]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/slub.c
Merge tag 'iommu-fixes-v5.4-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-focal-kernel.git] / mm / slub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
37
38 #include <trace/events/kmem.h>
39
40 #include "internal.h"
41
42 /*
43 * Lock order:
44 * 1. slab_mutex (Global Mutex)
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
47 *
48 * slab_mutex
49 *
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
65 * page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
117 */
118
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
126 }
127
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134 }
135
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
143 }
144
145 /*
146 * Issues still to be resolved:
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158
159 /*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
163 #define MIN_PARTIAL 5
164
165 /*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
169 */
170 #define MAX_PARTIAL 10
171
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
174
175 /*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
183 /*
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
187 */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199
200 /*
201 * Tracking user of a slab.
202 */
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 unsigned long addr; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208 #endif
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
212 };
213
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
215
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
228
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 {
231 #ifdef CONFIG_SLUB_STATS
232 /*
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
235 */
236 raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
238 }
239
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
243
244 /*
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
248 */
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
251 {
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 /*
254 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
255 * Normally, this doesn't cause any issues, as both set_freepointer()
256 * and get_freepointer() are called with a pointer with the same tag.
257 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
258 * example, when __free_slub() iterates over objects in a cache, it
259 * passes untagged pointers to check_object(). check_object() in turns
260 * calls get_freepointer() with an untagged pointer, which causes the
261 * freepointer to be restored incorrectly.
262 */
263 return (void *)((unsigned long)ptr ^ s->random ^
264 (unsigned long)kasan_reset_tag((void *)ptr_addr));
265 #else
266 return ptr;
267 #endif
268 }
269
270 /* Returns the freelist pointer recorded at location ptr_addr. */
271 static inline void *freelist_dereference(const struct kmem_cache *s,
272 void *ptr_addr)
273 {
274 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
275 (unsigned long)ptr_addr);
276 }
277
278 static inline void *get_freepointer(struct kmem_cache *s, void *object)
279 {
280 return freelist_dereference(s, object + s->offset);
281 }
282
283 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
284 {
285 prefetch(object + s->offset);
286 }
287
288 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
289 {
290 unsigned long freepointer_addr;
291 void *p;
292
293 if (!debug_pagealloc_enabled())
294 return get_freepointer(s, object);
295
296 freepointer_addr = (unsigned long)object + s->offset;
297 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
298 return freelist_ptr(s, p, freepointer_addr);
299 }
300
301 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
302 {
303 unsigned long freeptr_addr = (unsigned long)object + s->offset;
304
305 #ifdef CONFIG_SLAB_FREELIST_HARDENED
306 BUG_ON(object == fp); /* naive detection of double free or corruption */
307 #endif
308
309 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 }
311
312 /* Loop over all objects in a slab */
313 #define for_each_object(__p, __s, __addr, __objects) \
314 for (__p = fixup_red_left(__s, __addr); \
315 __p < (__addr) + (__objects) * (__s)->size; \
316 __p += (__s)->size)
317
318 /* Determine object index from a given position */
319 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
320 {
321 return (kasan_reset_tag(p) - addr) / s->size;
322 }
323
324 static inline unsigned int order_objects(unsigned int order, unsigned int size)
325 {
326 return ((unsigned int)PAGE_SIZE << order) / size;
327 }
328
329 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
330 unsigned int size)
331 {
332 struct kmem_cache_order_objects x = {
333 (order << OO_SHIFT) + order_objects(order, size)
334 };
335
336 return x;
337 }
338
339 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
340 {
341 return x.x >> OO_SHIFT;
342 }
343
344 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
345 {
346 return x.x & OO_MASK;
347 }
348
349 /*
350 * Per slab locking using the pagelock
351 */
352 static __always_inline void slab_lock(struct page *page)
353 {
354 VM_BUG_ON_PAGE(PageTail(page), page);
355 bit_spin_lock(PG_locked, &page->flags);
356 }
357
358 static __always_inline void slab_unlock(struct page *page)
359 {
360 VM_BUG_ON_PAGE(PageTail(page), page);
361 __bit_spin_unlock(PG_locked, &page->flags);
362 }
363
364 /* Interrupts must be disabled (for the fallback code to work right) */
365 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
366 void *freelist_old, unsigned long counters_old,
367 void *freelist_new, unsigned long counters_new,
368 const char *n)
369 {
370 VM_BUG_ON(!irqs_disabled());
371 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
372 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373 if (s->flags & __CMPXCHG_DOUBLE) {
374 if (cmpxchg_double(&page->freelist, &page->counters,
375 freelist_old, counters_old,
376 freelist_new, counters_new))
377 return true;
378 } else
379 #endif
380 {
381 slab_lock(page);
382 if (page->freelist == freelist_old &&
383 page->counters == counters_old) {
384 page->freelist = freelist_new;
385 page->counters = counters_new;
386 slab_unlock(page);
387 return true;
388 }
389 slab_unlock(page);
390 }
391
392 cpu_relax();
393 stat(s, CMPXCHG_DOUBLE_FAIL);
394
395 #ifdef SLUB_DEBUG_CMPXCHG
396 pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 #endif
398
399 return false;
400 }
401
402 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
403 void *freelist_old, unsigned long counters_old,
404 void *freelist_new, unsigned long counters_new,
405 const char *n)
406 {
407 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
408 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409 if (s->flags & __CMPXCHG_DOUBLE) {
410 if (cmpxchg_double(&page->freelist, &page->counters,
411 freelist_old, counters_old,
412 freelist_new, counters_new))
413 return true;
414 } else
415 #endif
416 {
417 unsigned long flags;
418
419 local_irq_save(flags);
420 slab_lock(page);
421 if (page->freelist == freelist_old &&
422 page->counters == counters_old) {
423 page->freelist = freelist_new;
424 page->counters = counters_new;
425 slab_unlock(page);
426 local_irq_restore(flags);
427 return true;
428 }
429 slab_unlock(page);
430 local_irq_restore(flags);
431 }
432
433 cpu_relax();
434 stat(s, CMPXCHG_DOUBLE_FAIL);
435
436 #ifdef SLUB_DEBUG_CMPXCHG
437 pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 #endif
439
440 return false;
441 }
442
443 #ifdef CONFIG_SLUB_DEBUG
444 /*
445 * Determine a map of object in use on a page.
446 *
447 * Node listlock must be held to guarantee that the page does
448 * not vanish from under us.
449 */
450 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
451 {
452 void *p;
453 void *addr = page_address(page);
454
455 for (p = page->freelist; p; p = get_freepointer(s, p))
456 set_bit(slab_index(p, s, addr), map);
457 }
458
459 static inline unsigned int size_from_object(struct kmem_cache *s)
460 {
461 if (s->flags & SLAB_RED_ZONE)
462 return s->size - s->red_left_pad;
463
464 return s->size;
465 }
466
467 static inline void *restore_red_left(struct kmem_cache *s, void *p)
468 {
469 if (s->flags & SLAB_RED_ZONE)
470 p -= s->red_left_pad;
471
472 return p;
473 }
474
475 /*
476 * Debug settings:
477 */
478 #if defined(CONFIG_SLUB_DEBUG_ON)
479 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
480 #else
481 static slab_flags_t slub_debug;
482 #endif
483
484 static char *slub_debug_slabs;
485 static int disable_higher_order_debug;
486
487 /*
488 * slub is about to manipulate internal object metadata. This memory lies
489 * outside the range of the allocated object, so accessing it would normally
490 * be reported by kasan as a bounds error. metadata_access_enable() is used
491 * to tell kasan that these accesses are OK.
492 */
493 static inline void metadata_access_enable(void)
494 {
495 kasan_disable_current();
496 }
497
498 static inline void metadata_access_disable(void)
499 {
500 kasan_enable_current();
501 }
502
503 /*
504 * Object debugging
505 */
506
507 /* Verify that a pointer has an address that is valid within a slab page */
508 static inline int check_valid_pointer(struct kmem_cache *s,
509 struct page *page, void *object)
510 {
511 void *base;
512
513 if (!object)
514 return 1;
515
516 base = page_address(page);
517 object = kasan_reset_tag(object);
518 object = restore_red_left(s, object);
519 if (object < base || object >= base + page->objects * s->size ||
520 (object - base) % s->size) {
521 return 0;
522 }
523
524 return 1;
525 }
526
527 static void print_section(char *level, char *text, u8 *addr,
528 unsigned int length)
529 {
530 metadata_access_enable();
531 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
532 length, 1);
533 metadata_access_disable();
534 }
535
536 static struct track *get_track(struct kmem_cache *s, void *object,
537 enum track_item alloc)
538 {
539 struct track *p;
540
541 if (s->offset)
542 p = object + s->offset + sizeof(void *);
543 else
544 p = object + s->inuse;
545
546 return p + alloc;
547 }
548
549 static void set_track(struct kmem_cache *s, void *object,
550 enum track_item alloc, unsigned long addr)
551 {
552 struct track *p = get_track(s, object, alloc);
553
554 if (addr) {
555 #ifdef CONFIG_STACKTRACE
556 unsigned int nr_entries;
557
558 metadata_access_enable();
559 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
560 metadata_access_disable();
561
562 if (nr_entries < TRACK_ADDRS_COUNT)
563 p->addrs[nr_entries] = 0;
564 #endif
565 p->addr = addr;
566 p->cpu = smp_processor_id();
567 p->pid = current->pid;
568 p->when = jiffies;
569 } else {
570 memset(p, 0, sizeof(struct track));
571 }
572 }
573
574 static void init_tracking(struct kmem_cache *s, void *object)
575 {
576 if (!(s->flags & SLAB_STORE_USER))
577 return;
578
579 set_track(s, object, TRACK_FREE, 0UL);
580 set_track(s, object, TRACK_ALLOC, 0UL);
581 }
582
583 static void print_track(const char *s, struct track *t, unsigned long pr_time)
584 {
585 if (!t->addr)
586 return;
587
588 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
589 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
590 #ifdef CONFIG_STACKTRACE
591 {
592 int i;
593 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
594 if (t->addrs[i])
595 pr_err("\t%pS\n", (void *)t->addrs[i]);
596 else
597 break;
598 }
599 #endif
600 }
601
602 static void print_tracking(struct kmem_cache *s, void *object)
603 {
604 unsigned long pr_time = jiffies;
605 if (!(s->flags & SLAB_STORE_USER))
606 return;
607
608 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
609 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
610 }
611
612 static void print_page_info(struct page *page)
613 {
614 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
615 page, page->objects, page->inuse, page->freelist, page->flags);
616
617 }
618
619 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
620 {
621 struct va_format vaf;
622 va_list args;
623
624 va_start(args, fmt);
625 vaf.fmt = fmt;
626 vaf.va = &args;
627 pr_err("=============================================================================\n");
628 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
629 pr_err("-----------------------------------------------------------------------------\n\n");
630
631 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
632 va_end(args);
633 }
634
635 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
636 {
637 struct va_format vaf;
638 va_list args;
639
640 va_start(args, fmt);
641 vaf.fmt = fmt;
642 vaf.va = &args;
643 pr_err("FIX %s: %pV\n", s->name, &vaf);
644 va_end(args);
645 }
646
647 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
648 {
649 unsigned int off; /* Offset of last byte */
650 u8 *addr = page_address(page);
651
652 print_tracking(s, p);
653
654 print_page_info(page);
655
656 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
657 p, p - addr, get_freepointer(s, p));
658
659 if (s->flags & SLAB_RED_ZONE)
660 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
661 s->red_left_pad);
662 else if (p > addr + 16)
663 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
664
665 print_section(KERN_ERR, "Object ", p,
666 min_t(unsigned int, s->object_size, PAGE_SIZE));
667 if (s->flags & SLAB_RED_ZONE)
668 print_section(KERN_ERR, "Redzone ", p + s->object_size,
669 s->inuse - s->object_size);
670
671 if (s->offset)
672 off = s->offset + sizeof(void *);
673 else
674 off = s->inuse;
675
676 if (s->flags & SLAB_STORE_USER)
677 off += 2 * sizeof(struct track);
678
679 off += kasan_metadata_size(s);
680
681 if (off != size_from_object(s))
682 /* Beginning of the filler is the free pointer */
683 print_section(KERN_ERR, "Padding ", p + off,
684 size_from_object(s) - off);
685
686 dump_stack();
687 }
688
689 void object_err(struct kmem_cache *s, struct page *page,
690 u8 *object, char *reason)
691 {
692 slab_bug(s, "%s", reason);
693 print_trailer(s, page, object);
694 }
695
696 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
697 const char *fmt, ...)
698 {
699 va_list args;
700 char buf[100];
701
702 va_start(args, fmt);
703 vsnprintf(buf, sizeof(buf), fmt, args);
704 va_end(args);
705 slab_bug(s, "%s", buf);
706 print_page_info(page);
707 dump_stack();
708 }
709
710 static void init_object(struct kmem_cache *s, void *object, u8 val)
711 {
712 u8 *p = object;
713
714 if (s->flags & SLAB_RED_ZONE)
715 memset(p - s->red_left_pad, val, s->red_left_pad);
716
717 if (s->flags & __OBJECT_POISON) {
718 memset(p, POISON_FREE, s->object_size - 1);
719 p[s->object_size - 1] = POISON_END;
720 }
721
722 if (s->flags & SLAB_RED_ZONE)
723 memset(p + s->object_size, val, s->inuse - s->object_size);
724 }
725
726 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
727 void *from, void *to)
728 {
729 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
730 memset(from, data, to - from);
731 }
732
733 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
734 u8 *object, char *what,
735 u8 *start, unsigned int value, unsigned int bytes)
736 {
737 u8 *fault;
738 u8 *end;
739
740 metadata_access_enable();
741 fault = memchr_inv(start, value, bytes);
742 metadata_access_disable();
743 if (!fault)
744 return 1;
745
746 end = start + bytes;
747 while (end > fault && end[-1] == value)
748 end--;
749
750 slab_bug(s, "%s overwritten", what);
751 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
752 fault, end - 1, fault[0], value);
753 print_trailer(s, page, object);
754
755 restore_bytes(s, what, value, fault, end);
756 return 0;
757 }
758
759 /*
760 * Object layout:
761 *
762 * object address
763 * Bytes of the object to be managed.
764 * If the freepointer may overlay the object then the free
765 * pointer is the first word of the object.
766 *
767 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
768 * 0xa5 (POISON_END)
769 *
770 * object + s->object_size
771 * Padding to reach word boundary. This is also used for Redzoning.
772 * Padding is extended by another word if Redzoning is enabled and
773 * object_size == inuse.
774 *
775 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
776 * 0xcc (RED_ACTIVE) for objects in use.
777 *
778 * object + s->inuse
779 * Meta data starts here.
780 *
781 * A. Free pointer (if we cannot overwrite object on free)
782 * B. Tracking data for SLAB_STORE_USER
783 * C. Padding to reach required alignment boundary or at mininum
784 * one word if debugging is on to be able to detect writes
785 * before the word boundary.
786 *
787 * Padding is done using 0x5a (POISON_INUSE)
788 *
789 * object + s->size
790 * Nothing is used beyond s->size.
791 *
792 * If slabcaches are merged then the object_size and inuse boundaries are mostly
793 * ignored. And therefore no slab options that rely on these boundaries
794 * may be used with merged slabcaches.
795 */
796
797 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
798 {
799 unsigned long off = s->inuse; /* The end of info */
800
801 if (s->offset)
802 /* Freepointer is placed after the object. */
803 off += sizeof(void *);
804
805 if (s->flags & SLAB_STORE_USER)
806 /* We also have user information there */
807 off += 2 * sizeof(struct track);
808
809 off += kasan_metadata_size(s);
810
811 if (size_from_object(s) == off)
812 return 1;
813
814 return check_bytes_and_report(s, page, p, "Object padding",
815 p + off, POISON_INUSE, size_from_object(s) - off);
816 }
817
818 /* Check the pad bytes at the end of a slab page */
819 static int slab_pad_check(struct kmem_cache *s, struct page *page)
820 {
821 u8 *start;
822 u8 *fault;
823 u8 *end;
824 u8 *pad;
825 int length;
826 int remainder;
827
828 if (!(s->flags & SLAB_POISON))
829 return 1;
830
831 start = page_address(page);
832 length = page_size(page);
833 end = start + length;
834 remainder = length % s->size;
835 if (!remainder)
836 return 1;
837
838 pad = end - remainder;
839 metadata_access_enable();
840 fault = memchr_inv(pad, POISON_INUSE, remainder);
841 metadata_access_disable();
842 if (!fault)
843 return 1;
844 while (end > fault && end[-1] == POISON_INUSE)
845 end--;
846
847 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
848 print_section(KERN_ERR, "Padding ", pad, remainder);
849
850 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
851 return 0;
852 }
853
854 static int check_object(struct kmem_cache *s, struct page *page,
855 void *object, u8 val)
856 {
857 u8 *p = object;
858 u8 *endobject = object + s->object_size;
859
860 if (s->flags & SLAB_RED_ZONE) {
861 if (!check_bytes_and_report(s, page, object, "Redzone",
862 object - s->red_left_pad, val, s->red_left_pad))
863 return 0;
864
865 if (!check_bytes_and_report(s, page, object, "Redzone",
866 endobject, val, s->inuse - s->object_size))
867 return 0;
868 } else {
869 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
870 check_bytes_and_report(s, page, p, "Alignment padding",
871 endobject, POISON_INUSE,
872 s->inuse - s->object_size);
873 }
874 }
875
876 if (s->flags & SLAB_POISON) {
877 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
878 (!check_bytes_and_report(s, page, p, "Poison", p,
879 POISON_FREE, s->object_size - 1) ||
880 !check_bytes_and_report(s, page, p, "Poison",
881 p + s->object_size - 1, POISON_END, 1)))
882 return 0;
883 /*
884 * check_pad_bytes cleans up on its own.
885 */
886 check_pad_bytes(s, page, p);
887 }
888
889 if (!s->offset && val == SLUB_RED_ACTIVE)
890 /*
891 * Object and freepointer overlap. Cannot check
892 * freepointer while object is allocated.
893 */
894 return 1;
895
896 /* Check free pointer validity */
897 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
898 object_err(s, page, p, "Freepointer corrupt");
899 /*
900 * No choice but to zap it and thus lose the remainder
901 * of the free objects in this slab. May cause
902 * another error because the object count is now wrong.
