764 * count (cnt). Bulk free indicated by tail pointer being set.
2765 */
2766 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2767 void *head, void *tail, int cnt,
2768 unsigned long addr)
2769 {
2770 void *tail_obj = tail ? : head;
2771 struct kmem_cache_cpu *c;
2772 unsigned long tid;
2773
2774 slab_free_freelist_hook(s, head, tail);
2775
2776 redo:
2777 /*
2778 * Determine the currently cpus per cpu slab.
2779 * The cpu may change afterward. However that does not matter since
2780 * data is retrieved via this pointer. If we are on the same cpu
2781 * during the cmpxchg then the free will succeed.
2782 */
2783 do {
2784 tid = this_cpu_read(s->cpu_slab->tid);
2785 c = raw_cpu_ptr(s->cpu_slab);
2786 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2787 unlikely(tid != READ_ONCE(c->tid)));
2788
2789 /* Same with comment on barrier() in slab_alloc_node() */
2790 barrier();
2791
2792 if (likely(page == c->page)) {
2793 set_freepointer(s, tail_obj, c->freelist);
2794
2795 if (unlikely(!this_cpu_cmpxchg_double(
2796 s->cpu_slab->freelist, s->cpu_slab->tid,
2797 c->freelist, tid,
2798 head, next_tid(tid)))) {
2799
2800 note_cmpxchg_failure("slab_free", s, tid);
2801 goto redo;
2802 }
2803 stat(s, FREE_FASTPATH);
2804 } else
2805 __slab_free(s, page, head, tail_obj, cnt, addr);
2806
2807 }
2808
2809 void kmem_cache_free(struct kmem_cache *s, void *x)
2810 {
2811 s = cache_from_obj(s, x);
2812 if (!s)
2813 return;
2814 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2815 trace_kmem_cache_free(_RET_IP_, x);
2816 }
2817 EXPORT_SYMBOL(kmem_cache_free);
2818
2819 struct detached_freelist {
2820 struct page *page;
2821 void *tail;
2822 void *freelist;
2823 int cnt;
2824 };
2825
2826 /*
2827 * This function progressively scans the array with free objects (with
2828 * a limited look ahead) and extract objects belonging to the same
2829 * page. It builds a detached freelist directly within the given
2830 * page/objects. This can happen without any need for
2831 * synchronization, because the objects are owned by running process.
2832 * The freelist is build up as a single linked list in the objects.
2833 * The idea is, that this detached freelist can then be bulk
2834 * transferred to the real freelist(s), but only requiring a single
2835 * synchronization primitive. Look ahead in the array is limited due
2836 * to performance reasons.
2837 */
2838 static int build_detached_freelist(struct kmem_cache *s, size_t size,
2839 void **p, struct detached_freelist *df)
2840 {
2841 size_t first_skipped_index = 0;
2842 int lookahead = 3;
2843 void *object;
2844
2845 /* Always re-init detached_freelist */
2846 df->page = NULL;
2847
2848 do {
2849 object = p[--size];
2850 } while (!object && size);
2851
2852 if (!object)
2853 return 0;
2854
2855 /* Start new detached freelist */
2856 set_freepointer(s, object, NULL);
2857 df->page = virt_to_head_page(object);
2858 df->tail = object;
2859 df->freelist = object;
2860 p[size] = NULL; /* mark object processed */
2861 df->cnt = 1;
2862
2863 while (size) {
2864 object = p[--size];
2865 if (!object)
2866 continue; /* Skip processed objects */
2867
2868 /* df->page is always set at this point */
2869 if (df->page == virt_to_head_page(object)) {
2870 /* Opportunity build freelist */
2871 set_freepointer(s, object, df->freelist);
2872 df->freelist = object;
2873 df->cnt++;
2874 p[size] = NULL; /* mark object processed */
2875
2876 continue;
2877 }
2878
2879 /* Limit look ahead search */
2880 if (!--lookahead)
2881 break;
2882
2883 if (!first_skipped_index)
2884 first_skipped_index = size + 1;
2885 }
2886
2887 return first_skipped_index;
2888 }
2889
2890
2891 /* Note that interrupts must be enabled when calling this function. */
2892 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
2893 {
2894 if (WARN_ON(!size))
2895 return;
2896
2897 do {
2898 struct detached_freelist df;
2899 struct kmem_cache *s;
2900
2901 /* Support for memcg */
2902 s = cache_from_obj(orig_s, p[size - 1]);
2903
2904 size = build_detached_freelist(s, size, p, &df);
2905 if (unlikely(!df.page))
2906 continue;
2907
2908 slab_free(s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
2909 } while (likely(size));
2910 }
2911 EXPORT_SYMBOL(kmem_cache_free_bulk);
2912
2913 /* Note that interrupts must be enabled when calling this function. */
2914 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2915 void **p)
2916 {
2917 struct kmem_cache_cpu *c;
2918 int i;
2919
2920 /* memcg and kmem_cache debug support */
2921 s = slab_pre_alloc_hook(s, flags);
2922 if (unlikely(!s))
2923 return false;
2924 /*
2925 * Drain objects in the per cpu slab, while disabling local
2926 * IRQs, which protects against PREEMPT and interrupts
2927 * handlers invoking normal fastpath.
2928 */
2929 local_irq_disable();
2930 c = this_cpu_ptr(s->cpu_slab);
2931
2932 for (i = 0; i < size; i++) {
2933 void *object = c->freelist;
2934
2935 if (unlikely(!object)) {
2936 /*
2937 * Invoking slow path likely have side-effect
2938 * of re-populating per CPU c->freelist
2939 */
2940 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
2941 _RET_IP_, c);
2942 if (unlikely(!p[i]))
2943 goto error;
2944
2945 c = this_cpu_ptr(s->cpu_slab);
2946 continue; /* goto for-loop */
2947 }
2948 c->freelist = get_freepointer(s, object);
2949 p[i] = object;
2950 }
2951 c->tid = next_tid(c->tid);
2952 local_irq_enable();
2953
2954 /* Clear memory outside IRQ disabled fastpath loop */
2955 if (unlikely(flags & __GFP_ZERO)) {
2956 int j;
2957
2958 for (j = 0; j < i; j++)
2959 memset(p[j], 0, s->object_size);
2960 }
2961
2962 /* memcg and kmem_cache debug support */
2963 slab_post_alloc_hook(s, flags, size, p);
2964 return i;
2965 error:
2966 local_irq_enable();
2967 slab_post_alloc_hook(s, flags, i, p);
2968 __kmem_cache_free_bulk(s, i, p);
2969 return 0;
2970 }
2971 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
2972
2973
2974 /*
2975 * Object placement in a slab is made very easy because we always start at
2976 * offset 0. If we tune the size of the object to the alignment then we can
2977 * get the required alignment by putting one properly sized object after
2978 * another.
2979 *
2980 * Notice that the allocation order determines the sizes of the per cpu
2981 * caches. Each processor has always one slab available for allocations.
2982 * Increasing the allocation order reduces the number of times that slabs
2983 * must be moved on and off the partial lists and is therefore a factor in
2984 * locking overhead.
2985 */
2986
2987 /*
2988 * Mininum / Maximum order of slab pages. This influences locking overhead
2989 * and slab fragmentation. A higher order reduces the number of partial slabs
2990 * and increases the number of allocations possible without having to
2991 * take the list_lock.
2992 */
2993 static int slub_min_order;
2994 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2995 static int slub_min_objects;
2996
2997 /*
2998 * Calculate the order of allocation given an slab object size.
2999 *
3000 * The order of allocation has significant impact on performance and other
3001 * system components. Generally order 0 allocations should be preferred since
3002 * order 0 does not cause fragmentation in the page allocator. Larger objects
3003 * be problematic to put into order 0 slabs because there may be too much
3004 * unused space left. We go to a higher order if more than 1/16th of the slab
3005 * would be wasted.
3006 *
3007 * In order to reach satisfactory performance we must ensure that a minimum
3008 * number of objects is in one slab. Otherwise we may generate too much
3009 * activity on the partial lists which requires taking the list_lock. This is
3010 * less a concern for large slabs though which are rarely used.
3011 *
3012 * slub_max_order specifies the order where we begin to stop considering the
3013 * number of objects in a slab as critical. If we reach slub_max_order then
3014 * we try to keep the page order as low as possible. So we accept more waste
3015 * of space in favor of a small page order.
3016 *
3017 * Higher order allocations also allow the placement of more objects in a
3018 * slab and thereby reduce object handling overhead. If the user has
3019 * requested a higher mininum order then we start with that one instead of
3020 * the smallest order which will fit the object.
3021 */
3022 static inline int slab_order(int size, int min_objects,
3023 int max_order, int fract_leftover, int reserved)
3024 {
3025 int order;
3026 int rem;
3027 int min_order = slub_min_order;
3028
3029 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3030 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3031
3032 for (order = max(min_order, get_order(min_objects * size + reserved));
3033 order <= max_order; order++) {
3034
3035 unsigned long slab_size = PAGE_SIZE << order;
3036
3037 rem = (slab_size - reserved) % size;
3038
3039 if (rem <= slab_size / fract_leftover)
3040 break;
3041 }
3042
3043 return order;
3044 }
3045
3046 static inline int calculate_order(int size, int reserved)
3047 {
3048 int order;
3049 int min_objects;
3050 int fraction;
3051 int max_objects;
3052
3053 /*
3054 * Attempt to find best configuration for a slab. This
3055 * works by first attempting to generate a layout with
3056 * the best configuration and backing off gradually.
3057 *
3058 * First we increase the acceptable waste in a slab. Then
3059 * we reduce the minimum objects required in a slab.
3060 */
3061 min_objects = slub_min_objects;
3062 if (!min_objects)
3063 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3064 max_objects = order_objects(slub_max_order, size, reserved);
3065 min_objects = min(min_objects, max_objects);
3066
3067 while (min_objects > 1) {
3068 fraction = 16;
3069 while (fraction >= 4) {
3070 order = slab_order(size, min_objects,
3071 slub_max_order, fraction, reserved);
3072 if (order <= slub_max_order)
3073 return order;
3074 fraction /= 2;
3075 }
3076 min_objects--;
3077 }
3078
3079 /*
3080 * We were unable to place multiple objects in a slab. Now
3081 * lets see if we can place a single object there.
