]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/slub.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kmemcheck.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36
37 #include <trace/events/kmem.h>
38
39 #include "internal.h"
40
41 /*
42 * Lock order:
43 * 1. slab_mutex (Global Mutex)
44 * 2. node->list_lock
45 * 3. slab_lock(page) (Only on some arches and for debugging)
46 *
47 * slab_mutex
48 *
49 * The role of the slab_mutex is to protect the list of all the slabs
50 * and to synchronize major metadata changes to slab cache structures.
51 *
52 * The slab_lock is only used for debugging and on arches that do not
53 * have the ability to do a cmpxchg_double. It only protects the second
54 * double word in the page struct. Meaning
55 * A. page->freelist -> List of object free in a page
56 * B. page->counters -> Counters of objects
57 * C. page->frozen -> frozen state
58 *
59 * If a slab is frozen then it is exempt from list management. It is not
60 * on any list. The processor that froze the slab is the one who can
61 * perform list operations on the page. Other processors may put objects
62 * onto the freelist but the processor that froze the slab is the only
63 * one that can retrieve the objects from the page's freelist.
64 *
65 * The list_lock protects the partial and full list on each node and
66 * the partial slab counter. If taken then no new slabs may be added or
67 * removed from the lists nor make the number of partial slabs be modified.
68 * (Note that the total number of slabs is an atomic value that may be
69 * modified without taking the list lock).
70 *
71 * The list_lock is a centralized lock and thus we avoid taking it as
72 * much as possible. As long as SLUB does not have to handle partial
73 * slabs, operations can continue without any centralized lock. F.e.
74 * allocating a long series of objects that fill up slabs does not require
75 * the list lock.
76 * Interrupts are disabled during allocation and deallocation in order to
77 * make the slab allocator safe to use in the context of an irq. In addition
78 * interrupts are disabled to ensure that the processor does not change
79 * while handling per_cpu slabs, due to kernel preemption.
80 *
81 * SLUB assigns one slab for allocation to each processor.
82 * Allocations only occur from these slabs called cpu slabs.
83 *
84 * Slabs with free elements are kept on a partial list and during regular
85 * operations no list for full slabs is used. If an object in a full slab is
86 * freed then the slab will show up again on the partial lists.
87 * We track full slabs for debugging purposes though because otherwise we
88 * cannot scan all objects.
89 *
90 * Slabs are freed when they become empty. Teardown and setup is
91 * minimal so we rely on the page allocators per cpu caches for
92 * fast frees and allocs.
93 *
94 * Overloading of page flags that are otherwise used for LRU management.
95 *
96 * PageActive The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
104 *
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
111 *
112 * PageError Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
115 */
116
117 static inline int kmem_cache_debug(struct kmem_cache *s)
118 {
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121 #else
122 return 0;
123 #endif
124 }
125
126 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
127 {
128 #ifdef CONFIG_SLUB_CPU_PARTIAL
129 return !kmem_cache_debug(s);
130 #else
131 return false;
132 #endif
133 }
134
135 /*
136 * Issues still to be resolved:
137 *
138 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
139 *
140 * - Variable sizing of the per node arrays
141 */
142
143 /* Enable to test recovery from slab corruption on boot */
144 #undef SLUB_RESILIENCY_TEST
145
146 /* Enable to log cmpxchg failures */
147 #undef SLUB_DEBUG_CMPXCHG
148
149 /*
150 * Mininum number of partial slabs. These will be left on the partial
151 * lists even if they are empty. kmem_cache_shrink may reclaim them.
152 */
153 #define MIN_PARTIAL 5
154
155 /*
156 * Maximum number of desirable partial slabs.
157 * The existence of more partial slabs makes kmem_cache_shrink
158 * sort the partial list by the number of objects in use.
159 */
160 #define MAX_PARTIAL 10
161
162 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
163 SLAB_POISON | SLAB_STORE_USER)
164
165 /*
166 * Debugging flags that require metadata to be stored in the slab. These get
167 * disabled when slub_debug=O is used and a cache's min order increases with
168 * metadata.
169 */
170 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171
172 /*
173 * Set of flags that will prevent slab merging
174 */
175 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
177 SLAB_FAILSLAB)
178
179 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
180 SLAB_CACHE_DMA | SLAB_NOTRACK)
181
182 #define OO_SHIFT 16
183 #define OO_MASK ((1 << OO_SHIFT) - 1)
184 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
185
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000UL /* Poison object */
188 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
189
190 #ifdef CONFIG_SMP
191 static struct notifier_block slab_notifier;
192 #endif
193
194 /*
195 * Tracking user of a slab.
196 */
197 #define TRACK_ADDRS_COUNT 16
198 struct track {
199 unsigned long addr; /* Called from address */
200 #ifdef CONFIG_STACKTRACE
201 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
202 #endif
203 int cpu; /* Was running on cpu */
204 int pid; /* Pid context */
205 unsigned long when; /* When did the operation occur */
206 };
207
208 enum track_item { TRACK_ALLOC, TRACK_FREE };
209
210 #ifdef CONFIG_SYSFS
211 static int sysfs_slab_add(struct kmem_cache *);
212 static int sysfs_slab_alias(struct kmem_cache *, const char *);
213 static void sysfs_slab_remove(struct kmem_cache *);
214 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
215 #else
216 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
217 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
218 { return 0; }
219 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220
221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
222 #endif
223
224 static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 {
226 #ifdef CONFIG_SLUB_STATS
227 __this_cpu_inc(s->cpu_slab->stat[si]);
228 #endif
229 }
230
231 /********************************************************************
232 * Core slab cache functions
233 *******************************************************************/
234
235 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 {
237 return s->node[node];
238 }
239
240 /* Verify that a pointer has an address that is valid within a slab page */
241 static inline int check_valid_pointer(struct kmem_cache *s,
242 struct page *page, const void *object)
243 {
244 void *base;
245
246 if (!object)
247 return 1;
248
249 base = page_address(page);
250 if (object < base || object >= base + page->objects * s->size ||
251 (object - base) % s->size) {
252 return 0;
253 }
254
255 return 1;
256 }
257
258 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 {
260 return *(void **)(object + s->offset);
261 }
262
263 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
264 {
265 prefetch(object + s->offset);
266 }
267
268 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
269 {
270 void *p;
271
272 #ifdef CONFIG_DEBUG_PAGEALLOC
273 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
274 #else
275 p = get_freepointer(s, object);
276 #endif
277 return p;
278 }
279
280 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
281 {
282 *(void **)(object + s->offset) = fp;
283 }
284
285 /* Loop over all objects in a slab */
286 #define for_each_object(__p, __s, __addr, __objects) \
287 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 __p += (__s)->size)
289
290 /* Determine object index from a given position */
291 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 {
293 return (p - addr) / s->size;
294 }
295
296 static inline size_t slab_ksize(const struct kmem_cache *s)
297 {
298 #ifdef CONFIG_SLUB_DEBUG
299 /*
300 * Debugging requires use of the padding between object
301 * and whatever may come after it.
302 */
303 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304 return s->object_size;
305
306 #endif
307 /*
308 * If we have the need to store the freelist pointer
309 * back there or track user information then we can
310 * only use the space before that information.
311 */
312 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
313 return s->inuse;
314 /*
315 * Else we can use all the padding etc for the allocation
316 */
317 return s->size;
318 }
319
320 static inline int order_objects(int order, unsigned long size, int reserved)
321 {
322 return ((PAGE_SIZE << order) - reserved) / size;
323 }
324
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 unsigned long size, int reserved)
327 {
328 struct kmem_cache_order_objects x = {
329 (order << OO_SHIFT) + order_objects(order, size, reserved)
330 };
331
332 return x;
333 }
334
335 static inline int oo_order(struct kmem_cache_order_objects x)
336 {
337 return x.x >> OO_SHIFT;
338 }
339
340 static inline int oo_objects(struct kmem_cache_order_objects x)
341 {
342 return x.x & OO_MASK;
343 }
344
345 /*
346 * Per slab locking using the pagelock
347 */
348 static __always_inline void slab_lock(struct page *page)
349 {
350 bit_spin_lock(PG_locked, &page->flags);
351 }
352
353 static __always_inline void slab_unlock(struct page *page)
354 {
355 __bit_spin_unlock(PG_locked, &page->flags);
356 }
357
358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
359 {
360 struct page tmp;
361 tmp.counters = counters_new;
362 /*
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_count. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_count, so
366 * be careful and only assign to the fields we need.
367 */
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
371 }
372
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
378 {
379 VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s->flags & __CMPXCHG_DOUBLE) {
383 if (cmpxchg_double(&page->freelist, &page->counters,
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return 1;
387 } else
388 #endif
389 {
390 slab_lock(page);
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
393 page->freelist = freelist_new;
394 set_page_slub_counters(page, counters_new);
395 slab_unlock(page);
396 return 1;
397 }
398 slab_unlock(page);
399 }
400
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
403
404 #ifdef SLUB_DEBUG_CMPXCHG
405 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
406 #endif
407
408 return 0;
409 }
410
411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
415 {
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 if (s->flags & __CMPXCHG_DOUBLE) {
419 if (cmpxchg_double(&page->freelist, &page->counters,
420 freelist_old, counters_old,
421 freelist_new, counters_new))
422 return 1;
423 } else
424 #endif
425 {
426 unsigned long flags;
427
428 local_irq_save(flags);
429 slab_lock(page);
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
432 page->freelist = freelist_new;
433 set_page_slub_counters(page, counters_new);
434 slab_unlock(page);
435 local_irq_restore(flags);
436 return 1;
437 }
438 slab_unlock(page);
439 local_irq_restore(flags);
440 }
441
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
444
445 #ifdef SLUB_DEBUG_CMPXCHG
446 printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
447 #endif
448
449 return 0;
450 }
451
452 #ifdef CONFIG_SLUB_DEBUG
453 /*
454 * Determine a map of object in use on a page.
455 *
456 * Node listlock must be held to guarantee that the page does
457 * not vanish from under us.
458 */
459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
460 {
461 void *p;
462 void *addr = page_address(page);
463
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
466 }
467
468 /*
469 * Debug settings:
470 */
471 #ifdef CONFIG_SLUB_DEBUG_ON
472 static int slub_debug = DEBUG_DEFAULT_FLAGS;
473 #else
474 static int slub_debug;
475 #endif
476
477 static char *slub_debug_slabs;
478 static int disable_higher_order_debug;
479
480 /*
481 * Object debugging
482 */
483 static void print_section(char *text, u8 *addr, unsigned int length)
484 {
485 print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
486 length, 1);
487 }
488
489 static struct track *get_track(struct kmem_cache *s, void *object,
490 enum track_item alloc)
491 {
492 struct track *p;
493
494 if (s->offset)
495 p = object + s->offset + sizeof(void *);
496 else
497 p = object + s->inuse;
498
499 return p + alloc;
500 }
501
502 static void set_track(struct kmem_cache *s, void *object,
503 enum track_item alloc, unsigned long addr)
504 {
505 struct track *p = get_track(s, object, alloc);
506
507 if (addr) {
508 #ifdef CONFIG_STACKTRACE
509 struct stack_trace trace;
510 int i;
511
512 trace.nr_entries = 0;
513 trace.max_entries = TRACK_ADDRS_COUNT;
514 trace.entries = p->addrs;
515 trace.skip = 3;
516 save_stack_trace(&trace);
517
518 /* See rant in lockdep.c */
519 if (trace.nr_entries != 0 &&
520 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
521 trace.nr_entries--;
522
523 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
524 p->addrs[i] = 0;
525 #endif
526 p->addr = addr;
527 p->cpu = smp_processor_id();
528 p->pid = current->pid;
529 p->when = jiffies;
530 } else
531 memset(p, 0, sizeof(struct track));
532 }
533
534 static void init_tracking(struct kmem_cache *s, void *object)
535 {
536 if (!(s->flags & SLAB_STORE_USER))
537 return;
538
539 set_track(s, object, TRACK_FREE, 0UL);
540 set_track(s, object, TRACK_ALLOC, 0UL);
541 }
542
543 static void print_track(const char *s, struct track *t)
544 {
545 if (!t->addr)
546 return;
547
548 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
549 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 #ifdef CONFIG_STACKTRACE
551 {
552 int i;
553 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
554 if (t->addrs[i])
555 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
556 else
557 break;
558 }
559 #endif
560 }
561
562 static void print_tracking(struct kmem_cache *s, void *object)
563 {
564 if (!(s->flags & SLAB_STORE_USER))
565 return;
566
567 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
568 print_track("Freed", get_track(s, object, TRACK_FREE));
569 }
570
571 static void print_page_info(struct page *page)
572 {
573 printk(KERN_ERR
574 "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
575 page, page->objects, page->inuse, page->freelist, page->flags);
576
577 }
578
579 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
580 {
581 va_list args;
582 char buf[100];
583
584 va_start(args, fmt);
585 vsnprintf(buf, sizeof(buf), fmt, args);
586 va_end(args);
587 printk(KERN_ERR "========================================"
588 "=====================================\n");
589 printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
590 printk(KERN_ERR "----------------------------------------"
591 "-------------------------------------\n\n");
592
593 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
594 }
595
596 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
597 {
598 va_list args;
599 char buf[100];
600
601 va_start(args, fmt);
602 vsnprintf(buf, sizeof(buf), fmt, args);
603 va_end(args);
604 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
605 }
606
607 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
608 {
609 unsigned int off; /* Offset of last byte */
610 u8 *addr = page_address(page);
611
612 print_tracking(s, p);
613
614 print_page_info(page);
615
616 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
617 p, p - addr, get_freepointer(s, p));
618
619 if (p > addr + 16)
620 print_section("Bytes b4 ", p - 16, 16);
621
622 print_section("Object ", p, min_t(unsigned long, s->object_size,
623 PAGE_SIZE));
624 if (s->flags & SLAB_RED_ZONE)
625 print_section("Redzone ", p + s->object_size,
626 s->inuse - s->object_size);
627
628 if (s->offset)
629 off = s->offset + sizeof(void *);
630 else
631 off = s->inuse;
632
633 if (s->flags & SLAB_STORE_USER)
634 off += 2 * sizeof(struct track);
635
636 if (off != s->size)
637 /* Beginning of the filler is the free pointer */
638 print_section("Padding ", p + off, s->size - off);
639
640 dump_stack();
641 }
642
643 static void object_err(struct kmem_cache *s, struct page *page,
644 u8 *object, char *reason)
645 {
646 slab_bug(s, "%s", reason);
647 print_trailer(s, page, object);
648 }
649
650 static void slab_err(struct kmem_cache *s, struct page *page,
651 const char *fmt, ...)
652 {
653 va_list args;
654 char buf[100];
655
656 va_start(args, fmt);
657 vsnprintf(buf, sizeof(buf), fmt, args);
658 va_end(args);
659 slab_bug(s, "%s", buf);
660 print_page_info(page);
661 dump_stack();
662 }
663
664 static void init_object(struct kmem_cache *s, void *object, u8 val)
665 {
666 u8 *p = object;
667
668 if (s->flags & __OBJECT_POISON) {
669 memset(p, POISON_FREE, s->object_size - 1);
670 p[s->object_size - 1] = POISON_END;
671 }
672
673 if (s->flags & SLAB_RED_ZONE)
674 memset(p + s->object_size, val, s->inuse - s->object_size);
675 }
676
677 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
678 void *from, void *to)
679 {
680 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
681 memset(from, data, to - from);
682 }
683
684 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
685 u8 *object, char *what,
686 u8 *start, unsigned int value, unsigned int bytes)
687 {
688 u8 *fault;
689 u8 *end;
690
691 fault = memchr_inv(start, value, bytes);
692 if (!fault)
693 return 1;
694
695 end = start + bytes;
696 while (end > fault && end[-1] == value)
697 end--;
698
699 slab_bug(s, "%s overwritten", what);
700 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
701 fault, end - 1, fault[0], value);
702 print_trailer(s, page, object);
703
704 restore_bytes(s, what, value, fault, end);
705 return 0;
706 }
707
708 /*
709 * Object layout:
710 *
711 * object address
712 * Bytes of the object to be managed.
713 * If the freepointer may overlay the object then the free
714 * pointer is the first word of the object.
715 *
716 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
717 * 0xa5 (POISON_END)
718 *
719 * object + s->object_size
720 * Padding to reach word boundary. This is also used for Redzoning.
721 * Padding is extended by another word if Redzoning is enabled and
722 * object_size == inuse.
723 *
724 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
725 * 0xcc (RED_ACTIVE) for objects in use.
726 *
727 * object + s->inuse
728 * Meta data starts here.
729 *
730 * A. Free pointer (if we cannot overwrite object on free)
731 * B. Tracking data for SLAB_STORE_USER
732 * C. Padding to reach required alignment boundary or at mininum
733 * one word if debugging is on to be able to detect writes
734 * before the word boundary.
735 *
736 * Padding is done using 0x5a (POISON_INUSE)
737 *
738 * object + s->size
739 * Nothing is used beyond s->size.
740 *
741 * If slabcaches are merged then the object_size and inuse boundaries are mostly
742 * ignored. And therefore no slab options that rely on these boundaries
743 * may be used with merged slabcaches.
744 */
745
746 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
747 {
748 unsigned long off = s->inuse; /* The end of info */
749
750 if (s->offset)
751 /* Freepointer is placed after the object. */
752 off += sizeof(void *);
753
754 if (s->flags & SLAB_STORE_USER)
755 /* We also have user information there */
756 off += 2 * sizeof(struct track);
757
758 if (s->size == off)
759 return 1;
760
761 return check_bytes_and_report(s, page, p, "Object padding",
762 p + off, POISON_INUSE, s->size - off);
763 }
764
765 /* Check the pad bytes at the end of a slab page */
766 static int slab_pad_check(struct kmem_cache *s, struct page *page)
767 {
768 u8 *start;
769 u8 *fault;
770 u8 *end;
771 int length;
772 int remainder;
773
774 if (!(s->flags & SLAB_POISON))
775 return 1;
776
777 start = page_address(page);
778 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
779 end = start + length;
780 remainder = length % s->size;
781 if (!remainder)
782 return 1;
783
784 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
785 if (!fault)
786 return 1;
787 while (end > fault && end[-1] == POISON_INUSE)
788 end--;
789
790 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
791 print_section("Padding ", end - remainder, remainder);
792
793 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
794 return 0;
795 }
796
797 static int check_object(struct kmem_cache *s, struct page *page,
798 void *object, u8 val)
799 {
800 u8 *p = object;
801 u8 *endobject = object + s->object_size;
802
803 if (s->flags & SLAB_RED_ZONE) {
804 if (!check_bytes_and_report(s, page, object, "Redzone",
805 endobject, val, s->inuse - s->object_size))
806 return 0;
807 } else {
808 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
809 check_bytes_and_report(s, page, p, "Alignment padding",
810 endobject, POISON_INUSE,
811 s->inuse - s->object_size);
812 }
813 }
814
815 if (s->flags & SLAB_POISON) {
816 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
817 (!check_bytes_and_report(s, page, p, "Poison", p,
818 POISON_FREE, s->object_size - 1) ||
819 !check_bytes_and_report(s, page, p, "Poison",
820 p + s->object_size - 1, POISON_END, 1)))
821 return 0;
822 /*
823 * check_pad_bytes cleans up on its own.