903 */
904 set_freepointer(s, p, NULL);
905 return 0;
906 }
907 return 1;
908 }
909
910 static int check_slab(struct kmem_cache *s, struct page *page)
911 {
912 int maxobj;
913
914 VM_BUG_ON(!irqs_disabled());
915
916 if (!PageSlab(page)) {
917 slab_err(s, page, "Not a valid slab page");
918 return 0;
919 }
920
921 maxobj = order_objects(compound_order(page), s->size);
922 if (page->objects > maxobj) {
923 slab_err(s, page, "objects %u > max %u",
924 page->objects, maxobj);
925 return 0;
926 }
927 if (page->inuse > page->objects) {
928 slab_err(s, page, "inuse %u > max %u",
929 page->inuse, page->objects);
930 return 0;
931 }
932 /* Slab_pad_check fixes things up after itself */
933 slab_pad_check(s, page);
934 return 1;
935 }
936
937 /*
938 * Determine if a certain object on a page is on the freelist. Must hold the
939 * slab lock to guarantee that the chains are in a consistent state.
940 */
941 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
942 {
943 int nr = 0;
944 void *fp;
945 void *object = NULL;
946 int max_objects;
947
948 fp = page->freelist;
949 while (fp && nr <= page->objects) {
950 if (fp == search)
951 return 1;
952 if (!check_valid_pointer(s, page, fp)) {
953 if (object) {
954 object_err(s, page, object,
955 "Freechain corrupt");
956 set_freepointer(s, object, NULL);
957 } else {
958 slab_err(s, page, "Freepointer corrupt");
959 page->freelist = NULL;
960 page->inuse = page->objects;
961 slab_fix(s, "Freelist cleared");
962 return 0;
963 }
964 break;
965 }
966 object = fp;
967 fp = get_freepointer(s, object);
968 nr++;
969 }
970
971 max_objects = order_objects(compound_order(page), s->size);
972 if (max_objects > MAX_OBJS_PER_PAGE)
973 max_objects = MAX_OBJS_PER_PAGE;
974
975 if (page->objects != max_objects) {
976 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
977 page->objects, max_objects);
978 page->objects = max_objects;
979 slab_fix(s, "Number of objects adjusted.");
980 }
981 if (page->inuse != page->objects - nr) {
982 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
983 page->inuse, page->objects - nr);
984 page->inuse = page->objects - nr;
985 slab_fix(s, "Object count adjusted.");
986 }
987 return search == NULL;
988 }
989
990 static void trace(struct kmem_cache *s, struct page *page, void *object,
991 int alloc)
992 {
993 if (s->flags & SLAB_TRACE) {
994 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
995 s->name,
996 alloc ? "alloc" : "free",
997 object, page->inuse,
998 page->freelist);
999
1000 if (!alloc)
1001 print_section(KERN_INFO, "Object ", (void *)object,
1002 s->object_size);
1003
1004 dump_stack();
1005 }
1006 }
1007
1008 /*
1009 * Tracking of fully allocated slabs for debugging purposes.
1010 */
1011 static void add_full(struct kmem_cache *s,
1012 struct kmem_cache_node *n, struct page *page)
1013 {
1014 if (!(s->flags & SLAB_STORE_USER))
1015 return;
1016
1017 lockdep_assert_held(&n->list_lock);
1018 list_add(&page->slab_list, &n->full);
1019 }
1020
1021 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1022 {
1023 if (!(s->flags & SLAB_STORE_USER))
1024 return;
1025
1026 lockdep_assert_held(&n->list_lock);
1027 list_del(&page->slab_list);
1028 }
1029
1030 /* Tracking of the number of slabs for debugging purposes */
1031 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1032 {
1033 struct kmem_cache_node *n = get_node(s, node);
1034
1035 return atomic_long_read(&n->nr_slabs);
1036 }
1037
1038 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1039 {
1040 return atomic_long_read(&n->nr_slabs);
1041 }
1042
1043 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1044 {
1045 struct kmem_cache_node *n = get_node(s, node);
1046
1047 /*
1048 * May be called early in order to allocate a slab for the
1049 * kmem_cache_node structure. Solve the chicken-egg
1050 * dilemma by deferring the increment of the count during
1051 * bootstrap (see early_kmem_cache_node_alloc).
1052 */
1053 if (likely(n)) {
1054 atomic_long_inc(&n->nr_slabs);
1055 atomic_long_add(objects, &n->total_objects);
1056 }
1057 }
1058 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1059 {
1060 struct kmem_cache_node *n = get_node(s, node);
1061
1062 atomic_long_dec(&n->nr_slabs);
1063 atomic_long_sub(objects, &n->total_objects);
1064 }
1065
1066 /* Object debug checks for alloc/free paths */
1067 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1068 void *object)
1069 {
1070 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1071 return;
1072
1073 init_object(s, object, SLUB_RED_INACTIVE);
1074 init_tracking(s, object);
1075 }
1076
1077 static
1078 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1079 {
1080 if (!(s->flags & SLAB_POISON))
1081 return;
1082
1083 metadata_access_enable();
1084 memset(addr, POISON_INUSE, page_size(page));
1085 metadata_access_disable();
1086 }
1087
1088 static inline int alloc_consistency_checks(struct kmem_cache *s,
1089 struct page *page, void *object)
1090 {
1091 if (!check_slab(s, page))
1092 return 0;
1093
1094 if (!check_valid_pointer(s, page, object)) {
1095 object_err(s, page, object, "Freelist Pointer check fails");
1096 return 0;
1097 }
1098
1099 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1100 return 0;
1101
1102 return 1;
1103 }
1104
1105 static noinline int alloc_debug_processing(struct kmem_cache *s,
1106 struct page *page,
1107 void *object, unsigned long addr)
1108 {
1109 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1110 if (!alloc_consistency_checks(s, page, object))
1111 goto bad;
1112 }
1113
1114 /* Success perform special debug activities for allocs */
1115 if (s->flags & SLAB_STORE_USER)
1116 set_track(s, object, TRACK_ALLOC, addr);
1117 trace(s, page, object, 1);
1118 init_object(s, object, SLUB_RED_ACTIVE);
1119 return 1;
1120
1121 bad:
1122 if (PageSlab(page)) {
1123 /*
1124 * If this is a slab page then lets do the best we can
1125 * to avoid issues in the future. Marking all objects
1126 * as used avoids touching the remaining objects.
1127 */
1128 slab_fix(s, "Marking all objects used");
1129 page->inuse = page->objects;
1130 page->freelist = NULL;
1131 }
1132 return 0;
1133 }
1134
1135 static inline int free_consistency_checks(struct kmem_cache *s,
1136 struct page *page, void *object, unsigned long addr)
1137 {
1138 if (!check_valid_pointer(s, page, object)) {
1139 slab_err(s, page, "Invalid object pointer 0x%p", object);
1140 return 0;
1141 }
1142
1143 if (on_freelist(s, page, object)) {
1144 object_err(s, page, object, "Object already free");
1145 return 0;
1146 }
1147
1148 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1149 return 0;
1150
1151 if (unlikely(s != page->slab_cache)) {
1152 if (!PageSlab(page)) {
1153 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1154 object);
1155 } else if (!page->slab_cache) {
1156 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1157 object);
1158 dump_stack();
1159 } else
1160 object_err(s, page, object,
1161 "page slab pointer corrupt.");
1162 return 0;
1163 }
1164 return 1;
1165 }
1166
1167 /* Supports checking bulk free of a constructed freelist */
1168 static noinline int free_debug_processing(
1169 struct kmem_cache *s, struct page *page,
1170 void *head, void *tail, int bulk_cnt,
1171 unsigned long addr)
1172 {
1173 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1174 void *object = head;
1175 int cnt = 0;
1176 unsigned long uninitialized_var(flags);
1177 int ret = 0;
1178
1179 spin_lock_irqsave(&n->list_lock, flags);
1180 slab_lock(page);
1181
1182 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1183 if (!check_slab(s, page))
1184 goto out;
1185 }
1186
1187 next_object:
1188 cnt++;
1189
1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 if (!free_consistency_checks(s, page, object, addr))
1192 goto out;
1193 }
1194
1195 if (s->flags & SLAB_STORE_USER)
1196 set_track(s, object, TRACK_FREE, addr);
1197 trace(s, page, object, 0);
1198 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1199 init_object(s, object, SLUB_RED_INACTIVE);
1200
1201 /* Reached end of constructed freelist yet? */
1202 if (object != tail) {
1203 object = get_freepointer(s, object);
1204 goto next_object;
1205 }
1206 ret = 1;
1207
1208 out:
1209 if (cnt != bulk_cnt)
1210 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1211 bulk_cnt, cnt);
1212
1213 slab_unlock(page);
1214 spin_unlock_irqrestore(&n->list_lock, flags);
1215 if (!ret)
1216 slab_fix(s, "Object at 0x%p not freed", object);
1217 return ret;
1218 }
1219
1220 static int __init setup_slub_debug(char *str)
1221 {
1222 slub_debug = DEBUG_DEFAULT_FLAGS;
1223 if (*str++ != '=' || !*str)
1224 /*
1225 * No options specified. Switch on full debugging.
1226 */
1227 goto out;
1228
1229 if (*str == ',')
1230 /*
1231 * No options but restriction on slabs. This means full
1232 * debugging for slabs matching a pattern.
1233 */
1234 goto check_slabs;
1235
1236 slub_debug = 0;
1237 if (*str == '-')
1238 /*
1239 * Switch off all debugging measures.
1240 */
1241 goto out;
1242
1243 /*
1244 * Determine which debug features should be switched on
1245 */
1246 for (; *str && *str != ','; str++) {
1247 switch (tolower(*str)) {
1248 case 'f':
1249 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1250 break;
1251 case 'z':
1252 slub_debug |= SLAB_RED_ZONE;
1253 break;
1254 case 'p':
1255 slub_debug |= SLAB_POISON;
1256 break;
1257 case 'u':
1258 slub_debug |= SLAB_STORE_USER;
1259 break;
1260 case 't':
1261 slub_debug |= SLAB_TRACE;
1262 break;
1263 case 'a':
1264 slub_debug |= SLAB_FAILSLAB;
1265 break;
1266 case 'o':
1267 /*
1268 * Avoid enabling debugging on caches if its minimum
1269 * order would increase as a result.
1270 */
1271 disable_higher_order_debug = 1;
1272 break;
1273 default:
1274 pr_err("slub_debug option '%c' unknown. skipped\n",
1275 *str);
1276 }
1277 }
1278
1279 check_slabs:
1280 if (*str == ',')
1281 slub_debug_slabs = str + 1;
1282 out:
1283 if ((static_branch_unlikely(&init_on_alloc) ||
1284 static_branch_unlikely(&init_on_free)) &&
1285 (slub_debug & SLAB_POISON))
1286 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1287 return 1;
1288 }
1289
1290 __setup("slub_debug", setup_slub_debug);
1291
1292 /*
1293 * kmem_cache_flags - apply debugging options to the cache
1294 * @object_size: the size of an object without meta data
1295 * @flags: flags to set
1296 * @name: name of the cache
1297 * @ctor: constructor function
1298 *
1299 * Debug option(s) are applied to @flags. In addition to the debug
1300 * option(s), if a slab name (or multiple) is specified i.e.
1301 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1302 * then only the select slabs will receive the debug option(s).
1303 */
1304 slab_flags_t kmem_cache_flags(unsigned int object_size,
1305 slab_flags_t flags, const char *name,
1306 void (*ctor)(void *))
1307 {
1308 char *iter;
1309 size_t len;
1310
1311 /* If slub_debug = 0, it folds into the if conditional. */
1312 if (!slub_debug_slabs)
1313 return flags | slub_debug;
1314
1315 len = strlen(name);
1316 iter = slub_debug_slabs;
1317 while (*iter) {
1318 char *end, *glob;
1319 size_t cmplen;
1320
1321 end = strchrnul(iter, ',');
1322
1323 glob = strnchr(iter, end - iter, '*');
1324 if (glob)
1325 cmplen = glob - iter;
1326 else
1327 cmplen = max_t(size_t, len, (end - iter));
1328
1329 if (!strncmp(name, iter, cmplen)) {
1330 flags |= slub_debug;
1331 break;
1332 }
1333
1334 if (!*end)
1335 break;
1336 iter = end + 1;
1337 }
1338
1339 return flags;
1340 }
1341 #else /* !CONFIG_SLUB_DEBUG */
1342 static inline void setup_object_debug(struct kmem_cache *s,
1343 struct page *page, void *object) {}
1344 static inline
1345 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1346
1347 static inline int alloc_debug_processing(struct kmem_cache *s,
1348 struct page *page, void *object, unsigned long addr) { return 0; }
1349
1350 static inline int free_debug_processing(
1351 struct kmem_cache *s, struct page *page,
1352 void *head, void *tail, int bulk_cnt,
1353 unsigned long addr) { return 0; }
1354
1355 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1356 { return 1; }
1357 static inline int check_object(struct kmem_cache *s, struct page *page,
1358 void *object, u8 val) { return 1; }
1359 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1360 struct page *page) {}
1361 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1362 struct page *page) {}
1363 slab_flags_t kmem_cache_flags(unsigned int object_size,
1364 slab_flags_t flags, const char *name,
1365 void (*ctor)(void *))
1366 {
1367 return flags;
1368 }
1369 #define slub_debug 0
1370
1371 #define disable_higher_order_debug 0
1372
1373 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1374 { return 0; }
1375 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1376 { return 0; }
1377 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1378 int objects) {}
1379 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1380 int objects) {}
1381
1382 #endif /* CONFIG_SLUB_DEBUG */
1383
1384 /*
1385 * Hooks for other subsystems that check memory allocations. In a typical
1386 * production configuration these hooks all should produce no code at all.
1387 */
1388 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1389 {
1390 ptr = kasan_kmalloc_large(ptr, size, flags);
1391 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1392 kmemleak_alloc(ptr, size, 1, flags);
1393 return ptr;
1394 }
1395
1396 static __always_inline void kfree_hook(void *x)
1397 {
1398 kmemleak_free(x);
1399 kasan_kfree_large(x, _RET_IP_);
1400 }
1401
1402 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1403 {
1404 kmemleak_free_recursive(x, s->flags);
1405
1406 /*
1407 * Trouble is that we may no longer disable interrupts in the fast path
1408 * So in order to make the debug calls that expect irqs to be
1409 * disabled we need to disable interrupts temporarily.
1410 */
1411 #ifdef CONFIG_LOCKDEP
1412 {
1413 unsigned long flags;
1414
1415 local_irq_save(flags);
1416 debug_check_no_locks_freed(x, s->object_size);
1417 local_irq_restore(flags);
1418 }
1419 #endif
1420 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1421 debug_check_no_obj_freed(x, s->object_size);
1422
1423 /* KASAN might put x into memory quarantine, delaying its reuse */
1424 return kasan_slab_free(s, x, _RET_IP_);
1425 }
1426
1427 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1428 void **head, void **tail)
1429 {
1430
1431 void *object;
1432 void *next = *head;
1433 void *old_tail = *tail ? *tail : *head;
1434 int rsize;
1435
1436 /* Head and tail of the reconstructed freelist */
1437 *head = NULL;
1438 *tail = NULL;
1439
1440 do {
1441 object = next;
1442 next = get_freepointer(s, object);
1443
1444 if (slab_want_init_on_free(s)) {
1445 /*
1446 * Clear the object and the metadata, but don't touch
1447 * the redzone.
1448 */
1449 memset(object, 0, s->object_size);
1450 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1451 : 0;
1452 memset((char *)object + s->inuse, 0,
1453 s->size - s->inuse - rsize);
1454
1455 }
1456 /* If object's reuse doesn't have to be delayed */
1457 if (!slab_free_hook(s, object)) {
1458 /* Move object to the new freelist */
1459 set_freepointer(s, object, *head);
1460 *head = object;
1461 if (!*tail)
1462 *tail = object;
1463 }
1464 } while (object != old_tail);
1465
1466 if (*head == *tail)
1467 *tail = NULL;
1468
1469 return *head != NULL;
1470 }
1471
1472 static void *setup_object(struct kmem_cache *s, struct page *page,
1473 void *object)
1474 {
1475 setup_object_debug(s, page, object);
1476 object = kasan_init_slab_obj(s, object);
1477 if (unlikely(s->ctor)) {
1478 kasan_unpoison_object_data(s, object);
1479 s->ctor(object);
1480 kasan_poison_object_data(s, object);
1481 }
1482 return object;
1483 }
1484
1485 /*
1486 * Slab allocation and freeing
1487 */
1488 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1489 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1490 {
1491 struct page *page;
1492 unsigned int order = oo_order(oo);
1493
1494 if (node == NUMA_NO_NODE)
1495 page = alloc_pages(flags, order);
1496 else
1497 page = __alloc_pages_node(node, flags, order);
1498
1499 if (page && charge_slab_page(page, flags, order, s)) {
1500 __free_pages(page, order);
1501 page = NULL;
1502 }
1503
1504 return page;
1505 }
1506
1507 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1508 /* Pre-initialize the random sequence cache */
1509 static int init_cache_random_seq(struct kmem_cache *s)
1510 {
1511 unsigned int count = oo_objects(s->oo);
1512 int err;
1513
1514 /* Bailout if already initialised */
1515 if (s->random_seq)
1516 return 0;
1517
1518 err = cache_random_seq_create(s, count, GFP_KERNEL);
1519 if (err) {
1520 pr_err("SLUB: Unable to initialize free list for %s\n",
1521 s->name);
1522 return err;
1523 }
1524
1525 /* Transform to an offset on the set of pages */
1526 if (s->random_seq) {
1527 unsigned int i;
1528
1529 for (i = 0; i < count; i++)
1530 s->random_seq[i] *= s->size;
1531 }
1532 return 0;
1533 }
1534
1535 /* Initialize each random sequence freelist per cache */
1536 static void __init init_freelist_randomization(void)
1537 {
1538 struct kmem_cache *s;
1539
1540 mutex_lock(&slab_mutex);
1541
1542 list_for_each_entry(s, &slab_caches, list)
1543 init_cache_random_seq(s);
1544
1545 mutex_unlock(&slab_mutex);
1546 }
1547
1548 /* Get the next entry on the pre-computed freelist randomized */
1549 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1550 unsigned long *pos, void *start,
1551 unsigned long page_limit,
1552 unsigned long freelist_count)
1553 {
1554 unsigned int idx;
1555
1556 /*
1557 * If the target page allocation failed, the number of objects on the
1558 * page might be smaller than the usual size defined by the cache.