3082 */
3083 order = slab_order(size, 1, slub_max_order, 1, reserved);
3084 if (order <= slub_max_order)
3085 return order;
3086
3087 /*
3088 * Doh this slab cannot be placed using slub_max_order.
3089 */
3090 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3091 if (order < MAX_ORDER)
3092 return order;
3093 return -ENOSYS;
3094 }
3095
3096 static void
3097 init_kmem_cache_node(struct kmem_cache_node *n)
3098 {
3099 n->nr_partial = 0;
3100 spin_lock_init(&n->list_lock);
3101 INIT_LIST_HEAD(&n->partial);
3102 #ifdef CONFIG_SLUB_DEBUG
3103 atomic_long_set(&n->nr_slabs, 0);
3104 atomic_long_set(&n->total_objects, 0);
3105 INIT_LIST_HEAD(&n->full);
3106 #endif
3107 }
3108
3109 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3110 {
3111 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3112 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3113
3114 /*
3115 * Must align to double word boundary for the double cmpxchg
3116 * instructions to work; see __pcpu_double_call_return_bool().
3117 */
3118 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3119 2 * sizeof(void *));
3120
3121 if (!s->cpu_slab)
3122 return 0;
3123
3124 init_kmem_cache_cpus(s);
3125
3126 return 1;
3127 }
3128
3129 static struct kmem_cache *kmem_cache_node;
3130
3131 /*
3132 * No kmalloc_node yet so do it by hand. We know that this is the first
3133 * slab on the node for this slabcache. There are no concurrent accesses
3134 * possible.
3135 *
3136 * Note that this function only works on the kmem_cache_node
3137 * when allocating for the kmem_cache_node. This is used for bootstrapping
3138 * memory on a fresh node that has no slab structures yet.
3139 */
3140 static void early_kmem_cache_node_alloc(int node)
3141 {
3142 struct page *page;
3143 struct kmem_cache_node *n;
3144
3145 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3146
3147 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3148
3149 BUG_ON(!page);
3150 if (page_to_nid(page) != node) {
3151 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3152 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3153 }
3154
3155 n = page->freelist;
3156 BUG_ON(!n);
3157 page->freelist = get_freepointer(kmem_cache_node, n);
3158 page->inuse = 1;
3159 page->frozen = 0;
3160 kmem_cache_node->node[node] = n;
3161 #ifdef CONFIG_SLUB_DEBUG
3162 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3163 init_tracking(kmem_cache_node, n);
3164 #endif
3165 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node));
3166 init_kmem_cache_node(n);
3167 inc_slabs_node(kmem_cache_node, node, page->objects);
3168
3169 /*
3170 * No locks need to be taken here as it has just been
3171 * initialized and there is no concurrent access.
3172 */
3173 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3174 }
3175
3176 static void free_kmem_cache_nodes(struct kmem_cache *s)
3177 {
3178 int node;
3179 struct kmem_cache_node *n;
3180
3181 for_each_kmem_cache_node(s, node, n) {
3182 kmem_cache_free(kmem_cache_node, n);
3183 s->node[node] = NULL;
3184 }
3185 }
3186
3187 static int init_kmem_cache_nodes(struct kmem_cache *s)
3188 {
3189 int node;
3190
3191 for_each_node_state(node, N_NORMAL_MEMORY) {
3192 struct kmem_cache_node *n;
3193
3194 if (slab_state == DOWN) {
3195 early_kmem_cache_node_alloc(node);
3196 continue;
3197 }
3198 n = kmem_cache_alloc_node(kmem_cache_node,
3199 GFP_KERNEL, node);
3200
3201 if (!n) {
3202 free_kmem_cache_nodes(s);
3203 return 0;
3204 }
3205
3206 s->node[node] = n;
3207 init_kmem_cache_node(n);
3208 }
3209 return 1;
3210 }
3211
3212 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3213 {
3214 if (min < MIN_PARTIAL)
3215 min = MIN_PARTIAL;
3216 else if (min > MAX_PARTIAL)
3217 min = MAX_PARTIAL;
3218 s->min_partial = min;
3219 }
3220
3221 /*
3222 * calculate_sizes() determines the order and the distribution of data within
3223 * a slab object.
3224 */
3225 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3226 {
3227 unsigned long flags = s->flags;
3228 unsigned long size = s->object_size;
3229 int order;
3230
3231 /*
3232 * Round up object size to the next word boundary. We can only
3233 * place the free pointer at word boundaries and this determines
3234 * the possible location of the free pointer.
3235 */
3236 size = ALIGN(size, sizeof(void *));
3237
3238 #ifdef CONFIG_SLUB_DEBUG
3239 /*
3240 * Determine if we can poison the object itself. If the user of
3241 * the slab may touch the object after free or before allocation
3242 * then we should never poison the object itself.
3243 */
3244 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3245 !s->ctor)
3246 s->flags |= __OBJECT_POISON;
3247 else
3248 s->flags &= ~__OBJECT_POISON;
3249
3250
3251 /*
3252 * If we are Redzoning then check if there is some space between the
3253 * end of the object and the free pointer. If not then add an
3254 * additional word to have some bytes to store Redzone information.
3255 */
3256 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3257 size += sizeof(void *);
3258 #endif
3259
3260 /*
3261 * With that we have determined the number of bytes in actual use
3262 * by the object. This is the potential offset to the free pointer.
3263 */
3264 s->inuse = size;
3265
3266 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3267 s->ctor)) {
3268 /*
3269 * Relocate free pointer after the object if it is not
3270 * permitted to overwrite the first word of the object on
3271 * kmem_cache_free.
3272 *
3273 * This is the case if we do RCU, have a constructor or
3274 * destructor or are poisoning the objects.
3275 */
3276 s->offset = size;
3277 size += sizeof(void *);
3278 }
3279
3280 #ifdef CONFIG_SLUB_DEBUG
3281 if (flags & SLAB_STORE_USER)
3282 /*
3283 * Need to store information about allocs and frees after
3284 * the object.
3285 */
3286 size += 2 * sizeof(struct track);
3287
3288 if (flags & SLAB_RED_ZONE)
3289 /*
3290 * Add some empty padding so that we can catch
3291 * overwrites from earlier objects rather than let
3292 * tracking information or the free pointer be
3293 * corrupted if a user writes before the start
3294 * of the object.
3295 */
3296 size += sizeof(void *);
3297 #endif
3298
3299 /*
3300 * SLUB stores one object immediately after another beginning from
3301 * offset 0. In order to align the objects we have to simply size
3302 * each object to conform to the alignment.
3303 */
3304 size = ALIGN(size, s->align);
3305 s->size = size;
3306 if (forced_order >= 0)
3307 order = forced_order;
3308 else
3309 order = calculate_order(size, s->reserved);
3310
3311 if (order < 0)
3312 return 0;
3313
3314 s->allocflags = 0;
3315 if (order)
3316 s->allocflags |= __GFP_COMP;
3317
3318 if (s->flags & SLAB_CACHE_DMA)
3319 s->allocflags |= GFP_DMA;
3320
3321 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3322 s->allocflags |= __GFP_RECLAIMABLE;
3323
3324 /*
3325 * Determine the number of objects per slab
3326 */
3327 s->oo = oo_make(order, size, s->reserved);
3328 s->min = oo_make(get_order(size), size, s->reserved);
3329 if (oo_objects(s->oo) > oo_objects(s->max))
3330 s->max = s->oo;
3331
3332 return !!oo_objects(s->oo);
3333 }
3334
3335 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3336 {
3337 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3338 s->reserved = 0;
3339
3340 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3341 s->reserved = sizeof(struct rcu_head);
3342
3343 if (!calculate_sizes(s, -1))
3344 goto error;
3345 if (disable_higher_order_debug) {
3346 /*
3347 * Disable debugging flags that store metadata if the min slab
3348 * order increased.
3349 */
3350 if (get_order(s->size) > get_order(s->object_size)) {
3351 s->flags &= ~DEBUG_METADATA_FLAGS;
3352 s->offset = 0;
3353 if (!calculate_sizes(s, -1))
3354 goto error;
3355 }
3356 }
3357
3358 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3359 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3360 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3361 /* Enable fast mode */
3362 s->flags |= __CMPXCHG_DOUBLE;
3363 #endif
3364
3365 /*
3366 * The larger the object size is, the more pages we want on the partial
3367 * list to avoid pounding the page allocator excessively.
3368 */
3369 set_min_partial(s, ilog2(s->size) / 2);
3370
3371 /*
3372 * cpu_partial determined the maximum number of objects kept in the
3373 * per cpu partial lists of a processor.
3374 *
3375 * Per cpu partial lists mainly contain slabs that just have one
3376 * object freed. If they are used for allocation then they can be
3377 * filled up again with minimal effort. The slab will never hit the
3378 * per node partial lists and therefore no locking will be required.
3379 *
3380 * This setting also determines
3381 *
3382 * A) The number of objects from per cpu partial slabs dumped to the
3383 * per node list when we reach the limit.
3384 * B) The number of objects in cpu partial slabs to extract from the
3385 * per node list when we run out of per cpu objects. We only fetch
3386 * 50% to keep some capacity around for frees.
3387 */
3388 if (!kmem_cache_has_cpu_partial(s))
3389 s->cpu_partial = 0;
3390 else if (s->size >= PAGE_SIZE)
3391 s->cpu_partial = 2;
3392 else if (s->size >= 1024)
3393 s->cpu_partial = 6;
3394 else if (s->size >= 256)
3395 s->cpu_partial = 13;
3396 else
3397 s->cpu_partial = 30;
3398
3399 #ifdef CONFIG_NUMA
3400 s->remote_node_defrag_ratio = 1000;
3401 #endif
3402 if (!init_kmem_cache_nodes(s))
3403 goto error;
3404
3405 if (alloc_kmem_cache_cpus(s))
3406 return 0;
3407
3408 free_kmem_cache_nodes(s);
3409 error:
3410 if (flags & SLAB_PANIC)
3411 panic("Cannot create slab %s size=%lu realsize=%u "
3412 "order=%u offset=%u flags=%lx\n",
3413 s->name, (unsigned long)s->size, s->size,
3414 oo_order(s->oo), s->offset, flags);
3415 return -EINVAL;
3416 }
3417
3418 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3419 const char *text)
3420 {
3421 #ifdef CONFIG_SLUB_DEBUG
3422 void *addr = page_address(page);
3423 void *p;
3424 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3425 sizeof(long), GFP_ATOMIC);
3426 if (!map)
3427 return;
3428 slab_err(s, page, text, s->name);
3429 slab_lock(page);
3430
3431 get_map(s, page, map);
3432 for_each_object(p, s, addr, page->objects) {
3433
3434 if (!test_bit(slab_index(p, s, addr), map)) {
3435 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3436 print_tracking(s, p);
3437 }
3438 }
3439 slab_unlock(page);
3440 kfree(map);
3441 #endif
3442 }
3443
3444 /*
3445 * Attempt to free all partial slabs on a node.