824 */
825 check_pad_bytes(s, page, p);
826 }
827
828 if (!s->offset && val == SLUB_RED_ACTIVE)
829 /*
830 * Object and freepointer overlap. Cannot check
831 * freepointer while object is allocated.
832 */
833 return 1;
834
835 /* Check free pointer validity */
836 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
837 object_err(s, page, p, "Freepointer corrupt");
838 /*
839 * No choice but to zap it and thus lose the remainder
840 * of the free objects in this slab. May cause
841 * another error because the object count is now wrong.
842 */
843 set_freepointer(s, p, NULL);
844 return 0;
845 }
846 return 1;
847 }
848
849 static int check_slab(struct kmem_cache *s, struct page *page)
850 {
851 int maxobj;
852
853 VM_BUG_ON(!irqs_disabled());
854
855 if (!PageSlab(page)) {
856 slab_err(s, page, "Not a valid slab page");
857 return 0;
858 }
859
860 maxobj = order_objects(compound_order(page), s->size, s->reserved);
861 if (page->objects > maxobj) {
862 slab_err(s, page, "objects %u > max %u",
863 s->name, page->objects, maxobj);
864 return 0;
865 }
866 if (page->inuse > page->objects) {
867 slab_err(s, page, "inuse %u > max %u",
868 s->name, page->inuse, page->objects);
869 return 0;
870 }
871 /* Slab_pad_check fixes things up after itself */
872 slab_pad_check(s, page);
873 return 1;
874 }
875
876 /*
877 * Determine if a certain object on a page is on the freelist. Must hold the
878 * slab lock to guarantee that the chains are in a consistent state.
879 */
880 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
881 {
882 int nr = 0;
883 void *fp;
884 void *object = NULL;
885 unsigned long max_objects;
886
887 fp = page->freelist;
888 while (fp && nr <= page->objects) {
889 if (fp == search)
890 return 1;
891 if (!check_valid_pointer(s, page, fp)) {
892 if (object) {
893 object_err(s, page, object,
894 "Freechain corrupt");
895 set_freepointer(s, object, NULL);
896 } else {
897 slab_err(s, page, "Freepointer corrupt");
898 page->freelist = NULL;
899 page->inuse = page->objects;
900 slab_fix(s, "Freelist cleared");
901 return 0;
902 }
903 break;
904 }
905 object = fp;
906 fp = get_freepointer(s, object);
907 nr++;
908 }
909
910 max_objects = order_objects(compound_order(page), s->size, s->reserved);
911 if (max_objects > MAX_OBJS_PER_PAGE)
912 max_objects = MAX_OBJS_PER_PAGE;
913
914 if (page->objects != max_objects) {
915 slab_err(s, page, "Wrong number of objects. Found %d but "
916 "should be %d", page->objects, max_objects);
917 page->objects = max_objects;
918 slab_fix(s, "Number of objects adjusted.");
919 }
920 if (page->inuse != page->objects - nr) {
921 slab_err(s, page, "Wrong object count. Counter is %d but "
922 "counted were %d", page->inuse, page->objects - nr);
923 page->inuse = page->objects - nr;
924 slab_fix(s, "Object count adjusted.");
925 }
926 return search == NULL;
927 }
928
929 static void trace(struct kmem_cache *s, struct page *page, void *object,
930 int alloc)
931 {
932 if (s->flags & SLAB_TRACE) {
933 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
934 s->name,
935 alloc ? "alloc" : "free",
936 object, page->inuse,
937 page->freelist);
938
939 if (!alloc)
940 print_section("Object ", (void *)object,
941 s->object_size);
942
943 dump_stack();
944 }
945 }
946
947 /*
948 * Hooks for other subsystems that check memory allocations. In a typical
949 * production configuration these hooks all should produce no code at all.
950 */
951 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
952 {
953 kmemleak_alloc(ptr, size, 1, flags);
954 }
955
956 static inline void kfree_hook(const void *x)
957 {
958 kmemleak_free(x);
959 }
960
961 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
962 {
963 flags &= gfp_allowed_mask;
964 lockdep_trace_alloc(flags);
965 might_sleep_if(flags & __GFP_WAIT);
966
967 return should_failslab(s->object_size, flags, s->flags);
968 }
969
970 static inline void slab_post_alloc_hook(struct kmem_cache *s,
971 gfp_t flags, void *object)
972 {
973 flags &= gfp_allowed_mask;
974 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
975 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
976 }
977
978 static inline void slab_free_hook(struct kmem_cache *s, void *x)
979 {
980 kmemleak_free_recursive(x, s->flags);
981
982 /*
983 * Trouble is that we may no longer disable interrupts in the fast path
984 * So in order to make the debug calls that expect irqs to be
985 * disabled we need to disable interrupts temporarily.
986 */
987 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
988 {
989 unsigned long flags;
990
991 local_irq_save(flags);
992 kmemcheck_slab_free(s, x, s->object_size);
993 debug_check_no_locks_freed(x, s->object_size);
994 local_irq_restore(flags);
995 }
996 #endif
997 if (!(s->flags & SLAB_DEBUG_OBJECTS))
998 debug_check_no_obj_freed(x, s->object_size);
999 }
1000
1001 /*
1002 * Tracking of fully allocated slabs for debugging purposes.
1003 *
1004 * list_lock must be held.
1005 */
1006 static void add_full(struct kmem_cache *s,
1007 struct kmem_cache_node *n, struct page *page)
1008 {
1009 if (!(s->flags & SLAB_STORE_USER))
1010 return;
1011
1012 list_add(&page->lru, &n->full);
1013 }
1014
1015 /*
1016 * list_lock must be held.
1017 */
1018 static void remove_full(struct kmem_cache *s, struct page *page)
1019 {
1020 if (!(s->flags & SLAB_STORE_USER))
1021 return;
1022
1023 list_del(&page->lru);
1024 }
1025
1026 /* Tracking of the number of slabs for debugging purposes */
1027 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1028 {
1029 struct kmem_cache_node *n = get_node(s, node);
1030
1031 return atomic_long_read(&n->nr_slabs);
1032 }
1033
1034 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1035 {
1036 return atomic_long_read(&n->nr_slabs);
1037 }
1038
1039 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1040 {
1041 struct kmem_cache_node *n = get_node(s, node);
1042
1043 /*
1044 * May be called early in order to allocate a slab for the
1045 * kmem_cache_node structure. Solve the chicken-egg
1046 * dilemma by deferring the increment of the count during
1047 * bootstrap (see early_kmem_cache_node_alloc).
1048 */
1049 if (likely(n)) {
1050 atomic_long_inc(&n->nr_slabs);
1051 atomic_long_add(objects, &n->total_objects);
1052 }
1053 }
1054 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1055 {
1056 struct kmem_cache_node *n = get_node(s, node);
1057
1058 atomic_long_dec(&n->nr_slabs);
1059 atomic_long_sub(objects, &n->total_objects);
1060 }
1061
1062 /* Object debug checks for alloc/free paths */
1063 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1064 void *object)
1065 {
1066 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1067 return;
1068
1069 init_object(s, object, SLUB_RED_INACTIVE);
1070 init_tracking(s, object);
1071 }
1072
1073 static noinline int alloc_debug_processing(struct kmem_cache *s,
1074 struct page *page,
1075 void *object, unsigned long addr)
1076 {
1077 if (!check_slab(s, page))
1078 goto bad;
1079
1080 if (!check_valid_pointer(s, page, object)) {
1081 object_err(s, page, object, "Freelist Pointer check fails");
1082 goto bad;
1083 }
1084
1085 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1086 goto bad;
1087
1088 /* Success perform special debug activities for allocs */
1089 if (s->flags & SLAB_STORE_USER)
1090 set_track(s, object, TRACK_ALLOC, addr);
1091 trace(s, page, object, 1);
1092 init_object(s, object, SLUB_RED_ACTIVE);
1093 return 1;
1094
1095 bad:
1096 if (PageSlab(page)) {
1097 /*
1098 * If this is a slab page then lets do the best we can
1099 * to avoid issues in the future. Marking all objects
1100 * as used avoids touching the remaining objects.
1101 */
1102 slab_fix(s, "Marking all objects used");
1103 page->inuse = page->objects;
1104 page->freelist = NULL;
1105 }
1106 return 0;
1107 }
1108
1109 static noinline struct kmem_cache_node *free_debug_processing(
1110 struct kmem_cache *s, struct page *page, void *object,
1111 unsigned long addr, unsigned long *flags)
1112 {
1113 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1114
1115 spin_lock_irqsave(&n->list_lock, *flags);
1116 slab_lock(page);
1117
1118 if (!check_slab(s, page))
1119 goto fail;
1120
1121 if (!check_valid_pointer(s, page, object)) {
1122 slab_err(s, page, "Invalid object pointer 0x%p", object);
1123 goto fail;
1124 }
1125
1126 if (on_freelist(s, page, object)) {
1127 object_err(s, page, object, "Object already free");
1128 goto fail;
1129 }
1130
1131 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1132 goto out;
1133
1134 if (unlikely(s != page->slab_cache)) {
1135 if (!PageSlab(page)) {
1136 slab_err(s, page, "Attempt to free object(0x%p) "
1137 "outside of slab", object);
1138 } else if (!page->slab_cache) {
1139 printk(KERN_ERR
1140 "SLUB <none>: no slab for object 0x%p.\n",
1141 object);
1142 dump_stack();
1143 } else
1144 object_err(s, page, object,
1145 "page slab pointer corrupt.");
1146 goto fail;
1147 }
1148
1149 if (s->flags & SLAB_STORE_USER)
1150 set_track(s, object, TRACK_FREE, addr);
1151 trace(s, page, object, 0);
1152 init_object(s, object, SLUB_RED_INACTIVE);
1153 out:
1154 slab_unlock(page);
1155 /*
1156 * Keep node_lock to preserve integrity
1157 * until the object is actually freed
1158 */
1159 return n;
1160
1161 fail:
1162 slab_unlock(page);
1163 spin_unlock_irqrestore(&n->list_lock, *flags);
1164 slab_fix(s, "Object at 0x%p not freed", object);
1165 return NULL;
1166 }
1167
1168 static int __init setup_slub_debug(char *str)
1169 {
1170 slub_debug = DEBUG_DEFAULT_FLAGS;
1171 if (*str++ != '=' || !*str)
1172 /*
1173 * No options specified. Switch on full debugging.
1174 */
1175 goto out;
1176
1177 if (*str == ',')
1178 /*
1179 * No options but restriction on slabs. This means full
1180 * debugging for slabs matching a pattern.
1181 */
1182 goto check_slabs;
1183
1184 if (tolower(*str) == 'o') {
1185 /*
1186 * Avoid enabling debugging on caches if its minimum order
1187 * would increase as a result.
1188 */
1189 disable_higher_order_debug = 1;
1190 goto out;
1191 }
1192
1193 slub_debug = 0;
1194 if (*str == '-')
1195 /*
1196 * Switch off all debugging measures.
1197 */
1198 goto out;
1199
1200 /*
1201 * Determine which debug features should be switched on
1202 */
1203 for (; *str && *str != ','; str++) {
1204 switch (tolower(*str)) {
1205 case 'f':
1206 slub_debug |= SLAB_DEBUG_FREE;
1207 break;
1208 case 'z':
1209 slub_debug |= SLAB_RED_ZONE;
1210 break;
1211 case 'p':
1212 slub_debug |= SLAB_POISON;
1213 break;
1214 case 'u':
1215 slub_debug |= SLAB_STORE_USER;
1216 break;
1217 case 't':
1218 slub_debug |= SLAB_TRACE;
1219 break;
1220 case 'a':
1221 slub_debug |= SLAB_FAILSLAB;
1222 break;
1223 default:
1224 printk(KERN_ERR "slub_debug option '%c' "
1225 "unknown. skipped\n", *str);
1226 }
1227 }
1228
1229 check_slabs:
1230 if (*str == ',')
1231 slub_debug_slabs = str + 1;
1232 out:
1233 return 1;
1234 }
1235
1236 __setup("slub_debug", setup_slub_debug);
1237
1238 static unsigned long kmem_cache_flags(unsigned long object_size,
1239 unsigned long flags, const char *name,
1240 void (*ctor)(void *))
1241 {
1242 /*
1243 * Enable debugging if selected on the kernel commandline.
1244 */
1245 if (slub_debug && (!slub_debug_slabs || (name &&
1246 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1247 flags |= slub_debug;
1248
1249 return flags;
1250 }
1251 #else
1252 static inline void setup_object_debug(struct kmem_cache *s,
1253 struct page *page, void *object) {}
1254
1255 static inline int alloc_debug_processing(struct kmem_cache *s,
1256 struct page *page, void *object, unsigned long addr) { return 0; }
1257
1258 static inline struct kmem_cache_node *free_debug_processing(
1259 struct kmem_cache *s, struct page *page, void *object,
1260 unsigned long addr, unsigned long *flags) { return NULL; }
1261
1262 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1263 { return 1; }
1264 static inline int check_object(struct kmem_cache *s, struct page *page,
1265 void *object, u8 val) { return 1; }
1266 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1267 struct page *page) {}
1268 static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1269 static inline unsigned long kmem_cache_flags(unsigned long object_size,
1270 unsigned long flags, const char *name,
1271 void (*ctor)(void *))
1272 {
1273 return flags;
1274 }
1275 #define slub_debug 0
1276
1277 #define disable_higher_order_debug 0
1278
1279 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1280 { return 0; }
1281 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1282 { return 0; }
1283 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1284 int objects) {}
1285 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1286 int objects) {}
1287
1288 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1289 {
1290 kmemleak_alloc(ptr, size, 1, flags);
1291 }
1292
1293 static inline void kfree_hook(const void *x)
1294 {
1295 kmemleak_free(x);
1296 }
1297
1298 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1299 { return 0; }
1300
1301 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1302 void *object)
1303 {
1304 kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
1305 flags & gfp_allowed_mask);
1306 }
1307
1308 static inline void slab_free_hook(struct kmem_cache *s, void *x)
1309 {
1310 kmemleak_free_recursive(x, s->flags);
1311 }
1312
1313 #endif /* CONFIG_SLUB_DEBUG */
1314
1315 /*
1316 * Slab allocation and freeing
1317 */
1318 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1319 struct kmem_cache_order_objects oo)
1320 {
1321 int order = oo_order(oo);
1322
1323 flags |= __GFP_NOTRACK;
1324
1325 if (node == NUMA_NO_NODE)
1326 return alloc_pages(flags, order);
1327 else
1328 return alloc_pages_exact_node(node, flags, order);
1329 }
1330
1331 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1332 {
1333 struct page *page;
1334 struct kmem_cache_order_objects oo = s->oo;
1335 gfp_t alloc_gfp;
1336
1337 flags &= gfp_allowed_mask;
1338
1339 if (flags & __GFP_WAIT)
1340 local_irq_enable();
1341
1342 flags |= s->allocflags;
1343
1344 /*
1345 * Let the initial higher-order allocation fail under memory pressure
1346 * so we fall-back to the minimum order allocation.
1347 */
1348 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1349
1350 page = alloc_slab_page(alloc_gfp, node, oo);
1351 if (unlikely(!page)) {
1352 oo = s->min;
1353 /*
1354 * Allocation may have failed due to fragmentation.
1355 * Try a lower order alloc if possible
1356 */
1357 page = alloc_slab_page(flags, node, oo);
1358
1359 if (page)
1360 stat(s, ORDER_FALLBACK);
1361 }
1362
1363 if (kmemcheck_enabled && page
1364 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1365 int pages = 1 << oo_order(oo);
1366
1367 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1368
1369 /*
1370 * Objects from caches that have a constructor don't get
1371 * cleared when they're allocated, so we need to do it here.
1372 */
1373 if (s->ctor)
1374 kmemcheck_mark_uninitialized_pages(page, pages);
1375 else
1376 kmemcheck_mark_unallocated_pages(page, pages);
1377 }
1378
1379 if (flags & __GFP_WAIT)
1380 local_irq_disable();
1381 if (!page)
1382 return NULL;
1383
1384 page->objects = oo_objects(oo);
1385 mod_zone_page_state(page_zone(page),
1386 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1387 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1388 1 << oo_order(oo));
1389
1390 return page;
1391 }
1392
1393 static void setup_object(struct kmem_cache *s, struct page *page,
1394 void *object)
1395 {
1396 setup_object_debug(s, page, object);
1397 if (unlikely(s->ctor))
1398 s->ctor(object);
1399 }
1400
1401 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1402 {
1403 struct page *page;
1404 void *start;
1405 void *last;
1406 void *p;
1407 int order;
1408
1409 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1410
1411 page = allocate_slab(s,
1412 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1413 if (!page)
1414 goto out;
1415
1416 order = compound_order(page);
1417 inc_slabs_node(s, page_to_nid(page), page->objects);
1418 memcg_bind_pages(s, order);
1419 page->slab_cache = s;
1420 __SetPageSlab(page);
1421 if (page->pfmemalloc)
1422 SetPageSlabPfmemalloc(page);
1423
1424 start = page_address(page);
1425
1426 if (unlikely(s->flags & SLAB_POISON))
1427 memset(start, POISON_INUSE, PAGE_SIZE << order);
1428
1429 last = start;
1430 for_each_object(p, s, start, page->objects) {
1431 setup_object(s, page, last);
1432 set_freepointer(s, last, p);
1433 last = p;
1434 }
1435 setup_object(s, page, last);
1436 set_freepointer(s, last, NULL);
1437
1438 page->freelist = start;
1439 page->inuse = page->objects;
1440 page->frozen = 1;
1441 out:
1442 return page;
1443 }
1444
1445 static void __free_slab(struct kmem_cache *s, struct page *page)
1446 {
1447 int order = compound_order(page);
1448 int pages = 1 << order;
1449
1450 if (kmem_cache_debug(s)) {
1451 void *p;
1452
1453 slab_pad_check(s, page);
1454 for_each_object(p, s, page_address(page),
1455 page->objects)
1456 check_object(s, page, p, SLUB_RED_INACTIVE);
1457 }
1458
1459 kmemcheck_free_shadow(page, compound_order(page));
1460
1461 mod_zone_page_state(page_zone(page),
1462 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1463 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1464 -pages);
1465
1466 __ClearPageSlabPfmemalloc(page);
1467 __ClearPageSlab(page);
1468
1469 memcg_release_pages(s, order);
1470 page_mapcount_reset(page);
1471 if (current->reclaim_state)
1472 current->reclaim_state->reclaimed_slab += pages;
1473 __free_memcg_kmem_pages(page, order);
1474 }
1475
1476 #define need_reserve_slab_rcu \
1477 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1478
1479 static void rcu_free_slab(struct rcu_head *h)
1480 {
1481 struct page *page;
1482
1483 if (need_reserve_slab_rcu)
1484 page = virt_to_head_page(h);
1485 else
1486 page = container_of((struct list_head *)h, struct page, lru);
1487
1488 __free_slab(page->slab_cache, page);
1489 }
1490
1491 static void free_slab(struct kmem_cache *s, struct page *page)
1492 {
1493 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1494 struct rcu_head *head;
1495
1496 if (need_reserve_slab_rcu) {
1497 int order = compound_order(page);
1498 int offset = (PAGE_SIZE << order) - s->reserved;
1499
1500 VM_BUG_ON(s->reserved != sizeof(*head));
1501 head = page_address(page) + offset;
1502 } else {
1503 /*
1504 * RCU free overloads the RCU head over the LRU
1505 */
1506 head = (void *)&page->lru;
1507 }
1508
1509 call_rcu(head, rcu_free_slab);
1510 } else
1511 __free_slab(s, page);
1512 }
1513
1514 static void discard_slab(struct kmem_cache *s, struct page *page)
1515 {
1516 dec_slabs_node(s, page_to_nid(page), page->objects);
1517 free_slab(s, page);
1518 }
1519
1520 /*
1521 * Management of partially allocated slabs.