1559 */
1560 do {
1561 idx = s->random_seq[*pos];
1562 *pos += 1;
1563 if (*pos >= freelist_count)
1564 *pos = 0;
1565 } while (unlikely(idx >= page_limit));
1566
1567 return (char *)start + idx;
1568 }
1569
1570 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1571 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1572 {
1573 void *start;
1574 void *cur;
1575 void *next;
1576 unsigned long idx, pos, page_limit, freelist_count;
1577
1578 if (page->objects < 2 || !s->random_seq)
1579 return false;
1580
1581 freelist_count = oo_objects(s->oo);
1582 pos = get_random_int() % freelist_count;
1583
1584 page_limit = page->objects * s->size;
1585 start = fixup_red_left(s, page_address(page));
1586
1587 /* First entry is used as the base of the freelist */
1588 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1589 freelist_count);
1590 cur = setup_object(s, page, cur);
1591 page->freelist = cur;
1592
1593 for (idx = 1; idx < page->objects; idx++) {
1594 next = next_freelist_entry(s, page, &pos, start, page_limit,
1595 freelist_count);
1596 next = setup_object(s, page, next);
1597 set_freepointer(s, cur, next);
1598 cur = next;
1599 }
1600 set_freepointer(s, cur, NULL);
1601
1602 return true;
1603 }
1604 #else
1605 static inline int init_cache_random_seq(struct kmem_cache *s)
1606 {
1607 return 0;
1608 }
1609 static inline void init_freelist_randomization(void) { }
1610 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1611 {
1612 return false;
1613 }
1614 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1615
1616 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1617 {
1618 struct page *page;
1619 struct kmem_cache_order_objects oo = s->oo;
1620 gfp_t alloc_gfp;
1621 void *start, *p, *next;
1622 int idx;
1623 bool shuffle;
1624
1625 flags &= gfp_allowed_mask;
1626
1627 if (gfpflags_allow_blocking(flags))
1628 local_irq_enable();
1629
1630 flags |= s->allocflags;
1631
1632 /*
1633 * Let the initial higher-order allocation fail under memory pressure
1634 * so we fall-back to the minimum order allocation.
1635 */
1636 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1637 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1638 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1639
1640 page = alloc_slab_page(s, alloc_gfp, node, oo);
1641 if (unlikely(!page)) {
1642 oo = s->min;
1643 alloc_gfp = flags;
1644 /*
1645 * Allocation may have failed due to fragmentation.
1646 * Try a lower order alloc if possible
1647 */
1648 page = alloc_slab_page(s, alloc_gfp, node, oo);
1649 if (unlikely(!page))
1650 goto out;
1651 stat(s, ORDER_FALLBACK);
1652 }
1653
1654 page->objects = oo_objects(oo);
1655
1656 page->slab_cache = s;
1657 __SetPageSlab(page);
1658 if (page_is_pfmemalloc(page))
1659 SetPageSlabPfmemalloc(page);
1660
1661 kasan_poison_slab(page);
1662
1663 start = page_address(page);
1664
1665 setup_page_debug(s, page, start);
1666
1667 shuffle = shuffle_freelist(s, page);
1668
1669 if (!shuffle) {
1670 start = fixup_red_left(s, start);
1671 start = setup_object(s, page, start);
1672 page->freelist = start;
1673 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1674 next = p + s->size;
1675 next = setup_object(s, page, next);
1676 set_freepointer(s, p, next);
1677 p = next;
1678 }
1679 set_freepointer(s, p, NULL);
1680 }
1681
1682 page->inuse = page->objects;
1683 page->frozen = 1;
1684
1685 out:
1686 if (gfpflags_allow_blocking(flags))
1687 local_irq_disable();
1688 if (!page)
1689 return NULL;
1690
1691 inc_slabs_node(s, page_to_nid(page), page->objects);
1692
1693 return page;
1694 }
1695
1696 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1697 {
1698 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1699 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1700 flags &= ~GFP_SLAB_BUG_MASK;
1701 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1702 invalid_mask, &invalid_mask, flags, &flags);
1703 dump_stack();
1704 }
1705
1706 return allocate_slab(s,
1707 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1708 }
1709
1710 static void __free_slab(struct kmem_cache *s, struct page *page)
1711 {
1712 int order = compound_order(page);
1713 int pages = 1 << order;
1714
1715 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1716 void *p;
1717
1718 slab_pad_check(s, page);
1719 for_each_object(p, s, page_address(page),
1720 page->objects)
1721 check_object(s, page, p, SLUB_RED_INACTIVE);
1722 }
1723
1724 __ClearPageSlabPfmemalloc(page);
1725 __ClearPageSlab(page);
1726
1727 page->mapping = NULL;
1728 if (current->reclaim_state)
1729 current->reclaim_state->reclaimed_slab += pages;
1730 uncharge_slab_page(page, order, s);
1731 __free_pages(page, order);
1732 }
1733
1734 static void rcu_free_slab(struct rcu_head *h)
1735 {
1736 struct page *page = container_of(h, struct page, rcu_head);
1737
1738 __free_slab(page->slab_cache, page);
1739 }
1740
1741 static void free_slab(struct kmem_cache *s, struct page *page)
1742 {
1743 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1744 call_rcu(&page->rcu_head, rcu_free_slab);
1745 } else
1746 __free_slab(s, page);
1747 }
1748
1749 static void discard_slab(struct kmem_cache *s, struct page *page)
1750 {
1751 dec_slabs_node(s, page_to_nid(page), page->objects);
1752 free_slab(s, page);
1753 }
1754
1755 /*
1756 * Management of partially allocated slabs.
1757 */
1758 static inline void
1759 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1760 {
1761 n->nr_partial++;
1762 if (tail == DEACTIVATE_TO_TAIL)
1763 list_add_tail(&page->slab_list, &n->partial);
1764 else
1765 list_add(&page->slab_list, &n->partial);
1766 }
1767
1768 static inline void add_partial(struct kmem_cache_node *n,
1769 struct page *page, int tail)
1770 {
1771 lockdep_assert_held(&n->list_lock);
1772 __add_partial(n, page, tail);
1773 }
1774
1775 static inline void remove_partial(struct kmem_cache_node *n,
1776 struct page *page)
1777 {
1778 lockdep_assert_held(&n->list_lock);
1779 list_del(&page->slab_list);
1780 n->nr_partial--;
1781 }
1782
1783 /*
1784 * Remove slab from the partial list, freeze it and
1785 * return the pointer to the freelist.
1786 *
1787 * Returns a list of objects or NULL if it fails.
1788 */
1789 static inline void *acquire_slab(struct kmem_cache *s,
1790 struct kmem_cache_node *n, struct page *page,
1791 int mode, int *objects)
1792 {
1793 void *freelist;
1794 unsigned long counters;
1795 struct page new;
1796
1797 lockdep_assert_held(&n->list_lock);
1798
1799 /*
1800 * Zap the freelist and set the frozen bit.
1801 * The old freelist is the list of objects for the
1802 * per cpu allocation list.
1803 */
1804 freelist = page->freelist;
1805 counters = page->counters;
1806 new.counters = counters;
1807 *objects = new.objects - new.inuse;
1808 if (mode) {
1809 new.inuse = page->objects;
1810 new.freelist = NULL;
1811 } else {
1812 new.freelist = freelist;
1813 }
1814
1815 VM_BUG_ON(new.frozen);
1816 new.frozen = 1;
1817
1818 if (!__cmpxchg_double_slab(s, page,
1819 freelist, counters,
1820 new.freelist, new.counters,
1821 "acquire_slab"))
1822 return NULL;
1823
1824 remove_partial(n, page);
1825 WARN_ON(!freelist);
1826 return freelist;
1827 }
1828
1829 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1830 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1831
1832 /*
1833 * Try to allocate a partial slab from a specific node.
1834 */
1835 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1836 struct kmem_cache_cpu *c, gfp_t flags)
1837 {
1838 struct page *page, *page2;
1839 void *object = NULL;
1840 unsigned int available = 0;
1841 int objects;
1842
1843 /*
1844 * Racy check. If we mistakenly see no partial slabs then we
1845 * just allocate an empty slab. If we mistakenly try to get a
1846 * partial slab and there is none available then get_partials()
1847 * will return NULL.
1848 */
1849 if (!n || !n->nr_partial)
1850 return NULL;
1851
1852 spin_lock(&n->list_lock);
1853 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1854 void *t;
1855
1856 if (!pfmemalloc_match(page, flags))
1857 continue;
1858
1859 t = acquire_slab(s, n, page, object == NULL, &objects);
1860 if (!t)
1861 break;
1862
1863 available += objects;
1864 if (!object) {
1865 c->page = page;
1866 stat(s, ALLOC_FROM_PARTIAL);
1867 object = t;
1868 } else {
1869 put_cpu_partial(s, page, 0);
1870 stat(s, CPU_PARTIAL_NODE);
1871 }
1872 if (!kmem_cache_has_cpu_partial(s)
1873 || available > slub_cpu_partial(s) / 2)
1874 break;
1875
1876 }
1877 spin_unlock(&n->list_lock);
1878 return object;
1879 }
1880
1881 /*
1882 * Get a page from somewhere. Search in increasing NUMA distances.
1883 */
1884 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1885 struct kmem_cache_cpu *c)
1886 {
1887 #ifdef CONFIG_NUMA
1888 struct zonelist *zonelist;
1889 struct zoneref *z;
1890 struct zone *zone;
1891 enum zone_type high_zoneidx = gfp_zone(flags);
1892 void *object;
1893 unsigned int cpuset_mems_cookie;
1894
1895 /*
1896 * The defrag ratio allows a configuration of the tradeoffs between
1897 * inter node defragmentation and node local allocations. A lower
1898 * defrag_ratio increases the tendency to do local allocations
1899 * instead of attempting to obtain partial slabs from other nodes.
1900 *
1901 * If the defrag_ratio is set to 0 then kmalloc() always
1902 * returns node local objects. If the ratio is higher then kmalloc()
1903 * may return off node objects because partial slabs are obtained
1904 * from other nodes and filled up.
1905 *
1906 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1907 * (which makes defrag_ratio = 1000) then every (well almost)
1908 * allocation will first attempt to defrag slab caches on other nodes.
1909 * This means scanning over all nodes to look for partial slabs which
1910 * may be expensive if we do it every time we are trying to find a slab
1911 * with available objects.
1912 */
1913 if (!s->remote_node_defrag_ratio ||
1914 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1915 return NULL;
1916
1917 do {
1918 cpuset_mems_cookie = read_mems_allowed_begin();
1919 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1920 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1921 struct kmem_cache_node *n;
1922
1923 n = get_node(s, zone_to_nid(zone));
1924
1925 if (n && cpuset_zone_allowed(zone, flags) &&
1926 n->nr_partial > s->min_partial) {
1927 object = get_partial_node(s, n, c, flags);
1928 if (object) {
1929 /*
1930 * Don't check read_mems_allowed_retry()
1931 * here - if mems_allowed was updated in
1932 * parallel, that was a harmless race
1933 * between allocation and the cpuset
1934 * update
1935 */
1936 return object;
1937 }
1938 }
1939 }
1940 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1941 #endif /* CONFIG_NUMA */
1942 return NULL;
1943 }
1944
1945 /*
1946 * Get a partial page, lock it and return it.
1947 */
1948 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1949 struct kmem_cache_cpu *c)
1950 {
1951 void *object;
1952 int searchnode = node;
1953
1954 if (node == NUMA_NO_NODE)
1955 searchnode = numa_mem_id();
1956 else if (!node_present_pages(node))
1957 searchnode = node_to_mem_node(node);
1958
1959 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1960 if (object || node != NUMA_NO_NODE)
1961 return object;
1962
1963 return get_any_partial(s, flags, c);
1964 }
1965
1966 #ifdef CONFIG_PREEMPT
1967 /*
1968 * Calculate the next globally unique transaction for disambiguiation
1969 * during cmpxchg. The transactions start with the cpu number and are then
1970 * incremented by CONFIG_NR_CPUS.
1971 */
1972 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1973 #else
1974 /*
1975 * No preemption supported therefore also no need to check for
1976 * different cpus.
1977 */
1978 #define TID_STEP 1
1979 #endif
1980
1981 static inline unsigned long next_tid(unsigned long tid)
1982 {
1983 return tid + TID_STEP;
1984 }
1985
1986 #ifdef SLUB_DEBUG_CMPXCHG
1987 static inline unsigned int tid_to_cpu(unsigned long tid)
1988 {
1989 return tid % TID_STEP;
1990 }
1991
1992 static inline unsigned long tid_to_event(unsigned long tid)
1993 {
1994 return tid / TID_STEP;
1995 }
1996 #endif
1997
1998 static inline unsigned int init_tid(int cpu)
1999 {
2000 return cpu;
2001 }
2002
2003 static inline void note_cmpxchg_failure(const char *n,
2004 const struct kmem_cache *s, unsigned long tid)
2005 {
2006 #ifdef SLUB_DEBUG_CMPXCHG
2007 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2008
2009 pr_info("%s %s: cmpxchg redo ", n, s->name);
2010
2011 #ifdef CONFIG_PREEMPT
2012 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2013 pr_warn("due to cpu change %d -> %d\n",
2014 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2015 else
2016 #endif
2017 if (tid_to_event(tid) != tid_to_event(actual_tid))
2018 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2019 tid_to_event(tid), tid_to_event(actual_tid));
2020 else
2021 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2022 actual_tid, tid, next_tid(tid));
2023 #endif
2024 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2025 }
2026
2027 static void init_kmem_cache_cpus(struct kmem_cache *s)
2028 {
2029 int cpu;
2030
2031 for_each_possible_cpu(cpu)
2032 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2033 }
2034
2035 /*
2036 * Remove the cpu slab
2037 */
2038 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2039 void *freelist, struct kmem_cache_cpu *c)
2040 {
2041 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2042 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2043 int lock = 0;
2044 enum slab_modes l = M_NONE, m = M_NONE;
2045 void *nextfree;
2046 int tail = DEACTIVATE_TO_HEAD;
2047 struct page new;
2048 struct page old;
2049
2050 if (page->freelist) {
2051 stat(s, DEACTIVATE_REMOTE_FREES);
2052 tail = DEACTIVATE_TO_TAIL;
2053 }
2054
2055 /*
2056 * Stage one: Free all available per cpu objects back
2057 * to the page freelist while it is still frozen. Leave the
2058 * last one.
2059 *
2060 * There is no need to take the list->lock because the page
2061 * is still frozen.
2062 */
2063 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2064 void *prior;
2065 unsigned long counters;
2066
2067 do {
2068 prior = page->freelist;
2069 counters = page->counters;
2070 set_freepointer(s, freelist, prior);
2071 new.counters = counters;
2072 new.inuse--;
2073 VM_BUG_ON(!new.frozen);
2074
2075 } while (!__cmpxchg_double_slab(s, page,
2076 prior, counters,
2077 freelist, new.counters,
2078 "drain percpu freelist"));
2079
2080 freelist = nextfree;
2081 }
2082
2083 /*
2084 * Stage two: Ensure that the page is unfrozen while the
2085 * list presence reflects the actual number of objects
2086 * during unfreeze.
2087 *
2088 * We setup the list membership and then perform a cmpxchg
2089 * with the count. If there is a mismatch then the page
2090 * is not unfrozen but the page is on the wrong list.
2091 *
2092 * Then we restart the process which may have to remove
2093 * the page from the list that we just put it on again
2094 * because the number of objects in the slab may have
2095 * changed.
2096 */
2097 redo:
2098
2099 old.freelist = page->freelist;
2100 old.counters = page->counters;
2101 VM_BUG_ON(!old.frozen);
2102
2103 /* Determine target state of the slab */
2104 new.counters = old.counters;
2105 if (freelist) {
2106 new.inuse--;
2107 set_freepointer(s, freelist, old.freelist);
2108 new.freelist = freelist;
2109 } else
2110 new.freelist = old.freelist;
2111
2112 new.frozen = 0;
2113
2114 if (!new.inuse && n->nr_partial >= s->min_partial)
2115 m = M_FREE;
2116 else if (new.freelist) {
2117 m = M_PARTIAL;
2118 if (!lock) {
2119 lock = 1;
2120 /*
2121 * Taking the spinlock removes the possibility
2122 * that acquire_slab() will see a slab page that
2123 * is frozen
2124 */
2125 spin_lock(&n->list_lock);
2126 }
2127 } else {
2128 m = M_FULL;
2129 if (kmem_cache_debug(s) && !lock) {
2130 lock = 1;
2131 /*
2132 * This also ensures that the scanning of full
2133 * slabs from diagnostic functions will not see
2134 * any frozen slabs.
2135 */
2136 spin_lock(&n->list_lock);
2137 }
2138 }
2139
2140 if (l != m) {
2141 if (l == M_PARTIAL)
2142 remove_partial(n, page);
2143 else if (l == M_FULL)
2144 remove_full(s, n, page);
2145
2146 if (m == M_PARTIAL)
2147 add_partial(n, page, tail);
2148 else if (m == M_FULL)
2149 add_full(s, n, page);
2150 }
2151
2152 l = m;
2153 if (!__cmpxchg_double_slab(s, page,
2154 old.freelist, old.counters,
2155 new.freelist, new.counters,
2156 "unfreezing slab"))
2157 goto redo;
2158
2159 if (lock)
2160 spin_unlock(&n->list_lock);
2161
2162 if (m == M_PARTIAL)
2163 stat(s, tail);
2164 else if (m == M_FULL)
2165 stat(s, DEACTIVATE_FULL);
2166 else if (m == M_FREE) {
2167 stat(s, DEACTIVATE_EMPTY);
2168 discard_slab(s, page);
2169 stat(s, FREE_SLAB);
2170 }
2171
2172 c->page = NULL;
2173 c->freelist = NULL;
2174 }
2175
2176 /*
2177 * Unfreeze all the cpu partial slabs.
2178 *
2179 * This function must be called with interrupts disabled
2180 * for the cpu using c (or some other guarantee must be there
2181 * to guarantee no concurrent accesses).
2182 */
2183 static void unfreeze_partials(struct kmem_cache *s,
2184 struct kmem_cache_cpu *c)
2185 {
2186 #ifdef CONFIG_SLUB_CPU_PARTIAL
2187 struct kmem_cache_node *n = NULL, *n2 = NULL;
2188 struct page *page, *discard_page = NULL;
2189
2190 while ((page = c->partial)) {
2191 struct page new;
2192 struct page old;
2193
2194 c->partial = page->next;
2195
2196 n2 = get_node(s, page_to_nid(page));
2197 if (n != n2) {
2198 if (n)
2199 spin_unlock(&n->list_lock);
2200
2201 n = n2;
2202 spin_lock(&n->list_lock);
2203 }
2204
2205 do {
2206
2207 old.freelist = page->freelist;
2208 old.counters = page->counters;
2209 VM_BUG_ON(!old.frozen);
2210
2211 new.counters = old.counters;
2212 new.freelist = old.freelist;
2213
2214 new.frozen = 0;
2215
2216 } while (!__cmpxchg_double_slab(s, page,
2217 old.freelist, old.counters,
2218 new.freelist, new.counters,
2219 "unfreezing slab"));
2220
2221 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2222 page->next = discard_page;
2223 discard_page = page;
2224 } else {
2225 add_partial(n, page, DEACTIVATE_TO_TAIL);
2226 stat(s, FREE_ADD_PARTIAL);
2227 }
2228 }
2229
2230 if (n)
2231 spin_unlock(&n->list_lock);
2232
2233 while (discard_page) {
2234 page = discard_page;
2235 discard_page = discard_page->next;
2236
2237 stat(s, DEACTIVATE_EMPTY);
2238 discard_slab(s, page);
2239 stat(s, FREE_SLAB);
2240 }
2241 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2242 }
2243
2244 /*
2245 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2246 * partial page slot if available.