3446 * This is called from kmem_cache_close(). We must be the last thread
3447 * using the cache and therefore we do not need to lock anymore.
3448 */
3449 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3450 {
3451 struct page *page, *h;
3452
3453 list_for_each_entry_safe(page, h, &n->partial, lru) {
3454 if (!page->inuse) {
3455 __remove_partial(n, page);
3456 discard_slab(s, page);
3457 } else {
3458 list_slab_objects(s, page,
3459 "Objects remaining in %s on kmem_cache_close()");
3460 }
3461 }
3462 }
3463
3464 /*
3465 * Release all resources used by a slab cache.
3466 */
3467 static inline int kmem_cache_close(struct kmem_cache *s)
3468 {
3469 int node;
3470 struct kmem_cache_node *n;
3471
3472 flush_all(s);
3473 /* Attempt to free all objects */
3474 for_each_kmem_cache_node(s, node, n) {
3475 free_partial(s, n);
3476 if (n->nr_partial || slabs_node(s, node))
3477 return 1;
3478 }
3479 free_percpu(s->cpu_slab);
3480 free_kmem_cache_nodes(s);
3481 return 0;
3482 }
3483
3484 int __kmem_cache_shutdown(struct kmem_cache *s)
3485 {
3486 return kmem_cache_close(s);
3487 }
3488
3489 /********************************************************************
3490 * Kmalloc subsystem
3491 *******************************************************************/
3492
3493 static int __init setup_slub_min_order(char *str)
3494 {
3495 get_option(&str, &slub_min_order);
3496
3497 return 1;
3498 }
3499
3500 __setup("slub_min_order=", setup_slub_min_order);
3501
3502 static int __init setup_slub_max_order(char *str)
3503 {
3504 get_option(&str, &slub_max_order);
3505 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3506
3507 return 1;
3508 }
3509
3510 __setup("slub_max_order=", setup_slub_max_order);
3511
3512 static int __init setup_slub_min_objects(char *str)
3513 {
3514 get_option(&str, &slub_min_objects);
3515
3516 return 1;
3517 }
3518
3519 __setup("slub_min_objects=", setup_slub_min_objects);
3520
3521 void *__kmalloc(size_t size, gfp_t flags)
3522 {
3523 struct kmem_cache *s;
3524 void *ret;
3525
3526 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3527 return kmalloc_large(size, flags);
3528
3529 s = kmalloc_slab(size, flags);
3530
3531 if (unlikely(ZERO_OR_NULL_PTR(s)))
3532 return s;
3533
3534 ret = slab_alloc(s, flags, _RET_IP_);
3535
3536 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3537
3538 kasan_kmalloc(s, ret, size);
3539
3540 return ret;
3541 }
3542 EXPORT_SYMBOL(__kmalloc);
3543
3544 #ifdef CONFIG_NUMA
3545 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3546 {
3547 struct page *page;
3548 void *ptr = NULL;
3549
3550 flags |= __GFP_COMP | __GFP_NOTRACK;
3551 page = alloc_kmem_pages_node(node, flags, get_order(size));
3552 if (page)
3553 ptr = page_address(page);
3554
3555 kmalloc_large_node_hook(ptr, size, flags);
3556 return ptr;
3557 }
3558
3559 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3560 {
3561 struct kmem_cache *s;
3562 void *ret;
3563
3564 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3565 ret = kmalloc_large_node(size, flags, node);
3566
3567 trace_kmalloc_node(_RET_IP_, ret,
3568 size, PAGE_SIZE << get_order(size),
3569 flags, node);
3570
3571 return ret;
3572 }
3573
3574 s = kmalloc_slab(size, flags);
3575
3576 if (unlikely(ZERO_OR_NULL_PTR(s)))
3577 return s;
3578
3579 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3580
3581 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3582
3583 kasan_kmalloc(s, ret, size);
3584
3585 return ret;
3586 }
3587 EXPORT_SYMBOL(__kmalloc_node);
3588 #endif
3589
3590 static size_t __ksize(const void *object)
3591 {
3592 struct page *page;
3593
3594 if (unlikely(object == ZERO_SIZE_PTR))
3595 return 0;
3596
3597 page = virt_to_head_page(object);
3598
3599 if (unlikely(!PageSlab(page))) {
3600 WARN_ON(!PageCompound(page));
3601 return PAGE_SIZE << compound_order(page);
3602 }
3603
3604 return slab_ksize(page->slab_cache);
3605 }
3606
3607 size_t ksize(const void *object)
3608 {
3609 size_t size = __ksize(object);
3610 /* We assume that ksize callers could use whole allocated area,
3611 so we need unpoison this area. */
3612 kasan_krealloc(object, size);
3613 return size;
3614 }
3615 EXPORT_SYMBOL(ksize);
3616
3617 void kfree(const void *x)
3618 {
3619 struct page *page;
3620 void *object = (void *)x;
3621
3622 trace_kfree(_RET_IP_, x);
3623
3624 if (unlikely(ZERO_OR_NULL_PTR(x)))
3625 return;
3626
3627 page = virt_to_head_page(x);
3628 if (unlikely(!PageSlab(page))) {
3629 BUG_ON(!PageCompound(page));
3630 kfree_hook(x);
3631 __free_kmem_pages(page, compound_order(page));
3632 return;
3633 }
3634 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3635 }
3636 EXPORT_SYMBOL(kfree);
3637
3638 #define SHRINK_PROMOTE_MAX 32
3639
3640 /*
3641 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3642 * up most to the head of the partial lists. New allocations will then
3643 * fill those up and thus they can be removed from the partial lists.
3644 *
3645 * The slabs with the least items are placed last. This results in them
3646 * being allocated from last increasing the chance that the last objects
3647 * are freed in them.
3648 */
3649 int __kmem_cache_shrink(struct kmem_cache *s, bool deactivate)
3650 {
3651 int node;
3652 int i;
3653 struct kmem_cache_node *n;
3654 struct page *page;
3655 struct page *t;
3656 struct list_head discard;
3657 struct list_head promote[SHRINK_PROMOTE_MAX];
3658 unsigned long flags;
3659 int ret = 0;
3660
3661 if (deactivate) {
3662 /*
3663 * Disable empty slabs caching. Used to avoid pinning offline
3664 * memory cgroups by kmem pages that can be freed.
3665 */
3666 s->cpu_partial = 0;
3667 s->min_partial = 0;
3668
3669 /*
3670 * s->cpu_partial is checked locklessly (see put_cpu_partial),
3671 * so we have to make sure the change is visible.
3672 */
3673 kick_all_cpus_sync();
3674 }
3675
3676 flush_all(s);
3677 for_each_kmem_cache_node(s, node, n) {
3678 INIT_LIST_HEAD(&discard);
3679 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3680 INIT_LIST_HEAD(promote + i);
3681
3682 spin_lock_irqsave(&n->list_lock, flags);
3683
3684 /*
3685 * Build lists of slabs to discard or promote.
3686 *
3687 * Note that concurrent frees may occur while we hold the
3688 * list_lock. page->inuse here is the upper limit.
3689 */
3690 list_for_each_entry_safe(page, t, &n->partial, lru) {
3691 int free = page->objects - page->inuse;
3692
3693 /* Do not reread page->inuse */
3694 barrier();
3695
3696 /* We do not keep full slabs on the list */
3697 BUG_ON(free <= 0);
3698
3699 if (free == page->objects) {
3700 list_move(&page->lru, &discard);
3701 n->nr_partial--;
3702 } else if (free <= SHRINK_PROMOTE_MAX)
3703 list_move(&page->lru, promote + free - 1);
3704 }
3705
3706 /*
3707 * Promote the slabs filled up most to the head of the
3708 * partial list.
3709 */
3710 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3711 list_splice(promote + i, &n->partial);
3712
3713 spin_unlock_irqrestore(&n->list_lock, flags);
3714
3715 /* Release empty slabs */
3716 list_for_each_entry_safe(page, t, &discard, lru)
3717 discard_slab(s, page);
3718
3719 if (slabs_node(s, node))
3720 ret = 1;
3721 }
3722
3723 return ret;
3724 }
3725
3726 static int slab_mem_going_offline_callback(void *arg)
3727 {
3728 struct kmem_cache *s;
3729
3730 mutex_lock(&slab_mutex);
3731 list_for_each_entry(s, &slab_caches, list)
3732 __kmem_cache_shrink(s, false);
3733 mutex_unlock(&slab_mutex);
3734
3735 return 0;
3736 }
3737
3738 static void slab_mem_offline_callback(void *arg)
3739 {
3740 struct kmem_cache_node *n;
3741 struct kmem_cache *s;
3742 struct memory_notify *marg = arg;
3743 int offline_node;
3744
3745 offline_node = marg->status_change_nid_normal;
3746
3747 /*
3748 * If the node still has available memory. we need kmem_cache_node
3749 * for it yet.
3750 */
3751 if (offline_node < 0)
3752 return;
3753
3754 mutex_lock(&slab_mutex);
3755 list_for_each_entry(s, &slab_caches, list) {
3756 n = get_node(s, offline_node);
3757 if (n) {
3758 /*
3759 * if n->nr_slabs > 0, slabs still exist on the node
3760 * that is going down. We were unable to free them,
3761 * and offline_pages() function shouldn't call this
3762 * callback. So, we must fail.