1522 *
1523 * list_lock must be held.
1524 */
1525 static inline void add_partial(struct kmem_cache_node *n,
1526 struct page *page, int tail)
1527 {
1528 n->nr_partial++;
1529 if (tail == DEACTIVATE_TO_TAIL)
1530 list_add_tail(&page->lru, &n->partial);
1531 else
1532 list_add(&page->lru, &n->partial);
1533 }
1534
1535 /*
1536 * list_lock must be held.
1537 */
1538 static inline void remove_partial(struct kmem_cache_node *n,
1539 struct page *page)
1540 {
1541 list_del(&page->lru);
1542 n->nr_partial--;
1543 }
1544
1545 /*
1546 * Remove slab from the partial list, freeze it and
1547 * return the pointer to the freelist.
1548 *
1549 * Returns a list of objects or NULL if it fails.
1550 *
1551 * Must hold list_lock since we modify the partial list.
1552 */
1553 static inline void *acquire_slab(struct kmem_cache *s,
1554 struct kmem_cache_node *n, struct page *page,
1555 int mode, int *objects)
1556 {
1557 void *freelist;
1558 unsigned long counters;
1559 struct page new;
1560
1561 /*
1562 * Zap the freelist and set the frozen bit.
1563 * The old freelist is the list of objects for the
1564 * per cpu allocation list.
1565 */
1566 freelist = page->freelist;
1567 counters = page->counters;
1568 new.counters = counters;
1569 *objects = new.objects - new.inuse;
1570 if (mode) {
1571 new.inuse = page->objects;
1572 new.freelist = NULL;
1573 } else {
1574 new.freelist = freelist;
1575 }
1576
1577 VM_BUG_ON(new.frozen);
1578 new.frozen = 1;
1579
1580 if (!__cmpxchg_double_slab(s, page,
1581 freelist, counters,
1582 new.freelist, new.counters,
1583 "acquire_slab"))
1584 return NULL;
1585
1586 remove_partial(n, page);
1587 WARN_ON(!freelist);
1588 return freelist;
1589 }
1590
1591 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1592 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1593
1594 /*
1595 * Try to allocate a partial slab from a specific node.
1596 */
1597 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1598 struct kmem_cache_cpu *c, gfp_t flags)
1599 {
1600 struct page *page, *page2;
1601 void *object = NULL;
1602 int available = 0;
1603 int objects;
1604
1605 /*
1606 * Racy check. If we mistakenly see no partial slabs then we
1607 * just allocate an empty slab. If we mistakenly try to get a
1608 * partial slab and there is none available then get_partials()
1609 * will return NULL.
1610 */
1611 if (!n || !n->nr_partial)
1612 return NULL;
1613
1614 spin_lock(&n->list_lock);
1615 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1616 void *t;
1617
1618 if (!pfmemalloc_match(page, flags))
1619 continue;
1620
1621 t = acquire_slab(s, n, page, object == NULL, &objects);
1622 if (!t)
1623 break;
1624
1625 available += objects;
1626 if (!object) {
1627 c->page = page;
1628 stat(s, ALLOC_FROM_PARTIAL);
1629 object = t;
1630 } else {
1631 put_cpu_partial(s, page, 0);
1632 stat(s, CPU_PARTIAL_NODE);
1633 }
1634 if (!kmem_cache_has_cpu_partial(s)
1635 || available > s->cpu_partial / 2)
1636 break;
1637
1638 }
1639 spin_unlock(&n->list_lock);
1640 return object;
1641 }
1642
1643 /*
1644 * Get a page from somewhere. Search in increasing NUMA distances.
1645 */
1646 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1647 struct kmem_cache_cpu *c)
1648 {
1649 #ifdef CONFIG_NUMA
1650 struct zonelist *zonelist;
1651 struct zoneref *z;
1652 struct zone *zone;
1653 enum zone_type high_zoneidx = gfp_zone(flags);
1654 void *object;
1655 unsigned int cpuset_mems_cookie;
1656
1657 /*
1658 * The defrag ratio allows a configuration of the tradeoffs between
1659 * inter node defragmentation and node local allocations. A lower
1660 * defrag_ratio increases the tendency to do local allocations
1661 * instead of attempting to obtain partial slabs from other nodes.
1662 *
1663 * If the defrag_ratio is set to 0 then kmalloc() always
1664 * returns node local objects. If the ratio is higher then kmalloc()
1665 * may return off node objects because partial slabs are obtained
1666 * from other nodes and filled up.
1667 *
1668 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1669 * defrag_ratio = 1000) then every (well almost) allocation will
1670 * first attempt to defrag slab caches on other nodes. This means
1671 * scanning over all nodes to look for partial slabs which may be
1672 * expensive if we do it every time we are trying to find a slab
1673 * with available objects.
1674 */
1675 if (!s->remote_node_defrag_ratio ||
1676 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1677 return NULL;
1678
1679 do {
1680 cpuset_mems_cookie = get_mems_allowed();
1681 zonelist = node_zonelist(slab_node(), flags);
1682 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1683 struct kmem_cache_node *n;
1684
1685 n = get_node(s, zone_to_nid(zone));
1686
1687 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1688 n->nr_partial > s->min_partial) {
1689 object = get_partial_node(s, n, c, flags);
1690 if (object) {
1691 /*
1692 * Return the object even if
1693 * put_mems_allowed indicated that
1694 * the cpuset mems_allowed was
1695 * updated in parallel. It's a
1696 * harmless race between the alloc
1697 * and the cpuset update.
1698 */
1699 put_mems_allowed(cpuset_mems_cookie);
1700 return object;
1701 }
1702 }
1703 }
1704 } while (!put_mems_allowed(cpuset_mems_cookie));
1705 #endif
1706 return NULL;
1707 }
1708
1709 /*
1710 * Get a partial page, lock it and return it.
1711 */
1712 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1713 struct kmem_cache_cpu *c)
1714 {
1715 void *object;
1716 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1717
1718 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1719 if (object || node != NUMA_NO_NODE)
1720 return object;
1721
1722 return get_any_partial(s, flags, c);
1723 }
1724
1725 #ifdef CONFIG_PREEMPT
1726 /*
1727 * Calculate the next globally unique transaction for disambiguiation
1728 * during cmpxchg. The transactions start with the cpu number and are then
1729 * incremented by CONFIG_NR_CPUS.
1730 */
1731 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1732 #else
1733 /*
1734 * No preemption supported therefore also no need to check for
1735 * different cpus.
1736 */
1737 #define TID_STEP 1
1738 #endif
1739
1740 static inline unsigned long next_tid(unsigned long tid)
1741 {
1742 return tid + TID_STEP;
1743 }
1744
1745 static inline unsigned int tid_to_cpu(unsigned long tid)
1746 {
1747 return tid % TID_STEP;
1748 }
1749
1750 static inline unsigned long tid_to_event(unsigned long tid)
1751 {
1752 return tid / TID_STEP;
1753 }
1754
1755 static inline unsigned int init_tid(int cpu)
1756 {
1757 return cpu;
1758 }
1759
1760 static inline void note_cmpxchg_failure(const char *n,
1761 const struct kmem_cache *s, unsigned long tid)
1762 {
1763 #ifdef SLUB_DEBUG_CMPXCHG
1764 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1765
1766 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1767
1768 #ifdef CONFIG_PREEMPT
1769 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1770 printk("due to cpu change %d -> %d\n",
1771 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1772 else
1773 #endif
1774 if (tid_to_event(tid) != tid_to_event(actual_tid))
1775 printk("due to cpu running other code. Event %ld->%ld\n",
1776 tid_to_event(tid), tid_to_event(actual_tid));
1777 else
1778 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1779 actual_tid, tid, next_tid(tid));
1780 #endif
1781 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1782 }
1783
1784 static void init_kmem_cache_cpus(struct kmem_cache *s)
1785 {
1786 int cpu;
1787
1788 for_each_possible_cpu(cpu)
1789 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
1790 }
1791
1792 /*
1793 * Remove the cpu slab
1794 */
1795 static void deactivate_slab(struct kmem_cache *s, struct page *page,
1796 void *freelist)
1797 {
1798 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1799 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1800 int lock = 0;
1801 enum slab_modes l = M_NONE, m = M_NONE;
1802 void *nextfree;
1803 int tail = DEACTIVATE_TO_HEAD;
1804 struct page new;
1805 struct page old;
1806
1807 if (page->freelist) {
1808 stat(s, DEACTIVATE_REMOTE_FREES);
1809 tail = DEACTIVATE_TO_TAIL;
1810 }
1811
1812 /*
1813 * Stage one: Free all available per cpu objects back
1814 * to the page freelist while it is still frozen. Leave the
1815 * last one.
1816 *
1817 * There is no need to take the list->lock because the page
1818 * is still frozen.
1819 */
1820 while (freelist && (nextfree = get_freepointer(s, freelist))) {
1821 void *prior;
1822 unsigned long counters;
1823
1824 do {
1825 prior = page->freelist;
1826 counters = page->counters;
1827 set_freepointer(s, freelist, prior);
1828 new.counters = counters;
1829 new.inuse--;
1830 VM_BUG_ON(!new.frozen);
1831
1832 } while (!__cmpxchg_double_slab(s, page,
1833 prior, counters,
1834 freelist, new.counters,
1835 "drain percpu freelist"));
1836
1837 freelist = nextfree;
1838 }
1839
1840 /*
1841 * Stage two: Ensure that the page is unfrozen while the
1842 * list presence reflects the actual number of objects
1843 * during unfreeze.
1844 *
1845 * We setup the list membership and then perform a cmpxchg
1846 * with the count. If there is a mismatch then the page
1847 * is not unfrozen but the page is on the wrong list.
1848 *
1849 * Then we restart the process which may have to remove
1850 * the page from the list that we just put it on again
1851 * because the number of objects in the slab may have
1852 * changed.
1853 */
1854 redo:
1855
1856 old.freelist = page->freelist;
1857 old.counters = page->counters;
1858 VM_BUG_ON(!old.frozen);
1859
1860 /* Determine target state of the slab */
1861 new.counters = old.counters;
1862 if (freelist) {
1863 new.inuse--;
1864 set_freepointer(s, freelist, old.freelist);
1865 new.freelist = freelist;
1866 } else
1867 new.freelist = old.freelist;
1868
1869 new.frozen = 0;
1870
1871 if (!new.inuse && n->nr_partial > s->min_partial)
1872 m = M_FREE;
1873 else if (new.freelist) {
1874 m = M_PARTIAL;
1875 if (!lock) {
1876 lock = 1;
1877 /*
1878 * Taking the spinlock removes the possiblity
1879 * that acquire_slab() will see a slab page that
1880 * is frozen
1881 */
1882 spin_lock(&n->list_lock);
1883 }
1884 } else {
1885 m = M_FULL;
1886 if (kmem_cache_debug(s) && !lock) {
1887 lock = 1;
1888 /*
1889 * This also ensures that the scanning of full
1890 * slabs from diagnostic functions will not see
1891 * any frozen slabs.
1892 */
1893 spin_lock(&n->list_lock);
1894 }
1895 }
1896
1897 if (l != m) {
1898
1899 if (l == M_PARTIAL)
1900
1901 remove_partial(n, page);
1902
1903 else if (l == M_FULL)
1904
1905 remove_full(s, page);
1906
1907 if (m == M_PARTIAL) {
1908
1909 add_partial(n, page, tail);
1910 stat(s, tail);
1911
1912 } else if (m == M_FULL) {
1913
1914 stat(s, DEACTIVATE_FULL);
1915 add_full(s, n, page);
1916
1917 }
1918 }
1919
1920 l = m;
1921 if (!__cmpxchg_double_slab(s, page,
1922 old.freelist, old.counters,
1923 new.freelist, new.counters,
1924 "unfreezing slab"))
1925 goto redo;
1926
1927 if (lock)
1928 spin_unlock(&n->list_lock);
1929
1930 if (m == M_FREE) {
1931 stat(s, DEACTIVATE_EMPTY);
1932 discard_slab(s, page);
1933 stat(s, FREE_SLAB);
1934 }
1935 }
1936
1937 /*
1938 * Unfreeze all the cpu partial slabs.
1939 *
1940 * This function must be called with interrupts disabled
1941 * for the cpu using c (or some other guarantee must be there
1942 * to guarantee no concurrent accesses).
1943 */
1944 static void unfreeze_partials(struct kmem_cache *s,
1945 struct kmem_cache_cpu *c)
1946 {
1947 #ifdef CONFIG_SLUB_CPU_PARTIAL
1948 struct kmem_cache_node *n = NULL, *n2 = NULL;
1949 struct page *page, *discard_page = NULL;
1950
1951 while ((page = c->partial)) {
1952 struct page new;
1953 struct page old;
1954
1955 c->partial = page->next;
1956
1957 n2 = get_node(s, page_to_nid(page));
1958 if (n != n2) {
1959 if (n)
1960 spin_unlock(&n->list_lock);
1961
1962 n = n2;
1963 spin_lock(&n->list_lock);
1964 }
1965
1966 do {
1967
1968 old.freelist = page->freelist;
1969 old.counters = page->counters;
1970 VM_BUG_ON(!old.frozen);
1971
1972 new.counters = old.counters;
1973 new.freelist = old.freelist;
1974
1975 new.frozen = 0;
1976
1977 } while (!__cmpxchg_double_slab(s, page,
1978 old.freelist, old.counters,
1979 new.freelist, new.counters,
1980 "unfreezing slab"));
1981
1982 if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1983 page->next = discard_page;
1984 discard_page = page;
1985 } else {
1986 add_partial(n, page, DEACTIVATE_TO_TAIL);
1987 stat(s, FREE_ADD_PARTIAL);
1988 }
1989 }
1990
1991 if (n)
1992 spin_unlock(&n->list_lock);
1993
1994 while (discard_page) {
1995 page = discard_page;
1996 discard_page = discard_page->next;
1997
1998 stat(s, DEACTIVATE_EMPTY);
1999 discard_slab(s, page);
2000 stat(s, FREE_SLAB);
2001 }
2002 #endif
2003 }
2004
2005 /*
2006 * Put a page that was just frozen (in __slab_free) into a partial page
2007 * slot if available. This is done without interrupts disabled and without
2008 * preemption disabled. The cmpxchg is racy and may put the partial page
2009 * onto a random cpus partial slot.
2010 *
2011 * If we did not find a slot then simply move all the partials to the
2012 * per node partial list.
2013 */
2014 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2015 {
2016 #ifdef CONFIG_SLUB_CPU_PARTIAL
2017 struct page *oldpage;
2018 int pages;
2019 int pobjects;
2020
2021 do {
2022 pages = 0;
2023 pobjects = 0;
2024 oldpage = this_cpu_read(s->cpu_slab->partial);
2025
2026 if (oldpage) {
2027 pobjects = oldpage->pobjects;
2028 pages = oldpage->pages;
2029 if (drain && pobjects > s->cpu_partial) {
2030 unsigned long flags;
2031 /*
2032 * partial array is full. Move the existing
2033 * set to the per node partial list.
2034 */
2035 local_irq_save(flags);
2036 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2037 local_irq_restore(flags);
2038 oldpage = NULL;
2039 pobjects = 0;
2040 pages = 0;
2041 stat(s, CPU_PARTIAL_DRAIN);
2042 }
2043 }
2044
2045 pages++;
2046 pobjects += page->objects - page->inuse;
2047
2048 page->pages = pages;
2049 page->pobjects = pobjects;
2050 page->next = oldpage;
2051
2052 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2053 != oldpage);
2054 #endif
2055 }
2056
2057 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2058 {
2059 stat(s, CPUSLAB_FLUSH);
2060 deactivate_slab(s, c->page, c->freelist);
2061
2062 c->tid = next_tid(c->tid);
2063 c->page = NULL;
2064 c->freelist = NULL;
2065 }
2066
2067 /*
2068 * Flush cpu slab.
2069 *
2070 * Called from IPI handler with interrupts disabled.
2071 */
2072 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2073 {
2074 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2075
2076 if (likely(c)) {
2077 if (c->page)
2078 flush_slab(s, c);
2079
2080 unfreeze_partials(s, c);
2081 }
2082 }
2083
2084 static void flush_cpu_slab(void *d)
2085 {
2086 struct kmem_cache *s = d;
2087
2088 __flush_cpu_slab(s, smp_processor_id());
2089 }
2090
2091 static bool has_cpu_slab(int cpu, void *info)
2092 {
2093 struct kmem_cache *s = info;
2094 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2095
2096 return c->page || c->partial;
2097 }
2098
2099 static void flush_all(struct kmem_cache *s)
2100 {
2101 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2102 }
2103
2104 /*
2105 * Check if the objects in a per cpu structure fit numa
2106 * locality expectations.