2247 *
2248 * If we did not find a slot then simply move all the partials to the
2249 * per node partial list.
2250 */
2251 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2252 {
2253 #ifdef CONFIG_SLUB_CPU_PARTIAL
2254 struct page *oldpage;
2255 int pages;
2256 int pobjects;
2257
2258 preempt_disable();
2259 do {
2260 pages = 0;
2261 pobjects = 0;
2262 oldpage = this_cpu_read(s->cpu_slab->partial);
2263
2264 if (oldpage) {
2265 pobjects = oldpage->pobjects;
2266 pages = oldpage->pages;
2267 if (drain && pobjects > s->cpu_partial) {
2268 unsigned long flags;
2269 /*
2270 * partial array is full. Move the existing
2271 * set to the per node partial list.
2272 */
2273 local_irq_save(flags);
2274 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2275 local_irq_restore(flags);
2276 oldpage = NULL;
2277 pobjects = 0;
2278 pages = 0;
2279 stat(s, CPU_PARTIAL_DRAIN);
2280 }
2281 }
2282
2283 pages++;
2284 pobjects += page->objects - page->inuse;
2285
2286 page->pages = pages;
2287 page->pobjects = pobjects;
2288 page->next = oldpage;
2289
2290 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2291 != oldpage);
2292 if (unlikely(!s->cpu_partial)) {
2293 unsigned long flags;
2294
2295 local_irq_save(flags);
2296 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2297 local_irq_restore(flags);
2298 }
2299 preempt_enable();
2300 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2301 }
2302
2303 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2304 {
2305 stat(s, CPUSLAB_FLUSH);
2306 deactivate_slab(s, c->page, c->freelist, c);
2307
2308 c->tid = next_tid(c->tid);
2309 }
2310
2311 /*
2312 * Flush cpu slab.
2313 *
2314 * Called from IPI handler with interrupts disabled.
2315 */
2316 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2317 {
2318 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2319
2320 if (c->page)
2321 flush_slab(s, c);
2322
2323 unfreeze_partials(s, c);
2324 }
2325
2326 static void flush_cpu_slab(void *d)
2327 {
2328 struct kmem_cache *s = d;
2329
2330 __flush_cpu_slab(s, smp_processor_id());
2331 }
2332
2333 static bool has_cpu_slab(int cpu, void *info)
2334 {
2335 struct kmem_cache *s = info;
2336 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2337
2338 return c->page || slub_percpu_partial(c);
2339 }
2340
2341 static void flush_all(struct kmem_cache *s)
2342 {
2343 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2344 }
2345
2346 /*
2347 * Use the cpu notifier to insure that the cpu slabs are flushed when
2348 * necessary.
2349 */
2350 static int slub_cpu_dead(unsigned int cpu)
2351 {
2352 struct kmem_cache *s;
2353 unsigned long flags;
2354
2355 mutex_lock(&slab_mutex);
2356 list_for_each_entry(s, &slab_caches, list) {
2357 local_irq_save(flags);
2358 __flush_cpu_slab(s, cpu);
2359 local_irq_restore(flags);
2360 }
2361 mutex_unlock(&slab_mutex);
2362 return 0;
2363 }
2364
2365 /*
2366 * Check if the objects in a per cpu structure fit numa
2367 * locality expectations.
2368 */
2369 static inline int node_match(struct page *page, int node)
2370 {
2371 #ifdef CONFIG_NUMA
2372 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2373 return 0;
2374 #endif
2375 return 1;
2376 }
2377
2378 #ifdef CONFIG_SLUB_DEBUG
2379 static int count_free(struct page *page)
2380 {
2381 return page->objects - page->inuse;
2382 }
2383
2384 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2385 {
2386 return atomic_long_read(&n->total_objects);
2387 }
2388 #endif /* CONFIG_SLUB_DEBUG */
2389
2390 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2391 static unsigned long count_partial(struct kmem_cache_node *n,
2392 int (*get_count)(struct page *))
2393 {
2394 unsigned long flags;
2395 unsigned long x = 0;
2396 struct page *page;
2397
2398 spin_lock_irqsave(&n->list_lock, flags);
2399 list_for_each_entry(page, &n->partial, slab_list)
2400 x += get_count(page);
2401 spin_unlock_irqrestore(&n->list_lock, flags);
2402 return x;
2403 }
2404 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2405
2406 static noinline void
2407 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2408 {
2409 #ifdef CONFIG_SLUB_DEBUG
2410 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2411 DEFAULT_RATELIMIT_BURST);
2412 int node;
2413 struct kmem_cache_node *n;
2414
2415 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2416 return;
2417
2418 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2419 nid, gfpflags, &gfpflags);
2420 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2421 s->name, s->object_size, s->size, oo_order(s->oo),
2422 oo_order(s->min));
2423
2424 if (oo_order(s->min) > get_order(s->object_size))
2425 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2426 s->name);
2427
2428 for_each_kmem_cache_node(s, node, n) {
2429 unsigned long nr_slabs;
2430 unsigned long nr_objs;
2431 unsigned long nr_free;
2432
2433 nr_free = count_partial(n, count_free);
2434 nr_slabs = node_nr_slabs(n);
2435 nr_objs = node_nr_objs(n);
2436
2437 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2438 node, nr_slabs, nr_objs, nr_free);
2439 }
2440 #endif
2441 }
2442
2443 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2444 int node, struct kmem_cache_cpu **pc)
2445 {
2446 void *freelist;
2447 struct kmem_cache_cpu *c = *pc;
2448 struct page *page;
2449
2450 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2451
2452 freelist = get_partial(s, flags, node, c);
2453
2454 if (freelist)
2455 return freelist;
2456
2457 page = new_slab(s, flags, node);
2458 if (page) {
2459 c = raw_cpu_ptr(s->cpu_slab);
2460 if (c->page)
2461 flush_slab(s, c);
2462
2463 /*
2464 * No other reference to the page yet so we can
2465 * muck around with it freely without cmpxchg
2466 */
2467 freelist = page->freelist;
2468 page->freelist = NULL;
2469
2470 stat(s, ALLOC_SLAB);
2471 c->page = page;
2472 *pc = c;
2473 }
2474
2475 return freelist;
2476 }
2477
2478 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2479 {
2480 if (unlikely(PageSlabPfmemalloc(page)))
2481 return gfp_pfmemalloc_allowed(gfpflags);
2482
2483 return true;
2484 }
2485
2486 /*
2487 * Check the page->freelist of a page and either transfer the freelist to the
2488 * per cpu freelist or deactivate the page.
2489 *
2490 * The page is still frozen if the return value is not NULL.
2491 *
2492 * If this function returns NULL then the page has been unfrozen.
2493 *
2494 * This function must be called with interrupt disabled.
2495 */
2496 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2497 {
2498 struct page new;
2499 unsigned long counters;
2500 void *freelist;
2501
2502 do {
2503 freelist = page->freelist;
2504 counters = page->counters;
2505
2506 new.counters = counters;
2507 VM_BUG_ON(!new.frozen);
2508
2509 new.inuse = page->objects;
2510 new.frozen = freelist != NULL;
2511
2512 } while (!__cmpxchg_double_slab(s, page,
2513 freelist, counters,
2514 NULL, new.counters,
2515 "get_freelist"));
2516
2517 return freelist;
2518 }
2519
2520 /*
2521 * Slow path. The lockless freelist is empty or we need to perform
2522 * debugging duties.
2523 *
2524 * Processing is still very fast if new objects have been freed to the
2525 * regular freelist. In that case we simply take over the regular freelist
2526 * as the lockless freelist and zap the regular freelist.
2527 *
2528 * If that is not working then we fall back to the partial lists. We take the
2529 * first element of the freelist as the object to allocate now and move the
2530 * rest of the freelist to the lockless freelist.
2531 *
2532 * And if we were unable to get a new slab from the partial slab lists then
2533 * we need to allocate a new slab. This is the slowest path since it involves
2534 * a call to the page allocator and the setup of a new slab.
2535 *
2536 * Version of __slab_alloc to use when we know that interrupts are
2537 * already disabled (which is the case for bulk allocation).
2538 */
2539 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2540 unsigned long addr, struct kmem_cache_cpu *c)
2541 {
2542 void *freelist;
2543 struct page *page;
2544
2545 page = c->page;
2546 if (!page)
2547 goto new_slab;
2548 redo:
2549
2550 if (unlikely(!node_match(page, node))) {
2551 int searchnode = node;
2552
2553 if (node != NUMA_NO_NODE && !node_present_pages(node))
2554 searchnode = node_to_mem_node(node);
2555
2556 if (unlikely(!node_match(page, searchnode))) {
2557 stat(s, ALLOC_NODE_MISMATCH);
2558 deactivate_slab(s, page, c->freelist, c);
2559 goto new_slab;
2560 }
2561 }
2562
2563 /*
2564 * By rights, we should be searching for a slab page that was
2565 * PFMEMALLOC but right now, we are losing the pfmemalloc
2566 * information when the page leaves the per-cpu allocator
2567 */
2568 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2569 deactivate_slab(s, page, c->freelist, c);
2570 goto new_slab;
2571 }
2572
2573 /* must check again c->freelist in case of cpu migration or IRQ */
2574 freelist = c->freelist;
2575 if (freelist)
2576 goto load_freelist;
2577
2578 freelist = get_freelist(s, page);
2579
2580 if (!freelist) {
2581 c->page = NULL;
2582 stat(s, DEACTIVATE_BYPASS);
2583 goto new_slab;
2584 }
2585
2586 stat(s, ALLOC_REFILL);
2587
2588 load_freelist:
2589 /*
2590 * freelist is pointing to the list of objects to be used.
2591 * page is pointing to the page from which the objects are obtained.
2592 * That page must be frozen for per cpu allocations to work.
2593 */
2594 VM_BUG_ON(!c->page->frozen);
2595 c->freelist = get_freepointer(s, freelist);
2596 c->tid = next_tid(c->tid);
2597 return freelist;
2598
2599 new_slab:
2600
2601 if (slub_percpu_partial(c)) {
2602 page = c->page = slub_percpu_partial(c);
2603 slub_set_percpu_partial(c, page);
2604 stat(s, CPU_PARTIAL_ALLOC);
2605 goto redo;
2606 }
2607
2608 freelist = new_slab_objects(s, gfpflags, node, &c);
2609
2610 if (unlikely(!freelist)) {
2611 slab_out_of_memory(s, gfpflags, node);
2612 return NULL;
2613 }
2614
2615 page = c->page;
2616 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2617 goto load_freelist;
2618
2619 /* Only entered in the debug case */
2620 if (kmem_cache_debug(s) &&
2621 !alloc_debug_processing(s, page, freelist, addr))
2622 goto new_slab; /* Slab failed checks. Next slab needed */
2623
2624 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2625 return freelist;
2626 }
2627
2628 /*
2629 * Another one that disabled interrupt and compensates for possible
2630 * cpu changes by refetching the per cpu area pointer.
2631 */
2632 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2633 unsigned long addr, struct kmem_cache_cpu *c)
2634 {
2635 void *p;
2636 unsigned long flags;
2637
2638 local_irq_save(flags);
2639 #ifdef CONFIG_PREEMPT
2640 /*
2641 * We may have been preempted and rescheduled on a different
2642 * cpu before disabling interrupts. Need to reload cpu area
2643 * pointer.
2644 */
2645 c = this_cpu_ptr(s->cpu_slab);
2646 #endif
2647
2648 p = ___slab_alloc(s, gfpflags, node, addr, c);
2649 local_irq_restore(flags);
2650 return p;
2651 }
2652
2653 /*
2654 * If the object has been wiped upon free, make sure it's fully initialized by
2655 * zeroing out freelist pointer.
2656 */
2657 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2658 void *obj)
2659 {
2660 if (unlikely(slab_want_init_on_free(s)) && obj)
2661 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2662 }
2663
2664 /*
2665 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2666 * have the fastpath folded into their functions. So no function call
2667 * overhead for requests that can be satisfied on the fastpath.
2668 *
2669 * The fastpath works by first checking if the lockless freelist can be used.
2670 * If not then __slab_alloc is called for slow processing.
2671 *
2672 * Otherwise we can simply pick the next object from the lockless free list.
2673 */
2674 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2675 gfp_t gfpflags, int node, unsigned long addr)
2676 {
2677 void *object;
2678 struct kmem_cache_cpu *c;
2679 struct page *page;
2680 unsigned long tid;
2681
2682 s = slab_pre_alloc_hook(s, gfpflags);
2683 if (!s)
2684 return NULL;
2685 redo:
2686 /*
2687 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2688 * enabled. We may switch back and forth between cpus while
2689 * reading from one cpu area. That does not matter as long
2690 * as we end up on the original cpu again when doing the cmpxchg.
2691 *
2692 * We should guarantee that tid and kmem_cache are retrieved on
2693 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2694 * to check if it is matched or not.
2695 */
2696 do {
2697 tid = this_cpu_read(s->cpu_slab->tid);
2698 c = raw_cpu_ptr(s->cpu_slab);
2699 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2700 unlikely(tid != READ_ONCE(c->tid)));
2701
2702 /*
2703 * Irqless object alloc/free algorithm used here depends on sequence
2704 * of fetching cpu_slab's data. tid should be fetched before anything
2705 * on c to guarantee that object and page associated with previous tid
2706 * won't be used with current tid. If we fetch tid first, object and
2707 * page could be one associated with next tid and our alloc/free
2708 * request will be failed. In this case, we will retry. So, no problem.
2709 */
2710 barrier();
2711
2712 /*
2713 * The transaction ids are globally unique per cpu and per operation on
2714 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2715 * occurs on the right processor and that there was no operation on the
2716 * linked list in between.
2717 */
2718
2719 object = c->freelist;
2720 page = c->page;
2721 if (unlikely(!object || !node_match(page, node))) {
2722 object = __slab_alloc(s, gfpflags, node, addr, c);
2723 stat(s, ALLOC_SLOWPATH);
2724 } else {
2725 void *next_object = get_freepointer_safe(s, object);
2726
2727 /*
2728 * The cmpxchg will only match if there was no additional
2729 * operation and if we are on the right processor.
2730 *
2731 * The cmpxchg does the following atomically (without lock
2732 * semantics!)
2733 * 1. Relocate first pointer to the current per cpu area.
2734 * 2. Verify that tid and freelist have not been changed
2735 * 3. If they were not changed replace tid and freelist
2736 *
2737 * Since this is without lock semantics the protection is only
2738 * against code executing on this cpu *not* from access by
2739 * other cpus.
2740 */
2741 if (unlikely(!this_cpu_cmpxchg_double(
2742 s->cpu_slab->freelist, s->cpu_slab->tid,
2743 object, tid,
2744 next_object, next_tid(tid)))) {
2745
2746 note_cmpxchg_failure("slab_alloc", s, tid);
2747 goto redo;
2748 }
2749 prefetch_freepointer(s, next_object);
2750 stat(s, ALLOC_FASTPATH);
2751 }
2752
2753 maybe_wipe_obj_freeptr(s, object);
2754
2755 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2756 memset(object, 0, s->object_size);
2757
2758 slab_post_alloc_hook(s, gfpflags, 1, &object);
2759
2760 return object;
2761 }
2762
2763 static __always_inline void *slab_alloc(struct kmem_cache *s,
2764 gfp_t gfpflags, unsigned long addr)
2765 {
2766 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2767 }
2768
2769 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2770 {
2771 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2772
2773 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2774 s->size, gfpflags);
2775
2776 return ret;
2777 }
2778 EXPORT_SYMBOL(kmem_cache_alloc);
2779
2780 #ifdef CONFIG_TRACING
2781 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2782 {
2783 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2784 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2785 ret = kasan_kmalloc(s, ret, size, gfpflags);
2786 return ret;
2787 }
2788 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2789 #endif
2790
2791 #ifdef CONFIG_NUMA
2792 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2793 {
2794 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2795
2796 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2797 s->object_size, s->size, gfpflags, node);
2798
2799 return ret;
2800 }
2801 EXPORT_SYMBOL(kmem_cache_alloc_node);
2802
2803 #ifdef CONFIG_TRACING
2804 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2805 gfp_t gfpflags,
2806 int node, size_t size)
2807 {
2808 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2809
2810 trace_kmalloc_node(_RET_IP_, ret,
2811 size, s->size, gfpflags, node);
2812
2813 ret = kasan_kmalloc(s, ret, size, gfpflags);
2814 return ret;
2815 }
2816 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2817 #endif
2818 #endif /* CONFIG_NUMA */
2819
2820 /*
2821 * Slow path handling. This may still be called frequently since objects
2822 * have a longer lifetime than the cpu slabs in most processing loads.
2823 *
2824 * So we still attempt to reduce cache line usage. Just take the slab
2825 * lock and free the item. If there is no additional partial page
2826 * handling required then we can return immediately.
2827 */
2828 static void __slab_free(struct kmem_cache *s, struct page *page,
2829 void *head, void *tail, int cnt,
2830 unsigned long addr)
2831
2832 {
2833 void *prior;
2834 int was_frozen;
2835 struct page new;
2836 unsigned long counters;
2837 struct kmem_cache_node *n = NULL;
2838 unsigned long uninitialized_var(flags);
2839
2840 stat(s, FREE_SLOWPATH);
2841
2842 if (kmem_cache_debug(s) &&
2843 !free_debug_processing(s, page, head, tail, cnt, addr))
2844 return;
2845
2846 do {
2847 if (unlikely(n)) {
2848 spin_unlock_irqrestore(&n->list_lock, flags);
2849 n = NULL;
2850 }
2851 prior = page->freelist;
2852 counters = page->counters;
2853 set_freepointer(s, tail, prior);
2854 new.counters = counters;
2855 was_frozen = new.frozen;
2856 new.inuse -= cnt;
2857 if ((!new.inuse || !prior) && !was_frozen) {
2858
2859 if (kmem_cache_has_cpu_partial(s) && !prior) {
2860
2861 /*
2862 * Slab was on no list before and will be
2863 * partially empty
2864 * We can defer the list move and instead
2865 * freeze it.