3763 */
3764 BUG_ON(slabs_node(s, offline_node));
3765
3766 s->node[offline_node] = NULL;
3767 kmem_cache_free(kmem_cache_node, n);
3768 }
3769 }
3770 mutex_unlock(&slab_mutex);
3771 }
3772
3773 static int slab_mem_going_online_callback(void *arg)
3774 {
3775 struct kmem_cache_node *n;
3776 struct kmem_cache *s;
3777 struct memory_notify *marg = arg;
3778 int nid = marg->status_change_nid_normal;
3779 int ret = 0;
3780
3781 /*
3782 * If the node's memory is already available, then kmem_cache_node is
3783 * already created. Nothing to do.
3784 */
3785 if (nid < 0)
3786 return 0;
3787
3788 /*
3789 * We are bringing a node online. No memory is available yet. We must
3790 * allocate a kmem_cache_node structure in order to bring the node
3791 * online.
3792 */
3793 mutex_lock(&slab_mutex);
3794 list_for_each_entry(s, &slab_caches, list) {
3795 /*
3796 * XXX: kmem_cache_alloc_node will fallback to other nodes
3797 * since memory is not yet available from the node that
3798 * is brought up.
3799 */
3800 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3801 if (!n) {
3802 ret = -ENOMEM;
3803 goto out;
3804 }
3805 init_kmem_cache_node(n);
3806 s->node[nid] = n;
3807 }
3808 out:
3809 mutex_unlock(&slab_mutex);
3810 return ret;
3811 }
3812
3813 static int slab_memory_callback(struct notifier_block *self,
3814 unsigned long action, void *arg)
3815 {
3816 int ret = 0;
3817
3818 switch (action) {
3819 case MEM_GOING_ONLINE:
3820 ret = slab_mem_going_online_callback(arg);
3821 break;
3822 case MEM_GOING_OFFLINE:
3823 ret = slab_mem_going_offline_callback(arg);
3824 break;
3825 case MEM_OFFLINE:
3826 case MEM_CANCEL_ONLINE:
3827 slab_mem_offline_callback(arg);
3828 break;
3829 case MEM_ONLINE:
3830 case MEM_CANCEL_OFFLINE:
3831 break;
3832 }
3833 if (ret)
3834 ret = notifier_from_errno(ret);
3835 else
3836 ret = NOTIFY_OK;
3837 return ret;
3838 }
3839
3840 static struct notifier_block slab_memory_callback_nb = {
3841 .notifier_call = slab_memory_callback,
3842 .priority = SLAB_CALLBACK_PRI,
3843 };
3844
3845 /********************************************************************
3846 * Basic setup of slabs
3847 *******************************************************************/
3848
3849 /*
3850 * Used for early kmem_cache structures that were allocated using
3851 * the page allocator. Allocate them properly then fix up the pointers
3852 * that may be pointing to the wrong kmem_cache structure.
3853 */
3854
3855 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3856 {
3857 int node;
3858 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3859 struct kmem_cache_node *n;
3860
3861 memcpy(s, static_cache, kmem_cache->object_size);
3862
3863 /*
3864 * This runs very early, and only the boot processor is supposed to be
3865 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3866 * IPIs around.
3867 */
3868 __flush_cpu_slab(s, smp_processor_id());
3869 for_each_kmem_cache_node(s, node, n) {
3870 struct page *p;
3871
3872 list_for_each_entry(p, &n->partial, lru)
3873 p->slab_cache = s;
3874
3875 #ifdef CONFIG_SLUB_DEBUG
3876 list_for_each_entry(p, &n->full, lru)
3877 p->slab_cache = s;
3878 #endif
3879 }
3880 slab_init_memcg_params(s);
3881 list_add(&s->list, &slab_caches);
3882 return s;
3883 }
3884
3885 void __init kmem_cache_init(void)
3886 {
3887 static __initdata struct kmem_cache boot_kmem_cache,
3888 boot_kmem_cache_node;
3889
3890 if (debug_guardpage_minorder())
3891 slub_max_order = 0;
3892
3893 kmem_cache_node = &boot_kmem_cache_node;
3894 kmem_cache = &boot_kmem_cache;
3895
3896 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3897 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3898
3899 register_hotmemory_notifier(&slab_memory_callback_nb);
3900
3901 /* Able to allocate the per node structures */
3902 slab_state = PARTIAL;
3903
3904 create_boot_cache(kmem_cache, "kmem_cache",
3905 offsetof(struct kmem_cache, node) +
3906 nr_node_ids * sizeof(struct kmem_cache_node *),
3907 SLAB_HWCACHE_ALIGN);
3908
3909 kmem_cache = bootstrap(&boot_kmem_cache);
3910
3911 /*
3912 * Allocate kmem_cache_node properly from the kmem_cache slab.
3913 * kmem_cache_node is separately allocated so no need to
3914 * update any list pointers.
3915 */
3916 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3917
3918 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3919 setup_kmalloc_cache_index_table();
3920 create_kmalloc_caches(0);
3921
3922 #ifdef CONFIG_SMP
3923 register_cpu_notifier(&slab_notifier);
3924 #endif
3925
3926 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3927 cache_line_size(),
3928 slub_min_order, slub_max_order, slub_min_objects,
3929 nr_cpu_ids, nr_node_ids);
3930 }
3931
3932 void __init kmem_cache_init_late(void)
3933 {
3934 }
3935
3936 struct kmem_cache *
3937 __kmem_cache_alias(const char *name, size_t size, size_t align,
3938 unsigned long flags, void (*ctor)(void *))
3939 {
3940 struct kmem_cache *s, *c;
3941
3942 s = find_mergeable(size, align, flags, name, ctor);
3943 if (s) {
3944 s->refcount++;
3945
3946 /*
3947 * Adjust the object sizes so that we clear
3948 * the complete object on kzalloc.
3949 */
3950 s->object_size = max(s->object_size, (int)size);
3951 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3952
3953 for_each_memcg_cache(c, s) {
3954 c->object_size = s->object_size;
3955 c->inuse = max_t(int, c->inuse,
3956 ALIGN(size, sizeof(void *)));
3957 }
3958
3959 if (sysfs_slab_alias(s, name)) {
3960 s->refcount--;
3961 s = NULL;
3962 }
3963 }
3964
3965 return s;
3966 }
3967
3968 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3969 {
3970 int err;
3971
3972 err = kmem_cache_open(s, flags);
3973 if (err)
3974 return err;
3975
3976 /* Mutex is not taken during early boot */
3977 if (slab_state <= UP)
3978 return 0;
3979
3980 memcg_propagate_slab_attrs(s);
3981 err = sysfs_slab_add(s);
3982 if (err)
3983 kmem_cache_close(s);
3984
3985 return err;
3986 }
3987
3988 #ifdef CONFIG_SMP
3989 /*
3990 * Use the cpu notifier to insure that the cpu slabs are flushed when
3991 * necessary.
3992 */
3993 static int slab_cpuup_callback(struct notifier_block *nfb,
3994 unsigned long action, void *hcpu)
3995 {
3996 long cpu = (long)hcpu;
3997 struct kmem_cache *s;
3998 unsigned long flags;
3999
4000 switch (action) {
4001 case CPU_UP_CANCELED:
4002 case CPU_UP_CANCELED_FROZEN:
4003 case CPU_DEAD:
4004 case CPU_DEAD_FROZEN:
4005 mutex_lock(&slab_mutex);
4006 list_for_each_entry(s, &slab_caches, list) {
4007 local_irq_save(flags);
4008 __flush_cpu_slab(s, cpu);
4009 local_irq_restore(flags);
4010 }
4011 mutex_unlock(&slab_mutex);
4012 break;
4013 default:
4014 break;
4015 }
4016 return NOTIFY_OK;
4017 }
4018
4019 static struct notifier_block slab_notifier = {
4020 .notifier_call = slab_cpuup_callback
4021 };
4022
4023 #endif
4024
4025 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4026 {
4027 struct kmem_cache *s;
4028 void *ret;
4029
4030 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4031 return kmalloc_large(size, gfpflags);
4032
4033 s = kmalloc_slab(size, gfpflags);
4034
4035 if (unlikely(ZERO_OR_NULL_PTR(s)))
4036 return s;
4037
4038 ret = slab_alloc(s, gfpflags, caller);
4039
4040 /* Honor the call site pointer we received. */
4041 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4042
4043 return ret;
4044 }
4045
4046 #ifdef CONFIG_NUMA
4047 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4048 int node, unsigned long caller)
4049 {
4050 struct kmem_cache *s;
4051 void *ret;
4052
4053 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4054 ret = kmalloc_large_node(size, gfpflags, node);
4055
4056 trace_kmalloc_node(caller, ret,
4057 size, PAGE_SIZE << get_order(size),
4058 gfpflags, node);
4059
4060 return ret;
4061 }
4062
4063 s = kmalloc_slab(size, gfpflags);
4064
4065 if (unlikely(ZERO_OR_NULL_PTR(s)))
4066 return s;
4067
4068 ret = slab_alloc_node(s, gfpflags, node, caller);
4069
4070 /* Honor the call site pointer we received. */
4071 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4072
4073 return ret;
4074 }
4075 #endif
4076
4077 #ifdef CONFIG_SYSFS
4078 static int count_inuse(struct page *page)
4079 {
4080 return page->inuse;
4081 }
4082
4083 static int count_total(struct page *page)
4084 {
4085 return page->objects;
4086 }
4087 #endif
4088
4089 #ifdef CONFIG_SLUB_DEBUG
4090 static int validate_slab(struct kmem_cache *s, struct page *page,
4091 unsigned long *map)
4092 {
4093 void *p;
4094 void *addr = page_address(page);
4095
4096 if (!check_slab(s, page) ||
4097 !on_freelist(s, page, NULL))
4098 return 0;
4099
4100 /* Now we know that a valid freelist exists */
4101 bitmap_zero(map, page->objects);
4102
4103 get_map(s, page, map);
4104 for_each_object(p, s, addr, page->objects) {
4105 if (test_bit(slab_index(p, s, addr), map))
4106 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4107 return 0;
4108 }
4109
4110 for_each_object(p, s, addr, page->objects)
4111 if (!test_bit(slab_index(p, s, addr), map))
4112 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4113 return 0;
4114 return 1;
4115 }
4116
4117 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4118 unsigned long *map)
4119 {
4120 slab_lock(page);
4121 validate_slab(s, page, map);
4122 slab_unlock(page);
4123 }
4124
4125 static int validate_slab_node(struct kmem_cache *s,
4126 struct kmem_cache_node *n, unsigned long *map)
4127 {
4128 unsigned long count = 0;
4129 struct page *page;
4130 unsigned long flags;
4131
4132 spin_lock_irqsave(&n->list_lock, flags);
4133
4134 list_for_each_entry(page, &n->partial, lru) {
4135 validate_slab_slab(s, page, map);
4136 count++;
4137 }
4138 if (count != n->nr_partial)
4139 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4140 s->name, count, n->nr_partial);
4141
4142 if (!(s->flags & SLAB_STORE_USER))
4143 goto out;
4144
4145 list_for_each_entry(page, &n->full, lru) {
4146 validate_slab_slab(s, page, map);
4147 count++;
4148 }
4149 if (count != atomic_long_read(&n->nr_slabs))
4150 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4151 s->name, count, atomic_long_read(&n->nr_slabs));
4152
4153 out:
4154 spin_unlock_irqrestore(&n->list_lock, flags);
4155 return count;
4156 }
4157
4158 static long validate_slab_cache(struct kmem_cache *s)
4159 {
4160 int node;
4161 unsigned long count = 0;
4162 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4163 sizeof(unsigned long), GFP_KERNEL);
4164 struct kmem_cache_node *n;
4165
4166 if (!map)
4167 return -ENOMEM;
4168
4169 flush_all(s);
4170 for_each_kmem_cache_node(s, node, n)
4171 count += validate_slab_node(s, n, map);
4172 kfree(map);
4173 return count;
4174 }
4175 /*
4176 * Generate lists of code addresses where slabcache objects are allocated
4177 * and freed.