2107 */
2108 static inline int node_match(struct page *page, int node)
2109 {
2110 #ifdef CONFIG_NUMA
2111 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2112 return 0;
2113 #endif
2114 return 1;
2115 }
2116
2117 static int count_free(struct page *page)
2118 {
2119 return page->objects - page->inuse;
2120 }
2121
2122 static unsigned long count_partial(struct kmem_cache_node *n,
2123 int (*get_count)(struct page *))
2124 {
2125 unsigned long flags;
2126 unsigned long x = 0;
2127 struct page *page;
2128
2129 spin_lock_irqsave(&n->list_lock, flags);
2130 list_for_each_entry(page, &n->partial, lru)
2131 x += get_count(page);
2132 spin_unlock_irqrestore(&n->list_lock, flags);
2133 return x;
2134 }
2135
2136 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2137 {
2138 #ifdef CONFIG_SLUB_DEBUG
2139 return atomic_long_read(&n->total_objects);
2140 #else
2141 return 0;
2142 #endif
2143 }
2144
2145 static noinline void
2146 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2147 {
2148 int node;
2149
2150 printk(KERN_WARNING
2151 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2152 nid, gfpflags);
2153 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
2154 "default order: %d, min order: %d\n", s->name, s->object_size,
2155 s->size, oo_order(s->oo), oo_order(s->min));
2156
2157 if (oo_order(s->min) > get_order(s->object_size))
2158 printk(KERN_WARNING " %s debugging increased min order, use "
2159 "slub_debug=O to disable.\n", s->name);
2160
2161 for_each_online_node(node) {
2162 struct kmem_cache_node *n = get_node(s, node);
2163 unsigned long nr_slabs;
2164 unsigned long nr_objs;
2165 unsigned long nr_free;
2166
2167 if (!n)
2168 continue;
2169
2170 nr_free = count_partial(n, count_free);
2171 nr_slabs = node_nr_slabs(n);
2172 nr_objs = node_nr_objs(n);
2173
2174 printk(KERN_WARNING
2175 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2176 node, nr_slabs, nr_objs, nr_free);
2177 }
2178 }
2179
2180 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2181 int node, struct kmem_cache_cpu **pc)
2182 {
2183 void *freelist;
2184 struct kmem_cache_cpu *c = *pc;
2185 struct page *page;
2186
2187 freelist = get_partial(s, flags, node, c);
2188
2189 if (freelist)
2190 return freelist;
2191
2192 page = new_slab(s, flags, node);
2193 if (page) {
2194 c = __this_cpu_ptr(s->cpu_slab);
2195 if (c->page)
2196 flush_slab(s, c);
2197
2198 /*
2199 * No other reference to the page yet so we can
2200 * muck around with it freely without cmpxchg
2201 */
2202 freelist = page->freelist;
2203 page->freelist = NULL;
2204
2205 stat(s, ALLOC_SLAB);
2206 c->page = page;
2207 *pc = c;
2208 } else
2209 freelist = NULL;
2210
2211 return freelist;
2212 }
2213
2214 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2215 {
2216 if (unlikely(PageSlabPfmemalloc(page)))
2217 return gfp_pfmemalloc_allowed(gfpflags);
2218
2219 return true;
2220 }
2221
2222 /*
2223 * Check the page->freelist of a page and either transfer the freelist to the
2224 * per cpu freelist or deactivate the page.
2225 *
2226 * The page is still frozen if the return value is not NULL.
2227 *
2228 * If this function returns NULL then the page has been unfrozen.
2229 *
2230 * This function must be called with interrupt disabled.
2231 */
2232 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2233 {
2234 struct page new;
2235 unsigned long counters;
2236 void *freelist;
2237
2238 do {
2239 freelist = page->freelist;
2240 counters = page->counters;
2241
2242 new.counters = counters;
2243 VM_BUG_ON(!new.frozen);
2244
2245 new.inuse = page->objects;
2246 new.frozen = freelist != NULL;
2247
2248 } while (!__cmpxchg_double_slab(s, page,
2249 freelist, counters,
2250 NULL, new.counters,
2251 "get_freelist"));
2252
2253 return freelist;
2254 }
2255
2256 /*
2257 * Slow path. The lockless freelist is empty or we need to perform
2258 * debugging duties.
2259 *
2260 * Processing is still very fast if new objects have been freed to the
2261 * regular freelist. In that case we simply take over the regular freelist
2262 * as the lockless freelist and zap the regular freelist.
2263 *
2264 * If that is not working then we fall back to the partial lists. We take the
2265 * first element of the freelist as the object to allocate now and move the
2266 * rest of the freelist to the lockless freelist.
2267 *
2268 * And if we were unable to get a new slab from the partial slab lists then
2269 * we need to allocate a new slab. This is the slowest path since it involves
2270 * a call to the page allocator and the setup of a new slab.
2271 */
2272 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2273 unsigned long addr, struct kmem_cache_cpu *c)
2274 {
2275 void *freelist;
2276 struct page *page;
2277 unsigned long flags;
2278
2279 local_irq_save(flags);
2280 #ifdef CONFIG_PREEMPT
2281 /*
2282 * We may have been preempted and rescheduled on a different
2283 * cpu before disabling interrupts. Need to reload cpu area
2284 * pointer.
2285 */
2286 c = this_cpu_ptr(s->cpu_slab);
2287 #endif
2288
2289 page = c->page;
2290 if (!page)
2291 goto new_slab;
2292 redo:
2293
2294 if (unlikely(!node_match(page, node))) {
2295 stat(s, ALLOC_NODE_MISMATCH);
2296 deactivate_slab(s, page, c->freelist);
2297 c->page = NULL;
2298 c->freelist = NULL;
2299 goto new_slab;
2300 }
2301
2302 /*
2303 * By rights, we should be searching for a slab page that was
2304 * PFMEMALLOC but right now, we are losing the pfmemalloc
2305 * information when the page leaves the per-cpu allocator
2306 */
2307 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2308 deactivate_slab(s, page, c->freelist);
2309 c->page = NULL;
2310 c->freelist = NULL;
2311 goto new_slab;
2312 }
2313
2314 /* must check again c->freelist in case of cpu migration or IRQ */
2315 freelist = c->freelist;
2316 if (freelist)
2317 goto load_freelist;
2318
2319 stat(s, ALLOC_SLOWPATH);
2320
2321 freelist = get_freelist(s, page);
2322
2323 if (!freelist) {
2324 c->page = NULL;
2325 stat(s, DEACTIVATE_BYPASS);
2326 goto new_slab;
2327 }
2328
2329 stat(s, ALLOC_REFILL);
2330
2331 load_freelist:
2332 /*
2333 * freelist is pointing to the list of objects to be used.
2334 * page is pointing to the page from which the objects are obtained.
2335 * That page must be frozen for per cpu allocations to work.
2336 */
2337 VM_BUG_ON(!c->page->frozen);
2338 c->freelist = get_freepointer(s, freelist);
2339 c->tid = next_tid(c->tid);
2340 local_irq_restore(flags);
2341 return freelist;
2342
2343 new_slab:
2344
2345 if (c->partial) {
2346 page = c->page = c->partial;
2347 c->partial = page->next;
2348 stat(s, CPU_PARTIAL_ALLOC);
2349 c->freelist = NULL;
2350 goto redo;
2351 }
2352
2353 freelist = new_slab_objects(s, gfpflags, node, &c);
2354
2355 if (unlikely(!freelist)) {
2356 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
2357 slab_out_of_memory(s, gfpflags, node);
2358
2359 local_irq_restore(flags);
2360 return NULL;
2361 }
2362
2363 page = c->page;
2364 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2365 goto load_freelist;
2366
2367 /* Only entered in the debug case */
2368 if (kmem_cache_debug(s) &&
2369 !alloc_debug_processing(s, page, freelist, addr))
2370 goto new_slab; /* Slab failed checks. Next slab needed */
2371
2372 deactivate_slab(s, page, get_freepointer(s, freelist));
2373 c->page = NULL;
2374 c->freelist = NULL;
2375 local_irq_restore(flags);
2376 return freelist;
2377 }
2378
2379 /*
2380 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2381 * have the fastpath folded into their functions. So no function call
2382 * overhead for requests that can be satisfied on the fastpath.
2383 *
2384 * The fastpath works by first checking if the lockless freelist can be used.
2385 * If not then __slab_alloc is called for slow processing.
2386 *
2387 * Otherwise we can simply pick the next object from the lockless free list.
2388 */
2389 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2390 gfp_t gfpflags, int node, unsigned long addr)
2391 {
2392 void **object;
2393 struct kmem_cache_cpu *c;
2394 struct page *page;
2395 unsigned long tid;
2396
2397 if (slab_pre_alloc_hook(s, gfpflags))
2398 return NULL;
2399
2400 s = memcg_kmem_get_cache(s, gfpflags);
2401 redo:
2402 /*
2403 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2404 * enabled. We may switch back and forth between cpus while
2405 * reading from one cpu area. That does not matter as long
2406 * as we end up on the original cpu again when doing the cmpxchg.
2407 *
2408 * Preemption is disabled for the retrieval of the tid because that
2409 * must occur from the current processor. We cannot allow rescheduling
2410 * on a different processor between the determination of the pointer
2411 * and the retrieval of the tid.
2412 */
2413 preempt_disable();
2414 c = __this_cpu_ptr(s->cpu_slab);
2415
2416 /*
2417 * The transaction ids are globally unique per cpu and per operation on
2418 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2419 * occurs on the right processor and that there was no operation on the
2420 * linked list in between.
2421 */
2422 tid = c->tid;
2423 preempt_enable();
2424
2425 object = c->freelist;
2426 page = c->page;
2427 if (unlikely(!object || !node_match(page, node)))
2428 object = __slab_alloc(s, gfpflags, node, addr, c);
2429
2430 else {
2431 void *next_object = get_freepointer_safe(s, object);
2432
2433 /*
2434 * The cmpxchg will only match if there was no additional
2435 * operation and if we are on the right processor.
2436 *
2437 * The cmpxchg does the following atomically (without lock
2438 * semantics!)
2439 * 1. Relocate first pointer to the current per cpu area.
2440 * 2. Verify that tid and freelist have not been changed
2441 * 3. If they were not changed replace tid and freelist
2442 *
2443 * Since this is without lock semantics the protection is only
2444 * against code executing on this cpu *not* from access by
2445 * other cpus.
2446 */
2447 if (unlikely(!this_cpu_cmpxchg_double(
2448 s->cpu_slab->freelist, s->cpu_slab->tid,
2449 object, tid,
2450 next_object, next_tid(tid)))) {
2451
2452 note_cmpxchg_failure("slab_alloc", s, tid);
2453 goto redo;
2454 }
2455 prefetch_freepointer(s, next_object);
2456 stat(s, ALLOC_FASTPATH);
2457 }
2458
2459 if (unlikely(gfpflags & __GFP_ZERO) && object)
2460 memset(object, 0, s->object_size);
2461
2462 slab_post_alloc_hook(s, gfpflags, object);
2463
2464 return object;
2465 }
2466
2467 static __always_inline void *slab_alloc(struct kmem_cache *s,
2468 gfp_t gfpflags, unsigned long addr)
2469 {
2470 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2471 }
2472
2473 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2474 {
2475 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2476
2477 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2478 s->size, gfpflags);
2479
2480 return ret;
2481 }
2482 EXPORT_SYMBOL(kmem_cache_alloc);
2483
2484 #ifdef CONFIG_TRACING
2485 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2486 {
2487 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2488 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2489 return ret;
2490 }
2491 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2492 #endif
2493
2494 #ifdef CONFIG_NUMA
2495 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2496 {
2497 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2498
2499 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2500 s->object_size, s->size, gfpflags, node);
2501
2502 return ret;
2503 }
2504 EXPORT_SYMBOL(kmem_cache_alloc_node);
2505
2506 #ifdef CONFIG_TRACING
2507 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2508 gfp_t gfpflags,
2509 int node, size_t size)
2510 {
2511 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2512
2513 trace_kmalloc_node(_RET_IP_, ret,
2514 size, s->size, gfpflags, node);
2515 return ret;
2516 }
2517 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2518 #endif
2519 #endif
2520
2521 /*
2522 * Slow patch handling. This may still be called frequently since objects
2523 * have a longer lifetime than the cpu slabs in most processing loads.
2524 *
2525 * So we still attempt to reduce cache line usage. Just take the slab
2526 * lock and free the item. If there is no additional partial page
2527 * handling required then we can return immediately.
2528 */
2529 static void __slab_free(struct kmem_cache *s, struct page *page,
2530 void *x, unsigned long addr)
2531 {
2532 void *prior;
2533 void **object = (void *)x;
2534 int was_frozen;
2535 struct page new;
2536 unsigned long counters;
2537 struct kmem_cache_node *n = NULL;
2538 unsigned long uninitialized_var(flags);
2539
2540 stat(s, FREE_SLOWPATH);
2541
2542 if (kmem_cache_debug(s) &&
2543 !(n = free_debug_processing(s, page, x, addr, &flags)))
2544 return;
2545
2546 do {
2547 if (unlikely(n)) {
2548 spin_unlock_irqrestore(&n->list_lock, flags);
2549 n = NULL;
2550 }
2551 prior = page->freelist;
2552 counters = page->counters;
2553 set_freepointer(s, object, prior);
2554 new.counters = counters;
2555 was_frozen = new.frozen;
2556 new.inuse--;
2557 if ((!new.inuse || !prior) && !was_frozen) {
2558
2559 if (kmem_cache_has_cpu_partial(s) && !prior)
2560
2561 /*
2562 * Slab was on no list before and will be
2563 * partially empty
2564 * We can defer the list move and instead
2565 * freeze it.
2566 */
2567 new.frozen = 1;
2568
2569 else { /* Needs to be taken off a list */
2570
2571 n = get_node(s, page_to_nid(page));
2572 /*
2573 * Speculatively acquire the list_lock.
2574 * If the cmpxchg does not succeed then we may
2575 * drop the list_lock without any processing.
2576 *
2577 * Otherwise the list_lock will synchronize with
2578 * other processors updating the list of slabs.
2579 */
2580 spin_lock_irqsave(&n->list_lock, flags);
2581
2582 }
2583 }
2584
2585 } while (!cmpxchg_double_slab(s, page,
2586 prior, counters,
2587 object, new.counters,
2588 "__slab_free"));
2589
2590 if (likely(!n)) {
2591
2592 /*
2593 * If we just froze the page then put it onto the
2594 * per cpu partial list.
2595 */
2596 if (new.frozen && !was_frozen) {
2597 put_cpu_partial(s, page, 1);
2598 stat(s, CPU_PARTIAL_FREE);
2599 }
2600 /*
2601 * The list lock was not taken therefore no list
2602 * activity can be necessary.
2603 */
2604 if (was_frozen)
2605 stat(s, FREE_FROZEN);
2606 return;
2607 }
2608
2609 if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
2610 goto slab_empty;
2611
2612 /*
2613 * Objects left in the slab. If it was not on the partial list before
2614 * then add it.
2615 */
2616 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2617 if (kmem_cache_debug(s))
2618 remove_full(s, page);
2619 add_partial(n, page, DEACTIVATE_TO_TAIL);
2620 stat(s, FREE_ADD_PARTIAL);
2621 }
2622 spin_unlock_irqrestore(&n->list_lock, flags);
2623 return;
2624
2625 slab_empty:
2626 if (prior) {
2627 /*
2628 * Slab on the partial list.
2629 */
2630 remove_partial(n, page);
2631 stat(s, FREE_REMOVE_PARTIAL);
2632 } else
2633 /* Slab must be on the full list */
2634 remove_full(s, page);
2635
2636 spin_unlock_irqrestore(&n->list_lock, flags);
2637 stat(s, FREE_SLAB);
2638 discard_slab(s, page);
2639 }
2640
2641 /*
2642 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2643 * can perform fastpath freeing without additional function calls.
2644 *
2645 * The fastpath is only possible if we are freeing to the current cpu slab
2646 * of this processor. This typically the case if we have just allocated
2647 * the item before.
2648 *
2649 * If fastpath is not possible then fall back to __slab_free where we deal
2650 * with all sorts of special processing.
2651 */
2652 static __always_inline void slab_free(struct kmem_cache *s,
2653 struct page *page, void *x, unsigned long addr)
2654 {
2655 void **object = (void *)x;
2656 struct kmem_cache_cpu *c;
2657 unsigned long tid;
2658
2659 slab_free_hook(s, x);
2660
2661 redo:
2662 /*
2663 * Determine the currently cpus per cpu slab.
2664 * The cpu may change afterward. However that does not matter since
2665 * data is retrieved via this pointer. If we are on the same cpu
2666 * during the cmpxchg then the free will succedd.
2667 */
2668 preempt_disable();
2669 c = __this_cpu_ptr(s->cpu_slab);
2670
2671 tid = c->tid;
2672 preempt_enable();
2673
2674 if (likely(page == c->page)) {
2675 set_freepointer(s, object, c->freelist);
2676
2677 if (unlikely(!this_cpu_cmpxchg_double(
2678 s->cpu_slab->freelist, s->cpu_slab->tid,
2679 c->freelist, tid,
2680 object, next_tid(tid)))) {
2681
2682 note_cmpxchg_failure("slab_free", s, tid);
2683 goto redo;
2684 }
2685 stat(s, FREE_FASTPATH);
2686 } else
2687 __slab_free(s, page, x, addr);
2688
2689 }
2690
2691 void kmem_cache_free(struct kmem_cache *s, void *x)
2692 {
2693 s = cache_from_obj(s, x);
2694 if (!s)
2695 return;
2696 slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2697 trace_kmem_cache_free(_RET_IP_, x);
2698 }
2699 EXPORT_SYMBOL(kmem_cache_free);
2700
2701 /*
2702 * Object placement in a slab is made very easy because we always start at
2703 * offset 0. If we tune the size of the object to the alignment then we can
2704 * get the required alignment by putting one properly sized object after
2705 * another.
2706 *
2707 * Notice that the allocation order determines the sizes of the per cpu
2708 * caches. Each processor has always one slab available for allocations.
2709 * Increasing the allocation order reduces the number of times that slabs
2710 * must be moved on and off the partial lists and is therefore a factor in
2711 * locking overhead.
2712 */
2713
2714 /*
2715 * Mininum / Maximum order of slab pages. This influences locking overhead
2716 * and slab fragmentation. A higher order reduces the number of partial slabs
2717 * and increases the number of allocations possible without having to
2718 * take the list_lock.
2719 */
2720 static int slub_min_order;
2721 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2722 static int slub_min_objects;
2723
2724 /*
2725 * Merge control. If this is set then no merging of slab caches will occur.
2726 * (Could be removed. This was introduced to pacify the merge skeptics.)
2727 */
2728 static int slub_nomerge;
2729
2730 /*
2731 * Calculate the order of allocation given an slab object size.
2732 *
2733 * The order of allocation has significant impact on performance and other
2734 * system components. Generally order 0 allocations should be preferred since
2735 * order 0 does not cause fragmentation in the page allocator. Larger objects
2736 * be problematic to put into order 0 slabs because there may be too much
2737 * unused space left. We go to a higher order if more than 1/16th of the slab
2738 * would be wasted.