2866 */
2867 new.frozen = 1;
2868
2869 } else { /* Needs to be taken off a list */
2870
2871 n = get_node(s, page_to_nid(page));
2872 /*
2873 * Speculatively acquire the list_lock.
2874 * If the cmpxchg does not succeed then we may
2875 * drop the list_lock without any processing.
2876 *
2877 * Otherwise the list_lock will synchronize with
2878 * other processors updating the list of slabs.
2879 */
2880 spin_lock_irqsave(&n->list_lock, flags);
2881
2882 }
2883 }
2884
2885 } while (!cmpxchg_double_slab(s, page,
2886 prior, counters,
2887 head, new.counters,
2888 "__slab_free"));
2889
2890 if (likely(!n)) {
2891
2892 /*
2893 * If we just froze the page then put it onto the
2894 * per cpu partial list.
2895 */
2896 if (new.frozen && !was_frozen) {
2897 put_cpu_partial(s, page, 1);
2898 stat(s, CPU_PARTIAL_FREE);
2899 }
2900 /*
2901 * The list lock was not taken therefore no list
2902 * activity can be necessary.
2903 */
2904 if (was_frozen)
2905 stat(s, FREE_FROZEN);
2906 return;
2907 }
2908
2909 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2910 goto slab_empty;
2911
2912 /*
2913 * Objects left in the slab. If it was not on the partial list before
2914 * then add it.
2915 */
2916 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2917 remove_full(s, n, page);
2918 add_partial(n, page, DEACTIVATE_TO_TAIL);
2919 stat(s, FREE_ADD_PARTIAL);
2920 }
2921 spin_unlock_irqrestore(&n->list_lock, flags);
2922 return;
2923
2924 slab_empty:
2925 if (prior) {
2926 /*
2927 * Slab on the partial list.
2928 */
2929 remove_partial(n, page);
2930 stat(s, FREE_REMOVE_PARTIAL);
2931 } else {
2932 /* Slab must be on the full list */
2933 remove_full(s, n, page);
2934 }
2935
2936 spin_unlock_irqrestore(&n->list_lock, flags);
2937 stat(s, FREE_SLAB);
2938 discard_slab(s, page);
2939 }
2940
2941 /*
2942 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2943 * can perform fastpath freeing without additional function calls.
2944 *
2945 * The fastpath is only possible if we are freeing to the current cpu slab
2946 * of this processor. This typically the case if we have just allocated
2947 * the item before.
2948 *
2949 * If fastpath is not possible then fall back to __slab_free where we deal
2950 * with all sorts of special processing.
2951 *
2952 * Bulk free of a freelist with several objects (all pointing to the
2953 * same page) possible by specifying head and tail ptr, plus objects
2954 * count (cnt). Bulk free indicated by tail pointer being set.
2955 */
2956 static __always_inline void do_slab_free(struct kmem_cache *s,
2957 struct page *page, void *head, void *tail,
2958 int cnt, unsigned long addr)
2959 {
2960 void *tail_obj = tail ? : head;
2961 struct kmem_cache_cpu *c;
2962 unsigned long tid;
2963 redo:
2964 /*
2965 * Determine the currently cpus per cpu slab.
2966 * The cpu may change afterward. However that does not matter since
2967 * data is retrieved via this pointer. If we are on the same cpu
2968 * during the cmpxchg then the free will succeed.
2969 */
2970 do {
2971 tid = this_cpu_read(s->cpu_slab->tid);
2972 c = raw_cpu_ptr(s->cpu_slab);
2973 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2974 unlikely(tid != READ_ONCE(c->tid)));
2975
2976 /* Same with comment on barrier() in slab_alloc_node() */
2977 barrier();
2978
2979 if (likely(page == c->page)) {
2980 set_freepointer(s, tail_obj, c->freelist);
2981
2982 if (unlikely(!this_cpu_cmpxchg_double(
2983 s->cpu_slab->freelist, s->cpu_slab->tid,
2984 c->freelist, tid,
2985 head, next_tid(tid)))) {
2986
2987 note_cmpxchg_failure("slab_free", s, tid);
2988 goto redo;
2989 }
2990 stat(s, FREE_FASTPATH);
2991 } else
2992 __slab_free(s, page, head, tail_obj, cnt, addr);
2993
2994 }
2995
2996 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2997 void *head, void *tail, int cnt,
2998 unsigned long addr)
2999 {
3000 /*
3001 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3002 * to remove objects, whose reuse must be delayed.
3003 */
3004 if (slab_free_freelist_hook(s, &head, &tail))
3005 do_slab_free(s, page, head, tail, cnt, addr);
3006 }
3007
3008 #ifdef CONFIG_KASAN_GENERIC
3009 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3010 {
3011 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3012 }
3013 #endif
3014
3015 void kmem_cache_free(struct kmem_cache *s, void *x)
3016 {
3017 s = cache_from_obj(s, x);
3018 if (!s)
3019 return;
3020 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3021 trace_kmem_cache_free(_RET_IP_, x);
3022 }
3023 EXPORT_SYMBOL(kmem_cache_free);
3024
3025 struct detached_freelist {
3026 struct page *page;
3027 void *tail;
3028 void *freelist;
3029 int cnt;
3030 struct kmem_cache *s;
3031 };
3032
3033 /*
3034 * This function progressively scans the array with free objects (with
3035 * a limited look ahead) and extract objects belonging to the same
3036 * page. It builds a detached freelist directly within the given
3037 * page/objects. This can happen without any need for
3038 * synchronization, because the objects are owned by running process.
3039 * The freelist is build up as a single linked list in the objects.
3040 * The idea is, that this detached freelist can then be bulk
3041 * transferred to the real freelist(s), but only requiring a single
3042 * synchronization primitive. Look ahead in the array is limited due
3043 * to performance reasons.
3044 */
3045 static inline
3046 int build_detached_freelist(struct kmem_cache *s, size_t size,
3047 void **p, struct detached_freelist *df)
3048 {
3049 size_t first_skipped_index = 0;
3050 int lookahead = 3;
3051 void *object;
3052 struct page *page;
3053
3054 /* Always re-init detached_freelist */
3055 df->page = NULL;
3056
3057 do {
3058 object = p[--size];
3059 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3060 } while (!object && size);
3061
3062 if (!object)
3063 return 0;
3064
3065 page = virt_to_head_page(object);
3066 if (!s) {
3067 /* Handle kalloc'ed objects */
3068 if (unlikely(!PageSlab(page))) {
3069 BUG_ON(!PageCompound(page));
3070 kfree_hook(object);
3071 __free_pages(page, compound_order(page));
3072 p[size] = NULL; /* mark object processed */
3073 return size;
3074 }
3075 /* Derive kmem_cache from object */
3076 df->s = page->slab_cache;
3077 } else {
3078 df->s = cache_from_obj(s, object); /* Support for memcg */
3079 }
3080
3081 /* Start new detached freelist */
3082 df->page = page;
3083 set_freepointer(df->s, object, NULL);
3084 df->tail = object;
3085 df->freelist = object;
3086 p[size] = NULL; /* mark object processed */
3087 df->cnt = 1;
3088
3089 while (size) {
3090 object = p[--size];
3091 if (!object)
3092 continue; /* Skip processed objects */
3093
3094 /* df->page is always set at this point */
3095 if (df->page == virt_to_head_page(object)) {
3096 /* Opportunity build freelist */
3097 set_freepointer(df->s, object, df->freelist);
3098 df->freelist = object;
3099 df->cnt++;
3100 p[size] = NULL; /* mark object processed */
3101
3102 continue;
3103 }
3104
3105 /* Limit look ahead search */
3106 if (!--lookahead)
3107 break;
3108
3109 if (!first_skipped_index)
3110 first_skipped_index = size + 1;
3111 }
3112
3113 return first_skipped_index;
3114 }
3115
3116 /* Note that interrupts must be enabled when calling this function. */
3117 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3118 {
3119 if (WARN_ON(!size))
3120 return;
3121
3122 do {
3123 struct detached_freelist df;
3124
3125 size = build_detached_freelist(s, size, p, &df);
3126 if (!df.page)
3127 continue;
3128
3129 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3130 } while (likely(size));
3131 }
3132 EXPORT_SYMBOL(kmem_cache_free_bulk);
3133
3134 /* Note that interrupts must be enabled when calling this function. */
3135 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3136 void **p)
3137 {
3138 struct kmem_cache_cpu *c;
3139 int i;
3140
3141 /* memcg and kmem_cache debug support */
3142 s = slab_pre_alloc_hook(s, flags);
3143 if (unlikely(!s))
3144 return false;
3145 /*
3146 * Drain objects in the per cpu slab, while disabling local
3147 * IRQs, which protects against PREEMPT and interrupts
3148 * handlers invoking normal fastpath.
3149 */
3150 local_irq_disable();
3151 c = this_cpu_ptr(s->cpu_slab);
3152
3153 for (i = 0; i < size; i++) {
3154 void *object = c->freelist;
3155
3156 if (unlikely(!object)) {
3157 /*
3158 * Invoking slow path likely have side-effect
3159 * of re-populating per CPU c->freelist
3160 */
3161 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3162 _RET_IP_, c);
3163 if (unlikely(!p[i]))
3164 goto error;
3165
3166 c = this_cpu_ptr(s->cpu_slab);
3167 maybe_wipe_obj_freeptr(s, p[i]);
3168
3169 continue; /* goto for-loop */
3170 }
3171 c->freelist = get_freepointer(s, object);
3172 p[i] = object;
3173 maybe_wipe_obj_freeptr(s, p[i]);
3174 }
3175 c->tid = next_tid(c->tid);
3176 local_irq_enable();
3177
3178 /* Clear memory outside IRQ disabled fastpath loop */
3179 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3180 int j;
3181
3182 for (j = 0; j < i; j++)
3183 memset(p[j], 0, s->object_size);
3184 }
3185
3186 /* memcg and kmem_cache debug support */
3187 slab_post_alloc_hook(s, flags, size, p);
3188 return i;
3189 error:
3190 local_irq_enable();
3191 slab_post_alloc_hook(s, flags, i, p);
3192 __kmem_cache_free_bulk(s, i, p);
3193 return 0;
3194 }
3195 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3196
3197
3198 /*
3199 * Object placement in a slab is made very easy because we always start at
3200 * offset 0. If we tune the size of the object to the alignment then we can
3201 * get the required alignment by putting one properly sized object after
3202 * another.
3203 *
3204 * Notice that the allocation order determines the sizes of the per cpu
3205 * caches. Each processor has always one slab available for allocations.
3206 * Increasing the allocation order reduces the number of times that slabs
3207 * must be moved on and off the partial lists and is therefore a factor in
3208 * locking overhead.
3209 */
3210
3211 /*
3212 * Mininum / Maximum order of slab pages. This influences locking overhead
3213 * and slab fragmentation. A higher order reduces the number of partial slabs
3214 * and increases the number of allocations possible without having to
3215 * take the list_lock.
3216 */
3217 static unsigned int slub_min_order;
3218 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3219 static unsigned int slub_min_objects;
3220
3221 /*
3222 * Calculate the order of allocation given an slab object size.
3223 *
3224 * The order of allocation has significant impact on performance and other
3225 * system components. Generally order 0 allocations should be preferred since
3226 * order 0 does not cause fragmentation in the page allocator. Larger objects
3227 * be problematic to put into order 0 slabs because there may be too much
3228 * unused space left. We go to a higher order if more than 1/16th of the slab
3229 * would be wasted.
3230 *
3231 * In order to reach satisfactory performance we must ensure that a minimum
3232 * number of objects is in one slab. Otherwise we may generate too much
3233 * activity on the partial lists which requires taking the list_lock. This is
3234 * less a concern for large slabs though which are rarely used.
3235 *
3236 * slub_max_order specifies the order where we begin to stop considering the
3237 * number of objects in a slab as critical. If we reach slub_max_order then
3238 * we try to keep the page order as low as possible. So we accept more waste
3239 * of space in favor of a small page order.
3240 *
3241 * Higher order allocations also allow the placement of more objects in a
3242 * slab and thereby reduce object handling overhead. If the user has
3243 * requested a higher mininum order then we start with that one instead of
3244 * the smallest order which will fit the object.
3245 */
3246 static inline unsigned int slab_order(unsigned int size,
3247 unsigned int min_objects, unsigned int max_order,
3248 unsigned int fract_leftover)
3249 {
3250 unsigned int min_order = slub_min_order;
3251 unsigned int order;
3252
3253 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3254 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3255
3256 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3257 order <= max_order; order++) {
3258
3259 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3260 unsigned int rem;
3261
3262 rem = slab_size % size;
3263
3264 if (rem <= slab_size / fract_leftover)
3265 break;
3266 }
3267
3268 return order;
3269 }
3270
3271 static inline int calculate_order(unsigned int size)
3272 {
3273 unsigned int order;
3274 unsigned int min_objects;
3275 unsigned int max_objects;
3276
3277 /*
3278 * Attempt to find best configuration for a slab. This
3279 * works by first attempting to generate a layout with
3280 * the best configuration and backing off gradually.
3281 *
3282 * First we increase the acceptable waste in a slab. Then
3283 * we reduce the minimum objects required in a slab.
3284 */
3285 min_objects = slub_min_objects;
3286 if (!min_objects)
3287 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3288 max_objects = order_objects(slub_max_order, size);
3289 min_objects = min(min_objects, max_objects);
3290
3291 while (min_objects > 1) {
3292 unsigned int fraction;
3293
3294 fraction = 16;
3295 while (fraction >= 4) {
3296 order = slab_order(size, min_objects,
3297 slub_max_order, fraction);
3298 if (order <= slub_max_order)
3299 return order;
3300 fraction /= 2;
3301 }
3302 min_objects--;
3303 }
3304
3305 /*
3306 * We were unable to place multiple objects in a slab. Now
3307 * lets see if we can place a single object there.
3308 */
3309 order = slab_order(size, 1, slub_max_order, 1);
3310 if (order <= slub_max_order)
3311 return order;
3312
3313 /*
3314 * Doh this slab cannot be placed using slub_max_order.
3315 */
3316 order = slab_order(size, 1, MAX_ORDER, 1);
3317 if (order < MAX_ORDER)
3318 return order;
3319 return -ENOSYS;
3320 }
3321
3322 static void
3323 init_kmem_cache_node(struct kmem_cache_node *n)
3324 {
3325 n->nr_partial = 0;
3326 spin_lock_init(&n->list_lock);
3327 INIT_LIST_HEAD(&n->partial);
3328 #ifdef CONFIG_SLUB_DEBUG
3329 atomic_long_set(&n->nr_slabs, 0);
3330 atomic_long_set(&n->total_objects, 0);
3331 INIT_LIST_HEAD(&n->full);
3332 #endif
3333 }
3334
3335 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3336 {
3337 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3338 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3339
3340 /*
3341 * Must align to double word boundary for the double cmpxchg
3342 * instructions to work; see __pcpu_double_call_return_bool().
3343 */
3344 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3345 2 * sizeof(void *));
3346
3347 if (!s->cpu_slab)
3348 return 0;
3349
3350 init_kmem_cache_cpus(s);
3351
3352 return 1;
3353 }
3354
3355 static struct kmem_cache *kmem_cache_node;
3356
3357 /*
3358 * No kmalloc_node yet so do it by hand. We know that this is the first
3359 * slab on the node for this slabcache. There are no concurrent accesses
3360 * possible.
3361 *
3362 * Note that this function only works on the kmem_cache_node
3363 * when allocating for the kmem_cache_node. This is used for bootstrapping
3364 * memory on a fresh node that has no slab structures yet.
3365 */
3366 static void early_kmem_cache_node_alloc(int node)
3367 {
3368 struct page *page;
3369 struct kmem_cache_node *n;
3370
3371 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3372
3373 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3374
3375 BUG_ON(!page);
3376 if (page_to_nid(page) != node) {
3377 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3378 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3379 }
3380
3381 n = page->freelist;
3382 BUG_ON(!n);
3383 #ifdef CONFIG_SLUB_DEBUG
3384 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3385 init_tracking(kmem_cache_node, n);
3386 #endif
3387 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3388 GFP_KERNEL);
3389 page->freelist = get_freepointer(kmem_cache_node, n);
3390 page->inuse = 1;
3391 page->frozen = 0;
3392 kmem_cache_node->node[node] = n;
3393 init_kmem_cache_node(n);
3394 inc_slabs_node(kmem_cache_node, node, page->objects);
3395
3396 /*
3397 * No locks need to be taken here as it has just been
3398 * initialized and there is no concurrent access.
3399 */
3400 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3401 }
3402
3403 static void free_kmem_cache_nodes(struct kmem_cache *s)
3404 {
3405 int node;
3406 struct kmem_cache_node *n;
3407
3408 for_each_kmem_cache_node(s, node, n) {
3409 s->node[node] = NULL;
3410 kmem_cache_free(kmem_cache_node, n);
3411 }
3412 }
3413
3414 void __kmem_cache_release(struct kmem_cache *s)
3415 {
3416 cache_random_seq_destroy(s);
3417 free_percpu(s->cpu_slab);
3418 free_kmem_cache_nodes(s);
3419 }
3420
3421 static int init_kmem_cache_nodes(struct kmem_cache *s)
3422 {
3423 int node;
3424
3425 for_each_node_state(node, N_NORMAL_MEMORY) {
3426 struct kmem_cache_node *n;
3427
3428 if (slab_state == DOWN) {
3429 early_kmem_cache_node_alloc(node);
3430 continue;
3431 }
3432 n = kmem_cache_alloc_node(kmem_cache_node,
3433 GFP_KERNEL, node);
3434
3435 if (!n) {
3436 free_kmem_cache_nodes(s);
3437 return 0;
3438 }
3439
3440 init_kmem_cache_node(n);
3441 s->node[node] = n;
3442 }
3443 return 1;
3444 }
3445
3446 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3447 {
3448 if (min < MIN_PARTIAL)
3449 min = MIN_PARTIAL;
3450 else if (min > MAX_PARTIAL)
3451 min = MAX_PARTIAL;
3452 s->min_partial = min;
3453 }
3454
3455 static void set_cpu_partial(struct kmem_cache *s)
3456 {
3457 #ifdef CONFIG_SLUB_CPU_PARTIAL
3458 /*
3459 * cpu_partial determined the maximum number of objects kept in the
3460 * per cpu partial lists of a processor.