4178 */
4179
4180 struct location {
4181 unsigned long count;
4182 unsigned long addr;
4183 long long sum_time;
4184 long min_time;
4185 long max_time;
4186 long min_pid;
4187 long max_pid;
4188 DECLARE_BITMAP(cpus, NR_CPUS);
4189 nodemask_t nodes;
4190 };
4191
4192 struct loc_track {
4193 unsigned long max;
4194 unsigned long count;
4195 struct location *loc;
4196 };
4197
4198 static void free_loc_track(struct loc_track *t)
4199 {
4200 if (t->max)
4201 free_pages((unsigned long)t->loc,
4202 get_order(sizeof(struct location) * t->max));
4203 }
4204
4205 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4206 {
4207 struct location *l;
4208 int order;
4209
4210 order = get_order(sizeof(struct location) * max);
4211
4212 l = (void *)__get_free_pages(flags, order);
4213 if (!l)
4214 return 0;
4215
4216 if (t->count) {
4217 memcpy(l, t->loc, sizeof(struct location) * t->count);
4218 free_loc_track(t);
4219 }
4220 t->max = max;
4221 t->loc = l;
4222 return 1;
4223 }
4224
4225 static int add_location(struct loc_track *t, struct kmem_cache *s,
4226 const struct track *track)
4227 {
4228 long start, end, pos;
4229 struct location *l;
4230 unsigned long caddr;
4231 unsigned long age = jiffies - track->when;
4232
4233 start = -1;
4234 end = t->count;
4235
4236 for ( ; ; ) {
4237 pos = start + (end - start + 1) / 2;
4238
4239 /*
4240 * There is nothing at "end". If we end up there
4241 * we need to add something to before end.
4242 */
4243 if (pos == end)
4244 break;
4245
4246 caddr = t->loc[pos].addr;
4247 if (track->addr == caddr) {
4248
4249 l = &t->loc[pos];
4250 l->count++;
4251 if (track->when) {
4252 l->sum_time += age;
4253 if (age < l->min_time)
4254 l->min_time = age;
4255 if (age > l->max_time)
4256 l->max_time = age;
4257
4258 if (track->pid < l->min_pid)
4259 l->min_pid = track->pid;
4260 if (track->pid > l->max_pid)
4261 l->max_pid = track->pid;
4262
4263 cpumask_set_cpu(track->cpu,
4264 to_cpumask(l->cpus));
4265 }
4266 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4267 return 1;
4268 }
4269
4270 if (track->addr < caddr)
4271 end = pos;
4272 else
4273 start = pos;
4274 }
4275
4276 /*
4277 * Not found. Insert new tracking element.
4278 */
4279 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4280 return 0;
4281
4282 l = t->loc + pos;
4283 if (pos < t->count)
4284 memmove(l + 1, l,
4285 (t->count - pos) * sizeof(struct location));
4286 t->count++;
4287 l->count = 1;
4288 l->addr = track->addr;
4289 l->sum_time = age;
4290 l->min_time = age;
4291 l->max_time = age;
4292 l->min_pid = track->pid;
4293 l->max_pid = track->pid;
4294 cpumask_clear(to_cpumask(l->cpus));
4295 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4296 nodes_clear(l->nodes);
4297 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4298 return 1;
4299 }
4300
4301 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4302 struct page *page, enum track_item alloc,
4303 unsigned long *map)
4304 {
4305 void *addr = page_address(page);
4306 void *p;
4307
4308 bitmap_zero(map, page->objects);
4309 get_map(s, page, map);
4310
4311 for_each_object(p, s, addr, page->objects)
4312 if (!test_bit(slab_index(p, s, addr), map))
4313 add_location(t, s, get_track(s, p, alloc));
4314 }
4315
4316 static int list_locations(struct kmem_cache *s, char *buf,
4317 enum track_item alloc)
4318 {
4319 int len = 0;
4320 unsigned long i;
4321 struct loc_track t = { 0, 0, NULL };
4322 int node;
4323 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4324 sizeof(unsigned long), GFP_KERNEL);
4325 struct kmem_cache_node *n;
4326
4327 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4328 GFP_TEMPORARY)) {
4329 kfree(map);
4330 return sprintf(buf, "Out of memory\n");
4331 }
4332 /* Push back cpu slabs */
4333 flush_all(s);
4334
4335 for_each_kmem_cache_node(s, node, n) {
4336 unsigned long flags;
4337 struct page *page;
4338
4339 if (!atomic_long_read(&n->nr_slabs))
4340 continue;
4341
4342 spin_lock_irqsave(&n->list_lock, flags);
4343 list_for_each_entry(page, &n->partial, lru)
4344 process_slab(&t, s, page, alloc, map);
4345 list_for_each_entry(page, &n->full, lru)
4346 process_slab(&t, s, page, alloc, map);
4347 spin_unlock_irqrestore(&n->list_lock, flags);
4348 }
4349
4350 for (i = 0; i < t.count; i++) {
4351 struct location *l = &t.loc[i];
4352
4353 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4354 break;
4355 len += sprintf(buf + len, "%7ld ", l->count);
4356
4357 if (l->addr)
4358 len += sprintf(buf + len, "%pS", (void *)l->addr);
4359 else
4360 len += sprintf(buf + len, "<not-available>");
4361
4362 if (l->sum_time != l->min_time) {
4363 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4364 l->min_time,
4365 (long)div_u64(l->sum_time, l->count),
4366 l->max_time);
4367 } else
4368 len += sprintf(buf + len, " age=%ld",
4369 l->min_time);
4370
4371 if (l->min_pid != l->max_pid)
4372 len += sprintf(buf + len, " pid=%ld-%ld",
4373 l->min_pid, l->max_pid);
4374 else
4375 len += sprintf(buf + len, " pid=%ld",
4376 l->min_pid);
4377
4378 if (num_online_cpus() > 1 &&
4379 !cpumask_empty(to_cpumask(l->cpus)) &&
4380 len < PAGE_SIZE - 60)
4381 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4382 " cpus=%*pbl",
4383 cpumask_pr_args(to_cpumask(l->cpus)));
4384
4385 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4386 len < PAGE_SIZE - 60)
4387 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4388 " nodes=%*pbl",
4389 nodemask_pr_args(&l->nodes));
4390
4391 len += sprintf(buf + len, "\n");
4392 }
4393
4394 free_loc_track(&t);
4395 kfree(map);
4396 if (!t.count)
4397 len += sprintf(buf, "No data\n");
4398 return len;
4399 }
4400 #endif
4401
4402 #ifdef SLUB_RESILIENCY_TEST
4403 static void __init resiliency_test(void)
4404 {
4405 u8 *p;
4406
4407 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4408
4409 pr_err("SLUB resiliency testing\n");
4410 pr_err("-----------------------\n");
4411 pr_err("A. Corruption after allocation\n");
4412
4413 p = kzalloc(16, GFP_KERNEL);
4414 p[16] = 0x12;
4415 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4416 p + 16);
4417
4418 validate_slab_cache(kmalloc_caches[4]);
4419
4420 /* Hmmm... The next two are dangerous */
4421 p = kzalloc(32, GFP_KERNEL);
4422 p[32 + sizeof(void *)] = 0x34;
4423 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4424 p);
4425 pr_err("If allocated object is overwritten then not detectable\n\n");
4426
4427 validate_slab_cache(kmalloc_caches[5]);
4428 p = kzalloc(64, GFP_KERNEL);
4429 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4430 *p = 0x56;
4431 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4432 p);
4433 pr_err("If allocated object is overwritten then not detectable\n\n");
4434 validate_slab_cache(kmalloc_caches[6]);
4435
4436 pr_err("\nB. Corruption after free\n");
4437 p = kzalloc(128, GFP_KERNEL);
4438 kfree(p);
4439 *p = 0x78;
4440 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4441 validate_slab_cache(kmalloc_caches[7]);
4442
4443 p = kzalloc(256, GFP_KERNEL);
4444 kfree(p);
4445 p[50] = 0x9a;
4446 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4447 validate_slab_cache(kmalloc_caches[8]);
4448
4449 p = kzalloc(512, GFP_KERNEL);
4450 kfree(p);
4451 p[512] = 0xab;
4452 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4453 validate_slab_cache(kmalloc_caches[9]);
4454 }
4455 #else
4456 #ifdef CONFIG_SYSFS
4457 static void resiliency_test(void) {};
4458 #endif
4459 #endif
4460
4461 #ifdef CONFIG_SYSFS
4462 enum slab_stat_type {
4463 SL_ALL, /* All slabs */
4464 SL_PARTIAL, /* Only partially allocated slabs */
4465 SL_CPU, /* Only slabs used for cpu caches */
4466 SL_OBJECTS, /* Determine allocated objects not slabs */
4467 SL_TOTAL /* Determine object capacity not slabs */
4468 };
4469
4470 #define SO_ALL (1 << SL_ALL)
4471 #define SO_PARTIAL (1 << SL_PARTIAL)
4472 #define SO_CPU (1 << SL_CPU)
4473 #define SO_OBJECTS (1 << SL_OBJECTS)
4474 #define SO_TOTAL (1 << SL_TOTAL)
4475
4476 static ssize_t show_slab_objects(struct kmem_cache *s,
4477 char *buf, unsigned long flags)
4478 {
4479 unsigned long total = 0;
4480 int node;
4481 int x;
4482 unsigned long *nodes;
4483
4484 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4485 if (!nodes)
4486 return -ENOMEM;
4487
4488 if (flags & SO_CPU) {
4489 int cpu;
4490
4491 for_each_possible_cpu(cpu) {
4492 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4493 cpu);
4494 int node;
4495 struct page *page;
4496
4497 page = READ_ONCE(c->page);
4498 if (!page)
4499 continue;
4500
4501 node = page_to_nid(page);
4502 if (flags & SO_TOTAL)
4503 x = page->objects;