2739 *
2740 * In order to reach satisfactory performance we must ensure that a minimum
2741 * number of objects is in one slab. Otherwise we may generate too much
2742 * activity on the partial lists which requires taking the list_lock. This is
2743 * less a concern for large slabs though which are rarely used.
2744 *
2745 * slub_max_order specifies the order where we begin to stop considering the
2746 * number of objects in a slab as critical. If we reach slub_max_order then
2747 * we try to keep the page order as low as possible. So we accept more waste
2748 * of space in favor of a small page order.
2749 *
2750 * Higher order allocations also allow the placement of more objects in a
2751 * slab and thereby reduce object handling overhead. If the user has
2752 * requested a higher mininum order then we start with that one instead of
2753 * the smallest order which will fit the object.
2754 */
2755 static inline int slab_order(int size, int min_objects,
2756 int max_order, int fract_leftover, int reserved)
2757 {
2758 int order;
2759 int rem;
2760 int min_order = slub_min_order;
2761
2762 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2763 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2764
2765 for (order = max(min_order,
2766 fls(min_objects * size - 1) - PAGE_SHIFT);
2767 order <= max_order; order++) {
2768
2769 unsigned long slab_size = PAGE_SIZE << order;
2770
2771 if (slab_size < min_objects * size + reserved)
2772 continue;
2773
2774 rem = (slab_size - reserved) % size;
2775
2776 if (rem <= slab_size / fract_leftover)
2777 break;
2778
2779 }
2780
2781 return order;
2782 }
2783
2784 static inline int calculate_order(int size, int reserved)
2785 {
2786 int order;
2787 int min_objects;
2788 int fraction;
2789 int max_objects;
2790
2791 /*
2792 * Attempt to find best configuration for a slab. This
2793 * works by first attempting to generate a layout with
2794 * the best configuration and backing off gradually.
2795 *
2796 * First we reduce the acceptable waste in a slab. Then
2797 * we reduce the minimum objects required in a slab.
2798 */
2799 min_objects = slub_min_objects;
2800 if (!min_objects)
2801 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2802 max_objects = order_objects(slub_max_order, size, reserved);
2803 min_objects = min(min_objects, max_objects);
2804
2805 while (min_objects > 1) {
2806 fraction = 16;
2807 while (fraction >= 4) {
2808 order = slab_order(size, min_objects,
2809 slub_max_order, fraction, reserved);
2810 if (order <= slub_max_order)
2811 return order;
2812 fraction /= 2;
2813 }
2814 min_objects--;
2815 }
2816
2817 /*
2818 * We were unable to place multiple objects in a slab. Now
2819 * lets see if we can place a single object there.
2820 */
2821 order = slab_order(size, 1, slub_max_order, 1, reserved);
2822 if (order <= slub_max_order)
2823 return order;
2824
2825 /*
2826 * Doh this slab cannot be placed using slub_max_order.
2827 */
2828 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
2829 if (order < MAX_ORDER)
2830 return order;
2831 return -ENOSYS;
2832 }
2833
2834 static void
2835 init_kmem_cache_node(struct kmem_cache_node *n)
2836 {
2837 n->nr_partial = 0;
2838 spin_lock_init(&n->list_lock);
2839 INIT_LIST_HEAD(&n->partial);
2840 #ifdef CONFIG_SLUB_DEBUG
2841 atomic_long_set(&n->nr_slabs, 0);
2842 atomic_long_set(&n->total_objects, 0);
2843 INIT_LIST_HEAD(&n->full);
2844 #endif
2845 }
2846
2847 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2848 {
2849 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2850 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2851
2852 /*
2853 * Must align to double word boundary for the double cmpxchg
2854 * instructions to work; see __pcpu_double_call_return_bool().
2855 */
2856 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2857 2 * sizeof(void *));
2858
2859 if (!s->cpu_slab)
2860 return 0;
2861
2862 init_kmem_cache_cpus(s);
2863
2864 return 1;
2865 }
2866
2867 static struct kmem_cache *kmem_cache_node;
2868
2869 /*
2870 * No kmalloc_node yet so do it by hand. We know that this is the first
2871 * slab on the node for this slabcache. There are no concurrent accesses
2872 * possible.
2873 *
2874 * Note that this function only works on the kmem_cache_node
2875 * when allocating for the kmem_cache_node. This is used for bootstrapping
2876 * memory on a fresh node that has no slab structures yet.
2877 */
2878 static void early_kmem_cache_node_alloc(int node)
2879 {
2880 struct page *page;
2881 struct kmem_cache_node *n;
2882
2883 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2884
2885 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2886
2887 BUG_ON(!page);
2888 if (page_to_nid(page) != node) {
2889 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2890 "node %d\n", node);
2891 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2892 "in order to be able to continue\n");
2893 }
2894
2895 n = page->freelist;
2896 BUG_ON(!n);
2897 page->freelist = get_freepointer(kmem_cache_node, n);
2898 page->inuse = 1;
2899 page->frozen = 0;
2900 kmem_cache_node->node[node] = n;
2901 #ifdef CONFIG_SLUB_DEBUG
2902 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2903 init_tracking(kmem_cache_node, n);
2904 #endif
2905 init_kmem_cache_node(n);
2906 inc_slabs_node(kmem_cache_node, node, page->objects);
2907
2908 add_partial(n, page, DEACTIVATE_TO_HEAD);
2909 }
2910
2911 static void free_kmem_cache_nodes(struct kmem_cache *s)
2912 {
2913 int node;
2914
2915 for_each_node_state(node, N_NORMAL_MEMORY) {
2916 struct kmem_cache_node *n = s->node[node];
2917
2918 if (n)
2919 kmem_cache_free(kmem_cache_node, n);
2920
2921 s->node[node] = NULL;
2922 }
2923 }
2924
2925 static int init_kmem_cache_nodes(struct kmem_cache *s)
2926 {
2927 int node;
2928
2929 for_each_node_state(node, N_NORMAL_MEMORY) {
2930 struct kmem_cache_node *n;
2931
2932 if (slab_state == DOWN) {
2933 early_kmem_cache_node_alloc(node);
2934 continue;
2935 }
2936 n = kmem_cache_alloc_node(kmem_cache_node,
2937 GFP_KERNEL, node);
2938
2939 if (!n) {
2940 free_kmem_cache_nodes(s);
2941 return 0;
2942 }
2943
2944 s->node[node] = n;
2945 init_kmem_cache_node(n);
2946 }
2947 return 1;
2948 }
2949
2950 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2951 {
2952 if (min < MIN_PARTIAL)
2953 min = MIN_PARTIAL;
2954 else if (min > MAX_PARTIAL)
2955 min = MAX_PARTIAL;
2956 s->min_partial = min;
2957 }
2958
2959 /*
2960 * calculate_sizes() determines the order and the distribution of data within
2961 * a slab object.
2962 */
2963 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2964 {
2965 unsigned long flags = s->flags;
2966 unsigned long size = s->object_size;
2967 int order;
2968
2969 /*
2970 * Round up object size to the next word boundary. We can only
2971 * place the free pointer at word boundaries and this determines
2972 * the possible location of the free pointer.
2973 */
2974 size = ALIGN(size, sizeof(void *));
2975
2976 #ifdef CONFIG_SLUB_DEBUG
2977 /*
2978 * Determine if we can poison the object itself. If the user of
2979 * the slab may touch the object after free or before allocation
2980 * then we should never poison the object itself.
2981 */
2982 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2983 !s->ctor)
2984 s->flags |= __OBJECT_POISON;
2985 else
2986 s->flags &= ~__OBJECT_POISON;
2987
2988
2989 /*
2990 * If we are Redzoning then check if there is some space between the
2991 * end of the object and the free pointer. If not then add an
2992 * additional word to have some bytes to store Redzone information.
2993 */
2994 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
2995 size += sizeof(void *);
2996 #endif
2997
2998 /*
2999 * With that we have determined the number of bytes in actual use
3000 * by the object. This is the potential offset to the free pointer.
3001 */
3002 s->inuse = size;
3003
3004 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3005 s->ctor)) {
3006 /*
3007 * Relocate free pointer after the object if it is not
3008 * permitted to overwrite the first word of the object on
3009 * kmem_cache_free.
3010 *
3011 * This is the case if we do RCU, have a constructor or
3012 * destructor or are poisoning the objects.
3013 */
3014 s->offset = size;
3015 size += sizeof(void *);
3016 }
3017
3018 #ifdef CONFIG_SLUB_DEBUG
3019 if (flags & SLAB_STORE_USER)
3020 /*
3021 * Need to store information about allocs and frees after
3022 * the object.
3023 */
3024 size += 2 * sizeof(struct track);
3025
3026 if (flags & SLAB_RED_ZONE)
3027 /*
3028 * Add some empty padding so that we can catch
3029 * overwrites from earlier objects rather than let
3030 * tracking information or the free pointer be
3031 * corrupted if a user writes before the start
3032 * of the object.
3033 */
3034 size += sizeof(void *);
3035 #endif
3036
3037 /*
3038 * SLUB stores one object immediately after another beginning from
3039 * offset 0. In order to align the objects we have to simply size
3040 * each object to conform to the alignment.
3041 */
3042 size = ALIGN(size, s->align);
3043 s->size = size;
3044 if (forced_order >= 0)
3045 order = forced_order;
3046 else
3047 order = calculate_order(size, s->reserved);
3048
3049 if (order < 0)
3050 return 0;
3051
3052 s->allocflags = 0;
3053 if (order)
3054 s->allocflags |= __GFP_COMP;
3055
3056 if (s->flags & SLAB_CACHE_DMA)
3057 s->allocflags |= GFP_DMA;
3058
3059 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3060 s->allocflags |= __GFP_RECLAIMABLE;
3061
3062 /*
3063 * Determine the number of objects per slab
3064 */
3065 s->oo = oo_make(order, size, s->reserved);
3066 s->min = oo_make(get_order(size), size, s->reserved);
3067 if (oo_objects(s->oo) > oo_objects(s->max))
3068 s->max = s->oo;
3069
3070 return !!oo_objects(s->oo);
3071 }
3072
3073 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3074 {
3075 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3076 s->reserved = 0;
3077
3078 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
3079 s->reserved = sizeof(struct rcu_head);
3080
3081 if (!calculate_sizes(s, -1))
3082 goto error;
3083 if (disable_higher_order_debug) {
3084 /*
3085 * Disable debugging flags that store metadata if the min slab
3086 * order increased.
3087 */
3088 if (get_order(s->size) > get_order(s->object_size)) {
3089 s->flags &= ~DEBUG_METADATA_FLAGS;
3090 s->offset = 0;
3091 if (!calculate_sizes(s, -1))
3092 goto error;
3093 }
3094 }
3095
3096 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3097 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3098 if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
3099 /* Enable fast mode */
3100 s->flags |= __CMPXCHG_DOUBLE;
3101 #endif
3102
3103 /*
3104 * The larger the object size is, the more pages we want on the partial
3105 * list to avoid pounding the page allocator excessively.
3106 */
3107 set_min_partial(s, ilog2(s->size) / 2);
3108
3109 /*
3110 * cpu_partial determined the maximum number of objects kept in the
3111 * per cpu partial lists of a processor.
3112 *
3113 * Per cpu partial lists mainly contain slabs that just have one
3114 * object freed. If they are used for allocation then they can be
3115 * filled up again with minimal effort. The slab will never hit the
3116 * per node partial lists and therefore no locking will be required.
3117 *
3118 * This setting also determines
3119 *
3120 * A) The number of objects from per cpu partial slabs dumped to the
3121 * per node list when we reach the limit.
3122 * B) The number of objects in cpu partial slabs to extract from the
3123 * per node list when we run out of per cpu objects. We only fetch
3124 * 50% to keep some capacity around for frees.
3125 */
3126 if (!kmem_cache_has_cpu_partial(s))
3127 s->cpu_partial = 0;
3128 else if (s->size >= PAGE_SIZE)
3129 s->cpu_partial = 2;
3130 else if (s->size >= 1024)
3131 s->cpu_partial = 6;
3132 else if (s->size >= 256)
3133 s->cpu_partial = 13;
3134 else
3135 s->cpu_partial = 30;
3136
3137 #ifdef CONFIG_NUMA
3138 s->remote_node_defrag_ratio = 1000;
3139 #endif
3140 if (!init_kmem_cache_nodes(s))
3141 goto error;
3142
3143 if (alloc_kmem_cache_cpus(s))
3144 return 0;
3145
3146 free_kmem_cache_nodes(s);
3147 error:
3148 if (flags & SLAB_PANIC)
3149 panic("Cannot create slab %s size=%lu realsize=%u "
3150 "order=%u offset=%u flags=%lx\n",
3151 s->name, (unsigned long)s->size, s->size,
3152 oo_order(s->oo), s->offset, flags);
3153 return -EINVAL;
3154 }
3155
3156 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3157 const char *text)
3158 {
3159 #ifdef CONFIG_SLUB_DEBUG
3160 void *addr = page_address(page);
3161 void *p;
3162 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3163 sizeof(long), GFP_ATOMIC);
3164 if (!map)
3165 return;
3166 slab_err(s, page, text, s->name);
3167 slab_lock(page);
3168
3169 get_map(s, page, map);
3170 for_each_object(p, s, addr, page->objects) {
3171
3172 if (!test_bit(slab_index(p, s, addr), map)) {
3173 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
3174 p, p - addr);
3175 print_tracking(s, p);
3176 }
3177 }
3178 slab_unlock(page);
3179 kfree(map);
3180 #endif
3181 }
3182
3183 /*
3184 * Attempt to free all partial slabs on a node.
3185 * This is called from kmem_cache_close(). We must be the last thread
3186 * using the cache and therefore we do not need to lock anymore.
3187 */
3188 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3189 {
3190 struct page *page, *h;
3191
3192 list_for_each_entry_safe(page, h, &n->partial, lru) {
3193 if (!page->inuse) {
3194 remove_partial(n, page);
3195 discard_slab(s, page);
3196 } else {
3197 list_slab_objects(s, page,
3198 "Objects remaining in %s on kmem_cache_close()");
3199 }
3200 }
3201 }
3202
3203 /*
3204 * Release all resources used by a slab cache.
3205 */
3206 static inline int kmem_cache_close(struct kmem_cache *s)
3207 {
3208 int node;
3209
3210 flush_all(s);
3211 /* Attempt to free all objects */
3212 for_each_node_state(node, N_NORMAL_MEMORY) {
3213 struct kmem_cache_node *n = get_node(s, node);
3214
3215 free_partial(s, n);
3216 if (n->nr_partial || slabs_node(s, node))
3217 return 1;
3218 }
3219 free_percpu(s->cpu_slab);
3220 free_kmem_cache_nodes(s);
3221 return 0;
3222 }
3223
3224 int __kmem_cache_shutdown(struct kmem_cache *s)
3225 {
3226 int rc = kmem_cache_close(s);
3227
3228 if (!rc) {
3229 /*
3230 * We do the same lock strategy around sysfs_slab_add, see
3231 * __kmem_cache_create. Because this is pretty much the last
3232 * operation we do and the lock will be released shortly after
3233 * that in slab_common.c, we could just move sysfs_slab_remove
3234 * to a later point in common code. We should do that when we
3235 * have a common sysfs framework for all allocators.
3236 */
3237 mutex_unlock(&slab_mutex);
3238 sysfs_slab_remove(s);
3239 mutex_lock(&slab_mutex);
3240 }
3241
3242 return rc;
3243 }
3244
3245 /********************************************************************
3246 * Kmalloc subsystem
3247 *******************************************************************/
3248
3249 static int __init setup_slub_min_order(char *str)
3250 {
3251 get_option(&str, &slub_min_order);
3252
3253 return 1;
3254 }
3255
3256 __setup("slub_min_order=", setup_slub_min_order);
3257
3258 static int __init setup_slub_max_order(char *str)
3259 {
3260 get_option(&str, &slub_max_order);
3261 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3262
3263 return 1;
3264 }
3265
3266 __setup("slub_max_order=", setup_slub_max_order);
3267
3268 static int __init setup_slub_min_objects(char *str)
3269 {
3270 get_option(&str, &slub_min_objects);
3271
3272 return 1;
3273 }
3274
3275 __setup("slub_min_objects=", setup_slub_min_objects);
3276
3277 static int __init setup_slub_nomerge(char *str)
3278 {
3279 slub_nomerge = 1;
3280 return 1;
3281 }
3282
3283 __setup("slub_nomerge", setup_slub_nomerge);
3284
3285 void *__kmalloc(size_t size, gfp_t flags)
3286 {
3287 struct kmem_cache *s;
3288 void *ret;
3289
3290 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3291 return kmalloc_large(size, flags);
3292
3293 s = kmalloc_slab(size, flags);
3294
3295 if (unlikely(ZERO_OR_NULL_PTR(s)))
3296 return s;
3297
3298 ret = slab_alloc(s, flags, _RET_IP_);
3299
3300 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3301
3302 return ret;
3303 }
3304 EXPORT_SYMBOL(__kmalloc);
3305
3306 #ifdef CONFIG_NUMA
3307 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3308 {
3309 struct page *page;
3310 void *ptr = NULL;
3311
3312 flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3313 page = alloc_pages_node(node, flags, get_order(size));
3314 if (page)
3315 ptr = page_address(page);
3316
3317 kmalloc_large_node_hook(ptr, size, flags);
3318 return ptr;
3319 }
3320
3321 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3322 {
3323 struct kmem_cache *s;
3324 void *ret;
3325
3326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3327 ret = kmalloc_large_node(size, flags, node);
3328
3329 trace_kmalloc_node(_RET_IP_, ret,
3330 size, PAGE_SIZE << get_order(size),
3331 flags, node);
3332
3333 return ret;
3334 }
3335
3336 s = kmalloc_slab(size, flags);
3337
3338 if (unlikely(ZERO_OR_NULL_PTR(s)))
3339 return s;
3340
3341 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3342
3343 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3344
3345 return ret;
3346 }
3347 EXPORT_SYMBOL(__kmalloc_node);
3348 #endif
3349
3350 size_t ksize(const void *object)
3351 {
3352 struct page *page;
3353
3354 if (unlikely(object == ZERO_SIZE_PTR))
3355 return 0;
3356
3357 page = virt_to_head_page(object);
3358
3359 if (unlikely(!PageSlab(page))) {
3360 WARN_ON(!PageCompound(page));
3361 return PAGE_SIZE << compound_order(page);
3362 }
3363
3364 return slab_ksize(page->slab_cache);
3365 }
3366 EXPORT_SYMBOL(ksize);
3367
3368 void kfree(const void *x)
3369 {
3370 struct page *page;
3371 void *object = (void *)x;
3372
3373 trace_kfree(_RET_IP_, x);
3374
3375 if (unlikely(ZERO_OR_NULL_PTR(x)))
3376 return;
3377
3378 page = virt_to_head_page(x);
3379 if (unlikely(!PageSlab(page))) {
3380 BUG_ON(!PageCompound(page));
3381 kfree_hook(x);
3382 __free_memcg_kmem_pages(page, compound_order(page));
3383 return;
3384 }
3385 slab_free(page->slab_cache, page, object, _RET_IP_);
3386 }
3387 EXPORT_SYMBOL(kfree);
3388
3389 /*
3390 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3391 * the remaining slabs by the number of items in use. The slabs with the
3392 * most items in use come first. New allocations will then fill those up
3393 * and thus they can be removed from the partial lists.