3461 *
3462 * Per cpu partial lists mainly contain slabs that just have one
3463 * object freed. If they are used for allocation then they can be
3464 * filled up again with minimal effort. The slab will never hit the
3465 * per node partial lists and therefore no locking will be required.
3466 *
3467 * This setting also determines
3468 *
3469 * A) The number of objects from per cpu partial slabs dumped to the
3470 * per node list when we reach the limit.
3471 * B) The number of objects in cpu partial slabs to extract from the
3472 * per node list when we run out of per cpu objects. We only fetch
3473 * 50% to keep some capacity around for frees.
3474 */
3475 if (!kmem_cache_has_cpu_partial(s))
3476 s->cpu_partial = 0;
3477 else if (s->size >= PAGE_SIZE)
3478 s->cpu_partial = 2;
3479 else if (s->size >= 1024)
3480 s->cpu_partial = 6;
3481 else if (s->size >= 256)
3482 s->cpu_partial = 13;
3483 else
3484 s->cpu_partial = 30;
3485 #endif
3486 }
3487
3488 /*
3489 * calculate_sizes() determines the order and the distribution of data within
3490 * a slab object.
3491 */
3492 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3493 {
3494 slab_flags_t flags = s->flags;
3495 unsigned int size = s->object_size;
3496 unsigned int order;
3497
3498 /*
3499 * Round up object size to the next word boundary. We can only
3500 * place the free pointer at word boundaries and this determines
3501 * the possible location of the free pointer.
3502 */
3503 size = ALIGN(size, sizeof(void *));
3504
3505 #ifdef CONFIG_SLUB_DEBUG
3506 /*
3507 * Determine if we can poison the object itself. If the user of
3508 * the slab may touch the object after free or before allocation
3509 * then we should never poison the object itself.
3510 */
3511 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3512 !s->ctor)
3513 s->flags |= __OBJECT_POISON;
3514 else
3515 s->flags &= ~__OBJECT_POISON;
3516
3517
3518 /*
3519 * If we are Redzoning then check if there is some space between the
3520 * end of the object and the free pointer. If not then add an
3521 * additional word to have some bytes to store Redzone information.
3522 */
3523 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3524 size += sizeof(void *);
3525 #endif
3526
3527 /*
3528 * With that we have determined the number of bytes in actual use
3529 * by the object. This is the potential offset to the free pointer.
3530 */
3531 s->inuse = size;
3532
3533 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3534 s->ctor)) {
3535 /*
3536 * Relocate free pointer after the object if it is not
3537 * permitted to overwrite the first word of the object on
3538 * kmem_cache_free.
3539 *
3540 * This is the case if we do RCU, have a constructor or
3541 * destructor or are poisoning the objects.
3542 */
3543 s->offset = size;
3544 size += sizeof(void *);
3545 }
3546
3547 #ifdef CONFIG_SLUB_DEBUG
3548 if (flags & SLAB_STORE_USER)
3549 /*
3550 * Need to store information about allocs and frees after
3551 * the object.
3552 */
3553 size += 2 * sizeof(struct track);
3554 #endif
3555
3556 kasan_cache_create(s, &size, &s->flags);
3557 #ifdef CONFIG_SLUB_DEBUG
3558 if (flags & SLAB_RED_ZONE) {
3559 /*
3560 * Add some empty padding so that we can catch
3561 * overwrites from earlier objects rather than let
3562 * tracking information or the free pointer be
3563 * corrupted if a user writes before the start
3564 * of the object.
3565 */
3566 size += sizeof(void *);
3567
3568 s->red_left_pad = sizeof(void *);
3569 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3570 size += s->red_left_pad;
3571 }
3572 #endif
3573
3574 /*
3575 * SLUB stores one object immediately after another beginning from
3576 * offset 0. In order to align the objects we have to simply size
3577 * each object to conform to the alignment.
3578 */
3579 size = ALIGN(size, s->align);
3580 s->size = size;
3581 if (forced_order >= 0)
3582 order = forced_order;
3583 else
3584 order = calculate_order(size);
3585
3586 if ((int)order < 0)
3587 return 0;
3588
3589 s->allocflags = 0;
3590 if (order)
3591 s->allocflags |= __GFP_COMP;
3592
3593 if (s->flags & SLAB_CACHE_DMA)
3594 s->allocflags |= GFP_DMA;
3595
3596 if (s->flags & SLAB_CACHE_DMA32)
3597 s->allocflags |= GFP_DMA32;
3598
3599 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3600 s->allocflags |= __GFP_RECLAIMABLE;
3601
3602 /*
3603 * Determine the number of objects per slab
3604 */
3605 s->oo = oo_make(order, size);
3606 s->min = oo_make(get_order(size), size);
3607 if (oo_objects(s->oo) > oo_objects(s->max))
3608 s->max = s->oo;
3609
3610 return !!oo_objects(s->oo);
3611 }
3612
3613 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3614 {
3615 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3616 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3617 s->random = get_random_long();
3618 #endif
3619
3620 if (!calculate_sizes(s, -1))
3621 goto error;
3622 if (disable_higher_order_debug) {
3623 /*
3624 * Disable debugging flags that store metadata if the min slab
3625 * order increased.
3626 */
3627 if (get_order(s->size) > get_order(s->object_size)) {
3628 s->flags &= ~DEBUG_METADATA_FLAGS;
3629 s->offset = 0;
3630 if (!calculate_sizes(s, -1))
3631 goto error;
3632 }
3633 }
3634
3635 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3636 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3637 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3638 /* Enable fast mode */
3639 s->flags |= __CMPXCHG_DOUBLE;
3640 #endif
3641
3642 /*
3643 * The larger the object size is, the more pages we want on the partial
3644 * list to avoid pounding the page allocator excessively.
3645 */
3646 set_min_partial(s, ilog2(s->size) / 2);
3647
3648 set_cpu_partial(s);
3649
3650 #ifdef CONFIG_NUMA
3651 s->remote_node_defrag_ratio = 1000;
3652 #endif
3653
3654 /* Initialize the pre-computed randomized freelist if slab is up */
3655 if (slab_state >= UP) {
3656 if (init_cache_random_seq(s))
3657 goto error;
3658 }
3659
3660 if (!init_kmem_cache_nodes(s))
3661 goto error;
3662
3663 if (alloc_kmem_cache_cpus(s))
3664 return 0;
3665
3666 free_kmem_cache_nodes(s);
3667 error:
3668 return -EINVAL;
3669 }
3670
3671 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3672 const char *text)
3673 {
3674 #ifdef CONFIG_SLUB_DEBUG
3675 void *addr = page_address(page);
3676 void *p;
3677 unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
3678 if (!map)
3679 return;
3680 slab_err(s, page, text, s->name);
3681 slab_lock(page);
3682
3683 get_map(s, page, map);
3684 for_each_object(p, s, addr, page->objects) {
3685
3686 if (!test_bit(slab_index(p, s, addr), map)) {
3687 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3688 print_tracking(s, p);
3689 }
3690 }
3691 slab_unlock(page);
3692 bitmap_free(map);
3693 #endif
3694 }
3695
3696 /*
3697 * Attempt to free all partial slabs on a node.
3698 * This is called from __kmem_cache_shutdown(). We must take list_lock
3699 * because sysfs file might still access partial list after the shutdowning.
3700 */
3701 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3702 {
3703 LIST_HEAD(discard);
3704 struct page *page, *h;
3705
3706 BUG_ON(irqs_disabled());
3707 spin_lock_irq(&n->list_lock);
3708 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3709 if (!page->inuse) {
3710 remove_partial(n, page);
3711 list_add(&page->slab_list, &discard);
3712 } else {
3713 list_slab_objects(s, page,
3714 "Objects remaining in %s on __kmem_cache_shutdown()");
3715 }
3716 }
3717 spin_unlock_irq(&n->list_lock);
3718
3719 list_for_each_entry_safe(page, h, &discard, slab_list)
3720 discard_slab(s, page);
3721 }
3722
3723 bool __kmem_cache_empty(struct kmem_cache *s)
3724 {
3725 int node;
3726 struct kmem_cache_node *n;
3727
3728 for_each_kmem_cache_node(s, node, n)
3729 if (n->nr_partial || slabs_node(s, node))
3730 return false;
3731 return true;
3732 }
3733
3734 /*
3735 * Release all resources used by a slab cache.
3736 */
3737 int __kmem_cache_shutdown(struct kmem_cache *s)
3738 {
3739 int node;
3740 struct kmem_cache_node *n;
3741
3742 flush_all(s);
3743 /* Attempt to free all objects */
3744 for_each_kmem_cache_node(s, node, n) {
3745 free_partial(s, n);
3746 if (n->nr_partial || slabs_node(s, node))
3747 return 1;
3748 }
3749 sysfs_slab_remove(s);
3750 return 0;
3751 }
3752
3753 /********************************************************************
3754 * Kmalloc subsystem
3755 *******************************************************************/
3756
3757 static int __init setup_slub_min_order(char *str)
3758 {
3759 get_option(&str, (int *)&slub_min_order);
3760
3761 return 1;
3762 }
3763
3764 __setup("slub_min_order=", setup_slub_min_order);
3765
3766 static int __init setup_slub_max_order(char *str)
3767 {
3768 get_option(&str, (int *)&slub_max_order);
3769 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3770
3771 return 1;
3772 }
3773
3774 __setup("slub_max_order=", setup_slub_max_order);
3775
3776 static int __init setup_slub_min_objects(char *str)
3777 {
3778 get_option(&str, (int *)&slub_min_objects);
3779
3780 return 1;
3781 }
3782
3783 __setup("slub_min_objects=", setup_slub_min_objects);
3784
3785 void *__kmalloc(size_t size, gfp_t flags)
3786 {
3787 struct kmem_cache *s;
3788 void *ret;
3789
3790 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3791 return kmalloc_large(size, flags);
3792
3793 s = kmalloc_slab(size, flags);
3794
3795 if (unlikely(ZERO_OR_NULL_PTR(s)))
3796 return s;
3797
3798 ret = slab_alloc(s, flags, _RET_IP_);
3799
3800 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3801
3802 ret = kasan_kmalloc(s, ret, size, flags);
3803
3804 return ret;
3805 }
3806 EXPORT_SYMBOL(__kmalloc);
3807
3808 #ifdef CONFIG_NUMA
3809 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3810 {
3811 struct page *page;
3812 void *ptr = NULL;
3813 unsigned int order = get_order(size);
3814
3815 flags |= __GFP_COMP;
3816 page = alloc_pages_node(node, flags, order);
3817 if (page) {
3818 ptr = page_address(page);
3819 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3820 1 << order);
3821 }
3822
3823 return kmalloc_large_node_hook(ptr, size, flags);
3824 }
3825
3826 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3827 {
3828 struct kmem_cache *s;
3829 void *ret;
3830
3831 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3832 ret = kmalloc_large_node(size, flags, node);
3833
3834 trace_kmalloc_node(_RET_IP_, ret,
3835 size, PAGE_SIZE << get_order(size),
3836 flags, node);
3837
3838 return ret;
3839 }
3840
3841 s = kmalloc_slab(size, flags);
3842
3843 if (unlikely(ZERO_OR_NULL_PTR(s)))
3844 return s;
3845
3846 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3847
3848 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3849
3850 ret = kasan_kmalloc(s, ret, size, flags);
3851
3852 return ret;
3853 }
3854 EXPORT_SYMBOL(__kmalloc_node);
3855 #endif /* CONFIG_NUMA */
3856
3857 #ifdef CONFIG_HARDENED_USERCOPY
3858 /*
3859 * Rejects incorrectly sized objects and objects that are to be copied
3860 * to/from userspace but do not fall entirely within the containing slab
3861 * cache's usercopy region.
3862 *
3863 * Returns NULL if check passes, otherwise const char * to name of cache
3864 * to indicate an error.
3865 */
3866 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3867 bool to_user)
3868 {
3869 struct kmem_cache *s;
3870 unsigned int offset;
3871 size_t object_size;
3872
3873 ptr = kasan_reset_tag(ptr);
3874
3875 /* Find object and usable object size. */
3876 s = page->slab_cache;
3877
3878 /* Reject impossible pointers. */
3879 if (ptr < page_address(page))
3880 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3881 to_user, 0, n);
3882
3883 /* Find offset within object. */
3884 offset = (ptr - page_address(page)) % s->size;
3885
3886 /* Adjust for redzone and reject if within the redzone. */
3887 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3888 if (offset < s->red_left_pad)
3889 usercopy_abort("SLUB object in left red zone",
3890 s->name, to_user, offset, n);
3891 offset -= s->red_left_pad;
3892 }
3893
3894 /* Allow address range falling entirely within usercopy region. */
3895 if (offset >= s->useroffset &&
3896 offset - s->useroffset <= s->usersize &&
3897 n <= s->useroffset - offset + s->usersize)
3898 return;
3899
3900 /*
3901 * If the copy is still within the allocated object, produce
3902 * a warning instead of rejecting the copy. This is intended
3903 * to be a temporary method to find any missing usercopy
3904 * whitelists.
3905 */
3906 object_size = slab_ksize(s);
3907 if (usercopy_fallback &&
3908 offset <= object_size && n <= object_size - offset) {
3909 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3910 return;
3911 }
3912
3913 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3914 }
3915 #endif /* CONFIG_HARDENED_USERCOPY */
3916
3917 size_t __ksize(const void *object)
3918 {
3919 struct page *page;
3920
3921 if (unlikely(object == ZERO_SIZE_PTR))
3922 return 0;
3923
3924 page = virt_to_head_page(object);
3925
3926 if (unlikely(!PageSlab(page))) {
3927 WARN_ON(!PageCompound(page));
3928 return page_size(page);
3929 }
3930
3931 return slab_ksize(page->slab_cache);
3932 }
3933 EXPORT_SYMBOL(__ksize);
3934
3935 void kfree(const void *x)
3936 {
3937 struct page *page;
3938 void *object = (void *)x;
3939
3940 trace_kfree(_RET_IP_, x);
3941
3942 if (unlikely(ZERO_OR_NULL_PTR(x)))
3943 return;
3944
3945 page = virt_to_head_page(x);
3946 if (unlikely(!PageSlab(page))) {
3947 unsigned int order = compound_order(page);
3948
3949 BUG_ON(!PageCompound(page));
3950 kfree_hook(object);
3951 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3952 -(1 << order));
3953 __free_pages(page, order);
3954 return;
3955 }
3956 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3957 }
3958 EXPORT_SYMBOL(kfree);
3959
3960 #define SHRINK_PROMOTE_MAX 32
3961
3962 /*
3963 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3964 * up most to the head of the partial lists. New allocations will then
3965 * fill those up and thus they can be removed from the partial lists.
3966 *
3967 * The slabs with the least items are placed last. This results in them
3968 * being allocated from last increasing the chance that the last objects
3969 * are freed in them.
3970 */
3971 int __kmem_cache_shrink(struct kmem_cache *s)
3972 {
3973 int node;
3974 int i;
3975 struct kmem_cache_node *n;
3976 struct page *page;
3977 struct page *t;
3978 struct list_head discard;
3979 struct list_head promote[SHRINK_PROMOTE_MAX];
3980 unsigned long flags;
3981 int ret = 0;
3982
3983 flush_all(s);
3984 for_each_kmem_cache_node(s, node, n) {
3985 INIT_LIST_HEAD(&discard);
3986 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3987 INIT_LIST_HEAD(promote + i);
3988
3989 spin_lock_irqsave(&n->list_lock, flags);
3990
3991 /*
3992 * Build lists of slabs to discard or promote.
3993 *
3994 * Note that concurrent frees may occur while we hold the
3995 * list_lock. page->inuse here is the upper limit.
3996 */
3997 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3998 int free = page->objects - page->inuse;
3999
4000 /* Do not reread page->inuse */
4001 barrier();
4002
4003 /* We do not keep full slabs on the list */
4004 BUG_ON(free <= 0);
4005
4006 if (free == page->objects) {
4007 list_move(&page->slab_list, &discard);
4008 n->nr_partial--;
4009 } else if (free <= SHRINK_PROMOTE_MAX)
4010 list_move(&page->slab_list, promote + free - 1);
4011 }
4012
4013 /*
4014 * Promote the slabs filled up most to the head of the
4015 * partial list.
4016 */
4017 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4018 list_splice(promote + i, &n->partial);
4019
4020 spin_unlock_irqrestore(&n->list_lock, flags);
4021
4022 /* Release empty slabs */
4023 list_for_each_entry_safe(page, t, &discard, slab_list)
4024 discard_slab(s, page);
4025
4026 if (slabs_node(s, node))
4027 ret = 1;
4028 }
4029
4030 return ret;
4031 }
4032
4033 #ifdef CONFIG_MEMCG
4034 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4035 {
4036 /*
4037 * Called with all the locks held after a sched RCU grace period.
4038 * Even if @s becomes empty after shrinking, we can't know that @s
4039 * doesn't have allocations already in-flight and thus can't
4040 * destroy @s until the associated memcg is released.
4041 *
4042 * However, let's remove the sysfs files for empty caches here.
4043 * Each cache has a lot of interface files which aren't
4044 * particularly useful for empty draining caches; otherwise, we can
4045 * easily end up with millions of unnecessary sysfs files on
4046 * systems which have a lot of memory and transient cgroups.
4047 */
4048 if (!__kmem_cache_shrink(s))
4049 sysfs_slab_remove(s);
4050 }
4051
4052 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4053 {
4054 /*
4055 * Disable empty slabs caching. Used to avoid pinning offline
4056 * memory cgroups by kmem pages that can be freed.
4057 */
4058 slub_set_cpu_partial(s, 0);
4059 s->min_partial = 0;
4060 }
4061 #endif /* CONFIG_MEMCG */
4062
4063 static int slab_mem_going_offline_callback(void *arg)
4064 {
4065 struct kmem_cache *s;
4066
4067 mutex_lock(&slab_mutex);
4068 list_for_each_entry(s, &slab_caches, list)
4069 __kmem_cache_shrink(s);
4070 mutex_unlock(&slab_mutex);
4071
4072 return 0;
4073 }
4074
4075 static void slab_mem_offline_callback(void *arg)
4076 {
4077 struct kmem_cache_node *n;
4078 struct kmem_cache *s;
4079 struct memory_notify *marg = arg;
4080 int offline_node;
4081
4082 offline_node = marg->status_change_nid_normal;
4083
4084 /*
4085 * If the node still has available memory. we need kmem_cache_node
4086 * for it yet.