4504 else if (flags & SO_OBJECTS)
4505 x = page->inuse;
4506 else
4507 x = 1;
4508
4509 total += x;
4510 nodes[node] += x;
4511
4512 page = READ_ONCE(c->partial);
4513 if (page) {
4514 node = page_to_nid(page);
4515 if (flags & SO_TOTAL)
4516 WARN_ON_ONCE(1);
4517 else if (flags & SO_OBJECTS)
4518 WARN_ON_ONCE(1);
4519 else
4520 x = page->pages;
4521 total += x;
4522 nodes[node] += x;
4523 }
4524 }
4525 }
4526
4527 get_online_mems();
4528 #ifdef CONFIG_SLUB_DEBUG
4529 if (flags & SO_ALL) {
4530 struct kmem_cache_node *n;
4531
4532 for_each_kmem_cache_node(s, node, n) {
4533
4534 if (flags & SO_TOTAL)
4535 x = atomic_long_read(&n->total_objects);
4536 else if (flags & SO_OBJECTS)
4537 x = atomic_long_read(&n->total_objects) -
4538 count_partial(n, count_free);
4539 else
4540 x = atomic_long_read(&n->nr_slabs);
4541 total += x;
4542 nodes[node] += x;
4543 }
4544
4545 } else
4546 #endif
4547 if (flags & SO_PARTIAL) {
4548 struct kmem_cache_node *n;
4549
4550 for_each_kmem_cache_node(s, node, n) {
4551 if (flags & SO_TOTAL)
4552 x = count_partial(n, count_total);
4553 else if (flags & SO_OBJECTS)
4554 x = count_partial(n, count_inuse);
4555 else
4556 x = n->nr_partial;
4557 total += x;
4558 nodes[node] += x;
4559 }
4560 }
4561 x = sprintf(buf, "%lu", total);
4562 #ifdef CONFIG_NUMA
4563 for (node = 0; node < nr_node_ids; node++)
4564 if (nodes[node])
4565 x += sprintf(buf + x, " N%d=%lu",
4566 node, nodes[node]);
4567 #endif
4568 put_online_mems();
4569 kfree(nodes);
4570 return x + sprintf(buf + x, "\n");
4571 }
4572
4573 #ifdef CONFIG_SLUB_DEBUG
4574 static int any_slab_objects(struct kmem_cache *s)
4575 {
4576 int node;
4577 struct kmem_cache_node *n;
4578
4579 for_each_kmem_cache_node(s, node, n)
4580 if (atomic_long_read(&n->total_objects))
4581 return 1;
4582
4583 return 0;
4584 }
4585 #endif
4586
4587 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4588 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4589
4590 struct slab_attribute {
4591 struct attribute attr;
4592 ssize_t (*show)(struct kmem_cache *s, char *buf);
4593 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4594 };
4595
4596 #define SLAB_ATTR_RO(_name) \
4597 static struct slab_attribute _name##_attr = \
4598 __ATTR(_name, 0400, _name##_show, NULL)
4599
4600 #define SLAB_ATTR(_name) \
4601 static struct slab_attribute _name##_attr = \
4602 __ATTR(_name, 0600, _name##_show, _name##_store)
4603
4604 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4605 {
4606 return sprintf(buf, "%d\n", s->size);
4607 }
4608 SLAB_ATTR_RO(slab_size);
4609
4610 static ssize_t align_show(struct kmem_cache *s, char *buf)
4611 {
4612 return sprintf(buf, "%d\n", s->align);
4613 }
4614 SLAB_ATTR_RO(align);
4615
4616 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4617 {
4618 return sprintf(buf, "%d\n", s->object_size);
4619 }
4620 SLAB_ATTR_RO(object_size);
4621
4622 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4623 {
4624 return sprintf(buf, "%d\n", oo_objects(s->oo));
4625 }
4626 SLAB_ATTR_RO(objs_per_slab);
4627
4628 static ssize_t order_store(struct kmem_cache *s,
4629 const char *buf, size_t length)
4630 {
4631 unsigned long order;
4632 int err;
4633
4634 err = kstrtoul(buf, 10, &order);
4635 if (err)
4636 return err;
4637
4638 if (order > slub_max_order || order < slub_min_order)
4639 return -EINVAL;
4640
4641 calculate_sizes(s, order);
4642 return length;
4643 }
4644
4645 static ssize_t order_show(struct kmem_cache *s, char *buf)
4646 {
4647 return sprintf(buf, "%d\n", oo_order(s->oo));
4648 }
4649 SLAB_ATTR(order);
4650
4651 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4652 {
4653 return sprintf(buf, "%lu\n", s->min_partial);
4654 }
4655
4656 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4657 size_t length)
4658 {
4659 unsigned long min;
4660 int err;
4661
4662 err = kstrtoul(buf, 10, &min);
4663 if (err)
4664 return err;
4665
4666 set_min_partial(s, min);
4667 return length;
4668 }
4669 SLAB_ATTR(min_partial);
4670
4671 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4672 {
4673 return sprintf(buf, "%u\n", s->cpu_partial);
4674 }
4675
4676 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4677 size_t length)
4678 {
4679 unsigned long objects;
4680 int err;
4681
4682 err = kstrtoul(buf, 10, &objects);
4683 if (err)
4684 return err;
4685 if (objects && !kmem_cache_has_cpu_partial(s))
4686 return -EINVAL;
4687
4688 s->cpu_partial = objects;
4689 flush_all(s);
4690 return length;
4691 }
4692 SLAB_ATTR(cpu_partial);
4693
4694 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4695 {
4696 if (!s->ctor)
4697 return 0;
4698 return sprintf(buf, "%pS\n", s->ctor);
4699 }
4700 SLAB_ATTR_RO(ctor);
4701
4702 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4703 {
4704 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4705 }
4706 SLAB_ATTR_RO(aliases);
4707
4708 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4709 {
4710 return show_slab_objects(s, buf, SO_PARTIAL);
4711 }
4712 SLAB_ATTR_RO(partial);
4713
4714 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4715 {
4716 return show_slab_objects(s, buf, SO_CPU);
4717 }
4718 SLAB_ATTR_RO(cpu_slabs);
4719
4720 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4721 {
4722 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4723 }
4724 SLAB_ATTR_RO(objects);
4725
4726 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4727 {
4728 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4729 }
4730 SLAB_ATTR_RO(objects_partial);
4731
4732 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4733 {
4734 int objects = 0;
4735 int pages = 0;
4736 int cpu;
4737 int len;
4738
4739 for_each_online_cpu(cpu) {
4740 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4741
4742 if (page) {
4743 pages += page->pages;
4744 objects += page->pobjects;
4745 }
4746 }
4747
4748 len = sprintf(buf, "%d(%d)", objects, pages);
4749
4750 #ifdef CONFIG_SMP
4751 for_each_online_cpu(cpu) {
4752 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4753
4754 if (page && len < PAGE_SIZE - 20)
4755 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4756 page->pobjects, page->pages);
4757 }
4758 #endif
4759 return len + sprintf(buf + len, "\n");
4760 }
4761 SLAB_ATTR_RO(slabs_cpu_partial);
4762
4763 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4764 {
4765 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4766 }
4767
4768 static ssize_t reclaim_account_store(struct kmem_cache *s,
4769 const char *buf, size_t length)
4770 {
4771 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4772 if (buf[0] == '1')
4773 s->flags |= SLAB_RECLAIM_ACCOUNT;
4774 return length;
4775 }
4776 SLAB_ATTR(reclaim_account);
4777
4778 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4779 {
4780 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4781 }
4782 SLAB_ATTR_RO(hwcache_align);
4783
4784 #ifdef CONFIG_ZONE_DMA
4785 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4786 {
4787 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4788 }
4789 SLAB_ATTR_RO(cache_dma);
4790 #endif
4791
4792 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4793 {
4794 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4795 }
4796 SLAB_ATTR_RO(destroy_by_rcu);
4797
4798 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4799 {
4800 return sprintf(buf, "%d\n", s->reserved);
4801 }
4802 SLAB_ATTR_RO(reserved);
4803
4804 #ifdef CONFIG_SLUB_DEBUG
4805 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4806 {
4807 return show_slab_objects(s, buf, SO_ALL);
4808 }
4809 SLAB_ATTR_RO(slabs);
4810
4811 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4812 {
4813 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4814 }
4815 SLAB_ATTR_RO(total_objects);
4816
4817 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4818 {
4819 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4820 }
4821
4822 static ssize_t sanity_checks_store(struct kmem_cache *s,
4823 const char *buf, size_t length)
4824 {
4825 s->flags &= ~SLAB_DEBUG_FREE;
4826 if (buf[0] == '1') {
4827 s->flags &= ~__CMPXCHG_DOUBLE;
4828 s->flags |= SLAB_DEBUG_FREE;
4829 }
4830 return length;
4831 }
4832 SLAB_ATTR(sanity_checks);
4833
4834 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4835 {
4836 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4837 }
4838
4839 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4840 size_t length)
4841 {
4842 /*
4843 * Tracing a merged cache is going to give confusing results
4844 * as well as cause other issues like converting a mergeable
4845 * cache into an umergeable one.