3394 *
3395 * The slabs with the least items are placed last. This results in them
3396 * being allocated from last increasing the chance that the last objects
3397 * are freed in them.
3398 */
3399 int kmem_cache_shrink(struct kmem_cache *s)
3400 {
3401 int node;
3402 int i;
3403 struct kmem_cache_node *n;
3404 struct page *page;
3405 struct page *t;
3406 int objects = oo_objects(s->max);
3407 struct list_head *slabs_by_inuse =
3408 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3409 unsigned long flags;
3410
3411 if (!slabs_by_inuse)
3412 return -ENOMEM;
3413
3414 flush_all(s);
3415 for_each_node_state(node, N_NORMAL_MEMORY) {
3416 n = get_node(s, node);
3417
3418 if (!n->nr_partial)
3419 continue;
3420
3421 for (i = 0; i < objects; i++)
3422 INIT_LIST_HEAD(slabs_by_inuse + i);
3423
3424 spin_lock_irqsave(&n->list_lock, flags);
3425
3426 /*
3427 * Build lists indexed by the items in use in each slab.
3428 *
3429 * Note that concurrent frees may occur while we hold the
3430 * list_lock. page->inuse here is the upper limit.
3431 */
3432 list_for_each_entry_safe(page, t, &n->partial, lru) {
3433 list_move(&page->lru, slabs_by_inuse + page->inuse);
3434 if (!page->inuse)
3435 n->nr_partial--;
3436 }
3437
3438 /*
3439 * Rebuild the partial list with the slabs filled up most
3440 * first and the least used slabs at the end.
3441 */
3442 for (i = objects - 1; i > 0; i--)
3443 list_splice(slabs_by_inuse + i, n->partial.prev);
3444
3445 spin_unlock_irqrestore(&n->list_lock, flags);
3446
3447 /* Release empty slabs */
3448 list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
3449 discard_slab(s, page);
3450 }
3451
3452 kfree(slabs_by_inuse);
3453 return 0;
3454 }
3455 EXPORT_SYMBOL(kmem_cache_shrink);
3456
3457 static int slab_mem_going_offline_callback(void *arg)
3458 {
3459 struct kmem_cache *s;
3460
3461 mutex_lock(&slab_mutex);
3462 list_for_each_entry(s, &slab_caches, list)
3463 kmem_cache_shrink(s);
3464 mutex_unlock(&slab_mutex);
3465
3466 return 0;
3467 }
3468
3469 static void slab_mem_offline_callback(void *arg)
3470 {
3471 struct kmem_cache_node *n;
3472 struct kmem_cache *s;
3473 struct memory_notify *marg = arg;
3474 int offline_node;
3475
3476 offline_node = marg->status_change_nid_normal;
3477
3478 /*
3479 * If the node still has available memory. we need kmem_cache_node
3480 * for it yet.
3481 */
3482 if (offline_node < 0)
3483 return;
3484
3485 mutex_lock(&slab_mutex);
3486 list_for_each_entry(s, &slab_caches, list) {
3487 n = get_node(s, offline_node);
3488 if (n) {
3489 /*
3490 * if n->nr_slabs > 0, slabs still exist on the node
3491 * that is going down. We were unable to free them,
3492 * and offline_pages() function shouldn't call this
3493 * callback. So, we must fail.
3494 */
3495 BUG_ON(slabs_node(s, offline_node));
3496
3497 s->node[offline_node] = NULL;
3498 kmem_cache_free(kmem_cache_node, n);
3499 }
3500 }
3501 mutex_unlock(&slab_mutex);
3502 }
3503
3504 static int slab_mem_going_online_callback(void *arg)
3505 {
3506 struct kmem_cache_node *n;
3507 struct kmem_cache *s;
3508 struct memory_notify *marg = arg;
3509 int nid = marg->status_change_nid_normal;
3510 int ret = 0;
3511
3512 /*
3513 * If the node's memory is already available, then kmem_cache_node is
3514 * already created. Nothing to do.
3515 */
3516 if (nid < 0)
3517 return 0;
3518
3519 /*
3520 * We are bringing a node online. No memory is available yet. We must
3521 * allocate a kmem_cache_node structure in order to bring the node
3522 * online.
3523 */
3524 mutex_lock(&slab_mutex);
3525 list_for_each_entry(s, &slab_caches, list) {
3526 /*
3527 * XXX: kmem_cache_alloc_node will fallback to other nodes
3528 * since memory is not yet available from the node that
3529 * is brought up.
3530 */
3531 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3532 if (!n) {
3533 ret = -ENOMEM;
3534 goto out;
3535 }
3536 init_kmem_cache_node(n);
3537 s->node[nid] = n;
3538 }
3539 out:
3540 mutex_unlock(&slab_mutex);
3541 return ret;
3542 }
3543
3544 static int slab_memory_callback(struct notifier_block *self,
3545 unsigned long action, void *arg)
3546 {
3547 int ret = 0;
3548
3549 switch (action) {
3550 case MEM_GOING_ONLINE:
3551 ret = slab_mem_going_online_callback(arg);
3552 break;
3553 case MEM_GOING_OFFLINE:
3554 ret = slab_mem_going_offline_callback(arg);
3555 break;
3556 case MEM_OFFLINE:
3557 case MEM_CANCEL_ONLINE:
3558 slab_mem_offline_callback(arg);
3559 break;
3560 case MEM_ONLINE:
3561 case MEM_CANCEL_OFFLINE:
3562 break;
3563 }
3564 if (ret)
3565 ret = notifier_from_errno(ret);
3566 else
3567 ret = NOTIFY_OK;
3568 return ret;
3569 }
3570
3571 static struct notifier_block slab_memory_callback_nb = {
3572 .notifier_call = slab_memory_callback,
3573 .priority = SLAB_CALLBACK_PRI,
3574 };
3575
3576 /********************************************************************
3577 * Basic setup of slabs
3578 *******************************************************************/
3579
3580 /*
3581 * Used for early kmem_cache structures that were allocated using
3582 * the page allocator. Allocate them properly then fix up the pointers
3583 * that may be pointing to the wrong kmem_cache structure.
3584 */
3585
3586 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3587 {
3588 int node;
3589 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3590
3591 memcpy(s, static_cache, kmem_cache->object_size);
3592
3593 /*
3594 * This runs very early, and only the boot processor is supposed to be
3595 * up. Even if it weren't true, IRQs are not up so we couldn't fire
3596 * IPIs around.
3597 */
3598 __flush_cpu_slab(s, smp_processor_id());
3599 for_each_node_state(node, N_NORMAL_MEMORY) {
3600 struct kmem_cache_node *n = get_node(s, node);
3601 struct page *p;
3602
3603 if (n) {
3604 list_for_each_entry(p, &n->partial, lru)
3605 p->slab_cache = s;
3606
3607 #ifdef CONFIG_SLUB_DEBUG
3608 list_for_each_entry(p, &n->full, lru)
3609 p->slab_cache = s;
3610 #endif
3611 }
3612 }
3613 list_add(&s->list, &slab_caches);
3614 return s;
3615 }
3616
3617 void __init kmem_cache_init(void)
3618 {
3619 static __initdata struct kmem_cache boot_kmem_cache,
3620 boot_kmem_cache_node;
3621
3622 if (debug_guardpage_minorder())
3623 slub_max_order = 0;
3624
3625 kmem_cache_node = &boot_kmem_cache_node;
3626 kmem_cache = &boot_kmem_cache;
3627
3628 create_boot_cache(kmem_cache_node, "kmem_cache_node",
3629 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3630
3631 register_hotmemory_notifier(&slab_memory_callback_nb);
3632
3633 /* Able to allocate the per node structures */
3634 slab_state = PARTIAL;
3635
3636 create_boot_cache(kmem_cache, "kmem_cache",
3637 offsetof(struct kmem_cache, node) +
3638 nr_node_ids * sizeof(struct kmem_cache_node *),
3639 SLAB_HWCACHE_ALIGN);
3640
3641 kmem_cache = bootstrap(&boot_kmem_cache);
3642
3643 /*
3644 * Allocate kmem_cache_node properly from the kmem_cache slab.
3645 * kmem_cache_node is separately allocated so no need to
3646 * update any list pointers.
3647 */
3648 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3649
3650 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3651 create_kmalloc_caches(0);
3652
3653 #ifdef CONFIG_SMP
3654 register_cpu_notifier(&slab_notifier);
3655 #endif
3656
3657 printk(KERN_INFO
3658 "SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3659 " CPUs=%d, Nodes=%d\n",
3660 cache_line_size(),
3661 slub_min_order, slub_max_order, slub_min_objects,
3662 nr_cpu_ids, nr_node_ids);
3663 }
3664
3665 void __init kmem_cache_init_late(void)
3666 {
3667 }
3668
3669 /*
3670 * Find a mergeable slab cache
3671 */
3672 static int slab_unmergeable(struct kmem_cache *s)
3673 {
3674 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3675 return 1;
3676
3677 if (s->ctor)
3678 return 1;
3679
3680 /*
3681 * We may have set a slab to be unmergeable during bootstrap.
3682 */
3683 if (s->refcount < 0)
3684 return 1;
3685
3686 return 0;
3687 }
3688
3689 static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3690 size_t align, unsigned long flags, const char *name,
3691 void (*ctor)(void *))
3692 {
3693 struct kmem_cache *s;
3694
3695 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3696 return NULL;
3697
3698 if (ctor)
3699 return NULL;
3700
3701 size = ALIGN(size, sizeof(void *));
3702 align = calculate_alignment(flags, align, size);
3703 size = ALIGN(size, align);
3704 flags = kmem_cache_flags(size, flags, name, NULL);
3705
3706 list_for_each_entry(s, &slab_caches, list) {
3707 if (slab_unmergeable(s))
3708 continue;
3709
3710 if (size > s->size)
3711 continue;
3712
3713 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3714 continue;
3715 /*
3716 * Check if alignment is compatible.
3717 * Courtesy of Adrian Drzewiecki
3718 */
3719 if ((s->size & ~(align - 1)) != s->size)
3720 continue;
3721
3722 if (s->size - size >= sizeof(void *))
3723 continue;
3724
3725 if (!cache_match_memcg(s, memcg))
3726 continue;
3727
3728 return s;
3729 }
3730 return NULL;
3731 }
3732
3733 struct kmem_cache *
3734 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
3735 size_t align, unsigned long flags, void (*ctor)(void *))
3736 {
3737 struct kmem_cache *s;
3738
3739 s = find_mergeable(memcg, size, align, flags, name, ctor);
3740 if (s) {
3741 s->refcount++;
3742 /*
3743 * Adjust the object sizes so that we clear
3744 * the complete object on kzalloc.
3745 */
3746 s->object_size = max(s->object_size, (int)size);
3747 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3748
3749 if (sysfs_slab_alias(s, name)) {
3750 s->refcount--;
3751 s = NULL;
3752 }
3753 }
3754
3755 return s;
3756 }
3757
3758 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3759 {
3760 int err;
3761
3762 err = kmem_cache_open(s, flags);
3763 if (err)
3764 return err;
3765
3766 /* Mutex is not taken during early boot */
3767 if (slab_state <= UP)
3768 return 0;
3769
3770 memcg_propagate_slab_attrs(s);
3771 mutex_unlock(&slab_mutex);
3772 err = sysfs_slab_add(s);
3773 mutex_lock(&slab_mutex);
3774
3775 if (err)
3776 kmem_cache_close(s);
3777
3778 return err;
3779 }
3780
3781 #ifdef CONFIG_SMP
3782 /*
3783 * Use the cpu notifier to insure that the cpu slabs are flushed when
3784 * necessary.
3785 */
3786 static int slab_cpuup_callback(struct notifier_block *nfb,
3787 unsigned long action, void *hcpu)
3788 {
3789 long cpu = (long)hcpu;
3790 struct kmem_cache *s;
3791 unsigned long flags;
3792
3793 switch (action) {
3794 case CPU_UP_CANCELED:
3795 case CPU_UP_CANCELED_FROZEN:
3796 case CPU_DEAD:
3797 case CPU_DEAD_FROZEN:
3798 mutex_lock(&slab_mutex);
3799 list_for_each_entry(s, &slab_caches, list) {
3800 local_irq_save(flags);
3801 __flush_cpu_slab(s, cpu);
3802 local_irq_restore(flags);
3803 }
3804 mutex_unlock(&slab_mutex);
3805 break;
3806 default:
3807 break;
3808 }
3809 return NOTIFY_OK;
3810 }
3811
3812 static struct notifier_block slab_notifier = {
3813 .notifier_call = slab_cpuup_callback
3814 };
3815
3816 #endif
3817
3818 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3819 {
3820 struct kmem_cache *s;
3821 void *ret;
3822
3823 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3824 return kmalloc_large(size, gfpflags);
3825
3826 s = kmalloc_slab(size, gfpflags);
3827
3828 if (unlikely(ZERO_OR_NULL_PTR(s)))
3829 return s;
3830
3831 ret = slab_alloc(s, gfpflags, caller);
3832
3833 /* Honor the call site pointer we received. */
3834 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3835
3836 return ret;
3837 }
3838
3839 #ifdef CONFIG_NUMA
3840 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3841 int node, unsigned long caller)
3842 {
3843 struct kmem_cache *s;
3844 void *ret;
3845
3846 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3847 ret = kmalloc_large_node(size, gfpflags, node);
3848
3849 trace_kmalloc_node(caller, ret,
3850 size, PAGE_SIZE << get_order(size),
3851 gfpflags, node);
3852
3853 return ret;
3854 }
3855
3856 s = kmalloc_slab(size, gfpflags);
3857
3858 if (unlikely(ZERO_OR_NULL_PTR(s)))
3859 return s;
3860
3861 ret = slab_alloc_node(s, gfpflags, node, caller);
3862
3863 /* Honor the call site pointer we received. */
3864 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3865
3866 return ret;
3867 }
3868 #endif
3869
3870 #ifdef CONFIG_SYSFS
3871 static int count_inuse(struct page *page)
3872 {
3873 return page->inuse;
3874 }
3875
3876 static int count_total(struct page *page)
3877 {
3878 return page->objects;
3879 }
3880 #endif
3881
3882 #ifdef CONFIG_SLUB_DEBUG
3883 static int validate_slab(struct kmem_cache *s, struct page *page,
3884 unsigned long *map)
3885 {
3886 void *p;
3887 void *addr = page_address(page);
3888
3889 if (!check_slab(s, page) ||
3890 !on_freelist(s, page, NULL))
3891 return 0;
3892
3893 /* Now we know that a valid freelist exists */
3894 bitmap_zero(map, page->objects);
3895
3896 get_map(s, page, map);
3897 for_each_object(p, s, addr, page->objects) {
3898 if (test_bit(slab_index(p, s, addr), map))
3899 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3900 return 0;
3901 }
3902
3903 for_each_object(p, s, addr, page->objects)
3904 if (!test_bit(slab_index(p, s, addr), map))
3905 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3906 return 0;
3907 return 1;
3908 }
3909
3910 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3911 unsigned long *map)
3912 {
3913 slab_lock(page);
3914 validate_slab(s, page, map);
3915 slab_unlock(page);
3916 }
3917
3918 static int validate_slab_node(struct kmem_cache *s,
3919 struct kmem_cache_node *n, unsigned long *map)
3920 {
3921 unsigned long count = 0;
3922 struct page *page;
3923 unsigned long flags;
3924
3925 spin_lock_irqsave(&n->list_lock, flags);
3926
3927 list_for_each_entry(page, &n->partial, lru) {
3928 validate_slab_slab(s, page, map);
3929 count++;
3930 }
3931 if (count != n->nr_partial)
3932 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3933 "counter=%ld\n", s->name, count, n->nr_partial);
3934
3935 if (!(s->flags & SLAB_STORE_USER))
3936 goto out;
3937
3938 list_for_each_entry(page, &n->full, lru) {
3939 validate_slab_slab(s, page, map);
3940 count++;
3941 }
3942 if (count != atomic_long_read(&n->nr_slabs))
3943 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3944 "counter=%ld\n", s->name, count,
3945 atomic_long_read(&n->nr_slabs));
3946
3947 out:
3948 spin_unlock_irqrestore(&n->list_lock, flags);
3949 return count;
3950 }
3951
3952 static long validate_slab_cache(struct kmem_cache *s)
3953 {
3954 int node;
3955 unsigned long count = 0;
3956 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3957 sizeof(unsigned long), GFP_KERNEL);
3958
3959 if (!map)
3960 return -ENOMEM;
3961
3962 flush_all(s);
3963 for_each_node_state(node, N_NORMAL_MEMORY) {
3964 struct kmem_cache_node *n = get_node(s, node);
3965
3966 count += validate_slab_node(s, n, map);
3967 }
3968 kfree(map);
3969 return count;
3970 }
3971 /*
3972 * Generate lists of code addresses where slabcache objects are allocated
3973 * and freed.
3974 */
3975
3976 struct location {
3977 unsigned long count;
3978 unsigned long addr;
3979 long long sum_time;
3980 long min_time;
3981 long max_time;
3982 long min_pid;
3983 long max_pid;
3984 DECLARE_BITMAP(cpus, NR_CPUS);
3985 nodemask_t nodes;
3986 };
3987
3988 struct loc_track {
3989 unsigned long max;
3990 unsigned long count;
3991 struct location *loc;
3992 };
3993
3994 static void free_loc_track(struct loc_track *t)
3995 {
3996 if (t->max)
3997 free_pages((unsigned long)t->loc,
3998 get_order(sizeof(struct location) * t->max));
3999 }
4000
4001 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4002 {
4003 struct location *l;
4004 int order;
4005
4006 order = get_order(sizeof(struct location) * max);
4007
4008 l = (void *)__get_free_pages(flags, order);
4009 if (!l)
4010 return 0;
4011
4012 if (t->count) {
4013 memcpy(l, t->loc, sizeof(struct location) * t->count);
4014 free_loc_track(t);
4015 }
4016 t->max = max;
4017 t->loc = l;
4018 return 1;
4019 }
4020
4021 static int add_location(struct loc_track *t, struct kmem_cache *s,
4022 const struct track *track)
4023 {
4024 long start, end, pos;
4025 struct location *l;
4026 unsigned long caddr;
4027 unsigned long age = jiffies - track->when;
4028
4029 start = -1;
4030 end = t->count;
4031
4032 for ( ; ; ) {
4033 pos = start + (end - start + 1) / 2;
4034
4035 /*
4036 * There is nothing at "end". If we end up there
4037 * we need to add something to before end.