4087 */
4088 if (offline_node < 0)
4089 return;
4090
4091 mutex_lock(&slab_mutex);
4092 list_for_each_entry(s, &slab_caches, list) {
4093 n = get_node(s, offline_node);
4094 if (n) {
4095 /*
4096 * if n->nr_slabs > 0, slabs still exist on the node
4097 * that is going down. We were unable to free them,
4098 * and offline_pages() function shouldn't call this
4099 * callback. So, we must fail.
4100 */
4101 BUG_ON(slabs_node(s, offline_node));
4102
4103 s->node[offline_node] = NULL;
4104 kmem_cache_free(kmem_cache_node, n);
4105 }
4106 }
4107 mutex_unlock(&slab_mutex);
4108 }
4109
4110 static int slab_mem_going_online_callback(void *arg)
4111 {
4112 struct kmem_cache_node *n;
4113 struct kmem_cache *s;
4114 struct memory_notify *marg = arg;
4115 int nid = marg->status_change_nid_normal;
4116 int ret = 0;
4117
4118 /*
4119 * If the node's memory is already available, then kmem_cache_node is
4120 * already created. Nothing to do.
4121 */
4122 if (nid < 0)
4123 return 0;
4124
4125 /*
4126 * We are bringing a node online. No memory is available yet. We must
4127 * allocate a kmem_cache_node structure in order to bring the node
4128 * online.
4129 */
4130 mutex_lock(&slab_mutex);
4131 list_for_each_entry(s, &slab_caches, list) {
4132 /*
4133 * XXX: kmem_cache_alloc_node will fallback to other nodes
4134 * since memory is not yet available from the node that
4135 * is brought up.
4136 */
4137 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4138 if (!n) {
4139 ret = -ENOMEM;
4140 goto out;
4141 }
4142 init_kmem_cache_node(n);
4143 s->node[nid] = n;
4144 }
4145 out:
4146 mutex_unlock(&slab_mutex);
4147 return ret;
4148 }
4149
4150 static int slab_memory_callback(struct notifier_block *self,
4151 unsigned long action, void *arg)
4152 {
4153 int ret = 0;
4154
4155 switch (action) {
4156 case MEM_GOING_ONLINE:
4157 ret = slab_mem_going_online_callback(arg);
4158 break;
4159 case MEM_GOING_OFFLINE:
4160 ret = slab_mem_going_offline_callback(arg);
4161 break;
4162 case MEM_OFFLINE:
4163 case MEM_CANCEL_ONLINE:
4164 slab_mem_offline_callback(arg);
4165 break;
4166 case MEM_ONLINE:
4167 case MEM_CANCEL_OFFLINE:
4168 break;
4169 }
4170 if (ret)
4171 ret = notifier_from_errno(ret);
4172 else
4173 ret = NOTIFY_OK;
4174 return ret;
4175 }
4176
4177 static struct notifier_block slab_memory_callback_nb = {
4178 .notifier_call = slab_memory_callback,
4179 .priority = SLAB_CALLBACK_PRI,
4180 };
4181
4182 /********************************************************************
4183 * Basic setup of slabs
4184 *******************************************************************/
4185
4186 /*
4187 * Used for early kmem_cache structures that were allocated using
4188 * the page allocator. Allocate them properly then fix up the pointers
4189 * that may be pointing to the wrong kmem_cache structure.
4190 */
4191
4192 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4193 {
4194 int node;
4195 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4196 struct kmem_cache_node *n;
4197
4198 memcpy(s, static_cache, kmem_cache->object_size);
4199
4200 /*
4201 * This runs very early, and only the boot processor is supposed to be
4202 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4203 * IPIs around.
4204 */
4205 __flush_cpu_slab(s, smp_processor_id());
4206 for_each_kmem_cache_node(s, node, n) {
4207 struct page *p;
4208
4209 list_for_each_entry(p, &n->partial, slab_list)
4210 p->slab_cache = s;
4211
4212 #ifdef CONFIG_SLUB_DEBUG
4213 list_for_each_entry(p, &n->full, slab_list)
4214 p->slab_cache = s;
4215 #endif
4216 }
4217 slab_init_memcg_params(s);
4218 list_add(&s->list, &slab_caches);
4219 memcg_link_cache(s, NULL);
4220 return s;
4221 }
4222
4223 void __init kmem_cache_init(void)
4224 {
4225 static __initdata struct kmem_cache boot_kmem_cache,
4226 boot_kmem_cache_node;
4227
4228 if (debug_guardpage_minorder())
4229 slub_max_order = 0;
4230
4231 kmem_cache_node = &boot_kmem_cache_node;
4232 kmem_cache = &boot_kmem_cache;
4233
4234 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4235 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4236
4237 register_hotmemory_notifier(&slab_memory_callback_nb);
4238
4239 /* Able to allocate the per node structures */
4240 slab_state = PARTIAL;
4241
4242 create_boot_cache(kmem_cache, "kmem_cache",
4243 offsetof(struct kmem_cache, node) +
4244 nr_node_ids * sizeof(struct kmem_cache_node *),
4245 SLAB_HWCACHE_ALIGN, 0, 0);
4246
4247 kmem_cache = bootstrap(&boot_kmem_cache);
4248 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4249
4250 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4251 setup_kmalloc_cache_index_table();
4252 create_kmalloc_caches(0);
4253
4254 /* Setup random freelists for each cache */
4255 init_freelist_randomization();
4256
4257 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4258 slub_cpu_dead);
4259
4260 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4261 cache_line_size(),
4262 slub_min_order, slub_max_order, slub_min_objects,
4263 nr_cpu_ids, nr_node_ids);
4264 }
4265
4266 void __init kmem_cache_init_late(void)
4267 {
4268 }
4269
4270 struct kmem_cache *
4271 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4272 slab_flags_t flags, void (*ctor)(void *))
4273 {
4274 struct kmem_cache *s, *c;
4275
4276 s = find_mergeable(size, align, flags, name, ctor);
4277 if (s) {
4278 s->refcount++;
4279
4280 /*
4281 * Adjust the object sizes so that we clear
4282 * the complete object on kzalloc.
4283 */
4284 s->object_size = max(s->object_size, size);
4285 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4286
4287 for_each_memcg_cache(c, s) {
4288 c->object_size = s->object_size;
4289 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4290 }
4291
4292 if (sysfs_slab_alias(s, name)) {
4293 s->refcount--;
4294 s = NULL;
4295 }
4296 }
4297
4298 return s;
4299 }
4300
4301 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4302 {
4303 int err;
4304
4305 err = kmem_cache_open(s, flags);
4306 if (err)
4307 return err;
4308
4309 /* Mutex is not taken during early boot */
4310 if (slab_state <= UP)
4311 return 0;
4312
4313 memcg_propagate_slab_attrs(s);
4314 err = sysfs_slab_add(s);
4315 if (err)
4316 __kmem_cache_release(s);
4317
4318 return err;
4319 }
4320
4321 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4322 {
4323 struct kmem_cache *s;
4324 void *ret;
4325
4326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4327 return kmalloc_large(size, gfpflags);
4328
4329 s = kmalloc_slab(size, gfpflags);
4330
4331 if (unlikely(ZERO_OR_NULL_PTR(s)))
4332 return s;
4333
4334 ret = slab_alloc(s, gfpflags, caller);
4335
4336 /* Honor the call site pointer we received. */
4337 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4338
4339 return ret;
4340 }
4341
4342 #ifdef CONFIG_NUMA
4343 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4344 int node, unsigned long caller)
4345 {
4346 struct kmem_cache *s;
4347 void *ret;
4348
4349 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4350 ret = kmalloc_large_node(size, gfpflags, node);
4351
4352 trace_kmalloc_node(caller, ret,
4353 size, PAGE_SIZE << get_order(size),
4354 gfpflags, node);
4355
4356 return ret;
4357 }
4358
4359 s = kmalloc_slab(size, gfpflags);
4360
4361 if (unlikely(ZERO_OR_NULL_PTR(s)))
4362 return s;
4363
4364 ret = slab_alloc_node(s, gfpflags, node, caller);
4365
4366 /* Honor the call site pointer we received. */
4367 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4368
4369 return ret;
4370 }
4371 #endif
4372
4373 #ifdef CONFIG_SYSFS
4374 static int count_inuse(struct page *page)
4375 {
4376 return page->inuse;
4377 }
4378
4379 static int count_total(struct page *page)
4380 {
4381 return page->objects;
4382 }
4383 #endif
4384
4385 #ifdef CONFIG_SLUB_DEBUG
4386 static int validate_slab(struct kmem_cache *s, struct page *page,
4387 unsigned long *map)
4388 {
4389 void *p;
4390 void *addr = page_address(page);
4391
4392 if (!check_slab(s, page) ||
4393 !on_freelist(s, page, NULL))
4394 return 0;
4395
4396 /* Now we know that a valid freelist exists */
4397 bitmap_zero(map, page->objects);
4398
4399 get_map(s, page, map);
4400 for_each_object(p, s, addr, page->objects) {
4401 if (test_bit(slab_index(p, s, addr), map))
4402 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4403 return 0;
4404 }
4405
4406 for_each_object(p, s, addr, page->objects)
4407 if (!test_bit(slab_index(p, s, addr), map))
4408 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4409 return 0;
4410 return 1;
4411 }
4412
4413 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4414 unsigned long *map)
4415 {
4416 slab_lock(page);
4417 validate_slab(s, page, map);
4418 slab_unlock(page);
4419 }
4420
4421 static int validate_slab_node(struct kmem_cache *s,
4422 struct kmem_cache_node *n, unsigned long *map)
4423 {
4424 unsigned long count = 0;
4425 struct page *page;
4426 unsigned long flags;
4427
4428 spin_lock_irqsave(&n->list_lock, flags);
4429
4430 list_for_each_entry(page, &n->partial, slab_list) {
4431 validate_slab_slab(s, page, map);
4432 count++;
4433 }
4434 if (count != n->nr_partial)
4435 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4436 s->name, count, n->nr_partial);
4437
4438 if (!(s->flags & SLAB_STORE_USER))
4439 goto out;
4440
4441 list_for_each_entry(page, &n->full, slab_list) {
4442 validate_slab_slab(s, page, map);
4443 count++;
4444 }
4445 if (count != atomic_long_read(&n->nr_slabs))
4446 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4447 s->name, count, atomic_long_read(&n->nr_slabs));
4448
4449 out:
4450 spin_unlock_irqrestore(&n->list_lock, flags);
4451 return count;
4452 }
4453
4454 static long validate_slab_cache(struct kmem_cache *s)
4455 {
4456 int node;
4457 unsigned long count = 0;
4458 struct kmem_cache_node *n;
4459 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4460
4461 if (!map)
4462 return -ENOMEM;
4463
4464 flush_all(s);
4465 for_each_kmem_cache_node(s, node, n)
4466 count += validate_slab_node(s, n, map);
4467 bitmap_free(map);
4468 return count;
4469 }
4470 /*
4471 * Generate lists of code addresses where slabcache objects are allocated
4472 * and freed.
4473 */
4474
4475 struct location {
4476 unsigned long count;
4477 unsigned long addr;
4478 long long sum_time;
4479 long min_time;
4480 long max_time;
4481 long min_pid;
4482 long max_pid;
4483 DECLARE_BITMAP(cpus, NR_CPUS);
4484 nodemask_t nodes;
4485 };
4486
4487 struct loc_track {
4488 unsigned long max;
4489 unsigned long count;
4490 struct location *loc;
4491 };
4492
4493 static void free_loc_track(struct loc_track *t)
4494 {
4495 if (t->max)
4496 free_pages((unsigned long)t->loc,
4497 get_order(sizeof(struct location) * t->max));
4498 }
4499
4500 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4501 {
4502 struct location *l;
4503 int order;
4504
4505 order = get_order(sizeof(struct location) * max);
4506
4507 l = (void *)__get_free_pages(flags, order);
4508 if (!l)
4509 return 0;
4510
4511 if (t->count) {
4512 memcpy(l, t->loc, sizeof(struct location) * t->count);
4513 free_loc_track(t);
4514 }
4515 t->max = max;
4516 t->loc = l;
4517 return 1;
4518 }
4519
4520 static int add_location(struct loc_track *t, struct kmem_cache *s,
4521 const struct track *track)
4522 {
4523 long start, end, pos;
4524 struct location *l;
4525 unsigned long caddr;
4526 unsigned long age = jiffies - track->when;
4527
4528 start = -1;
4529 end = t->count;
4530
4531 for ( ; ; ) {
4532 pos = start + (end - start + 1) / 2;
4533
4534 /*
4535 * There is nothing at "end". If we end up there
4536 * we need to add something to before end.
4537 */
4538 if (pos == end)
4539 break;
4540
4541 caddr = t->loc[pos].addr;
4542 if (track->addr == caddr) {
4543
4544 l = &t->loc[pos];
4545 l->count++;
4546 if (track->when) {
4547 l->sum_time += age;
4548 if (age < l->min_time)
4549 l->min_time = age;
4550 if (age > l->max_time)
4551 l->max_time = age;
4552
4553 if (track->pid < l->min_pid)
4554 l->min_pid = track->pid;
4555 if (track->pid > l->max_pid)
4556 l->max_pid = track->pid;
4557
4558 cpumask_set_cpu(track->cpu,
4559 to_cpumask(l->cpus));
4560 }
4561 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4562 return 1;
4563 }
4564
4565 if (track->addr < caddr)
4566 end = pos;
4567 else
4568 start = pos;
4569 }
4570
4571 /*
4572 * Not found. Insert new tracking element.
4573 */
4574 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4575 return 0;
4576
4577 l = t->loc + pos;
4578 if (pos < t->count)
4579 memmove(l + 1, l,
4580 (t->count - pos) * sizeof(struct location));
4581 t->count++;
4582 l->count = 1;
4583 l->addr = track->addr;
4584 l->sum_time = age;
4585 l->min_time = age;
4586 l->max_time = age;
4587 l->min_pid = track->pid;
4588 l->max_pid = track->pid;
4589 cpumask_clear(to_cpumask(l->cpus));
4590 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4591 nodes_clear(l->nodes);
4592 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4593 return 1;
4594 }
4595
4596 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4597 struct page *page, enum track_item alloc,
4598 unsigned long *map)
4599 {
4600 void *addr = page_address(page);
4601 void *p;
4602
4603 bitmap_zero(map, page->objects);
4604 get_map(s, page, map);
4605
4606 for_each_object(p, s, addr, page->objects)
4607 if (!test_bit(slab_index(p, s, addr), map))
4608 add_location(t, s, get_track(s, p, alloc));
4609 }
4610
4611 static int list_locations(struct kmem_cache *s, char *buf,
4612 enum track_item alloc)
4613 {
4614 int len = 0;
4615 unsigned long i;
4616 struct loc_track t = { 0, 0, NULL };
4617 int node;
4618 struct kmem_cache_node *n;
4619 unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4620
4621 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4622 GFP_KERNEL)) {
4623 bitmap_free(map);
4624 return sprintf(buf, "Out of memory\n");
4625 }
4626 /* Push back cpu slabs */
4627 flush_all(s);
4628
4629 for_each_kmem_cache_node(s, node, n) {
4630 unsigned long flags;
4631 struct page *page;
4632
4633 if (!atomic_long_read(&n->nr_slabs))
4634 continue;
4635
4636 spin_lock_irqsave(&n->list_lock, flags);
4637 list_for_each_entry(page, &n->partial, slab_list)
4638 process_slab(&t, s, page, alloc, map);
4639 list_for_each_entry(page, &n->full, slab_list)
4640 process_slab(&t, s, page, alloc, map);
4641 spin_unlock_irqrestore(&n->list_lock, flags);
4642 }
4643
4644 for (i = 0; i < t.count; i++) {
4645 struct location *l = &t.loc[i];
4646
4647 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4648 break;
4649 len += sprintf(buf + len, "%7ld ", l->count);
4650
4651 if (l->addr)
4652 len += sprintf(buf + len, "%pS", (void *)l->addr);
4653 else
4654 len += sprintf(buf + len, "<not-available>");
4655
4656 if (l->sum_time != l->min_time) {
4657 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4658 l->min_time,
4659 (long)div_u64(l->sum_time, l->count),
4660 l->max_time);
4661 } else
4662 len += sprintf(buf + len, " age=%ld",
4663 l->min_time);
4664
4665 if (l->min_pid != l->max_pid)
4666 len += sprintf(buf + len, " pid=%ld-%ld",
4667 l->min_pid, l->max_pid);
4668 else
4669 len += sprintf(buf + len, " pid=%ld",
4670 l->min_pid);
4671
4672 if (num_online_cpus() > 1 &&
4673 !cpumask_empty(to_cpumask(l->cpus)) &&
4674 len < PAGE_SIZE - 60)
4675 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4676 " cpus=%*pbl",
4677 cpumask_pr_args(to_cpumask(l->cpus)));
4678
4679 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4680 len < PAGE_SIZE - 60)
4681 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4682 " nodes=%*pbl",
4683 nodemask_pr_args(&l->nodes));
4684
4685 len += sprintf(buf + len, "\n");
4686 }
4687
4688 free_loc_track(&t);
4689 bitmap_free(map);
4690 if (!t.count)
4691 len += sprintf(buf, "No data\n");
4692 return len;
4693 }
4694 #endif /* CONFIG_SLUB_DEBUG */
4695
4696 #ifdef SLUB_RESILIENCY_TEST
4697 static void __init resiliency_test(void)
4698 {
4699 u8 *p;
4700 int type = KMALLOC_NORMAL;
4701
4702 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4703
4704 pr_err("SLUB resiliency testing\n");
4705 pr_err("-----------------------\n");
4706 pr_err("A. Corruption after allocation\n");
4707
4708 p = kzalloc(16, GFP_KERNEL);
4709 p[16] = 0x12;
4710 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4711 p + 16);
4712
4713 validate_slab_cache(kmalloc_caches[type][4]);
4714
4715 /* Hmmm... The next two are dangerous */
4716 p = kzalloc(32, GFP_KERNEL);
4717 p[32 + sizeof(void *)] = 0x34;
4718 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4719 p);
4720 pr_err("If allocated object is overwritten then not detectable\n\n");
4721
4722 validate_slab_cache(kmalloc_caches[type][5]);
4723 p = kzalloc(64, GFP_KERNEL);
4724 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4725 *p = 0x56;
4726 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4727 p);
4728 pr_err("If allocated object is overwritten then not detectable\n\n");
4729 validate_slab_cache(kmalloc_caches[type][6]);
4730
4731 pr_err("\nB. Corruption after free\n");
4732 p = kzalloc(128, GFP_KERNEL);
4733 kfree(p);
4734 *p = 0x78;
4735 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4736 validate_slab_cache(kmalloc_caches[type][7]);
4737
4738 p = kzalloc(256, GFP_KERNEL);
4739 kfree(p);
4740 p[50] = 0x9a;
4741 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4742 validate_slab_cache(kmalloc_caches[type][8]);
4743
4744 p = kzalloc(512, GFP_KERNEL);
4745 kfree(p);
4746 p[512] = 0xab;
4747 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4748 validate_slab_cache(kmalloc_caches[type][9]);
4749 }
4750 #else
4751 #ifdef CONFIG_SYSFS
4752 static void resiliency_test(void) {};
4753 #endif
4754 #endif /* SLUB_RESILIENCY_TEST */
4755
4756 #ifdef CONFIG_SYSFS
4757 enum slab_stat_type {
4758 SL_ALL, /* All slabs */
4759 SL_PARTIAL, /* Only partially allocated slabs */
4760 SL_CPU, /* Only slabs used for cpu caches */
4761 SL_OBJECTS, /* Determine allocated objects not slabs */
4762 SL_TOTAL /* Determine object capacity not slabs */
4763 };
4764
4765 #define SO_ALL (1 << SL_ALL)
4766 #define SO_PARTIAL (1 << SL_PARTIAL)
4767 #define SO_CPU (1 << SL_CPU)
4768 #define SO_OBJECTS (1 << SL_OBJECTS)
4769 #define SO_TOTAL (1 << SL_TOTAL)
4770
4771 #ifdef CONFIG_MEMCG
4772 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4773
4774 static int __init setup_slub_memcg_sysfs(char *str)
4775 {
4776 int v;
4777
4778 if (get_option(&str, &v) > 0)
4779 memcg_sysfs_enabled = v;
4780
4781 return 1;
4782 }
4783
4784 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4785 #endif
4786
4787 static ssize_t show_slab_objects(struct kmem_cache *s,
4788 char *buf, unsigned long flags)
4789 {
4790 unsigned long total = 0;
4791 int node;
4792 int x;
4793 unsigned long *nodes;
4794
4795 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4796 if (!nodes)
4797 return -ENOMEM;
4798
4799 if (flags & SO_CPU) {
4800 int cpu;
4801
4802 for_each_possible_cpu(cpu) {
4803 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4804 cpu);
4805 int node;
4806 struct page *page;
4807
4808 page = READ_ONCE(c->page);
4809 if (!page)
4810 continue;
4811
4812 node = page_to_nid(page);
4813 if (flags & SO_TOTAL)
4814 x = page->objects;
4815 else if (flags & SO_OBJECTS)
4816 x = page->inuse;
4817 else
4818 x = 1;
4819
4820 total += x;
4821 nodes[node] += x;
4822
4823 page = slub_percpu_partial_read_once(c);
4824 if (page) {
4825 node = page_to_nid(page);
4826 if (flags & SO_TOTAL)
4827 WARN_ON_ONCE(1);
4828 else if (flags & SO_OBJECTS)
4829 WARN_ON_ONCE(1);
4830 else
4831 x = page->pages;
4832 total += x;
4833 nodes[node] += x;
4834 }
4835 }
4836 }
4837
4838 /*
4839 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4840 * already held which will conflict with an existing lock order:
4841 *
4842 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4843 *
4844 * We don't really need mem_hotplug_lock (to hold off
4845 * slab_mem_going_offline_callback) here because slab's memory hot
4846 * unplug code doesn't destroy the kmem_cache->node[] data.