4846 */
4847 if (s->refcount > 1)
4848 return -EINVAL;
4849
4850 s->flags &= ~SLAB_TRACE;
4851 if (buf[0] == '1') {
4852 s->flags &= ~__CMPXCHG_DOUBLE;
4853 s->flags |= SLAB_TRACE;
4854 }
4855 return length;
4856 }
4857 SLAB_ATTR(trace);
4858
4859 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4860 {
4861 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4862 }
4863
4864 static ssize_t red_zone_store(struct kmem_cache *s,
4865 const char *buf, size_t length)
4866 {
4867 if (any_slab_objects(s))
4868 return -EBUSY;
4869
4870 s->flags &= ~SLAB_RED_ZONE;
4871 if (buf[0] == '1') {
4872 s->flags &= ~__CMPXCHG_DOUBLE;
4873 s->flags |= SLAB_RED_ZONE;
4874 }
4875 calculate_sizes(s, -1);
4876 return length;
4877 }
4878 SLAB_ATTR(red_zone);
4879
4880 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4881 {
4882 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4883 }
4884
4885 static ssize_t poison_store(struct kmem_cache *s,
4886 const char *buf, size_t length)
4887 {
4888 if (any_slab_objects(s))
4889 return -EBUSY;
4890
4891 s->flags &= ~SLAB_POISON;
4892 if (buf[0] == '1') {
4893 s->flags &= ~__CMPXCHG_DOUBLE;
4894 s->flags |= SLAB_POISON;
4895 }
4896 calculate_sizes(s, -1);
4897 return length;
4898 }
4899 SLAB_ATTR(poison);
4900
4901 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4902 {
4903 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4904 }
4905
4906 static ssize_t store_user_store(struct kmem_cache *s,
4907 const char *buf, size_t length)
4908 {
4909 if (any_slab_objects(s))
4910 return -EBUSY;
4911
4912 s->flags &= ~SLAB_STORE_USER;
4913 if (buf[0] == '1') {
4914 s->flags &= ~__CMPXCHG_DOUBLE;
4915 s->flags |= SLAB_STORE_USER;
4916 }
4917 calculate_sizes(s, -1);
4918 return length;
4919 }
4920 SLAB_ATTR(store_user);
4921
4922 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4923 {
4924 return 0;
4925 }
4926
4927 static ssize_t validate_store(struct kmem_cache *s,
4928 const char *buf, size_t length)
4929 {
4930 int ret = -EINVAL;
4931
4932 if (buf[0] == '1') {
4933 ret = validate_slab_cache(s);
4934 if (ret >= 0)
4935 ret = length;
4936 }
4937 return ret;
4938 }
4939 SLAB_ATTR(validate);
4940
4941 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4942 {
4943 if (!(s->flags & SLAB_STORE_USER))
4944 return -ENOSYS;
4945 return list_locations(s, buf, TRACK_ALLOC);
4946 }
4947 SLAB_ATTR_RO(alloc_calls);
4948
4949 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4950 {
4951 if (!(s->flags & SLAB_STORE_USER))
4952 return -ENOSYS;
4953 return list_locations(s, buf, TRACK_FREE);
4954 }
4955 SLAB_ATTR_RO(free_calls);
4956 #endif /* CONFIG_SLUB_DEBUG */
4957
4958 #ifdef CONFIG_FAILSLAB
4959 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4960 {
4961 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4962 }
4963
4964 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4965 size_t length)
4966 {
4967 if (s->refcount > 1)
4968 return -EINVAL;
4969
4970 s->flags &= ~SLAB_FAILSLAB;
4971 if (buf[0] == '1')
4972 s->flags |= SLAB_FAILSLAB;
4973 return length;
4974 }
4975 SLAB_ATTR(failslab);
4976 #endif
4977
4978 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4979 {
4980 return 0;
4981 }
4982
4983 static ssize_t shrink_store(struct kmem_cache *s,
4984 const char *buf, size_t length)
4985 {
4986 if (buf[0] == '1')
4987 kmem_cache_shrink(s);
4988 else
4989 return -EINVAL;
4990 return length;
4991 }
4992 SLAB_ATTR(shrink);
4993
4994 #ifdef CONFIG_NUMA
4995 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4996 {
4997 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4998 }
4999
5000 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5001 const char *buf, size_t length)
5002 {
5003 unsigned long ratio;
5004 int err;
5005
5006 err = kstrtoul(buf, 10, &ratio);
5007 if (err)
5008 return err;
5009
5010 if (ratio <= 100)
5011 s->remote_node_defrag_ratio = ratio * 10;
5012
5013 return length;
5014 }
5015 SLAB_ATTR(remote_node_defrag_ratio);
5016 #endif
5017
5018 #ifdef CONFIG_SLUB_STATS
5019 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5020 {
5021 unsigned long sum = 0;
5022 int cpu;
5023 int len;
5024 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5025
5026 if (!data)
5027 return -ENOMEM;
5028
5029 for_each_online_cpu(cpu) {
5030 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5031
5032 data[cpu] = x;
5033 sum += x;
5034 }
5035
5036 len = sprintf(buf, "%lu", sum);
5037
5038 #ifdef CONFIG_SMP
5039 for_each_online_cpu(cpu) {
5040 if (data[cpu] && len < PAGE_SIZE - 20)
5041 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5042 }
5043 #endif
5044 kfree(data);
5045 return len + sprintf(buf + len, "\n");
5046 }
5047
5048 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5049 {
5050 int cpu;
5051
5052 for_each_online_cpu(cpu)
5053 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5054 }
5055
5056 #define STAT_ATTR(si, text) \
5057 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5058 { \
5059 return show_stat(s, buf, si); \
5060 } \
5061 static ssize_t text##_store(struct kmem_cache *s, \
5062 const char *buf, size_t length) \
5063 { \
5064 if (buf[0] != '0') \
5065 return -EINVAL; \
5066 clear_stat(s, si); \
5067 return length; \
5068 } \
5069 SLAB_ATTR(text); \
5070
5071 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5072 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5073 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5074 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5075 STAT_ATTR(FREE_FROZEN, free_frozen);
5076 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5077 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5078 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5079 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5080 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5081 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5082 STAT_ATTR(FREE_SLAB, free_slab);
5083 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5084 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5085 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5086 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5087 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5088 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5089 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5090 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5091 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5092 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5093 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5094 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5095 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5096 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5097 #endif
5098
5099 static struct attribute *slab_attrs[] = {
5100 &slab_size_attr.attr,
5101 &object_size_attr.attr,
5102 &objs_per_slab_attr.attr,
5103 &order_attr.attr,
5104 &min_partial_attr.attr,
5105 &cpu_partial_attr.attr,
5106 &objects_attr.attr,
5107 &objects_partial_attr.attr,
5108 &partial_attr.attr,
5109 &cpu_slabs_attr.attr,
5110 &ctor_attr.attr,
5111 &aliases_attr.attr,
5112 &align_attr.attr,
5113 &hwcache_align_attr.attr,
5114 &reclaim_account_attr.attr,
5115 &destroy_by_rcu_attr.attr,
5116 &shrink_attr.attr,
5117 &reserved_attr.attr,
5118 &slabs_cpu_partial_attr.attr,
5119 #ifdef CONFIG_SLUB_DEBUG
5120 &total_objects_attr.attr,
5121 &slabs_attr.attr,
5122 &sanity_checks_attr.attr,
5123 &trace_attr.attr,
5124 &red_zone_attr.attr,
5125 &poison_attr.attr,
5126 &store_user_attr.attr,
5127 &validate_attr.attr,
5128 &alloc_calls_attr.attr,
5129 &free_calls_attr.attr,
5130 #endif
5131 #ifdef CONFIG_ZONE_DMA
5132 &cache_dma_attr.attr,
5133 #endif
5134 #ifdef CONFIG_NUMA
5135 &remote_node_defrag_ratio_attr.attr,
5136 #endif
5137 #ifdef CONFIG_SLUB_STATS
5138 &alloc_fastpath_attr.attr,
5139 &alloc_slowpath_attr.attr,
5140 &free_fastpath_attr.attr,
5141 &free_slowpath_attr.attr,
5142 &free_frozen_attr.attr,
5143 &free_add_partial_attr.attr,
5144 &free_remove_partial_attr.attr,
5145 &alloc_from_partial_attr.attr,
5146 &alloc_slab_attr.attr,
5147 &alloc_refill_attr.attr,
5148 &alloc_node_mismatch_attr.attr,
5149 &free_slab_attr.attr,
5150 &cpuslab_flush_attr.attr,
5151 &deactivate_full_attr.attr,
5152 &deactivate_empty_attr.attr,
5153 &deactivate_to_head_attr.attr,
5154 &deactivate_to_tail_attr.attr,
5155 &deactivate_remote_frees_attr.attr,
5156 &deactivate_bypass_attr.attr,
5157 &order_fallback_attr.attr,
5158 &cmpxchg_double_fail_attr.attr,
5159 &cmpxchg_double_cpu_fail_attr.attr,
5160 &cpu_partial_alloc_attr.attr,
5161 &cpu_partial_free_attr.attr,
5162 &cpu_partial_node_attr.attr,
5163 &cpu_partial_drain_attr.attr,
5164 #endif
5165 #ifdef CONFIG_FAILSLAB
5166 &failslab_attr.attr,
5167 #endif
5168
5169 NULL
5170 };
5171
5172 static struct attribute_group slab_attr_group = {
5173 .attrs = slab_attrs,
5174 };
5175
5176 static ssize_t slab_attr_show(struct kobject *kobj,
5177 struct attribute *attr,
5178 char *buf)
5179 {
5180 struct slab_attribute *attribute;
5181 struct kmem_cache *s;
5182 int err;
5183
5184 attribute = to_slab_attr(attr);
5185 s = to_slab(kobj);
5186
5187 if (!attribute->show)
5188 return -EIO;
5189
5190 err = attribute->show(s, buf);
5191
5192 return err;
5193 }
5194
5195 static ssize_t slab_attr_store(struct kobject *kobj,
5196 struct attribute *attr,
5197 const char *buf, size_t len)
5198 {
5199 struct slab_attribute *attribute;
5200 struct kmem_cache *s;
5201 int err;
5202
5203 attribute = to_slab_attr(attr);
5204 s = to_slab(kobj);
5205
5206 if (!attribute->store)
5207 return -EIO;
5208
5209 err = attribute->store(s, buf, len);
5210 #ifdef CONFIG_MEMCG
5211 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5212 struct kmem_cache *c;
5213
5214 mutex_lock(&slab_mutex);
5215 if (s->max_attr_size < len)
5216 s->max_attr_size = len;
5217
5218 /*
5219 * This is a best effort propagation, so this function's return
5220 * value will be determined by the parent cache only. This is
5221 * basically because not all attributes will have a well
5222 * defined semantics for rollbacks - most of the actions will
5223 * have permanent effects.