4038 */
4039 if (pos == end)
4040 break;
4041
4042 caddr = t->loc[pos].addr;
4043 if (track->addr == caddr) {
4044
4045 l = &t->loc[pos];
4046 l->count++;
4047 if (track->when) {
4048 l->sum_time += age;
4049 if (age < l->min_time)
4050 l->min_time = age;
4051 if (age > l->max_time)
4052 l->max_time = age;
4053
4054 if (track->pid < l->min_pid)
4055 l->min_pid = track->pid;
4056 if (track->pid > l->max_pid)
4057 l->max_pid = track->pid;
4058
4059 cpumask_set_cpu(track->cpu,
4060 to_cpumask(l->cpus));
4061 }
4062 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4063 return 1;
4064 }
4065
4066 if (track->addr < caddr)
4067 end = pos;
4068 else
4069 start = pos;
4070 }
4071
4072 /*
4073 * Not found. Insert new tracking element.
4074 */
4075 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4076 return 0;
4077
4078 l = t->loc + pos;
4079 if (pos < t->count)
4080 memmove(l + 1, l,
4081 (t->count - pos) * sizeof(struct location));
4082 t->count++;
4083 l->count = 1;
4084 l->addr = track->addr;
4085 l->sum_time = age;
4086 l->min_time = age;
4087 l->max_time = age;
4088 l->min_pid = track->pid;
4089 l->max_pid = track->pid;
4090 cpumask_clear(to_cpumask(l->cpus));
4091 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4092 nodes_clear(l->nodes);
4093 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4094 return 1;
4095 }
4096
4097 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4098 struct page *page, enum track_item alloc,
4099 unsigned long *map)
4100 {
4101 void *addr = page_address(page);
4102 void *p;
4103
4104 bitmap_zero(map, page->objects);
4105 get_map(s, page, map);
4106
4107 for_each_object(p, s, addr, page->objects)
4108 if (!test_bit(slab_index(p, s, addr), map))
4109 add_location(t, s, get_track(s, p, alloc));
4110 }
4111
4112 static int list_locations(struct kmem_cache *s, char *buf,
4113 enum track_item alloc)
4114 {
4115 int len = 0;
4116 unsigned long i;
4117 struct loc_track t = { 0, 0, NULL };
4118 int node;
4119 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4120 sizeof(unsigned long), GFP_KERNEL);
4121
4122 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4123 GFP_TEMPORARY)) {
4124 kfree(map);
4125 return sprintf(buf, "Out of memory\n");
4126 }
4127 /* Push back cpu slabs */
4128 flush_all(s);
4129
4130 for_each_node_state(node, N_NORMAL_MEMORY) {
4131 struct kmem_cache_node *n = get_node(s, node);
4132 unsigned long flags;
4133 struct page *page;
4134
4135 if (!atomic_long_read(&n->nr_slabs))
4136 continue;
4137
4138 spin_lock_irqsave(&n->list_lock, flags);
4139 list_for_each_entry(page, &n->partial, lru)
4140 process_slab(&t, s, page, alloc, map);
4141 list_for_each_entry(page, &n->full, lru)
4142 process_slab(&t, s, page, alloc, map);
4143 spin_unlock_irqrestore(&n->list_lock, flags);
4144 }
4145
4146 for (i = 0; i < t.count; i++) {
4147 struct location *l = &t.loc[i];
4148
4149 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4150 break;
4151 len += sprintf(buf + len, "%7ld ", l->count);
4152
4153 if (l->addr)
4154 len += sprintf(buf + len, "%pS", (void *)l->addr);
4155 else
4156 len += sprintf(buf + len, "<not-available>");
4157
4158 if (l->sum_time != l->min_time) {
4159 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4160 l->min_time,
4161 (long)div_u64(l->sum_time, l->count),
4162 l->max_time);
4163 } else
4164 len += sprintf(buf + len, " age=%ld",
4165 l->min_time);
4166
4167 if (l->min_pid != l->max_pid)
4168 len += sprintf(buf + len, " pid=%ld-%ld",
4169 l->min_pid, l->max_pid);
4170 else
4171 len += sprintf(buf + len, " pid=%ld",
4172 l->min_pid);
4173
4174 if (num_online_cpus() > 1 &&
4175 !cpumask_empty(to_cpumask(l->cpus)) &&
4176 len < PAGE_SIZE - 60) {
4177 len += sprintf(buf + len, " cpus=");
4178 len += cpulist_scnprintf(buf + len,
4179 PAGE_SIZE - len - 50,
4180 to_cpumask(l->cpus));
4181 }
4182
4183 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4184 len < PAGE_SIZE - 60) {
4185 len += sprintf(buf + len, " nodes=");
4186 len += nodelist_scnprintf(buf + len,
4187 PAGE_SIZE - len - 50,
4188 l->nodes);
4189 }
4190
4191 len += sprintf(buf + len, "\n");
4192 }
4193
4194 free_loc_track(&t);
4195 kfree(map);
4196 if (!t.count)
4197 len += sprintf(buf, "No data\n");
4198 return len;
4199 }
4200 #endif
4201
4202 #ifdef SLUB_RESILIENCY_TEST
4203 static void resiliency_test(void)
4204 {
4205 u8 *p;
4206
4207 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4208
4209 printk(KERN_ERR "SLUB resiliency testing\n");
4210 printk(KERN_ERR "-----------------------\n");
4211 printk(KERN_ERR "A. Corruption after allocation\n");
4212
4213 p = kzalloc(16, GFP_KERNEL);
4214 p[16] = 0x12;
4215 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
4216 " 0x12->0x%p\n\n", p + 16);
4217
4218 validate_slab_cache(kmalloc_caches[4]);
4219
4220 /* Hmmm... The next two are dangerous */
4221 p = kzalloc(32, GFP_KERNEL);
4222 p[32 + sizeof(void *)] = 0x34;
4223 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4224 " 0x34 -> -0x%p\n", p);
4225 printk(KERN_ERR
4226 "If allocated object is overwritten then not detectable\n\n");
4227
4228 validate_slab_cache(kmalloc_caches[5]);
4229 p = kzalloc(64, GFP_KERNEL);
4230 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4231 *p = 0x56;
4232 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4233 p);
4234 printk(KERN_ERR
4235 "If allocated object is overwritten then not detectable\n\n");
4236 validate_slab_cache(kmalloc_caches[6]);
4237
4238 printk(KERN_ERR "\nB. Corruption after free\n");
4239 p = kzalloc(128, GFP_KERNEL);
4240 kfree(p);
4241 *p = 0x78;
4242 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4243 validate_slab_cache(kmalloc_caches[7]);
4244
4245 p = kzalloc(256, GFP_KERNEL);
4246 kfree(p);
4247 p[50] = 0x9a;
4248 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4249 p);
4250 validate_slab_cache(kmalloc_caches[8]);
4251
4252 p = kzalloc(512, GFP_KERNEL);
4253 kfree(p);
4254 p[512] = 0xab;
4255 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4256 validate_slab_cache(kmalloc_caches[9]);
4257 }
4258 #else
4259 #ifdef CONFIG_SYSFS
4260 static void resiliency_test(void) {};
4261 #endif
4262 #endif
4263
4264 #ifdef CONFIG_SYSFS
4265 enum slab_stat_type {
4266 SL_ALL, /* All slabs */
4267 SL_PARTIAL, /* Only partially allocated slabs */
4268 SL_CPU, /* Only slabs used for cpu caches */
4269 SL_OBJECTS, /* Determine allocated objects not slabs */
4270 SL_TOTAL /* Determine object capacity not slabs */
4271 };
4272
4273 #define SO_ALL (1 << SL_ALL)
4274 #define SO_PARTIAL (1 << SL_PARTIAL)
4275 #define SO_CPU (1 << SL_CPU)
4276 #define SO_OBJECTS (1 << SL_OBJECTS)
4277 #define SO_TOTAL (1 << SL_TOTAL)
4278
4279 static ssize_t show_slab_objects(struct kmem_cache *s,
4280 char *buf, unsigned long flags)
4281 {
4282 unsigned long total = 0;
4283 int node;
4284 int x;
4285 unsigned long *nodes;
4286
4287 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4288 if (!nodes)
4289 return -ENOMEM;
4290
4291 if (flags & SO_CPU) {
4292 int cpu;
4293
4294 for_each_possible_cpu(cpu) {
4295 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4296 cpu);
4297 int node;
4298 struct page *page;
4299
4300 page = ACCESS_ONCE(c->page);
4301 if (!page)
4302 continue;
4303
4304 node = page_to_nid(page);
4305 if (flags & SO_TOTAL)
4306 x = page->objects;
4307 else if (flags & SO_OBJECTS)
4308 x = page->inuse;
4309 else
4310 x = 1;
4311
4312 total += x;
4313 nodes[node] += x;
4314
4315 page = ACCESS_ONCE(c->partial);
4316 if (page) {
4317 x = page->pobjects;
4318 total += x;
4319 nodes[node] += x;
4320 }
4321 }
4322 }
4323
4324 lock_memory_hotplug();
4325 #ifdef CONFIG_SLUB_DEBUG
4326 if (flags & SO_ALL) {
4327 for_each_node_state(node, N_NORMAL_MEMORY) {
4328 struct kmem_cache_node *n = get_node(s, node);
4329
4330 if (flags & SO_TOTAL)
4331 x = atomic_long_read(&n->total_objects);
4332 else if (flags & SO_OBJECTS)
4333 x = atomic_long_read(&n->total_objects) -
4334 count_partial(n, count_free);
4335 else
4336 x = atomic_long_read(&n->nr_slabs);
4337 total += x;
4338 nodes[node] += x;
4339 }
4340
4341 } else
4342 #endif
4343 if (flags & SO_PARTIAL) {
4344 for_each_node_state(node, N_NORMAL_MEMORY) {
4345 struct kmem_cache_node *n = get_node(s, node);
4346
4347 if (flags & SO_TOTAL)
4348 x = count_partial(n, count_total);
4349 else if (flags & SO_OBJECTS)
4350 x = count_partial(n, count_inuse);
4351 else
4352 x = n->nr_partial;
4353 total += x;
4354 nodes[node] += x;
4355 }
4356 }
4357 x = sprintf(buf, "%lu", total);
4358 #ifdef CONFIG_NUMA
4359 for_each_node_state(node, N_NORMAL_MEMORY)
4360 if (nodes[node])
4361 x += sprintf(buf + x, " N%d=%lu",
4362 node, nodes[node]);
4363 #endif
4364 unlock_memory_hotplug();
4365 kfree(nodes);
4366 return x + sprintf(buf + x, "\n");
4367 }
4368
4369 #ifdef CONFIG_SLUB_DEBUG
4370 static int any_slab_objects(struct kmem_cache *s)
4371 {
4372 int node;
4373
4374 for_each_online_node(node) {
4375 struct kmem_cache_node *n = get_node(s, node);
4376
4377 if (!n)
4378 continue;
4379
4380 if (atomic_long_read(&n->total_objects))
4381 return 1;
4382 }
4383 return 0;
4384 }
4385 #endif
4386
4387 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4388 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4389
4390 struct slab_attribute {
4391 struct attribute attr;
4392 ssize_t (*show)(struct kmem_cache *s, char *buf);
4393 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4394 };
4395
4396 #define SLAB_ATTR_RO(_name) \
4397 static struct slab_attribute _name##_attr = \
4398 __ATTR(_name, 0400, _name##_show, NULL)
4399
4400 #define SLAB_ATTR(_name) \
4401 static struct slab_attribute _name##_attr = \
4402 __ATTR(_name, 0600, _name##_show, _name##_store)
4403
4404 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4405 {
4406 return sprintf(buf, "%d\n", s->size);
4407 }
4408 SLAB_ATTR_RO(slab_size);
4409
4410 static ssize_t align_show(struct kmem_cache *s, char *buf)
4411 {
4412 return sprintf(buf, "%d\n", s->align);
4413 }
4414 SLAB_ATTR_RO(align);
4415
4416 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4417 {
4418 return sprintf(buf, "%d\n", s->object_size);
4419 }
4420 SLAB_ATTR_RO(object_size);
4421
4422 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4423 {
4424 return sprintf(buf, "%d\n", oo_objects(s->oo));
4425 }
4426 SLAB_ATTR_RO(objs_per_slab);
4427
4428 static ssize_t order_store(struct kmem_cache *s,
4429 const char *buf, size_t length)
4430 {
4431 unsigned long order;
4432 int err;
4433
4434 err = kstrtoul(buf, 10, &order);
4435 if (err)
4436 return err;
4437
4438 if (order > slub_max_order || order < slub_min_order)
4439 return -EINVAL;
4440
4441 calculate_sizes(s, order);
4442 return length;
4443 }
4444
4445 static ssize_t order_show(struct kmem_cache *s, char *buf)
4446 {
4447 return sprintf(buf, "%d\n", oo_order(s->oo));
4448 }
4449 SLAB_ATTR(order);
4450
4451 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4452 {
4453 return sprintf(buf, "%lu\n", s->min_partial);
4454 }
4455
4456 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4457 size_t length)
4458 {
4459 unsigned long min;
4460 int err;
4461
4462 err = kstrtoul(buf, 10, &min);
4463 if (err)
4464 return err;
4465
4466 set_min_partial(s, min);
4467 return length;
4468 }
4469 SLAB_ATTR(min_partial);
4470
4471 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4472 {
4473 return sprintf(buf, "%u\n", s->cpu_partial);
4474 }
4475
4476 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4477 size_t length)
4478 {
4479 unsigned long objects;
4480 int err;
4481
4482 err = kstrtoul(buf, 10, &objects);
4483 if (err)
4484 return err;
4485 if (objects && !kmem_cache_has_cpu_partial(s))
4486 return -EINVAL;
4487
4488 s->cpu_partial = objects;
4489 flush_all(s);
4490 return length;
4491 }
4492 SLAB_ATTR(cpu_partial);
4493
4494 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4495 {
4496 if (!s->ctor)
4497 return 0;
4498 return sprintf(buf, "%pS\n", s->ctor);
4499 }
4500 SLAB_ATTR_RO(ctor);
4501
4502 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4503 {
4504 return sprintf(buf, "%d\n", s->refcount - 1);
4505 }
4506 SLAB_ATTR_RO(aliases);
4507
4508 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4509 {
4510 return show_slab_objects(s, buf, SO_PARTIAL);
4511 }
4512 SLAB_ATTR_RO(partial);
4513
4514 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4515 {
4516 return show_slab_objects(s, buf, SO_CPU);
4517 }
4518 SLAB_ATTR_RO(cpu_slabs);
4519
4520 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4521 {
4522 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4523 }
4524 SLAB_ATTR_RO(objects);
4525
4526 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4527 {
4528 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4529 }
4530 SLAB_ATTR_RO(objects_partial);
4531
4532 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4533 {
4534 int objects = 0;
4535 int pages = 0;
4536 int cpu;
4537 int len;
4538
4539 for_each_online_cpu(cpu) {
4540 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
4541
4542 if (page) {
4543 pages += page->pages;
4544 objects += page->pobjects;
4545 }
4546 }
4547
4548 len = sprintf(buf, "%d(%d)", objects, pages);
4549
4550 #ifdef CONFIG_SMP
4551 for_each_online_cpu(cpu) {
4552 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
4553
4554 if (page && len < PAGE_SIZE - 20)
4555 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
4556 page->pobjects, page->pages);
4557 }
4558 #endif
4559 return len + sprintf(buf + len, "\n");
4560 }
4561 SLAB_ATTR_RO(slabs_cpu_partial);
4562
4563 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4564 {
4565 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4566 }
4567
4568 static ssize_t reclaim_account_store(struct kmem_cache *s,
4569 const char *buf, size_t length)
4570 {
4571 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4572 if (buf[0] == '1')
4573 s->flags |= SLAB_RECLAIM_ACCOUNT;
4574 return length;
4575 }
4576 SLAB_ATTR(reclaim_account);
4577
4578 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4579 {
4580 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4581 }
4582 SLAB_ATTR_RO(hwcache_align);
4583
4584 #ifdef CONFIG_ZONE_DMA
4585 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4586 {
4587 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4588 }
4589 SLAB_ATTR_RO(cache_dma);
4590 #endif
4591
4592 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4593 {
4594 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4595 }
4596 SLAB_ATTR_RO(destroy_by_rcu);
4597
4598 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4599 {
4600 return sprintf(buf, "%d\n", s->reserved);
4601 }
4602 SLAB_ATTR_RO(reserved);
4603
4604 #ifdef CONFIG_SLUB_DEBUG
4605 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4606 {
4607 return show_slab_objects(s, buf, SO_ALL);
4608 }
4609 SLAB_ATTR_RO(slabs);
4610
4611 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4612 {
4613 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4614 }
4615 SLAB_ATTR_RO(total_objects);
4616
4617 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4618 {
4619 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4620 }
4621
4622 static ssize_t sanity_checks_store(struct kmem_cache *s,
4623 const char *buf, size_t length)
4624 {
4625 s->flags &= ~SLAB_DEBUG_FREE;
4626 if (buf[0] == '1') {
4627 s->flags &= ~__CMPXCHG_DOUBLE;
4628 s->flags |= SLAB_DEBUG_FREE;
4629 }
4630 return length;
4631 }
4632 SLAB_ATTR(sanity_checks);
4633
4634 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4635 {
4636 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4637 }
4638
4639 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4640 size_t length)
4641 {
4642 s->flags &= ~SLAB_TRACE;
4643 if (buf[0] == '1') {
4644 s->flags &= ~__CMPXCHG_DOUBLE;
4645 s->flags |= SLAB_TRACE;
4646 }
4647 return length;
4648 }
4649 SLAB_ATTR(trace);
4650
4651 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4652 {
4653 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4654 }
4655
4656 static ssize_t red_zone_store(struct kmem_cache *s,
4657 const char *buf, size_t length)
4658 {
4659 if (any_slab_objects(s))
4660 return -EBUSY;
4661
4662 s->flags &= ~SLAB_RED_ZONE;
4663 if (buf[0] == '1') {
4664 s->flags &= ~__CMPXCHG_DOUBLE;
4665 s->flags |= SLAB_RED_ZONE;
4666 }
4667 calculate_sizes(s, -1);
4668 return length;
4669 }
4670 SLAB_ATTR(red_zone);
4671
4672 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4673 {
4674 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4675 }
4676
4677 static ssize_t poison_store(struct kmem_cache *s,
4678 const char *buf, size_t length)
4679 {
4680 if (any_slab_objects(s))
4681 return -EBUSY;
4682
4683 s->flags &= ~SLAB_POISON;
4684 if (buf[0] == '1') {
4685 s->flags &= ~__CMPXCHG_DOUBLE;
4686 s->flags |= SLAB_POISON;
4687 }
4688 calculate_sizes(s, -1);
4689 return length;
4690 }
4691 SLAB_ATTR(poison);
4692
4693 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4694 {