5224 *
5225 * Returning the error value of any of the children that fail
5226 * is not 100 % defined, in the sense that users seeing the
5227 * error code won't be able to know anything about the state of
5228 * the cache.
5229 *
5230 * Only returning the error code for the parent cache at least
5231 * has well defined semantics. The cache being written to
5232 * directly either failed or succeeded, in which case we loop
5233 * through the descendants with best-effort propagation.
5234 */
5235 for_each_memcg_cache(c, s)
5236 attribute->store(c, buf, len);
5237 mutex_unlock(&slab_mutex);
5238 }
5239 #endif
5240 return err;
5241 }
5242
5243 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5244 {
5245 #ifdef CONFIG_MEMCG
5246 int i;
5247 char *buffer = NULL;
5248 struct kmem_cache *root_cache;
5249
5250 if (is_root_cache(s))
5251 return;
5252
5253 root_cache = s->memcg_params.root_cache;
5254
5255 /*
5256 * This mean this cache had no attribute written. Therefore, no point
5257 * in copying default values around
5258 */
5259 if (!root_cache->max_attr_size)
5260 return;
5261
5262 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5263 char mbuf[64];
5264 char *buf;
5265 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5266
5267 if (!attr || !attr->store || !attr->show)
5268 continue;
5269
5270 /*
5271 * It is really bad that we have to allocate here, so we will
5272 * do it only as a fallback. If we actually allocate, though,
5273 * we can just use the allocated buffer until the end.
5274 *
5275 * Most of the slub attributes will tend to be very small in
5276 * size, but sysfs allows buffers up to a page, so they can
5277 * theoretically happen.
5278 */
5279 if (buffer)
5280 buf = buffer;
5281 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5282 buf = mbuf;
5283 else {
5284 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5285 if (WARN_ON(!buffer))
5286 continue;
5287 buf = buffer;
5288 }
5289
5290 attr->show(root_cache, buf);
5291 attr->store(s, buf, strlen(buf));
5292 }
5293
5294 if (buffer)
5295 free_page((unsigned long)buffer);
5296 #endif
5297 }
5298
5299 static void kmem_cache_release(struct kobject *k)
5300 {
5301 slab_kmem_cache_release(to_slab(k));
5302 }
5303
5304 static const struct sysfs_ops slab_sysfs_ops = {
5305 .show = slab_attr_show,
5306 .store = slab_attr_store,
5307 };
5308
5309 static struct kobj_type slab_ktype = {
5310 .sysfs_ops = &slab_sysfs_ops,
5311 .release = kmem_cache_release,
5312 };
5313
5314 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5315 {
5316 struct kobj_type *ktype = get_ktype(kobj);
5317
5318 if (ktype == &slab_ktype)
5319 return 1;
5320 return 0;
5321 }
5322
5323 static const struct kset_uevent_ops slab_uevent_ops = {
5324 .filter = uevent_filter,
5325 };
5326
5327 static struct kset *slab_kset;
5328
5329 static inline struct kset *cache_kset(struct kmem_cache *s)
5330 {
5331 #ifdef CONFIG_MEMCG
5332 if (!is_root_cache(s))
5333 return s->memcg_params.root_cache->memcg_kset;
5334 #endif
5335 return slab_kset;
5336 }
5337
5338 #define ID_STR_LENGTH 64
5339
5340 /* Create a unique string id for a slab cache:
5341 *
5342 * Format :[flags-]size
5343 */
5344 static char *create_unique_id(struct kmem_cache *s)
5345 {
5346 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5347 char *p = name;
5348
5349 BUG_ON(!name);
5350
5351 *p++ = ':';
5352 /*
5353 * First flags affecting slabcache operations. We will only
5354 * get here for aliasable slabs so we do not need to support
5355 * too many flags. The flags here must cover all flags that
5356 * are matched during merging to guarantee that the id is
5357 * unique.
5358 */
5359 if (s->flags & SLAB_CACHE_DMA)
5360 *p++ = 'd';
5361 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5362 *p++ = 'a';
5363 if (s->flags & SLAB_DEBUG_FREE)
5364 *p++ = 'F';
5365 if (!(s->flags & SLAB_NOTRACK))
5366 *p++ = 't';
5367 if (s->flags & SLAB_ACCOUNT)
5368 *p++ = 'A';
5369 if (p != name + 1)
5370 *p++ = '-';
5371 p += sprintf(p, "%07d", s->size);
5372
5373 BUG_ON(p > name + ID_STR_LENGTH - 1);
5374 return name;
5375 }
5376
5377 static int sysfs_slab_add(struct kmem_cache *s)
5378 {
5379 int err;
5380 const char *name;
5381 int unmergeable = slab_unmergeable(s);
5382
5383 if (unmergeable) {
5384 /*
5385 * Slabcache can never be merged so we can use the name proper.
5386 * This is typically the case for debug situations. In that
5387 * case we can catch duplicate names easily.
5388 */
5389 sysfs_remove_link(&slab_kset->kobj, s->name);
5390 name = s->name;
5391 } else {
5392 /*
5393 * Create a unique name for the slab as a target
5394 * for the symlinks.
5395 */
5396 name = create_unique_id(s);
5397 }
5398
5399 s->kobj.kset = cache_kset(s);
5400 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5401 if (err)
5402 goto out;
5403
5404 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5405 if (err)
5406 goto out_del_kobj;
5407
5408 #ifdef CONFIG_MEMCG
5409 if (is_root_cache(s)) {
5410 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5411 if (!s->memcg_kset) {
5412 err = -ENOMEM;
5413 goto out_del_kobj;
5414 }
5415 }
5416 #endif
5417
5418 kobject_uevent(&s->kobj, KOBJ_ADD);
5419 if (!unmergeable) {
5420 /* Setup first alias */
5421 sysfs_slab_alias(s, s->name);
5422 }
5423 out:
5424 if (!unmergeable)
5425 kfree(name);
5426 return err;
5427 out_del_kobj:
5428 kobject_del(&s->kobj);
5429 goto out;
5430 }
5431
5432 void sysfs_slab_remove(struct kmem_cache *s)
5433 {
5434 if (slab_state < FULL)
5435 /*
5436 * Sysfs has not been setup yet so no need to remove the
5437 * cache from sysfs.
5438 */
5439 return;
5440
5441 #ifdef CONFIG_MEMCG
5442 kset_unregister(s->memcg_kset);
5443 #endif
5444 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5445 kobject_del(&s->kobj);
5446 kobject_put(&s->kobj);
5447 }
5448
5449 /*
5450 * Need to buffer aliases during bootup until sysfs becomes
5451 * available lest we lose that information.
5452 */
5453 struct saved_alias {
5454 struct kmem_cache *s;
5455 const char *name;
5456 struct saved_alias *next;
5457 };
5458
5459 static struct saved_alias *alias_list;
5460
5461 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5462 {
5463 struct saved_alias *al;
5464
5465 if (slab_state == FULL) {
5466 /*
5467 * If we have a leftover link then remove it.
5468 */
5469 sysfs_remove_link(&slab_kset->kobj, name);
5470 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5471 }
5472
5473 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5474 if (!al)
5475 return -ENOMEM;
5476
5477 al->s = s;
5478 al->name = name;
5479 al->next = alias_list;
5480 alias_list = al;
5481 return 0;
5482 }
5483
5484 static int __init slab_sysfs_init(void)
5485 {
5486 struct kmem_cache *s;
5487 int err;
5488
5489 mutex_lock(&slab_mutex);
5490
5491 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5492 if (!slab_kset) {
5493 mutex_unlock(&slab_mutex);
5494 pr_err("Cannot register slab subsystem.\n");
5495 return -ENOSYS;
5496 }
5497
5498 slab_state = FULL;
5499
5500 list_for_each_entry(s, &slab_caches, list) {
5501 err = sysfs_slab_add(s);
5502 if (err)
5503 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5504 s->name);
5505 }
5506
5507 while (alias_list) {
5508 struct saved_alias *al = alias_list;
5509
5510 alias_list = alias_list->next;
5511 err = sysfs_slab_alias(al->s, al->name);
5512 if (err)
5513 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5514 al->name);
5515 kfree(al);
5516 }
5517
5518 mutex_unlock(&slab_mutex);
5519 resiliency_test();
5520 return 0;
5521 }
5522
5523 __initcall(slab_sysfs_init);
5524 #endif /* CONFIG_SYSFS */
5525
5526 /*
5527 * The /proc/slabinfo ABI
5528 */
5529 #ifdef CONFIG_SLABINFO
5530 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5531 {
5532 unsigned long nr_slabs = 0;
5533 unsigned long nr_objs = 0;
5534 unsigned long nr_free = 0;
5535 int node;
5536 struct kmem_cache_node *n;
5537
5538 for_each_kmem_cache_node(s, node, n) {
5539 nr_slabs += node_nr_slabs(n);
5540 nr_objs += node_nr_objs(n);
5541 nr_free += count_partial(n, count_free);
5542 }
5543
5544 sinfo->active_objs = nr_objs - nr_free;
5545 sinfo->num_objs = nr_objs;
5546 sinfo->active_slabs = nr_slabs;
5547 sinfo->num_slabs = nr_slabs;
5548 sinfo->objects_per_slab = oo_objects(s->oo);
5549 sinfo->cache_order = oo_order(s->oo);
5550 }
5551
5552 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5553 {
5554 }
5555
5556 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5557 size_t count, loff_t *ppos)
5558 {
5559 return -EIO;
5560 }
5561 #endif /* CONFIG_SLABINFO */