4695 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4696 }
4697
4698 static ssize_t store_user_store(struct kmem_cache *s,
4699 const char *buf, size_t length)
4700 {
4701 if (any_slab_objects(s))
4702 return -EBUSY;
4703
4704 s->flags &= ~SLAB_STORE_USER;
4705 if (buf[0] == '1') {
4706 s->flags &= ~__CMPXCHG_DOUBLE;
4707 s->flags |= SLAB_STORE_USER;
4708 }
4709 calculate_sizes(s, -1);
4710 return length;
4711 }
4712 SLAB_ATTR(store_user);
4713
4714 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4715 {
4716 return 0;
4717 }
4718
4719 static ssize_t validate_store(struct kmem_cache *s,
4720 const char *buf, size_t length)
4721 {
4722 int ret = -EINVAL;
4723
4724 if (buf[0] == '1') {
4725 ret = validate_slab_cache(s);
4726 if (ret >= 0)
4727 ret = length;
4728 }
4729 return ret;
4730 }
4731 SLAB_ATTR(validate);
4732
4733 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4734 {
4735 if (!(s->flags & SLAB_STORE_USER))
4736 return -ENOSYS;
4737 return list_locations(s, buf, TRACK_ALLOC);
4738 }
4739 SLAB_ATTR_RO(alloc_calls);
4740
4741 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4742 {
4743 if (!(s->flags & SLAB_STORE_USER))
4744 return -ENOSYS;
4745 return list_locations(s, buf, TRACK_FREE);
4746 }
4747 SLAB_ATTR_RO(free_calls);
4748 #endif /* CONFIG_SLUB_DEBUG */
4749
4750 #ifdef CONFIG_FAILSLAB
4751 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4752 {
4753 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4754 }
4755
4756 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4757 size_t length)
4758 {
4759 s->flags &= ~SLAB_FAILSLAB;
4760 if (buf[0] == '1')
4761 s->flags |= SLAB_FAILSLAB;
4762 return length;
4763 }
4764 SLAB_ATTR(failslab);
4765 #endif
4766
4767 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4768 {
4769 return 0;
4770 }
4771
4772 static ssize_t shrink_store(struct kmem_cache *s,
4773 const char *buf, size_t length)
4774 {
4775 if (buf[0] == '1') {
4776 int rc = kmem_cache_shrink(s);
4777
4778 if (rc)
4779 return rc;
4780 } else
4781 return -EINVAL;
4782 return length;
4783 }
4784 SLAB_ATTR(shrink);
4785
4786 #ifdef CONFIG_NUMA
4787 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4788 {
4789 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4790 }
4791
4792 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4793 const char *buf, size_t length)
4794 {
4795 unsigned long ratio;
4796 int err;
4797
4798 err = kstrtoul(buf, 10, &ratio);
4799 if (err)
4800 return err;
4801
4802 if (ratio <= 100)
4803 s->remote_node_defrag_ratio = ratio * 10;
4804
4805 return length;
4806 }
4807 SLAB_ATTR(remote_node_defrag_ratio);
4808 #endif
4809
4810 #ifdef CONFIG_SLUB_STATS
4811 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4812 {
4813 unsigned long sum = 0;
4814 int cpu;
4815 int len;
4816 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4817
4818 if (!data)
4819 return -ENOMEM;
4820
4821 for_each_online_cpu(cpu) {
4822 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4823
4824 data[cpu] = x;
4825 sum += x;
4826 }
4827
4828 len = sprintf(buf, "%lu", sum);
4829
4830 #ifdef CONFIG_SMP
4831 for_each_online_cpu(cpu) {
4832 if (data[cpu] && len < PAGE_SIZE - 20)
4833 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4834 }
4835 #endif
4836 kfree(data);
4837 return len + sprintf(buf + len, "\n");
4838 }
4839
4840 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4841 {
4842 int cpu;
4843
4844 for_each_online_cpu(cpu)
4845 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4846 }
4847
4848 #define STAT_ATTR(si, text) \
4849 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4850 { \
4851 return show_stat(s, buf, si); \
4852 } \
4853 static ssize_t text##_store(struct kmem_cache *s, \
4854 const char *buf, size_t length) \
4855 { \
4856 if (buf[0] != '0') \
4857 return -EINVAL; \
4858 clear_stat(s, si); \
4859 return length; \
4860 } \
4861 SLAB_ATTR(text); \
4862
4863 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4864 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4865 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4866 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4867 STAT_ATTR(FREE_FROZEN, free_frozen);
4868 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4869 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4870 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4871 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4872 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4873 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4874 STAT_ATTR(FREE_SLAB, free_slab);
4875 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4876 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4877 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4878 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4879 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4880 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4881 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4882 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4883 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
4884 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4885 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
4886 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4887 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
4888 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4889 #endif
4890
4891 static struct attribute *slab_attrs[] = {
4892 &slab_size_attr.attr,
4893 &object_size_attr.attr,
4894 &objs_per_slab_attr.attr,
4895 &order_attr.attr,
4896 &min_partial_attr.attr,
4897 &cpu_partial_attr.attr,
4898 &objects_attr.attr,
4899 &objects_partial_attr.attr,
4900 &partial_attr.attr,
4901 &cpu_slabs_attr.attr,
4902 &ctor_attr.attr,
4903 &aliases_attr.attr,
4904 &align_attr.attr,
4905 &hwcache_align_attr.attr,
4906 &reclaim_account_attr.attr,
4907 &destroy_by_rcu_attr.attr,
4908 &shrink_attr.attr,
4909 &reserved_attr.attr,
4910 &slabs_cpu_partial_attr.attr,
4911 #ifdef CONFIG_SLUB_DEBUG
4912 &total_objects_attr.attr,
4913 &slabs_attr.attr,
4914 &sanity_checks_attr.attr,
4915 &trace_attr.attr,
4916 &red_zone_attr.attr,
4917 &poison_attr.attr,
4918 &store_user_attr.attr,
4919 &validate_attr.attr,
4920 &alloc_calls_attr.attr,
4921 &free_calls_attr.attr,
4922 #endif
4923 #ifdef CONFIG_ZONE_DMA
4924 &cache_dma_attr.attr,
4925 #endif
4926 #ifdef CONFIG_NUMA
4927 &remote_node_defrag_ratio_attr.attr,
4928 #endif
4929 #ifdef CONFIG_SLUB_STATS
4930 &alloc_fastpath_attr.attr,
4931 &alloc_slowpath_attr.attr,
4932 &free_fastpath_attr.attr,
4933 &free_slowpath_attr.attr,
4934 &free_frozen_attr.attr,
4935 &free_add_partial_attr.attr,
4936 &free_remove_partial_attr.attr,
4937 &alloc_from_partial_attr.attr,
4938 &alloc_slab_attr.attr,
4939 &alloc_refill_attr.attr,
4940 &alloc_node_mismatch_attr.attr,
4941 &free_slab_attr.attr,
4942 &cpuslab_flush_attr.attr,
4943 &deactivate_full_attr.attr,
4944 &deactivate_empty_attr.attr,
4945 &deactivate_to_head_attr.attr,
4946 &deactivate_to_tail_attr.attr,
4947 &deactivate_remote_frees_attr.attr,
4948 &deactivate_bypass_attr.attr,
4949 &order_fallback_attr.attr,
4950 &cmpxchg_double_fail_attr.attr,
4951 &cmpxchg_double_cpu_fail_attr.attr,
4952 &cpu_partial_alloc_attr.attr,
4953 &cpu_partial_free_attr.attr,
4954 &cpu_partial_node_attr.attr,
4955 &cpu_partial_drain_attr.attr,
4956 #endif
4957 #ifdef CONFIG_FAILSLAB
4958 &failslab_attr.attr,
4959 #endif
4960
4961 NULL
4962 };
4963
4964 static struct attribute_group slab_attr_group = {
4965 .attrs = slab_attrs,
4966 };
4967
4968 static ssize_t slab_attr_show(struct kobject *kobj,
4969 struct attribute *attr,
4970 char *buf)
4971 {
4972 struct slab_attribute *attribute;
4973 struct kmem_cache *s;
4974 int err;
4975
4976 attribute = to_slab_attr(attr);
4977 s = to_slab(kobj);
4978
4979 if (!attribute->show)
4980 return -EIO;
4981
4982 err = attribute->show(s, buf);
4983
4984 return err;
4985 }
4986
4987 static ssize_t slab_attr_store(struct kobject *kobj,
4988 struct attribute *attr,
4989 const char *buf, size_t len)
4990 {
4991 struct slab_attribute *attribute;
4992 struct kmem_cache *s;
4993 int err;
4994
4995 attribute = to_slab_attr(attr);
4996 s = to_slab(kobj);
4997
4998 if (!attribute->store)
4999 return -EIO;
5000
5001 err = attribute->store(s, buf, len);
5002 #ifdef CONFIG_MEMCG_KMEM
5003 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5004 int i;
5005
5006 mutex_lock(&slab_mutex);
5007 if (s->max_attr_size < len)
5008 s->max_attr_size = len;
5009
5010 /*
5011 * This is a best effort propagation, so this function's return
5012 * value will be determined by the parent cache only. This is
5013 * basically because not all attributes will have a well
5014 * defined semantics for rollbacks - most of the actions will
5015 * have permanent effects.
5016 *
5017 * Returning the error value of any of the children that fail
5018 * is not 100 % defined, in the sense that users seeing the
5019 * error code won't be able to know anything about the state of
5020 * the cache.
5021 *
5022 * Only returning the error code for the parent cache at least
5023 * has well defined semantics. The cache being written to
5024 * directly either failed or succeeded, in which case we loop
5025 * through the descendants with best-effort propagation.
5026 */
5027 for_each_memcg_cache_index(i) {
5028 struct kmem_cache *c = cache_from_memcg_idx(s, i);
5029 if (c)
5030 attribute->store(c, buf, len);
5031 }
5032 mutex_unlock(&slab_mutex);
5033 }
5034 #endif
5035 return err;
5036 }
5037
5038 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5039 {
5040 #ifdef CONFIG_MEMCG_KMEM
5041 int i;
5042 char *buffer = NULL;
5043
5044 if (!is_root_cache(s))
5045 return;
5046
5047 /*
5048 * This mean this cache had no attribute written. Therefore, no point
5049 * in copying default values around
5050 */
5051 if (!s->max_attr_size)
5052 return;
5053
5054 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5055 char mbuf[64];
5056 char *buf;
5057 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5058
5059 if (!attr || !attr->store || !attr->show)
5060 continue;
5061
5062 /*
5063 * It is really bad that we have to allocate here, so we will
5064 * do it only as a fallback. If we actually allocate, though,
5065 * we can just use the allocated buffer until the end.
5066 *
5067 * Most of the slub attributes will tend to be very small in
5068 * size, but sysfs allows buffers up to a page, so they can
5069 * theoretically happen.
5070 */
5071 if (buffer)
5072 buf = buffer;
5073 else if (s->max_attr_size < ARRAY_SIZE(mbuf))
5074 buf = mbuf;
5075 else {
5076 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5077 if (WARN_ON(!buffer))
5078 continue;
5079 buf = buffer;
5080 }
5081
5082 attr->show(s->memcg_params->root_cache, buf);
5083 attr->store(s, buf, strlen(buf));
5084 }
5085
5086 if (buffer)
5087 free_page((unsigned long)buffer);
5088 #endif
5089 }
5090
5091 static const struct sysfs_ops slab_sysfs_ops = {
5092 .show = slab_attr_show,
5093 .store = slab_attr_store,
5094 };
5095
5096 static struct kobj_type slab_ktype = {
5097 .sysfs_ops = &slab_sysfs_ops,
5098 };
5099
5100 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5101 {
5102 struct kobj_type *ktype = get_ktype(kobj);
5103
5104 if (ktype == &slab_ktype)
5105 return 1;
5106 return 0;
5107 }
5108
5109 static const struct kset_uevent_ops slab_uevent_ops = {
5110 .filter = uevent_filter,
5111 };
5112
5113 static struct kset *slab_kset;
5114
5115 #define ID_STR_LENGTH 64
5116
5117 /* Create a unique string id for a slab cache:
5118 *
5119 * Format :[flags-]size
5120 */
5121 static char *create_unique_id(struct kmem_cache *s)
5122 {
5123 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5124 char *p = name;
5125
5126 BUG_ON(!name);
5127
5128 *p++ = ':';
5129 /*
5130 * First flags affecting slabcache operations. We will only
5131 * get here for aliasable slabs so we do not need to support
5132 * too many flags. The flags here must cover all flags that
5133 * are matched during merging to guarantee that the id is
5134 * unique.
5135 */
5136 if (s->flags & SLAB_CACHE_DMA)
5137 *p++ = 'd';
5138 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5139 *p++ = 'a';
5140 if (s->flags & SLAB_DEBUG_FREE)
5141 *p++ = 'F';
5142 if (!(s->flags & SLAB_NOTRACK))
5143 *p++ = 't';
5144 if (p != name + 1)
5145 *p++ = '-';
5146 p += sprintf(p, "%07d", s->size);
5147
5148 #ifdef CONFIG_MEMCG_KMEM
5149 if (!is_root_cache(s))
5150 p += sprintf(p, "-%08d",
5151 memcg_cache_id(s->memcg_params->memcg));
5152 #endif
5153
5154 BUG_ON(p > name + ID_STR_LENGTH - 1);
5155 return name;
5156 }
5157
5158 static int sysfs_slab_add(struct kmem_cache *s)
5159 {
5160 int err;
5161 const char *name;
5162 int unmergeable = slab_unmergeable(s);
5163
5164 if (unmergeable) {
5165 /*
5166 * Slabcache can never be merged so we can use the name proper.
5167 * This is typically the case for debug situations. In that
5168 * case we can catch duplicate names easily.
5169 */
5170 sysfs_remove_link(&slab_kset->kobj, s->name);
5171 name = s->name;
5172 } else {
5173 /*
5174 * Create a unique name for the slab as a target
5175 * for the symlinks.
5176 */
5177 name = create_unique_id(s);
5178 }
5179
5180 s->kobj.kset = slab_kset;
5181 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
5182 if (err) {
5183 kobject_put(&s->kobj);
5184 return err;
5185 }
5186
5187 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5188 if (err) {
5189 kobject_del(&s->kobj);
5190 kobject_put(&s->kobj);
5191 return err;
5192 }
5193 kobject_uevent(&s->kobj, KOBJ_ADD);
5194 if (!unmergeable) {
5195 /* Setup first alias */
5196 sysfs_slab_alias(s, s->name);
5197 kfree(name);
5198 }
5199 return 0;
5200 }
5201
5202 static void sysfs_slab_remove(struct kmem_cache *s)
5203 {
5204 if (slab_state < FULL)
5205 /*
5206 * Sysfs has not been setup yet so no need to remove the
5207 * cache from sysfs.
5208 */
5209 return;
5210
5211 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5212 kobject_del(&s->kobj);
5213 kobject_put(&s->kobj);
5214 }
5215
5216 /*
5217 * Need to buffer aliases during bootup until sysfs becomes
5218 * available lest we lose that information.
5219 */
5220 struct saved_alias {
5221 struct kmem_cache *s;
5222 const char *name;
5223 struct saved_alias *next;
5224 };
5225
5226 static struct saved_alias *alias_list;
5227
5228 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5229 {
5230 struct saved_alias *al;
5231
5232 if (slab_state == FULL) {
5233 /*
5234 * If we have a leftover link then remove it.
5235 */
5236 sysfs_remove_link(&slab_kset->kobj, name);
5237 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5238 }
5239
5240 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5241 if (!al)
5242 return -ENOMEM;
5243
5244 al->s = s;
5245 al->name = name;
5246 al->next = alias_list;
5247 alias_list = al;
5248 return 0;
5249 }
5250
5251 static int __init slab_sysfs_init(void)
5252 {
5253 struct kmem_cache *s;
5254 int err;
5255
5256 mutex_lock(&slab_mutex);
5257
5258 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5259 if (!slab_kset) {
5260 mutex_unlock(&slab_mutex);
5261 printk(KERN_ERR "Cannot register slab subsystem.\n");
5262 return -ENOSYS;
5263 }
5264
5265 slab_state = FULL;
5266
5267 list_for_each_entry(s, &slab_caches, list) {
5268 err = sysfs_slab_add(s);
5269 if (err)
5270 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
5271 " to sysfs\n", s->name);
5272 }
5273
5274 while (alias_list) {
5275 struct saved_alias *al = alias_list;
5276
5277 alias_list = alias_list->next;
5278 err = sysfs_slab_alias(al->s, al->name);
5279 if (err)
5280 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5281 " %s to sysfs\n", al->name);
5282 kfree(al);
5283 }
5284
5285 mutex_unlock(&slab_mutex);
5286 resiliency_test();
5287 return 0;
5288 }
5289
5290 __initcall(slab_sysfs_init);
5291 #endif /* CONFIG_SYSFS */
5292
5293 /*
5294 * The /proc/slabinfo ABI
5295 */
5296 #ifdef CONFIG_SLABINFO
5297 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5298 {
5299 unsigned long nr_slabs = 0;
5300 unsigned long nr_objs = 0;
5301 unsigned long nr_free = 0;
5302 int node;
5303
5304 for_each_online_node(node) {
5305 struct kmem_cache_node *n = get_node(s, node);
5306
5307 if (!n)
5308 continue;
5309
5310 nr_slabs += node_nr_slabs(n);
5311 nr_objs += node_nr_objs(n);
5312 nr_free += count_partial(n, count_free);
5313 }
5314
5315 sinfo->active_objs = nr_objs - nr_free;
5316 sinfo->num_objs = nr_objs;
5317 sinfo->active_slabs = nr_slabs;
5318 sinfo->num_slabs = nr_slabs;
5319 sinfo->objects_per_slab = oo_objects(s->oo);
5320 sinfo->cache_order = oo_order(s->oo);
5321 }
5322
5323 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5324 {
5325 }
5326
5327 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5328 size_t count, loff_t *ppos)
5329 {
5330 return -EIO;
5331 }
5332 #endif /* CONFIG_SLABINFO */