4847 */
4848
4849 #ifdef CONFIG_SLUB_DEBUG
4850 if (flags & SO_ALL) {
4851 struct kmem_cache_node *n;
4852
4853 for_each_kmem_cache_node(s, node, n) {
4854
4855 if (flags & SO_TOTAL)
4856 x = atomic_long_read(&n->total_objects);
4857 else if (flags & SO_OBJECTS)
4858 x = atomic_long_read(&n->total_objects) -
4859 count_partial(n, count_free);
4860 else
4861 x = atomic_long_read(&n->nr_slabs);
4862 total += x;
4863 nodes[node] += x;
4864 }
4865
4866 } else
4867 #endif
4868 if (flags & SO_PARTIAL) {
4869 struct kmem_cache_node *n;
4870
4871 for_each_kmem_cache_node(s, node, n) {
4872 if (flags & SO_TOTAL)
4873 x = count_partial(n, count_total);
4874 else if (flags & SO_OBJECTS)
4875 x = count_partial(n, count_inuse);
4876 else
4877 x = n->nr_partial;
4878 total += x;
4879 nodes[node] += x;
4880 }
4881 }
4882 x = sprintf(buf, "%lu", total);
4883 #ifdef CONFIG_NUMA
4884 for (node = 0; node < nr_node_ids; node++)
4885 if (nodes[node])
4886 x += sprintf(buf + x, " N%d=%lu",
4887 node, nodes[node]);
4888 #endif
4889 kfree(nodes);
4890 return x + sprintf(buf + x, "\n");
4891 }
4892
4893 #ifdef CONFIG_SLUB_DEBUG
4894 static int any_slab_objects(struct kmem_cache *s)
4895 {
4896 int node;
4897 struct kmem_cache_node *n;
4898
4899 for_each_kmem_cache_node(s, node, n)
4900 if (atomic_long_read(&n->total_objects))
4901 return 1;
4902
4903 return 0;
4904 }
4905 #endif
4906
4907 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4908 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4909
4910 struct slab_attribute {
4911 struct attribute attr;
4912 ssize_t (*show)(struct kmem_cache *s, char *buf);
4913 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4914 };
4915
4916 #define SLAB_ATTR_RO(_name) \
4917 static struct slab_attribute _name##_attr = \
4918 __ATTR(_name, 0400, _name##_show, NULL)
4919
4920 #define SLAB_ATTR(_name) \
4921 static struct slab_attribute _name##_attr = \
4922 __ATTR(_name, 0600, _name##_show, _name##_store)
4923
4924 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4925 {
4926 return sprintf(buf, "%u\n", s->size);
4927 }
4928 SLAB_ATTR_RO(slab_size);
4929
4930 static ssize_t align_show(struct kmem_cache *s, char *buf)
4931 {
4932 return sprintf(buf, "%u\n", s->align);
4933 }
4934 SLAB_ATTR_RO(align);
4935
4936 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4937 {
4938 return sprintf(buf, "%u\n", s->object_size);
4939 }
4940 SLAB_ATTR_RO(object_size);
4941
4942 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4943 {
4944 return sprintf(buf, "%u\n", oo_objects(s->oo));
4945 }
4946 SLAB_ATTR_RO(objs_per_slab);
4947
4948 static ssize_t order_store(struct kmem_cache *s,
4949 const char *buf, size_t length)
4950 {
4951 unsigned int order;
4952 int err;
4953
4954 err = kstrtouint(buf, 10, &order);
4955 if (err)
4956 return err;
4957
4958 if (order > slub_max_order || order < slub_min_order)
4959 return -EINVAL;
4960
4961 calculate_sizes(s, order);
4962 return length;
4963 }
4964
4965 static ssize_t order_show(struct kmem_cache *s, char *buf)
4966 {
4967 return sprintf(buf, "%u\n", oo_order(s->oo));
4968 }
4969 SLAB_ATTR(order);
4970
4971 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4972 {
4973 return sprintf(buf, "%lu\n", s->min_partial);
4974 }
4975
4976 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4977 size_t length)
4978 {
4979 unsigned long min;
4980 int err;
4981
4982 err = kstrtoul(buf, 10, &min);
4983 if (err)
4984 return err;
4985
4986 set_min_partial(s, min);
4987 return length;
4988 }
4989 SLAB_ATTR(min_partial);
4990
4991 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4992 {
4993 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4994 }
4995
4996 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4997 size_t length)
4998 {
4999 unsigned int objects;
5000 int err;
5001
5002 err = kstrtouint(buf, 10, &objects);
5003 if (err)
5004 return err;
5005 if (objects && !kmem_cache_has_cpu_partial(s))
5006 return -EINVAL;
5007
5008 slub_set_cpu_partial(s, objects);
5009 flush_all(s);
5010 return length;
5011 }
5012 SLAB_ATTR(cpu_partial);
5013
5014 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5015 {
5016 if (!s->ctor)
5017 return 0;
5018 return sprintf(buf, "%pS\n", s->ctor);
5019 }
5020 SLAB_ATTR_RO(ctor);
5021
5022 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5023 {
5024 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5025 }
5026 SLAB_ATTR_RO(aliases);
5027
5028 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5029 {
5030 return show_slab_objects(s, buf, SO_PARTIAL);
5031 }
5032 SLAB_ATTR_RO(partial);
5033
5034 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5035 {
5036 return show_slab_objects(s, buf, SO_CPU);
5037 }
5038 SLAB_ATTR_RO(cpu_slabs);
5039
5040 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5041 {
5042 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5043 }
5044 SLAB_ATTR_RO(objects);
5045
5046 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5047 {
5048 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5049 }
5050 SLAB_ATTR_RO(objects_partial);
5051
5052 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5053 {
5054 int objects = 0;
5055 int pages = 0;
5056 int cpu;
5057 int len;
5058
5059 for_each_online_cpu(cpu) {
5060 struct page *page;
5061
5062 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5063
5064 if (page) {
5065 pages += page->pages;
5066 objects += page->pobjects;
5067 }
5068 }
5069
5070 len = sprintf(buf, "%d(%d)", objects, pages);
5071
5072 #ifdef CONFIG_SMP
5073 for_each_online_cpu(cpu) {
5074 struct page *page;
5075
5076 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5077
5078 if (page && len < PAGE_SIZE - 20)
5079 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5080 page->pobjects, page->pages);
5081 }
5082 #endif
5083 return len + sprintf(buf + len, "\n");
5084 }
5085 SLAB_ATTR_RO(slabs_cpu_partial);
5086
5087 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5088 {
5089 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5090 }
5091
5092 static ssize_t reclaim_account_store(struct kmem_cache *s,
5093 const char *buf, size_t length)
5094 {
5095 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5096 if (buf[0] == '1')
5097 s->flags |= SLAB_RECLAIM_ACCOUNT;
5098 return length;
5099 }
5100 SLAB_ATTR(reclaim_account);
5101
5102 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5103 {
5104 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5105 }
5106 SLAB_ATTR_RO(hwcache_align);
5107
5108 #ifdef CONFIG_ZONE_DMA
5109 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5110 {
5111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5112 }
5113 SLAB_ATTR_RO(cache_dma);
5114 #endif
5115
5116 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5117 {
5118 return sprintf(buf, "%u\n", s->usersize);
5119 }
5120 SLAB_ATTR_RO(usersize);
5121
5122 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5123 {
5124 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5125 }
5126 SLAB_ATTR_RO(destroy_by_rcu);
5127
5128 #ifdef CONFIG_SLUB_DEBUG
5129 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5130 {
5131 return show_slab_objects(s, buf, SO_ALL);
5132 }
5133 SLAB_ATTR_RO(slabs);
5134
5135 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5136 {
5137 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5138 }
5139 SLAB_ATTR_RO(total_objects);
5140
5141 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5142 {
5143 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5144 }
5145
5146 static ssize_t sanity_checks_store(struct kmem_cache *s,
5147 const char *buf, size_t length)
5148 {
5149 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5150 if (buf[0] == '1') {
5151 s->flags &= ~__CMPXCHG_DOUBLE;
5152 s->flags |= SLAB_CONSISTENCY_CHECKS;
5153 }
5154 return length;
5155 }
5156 SLAB_ATTR(sanity_checks);
5157
5158 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5159 {
5160 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5161 }
5162
5163 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5164 size_t length)
5165 {
5166 /*
5167 * Tracing a merged cache is going to give confusing results
5168 * as well as cause other issues like converting a mergeable
5169 * cache into an umergeable one.
5170 */
5171 if (s->refcount > 1)
5172 return -EINVAL;
5173
5174 s->flags &= ~SLAB_TRACE;
5175 if (buf[0] == '1') {
5176 s->flags &= ~__CMPXCHG_DOUBLE;
5177 s->flags |= SLAB_TRACE;
5178 }
5179 return length;
5180 }
5181 SLAB_ATTR(trace);
5182
5183 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5184 {
5185 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5186 }
5187
5188 static ssize_t red_zone_store(struct kmem_cache *s,
5189 const char *buf, size_t length)
5190 {
5191 if (any_slab_objects(s))
5192 return -EBUSY;
5193
5194 s->flags &= ~SLAB_RED_ZONE;
5195 if (buf[0] == '1') {
5196 s->flags |= SLAB_RED_ZONE;
5197 }
5198 calculate_sizes(s, -1);
5199 return length;
5200 }
5201 SLAB_ATTR(red_zone);
5202
5203 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5204 {
5205 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5206 }
5207
5208 static ssize_t poison_store(struct kmem_cache *s,
5209 const char *buf, size_t length)
5210 {
5211 if (any_slab_objects(s))
5212 return -EBUSY;
5213
5214 s->flags &= ~SLAB_POISON;
5215 if (buf[0] == '1') {
5216 s->flags |= SLAB_POISON;
5217 }
5218 calculate_sizes(s, -1);
5219 return length;
5220 }
5221 SLAB_ATTR(poison);
5222
5223 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5224 {
5225 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5226 }
5227
5228 static ssize_t store_user_store(struct kmem_cache *s,
5229 const char *buf, size_t length)
5230 {
5231 if (any_slab_objects(s))
5232 return -EBUSY;
5233
5234 s->flags &= ~SLAB_STORE_USER;
5235 if (buf[0] == '1') {
5236 s->flags &= ~__CMPXCHG_DOUBLE;
5237 s->flags |= SLAB_STORE_USER;
5238 }
5239 calculate_sizes(s, -1);
5240 return length;
5241 }
5242 SLAB_ATTR(store_user);
5243
5244 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5245 {
5246 return 0;
5247 }
5248
5249 static ssize_t validate_store(struct kmem_cache *s,
5250 const char *buf, size_t length)
5251 {
5252 int ret = -EINVAL;
5253
5254 if (buf[0] == '1') {
5255 ret = validate_slab_cache(s);
5256 if (ret >= 0)
5257 ret = length;
5258 }
5259 return ret;
5260 }
5261 SLAB_ATTR(validate);
5262
5263 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5264 {
5265 if (!(s->flags & SLAB_STORE_USER))
5266 return -ENOSYS;
5267 return list_locations(s, buf, TRACK_ALLOC);
5268 }
5269 SLAB_ATTR_RO(alloc_calls);
5270
5271 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5272 {
5273 if (!(s->flags & SLAB_STORE_USER))
5274 return -ENOSYS;
5275 return list_locations(s, buf, TRACK_FREE);
5276 }
5277 SLAB_ATTR_RO(free_calls);
5278 #endif /* CONFIG_SLUB_DEBUG */
5279
5280 #ifdef CONFIG_FAILSLAB
5281 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5282 {
5283 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5284 }
5285
5286 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5287 size_t length)
5288 {
5289 if (s->refcount > 1)
5290 return -EINVAL;
5291
5292 s->flags &= ~SLAB_FAILSLAB;
5293 if (buf[0] == '1')
5294 s->flags |= SLAB_FAILSLAB;
5295 return length;
5296 }
5297 SLAB_ATTR(failslab);
5298 #endif
5299
5300 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5301 {
5302 return 0;
5303 }
5304
5305 static ssize_t shrink_store(struct kmem_cache *s,
5306 const char *buf, size_t length)
5307 {
5308 if (buf[0] == '1')
5309 kmem_cache_shrink_all(s);
5310 else
5311 return -EINVAL;
5312 return length;
5313 }
5314 SLAB_ATTR(shrink);
5315
5316 #ifdef CONFIG_NUMA
5317 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5318 {
5319 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5320 }
5321
5322 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5323 const char *buf, size_t length)
5324 {
5325 unsigned int ratio;
5326 int err;
5327
5328 err = kstrtouint(buf, 10, &ratio);
5329 if (err)
5330 return err;
5331 if (ratio > 100)
5332 return -ERANGE;
5333
5334 s->remote_node_defrag_ratio = ratio * 10;
5335
5336 return length;
5337 }
5338 SLAB_ATTR(remote_node_defrag_ratio);
5339 #endif
5340
5341 #ifdef CONFIG_SLUB_STATS
5342 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5343 {
5344 unsigned long sum = 0;
5345 int cpu;
5346 int len;
5347 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5348
5349 if (!data)
5350 return -ENOMEM;
5351
5352 for_each_online_cpu(cpu) {
5353 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5354
5355 data[cpu] = x;
5356 sum += x;
5357 }
5358
5359 len = sprintf(buf, "%lu", sum);
5360
5361 #ifdef CONFIG_SMP
5362 for_each_online_cpu(cpu) {
5363 if (data[cpu] && len < PAGE_SIZE - 20)
5364 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5365 }
5366 #endif
5367 kfree(data);
5368 return len + sprintf(buf + len, "\n");
5369 }
5370
5371 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5372 {
5373 int cpu;
5374
5375 for_each_online_cpu(cpu)
5376 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5377 }
5378
5379 #define STAT_ATTR(si, text) \
5380 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5381 { \
5382 return show_stat(s, buf, si); \
5383 } \
5384 static ssize_t text##_store(struct kmem_cache *s, \
5385 const char *buf, size_t length) \
5386 { \
5387 if (buf[0] != '0') \
5388 return -EINVAL; \
5389 clear_stat(s, si); \
5390 return length; \
5391 } \
5392 SLAB_ATTR(text); \
5393
5394 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5395 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5396 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5397 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5398 STAT_ATTR(FREE_FROZEN, free_frozen);
5399 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5400 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5401 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5402 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5403 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5404 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5405 STAT_ATTR(FREE_SLAB, free_slab);
5406 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5407 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5408 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5409 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5410 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5411 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5412 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5413 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5414 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5415 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5416 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5417 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5418 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5419 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5420 #endif /* CONFIG_SLUB_STATS */
5421
5422 static struct attribute *slab_attrs[] = {
5423 &slab_size_attr.attr,
5424 &object_size_attr.attr,
5425 &objs_per_slab_attr.attr,
5426 &order_attr.attr,
5427 &min_partial_attr.attr,
5428 &cpu_partial_attr.attr,
5429 &objects_attr.attr,
5430 &objects_partial_attr.attr,
5431 &partial_attr.attr,
5432 &cpu_slabs_attr.attr,
5433 &ctor_attr.attr,
5434 &aliases_attr.attr,
5435 &align_attr.attr,
5436 &hwcache_align_attr.attr,
5437 &reclaim_account_attr.attr,
5438 &destroy_by_rcu_attr.attr,
5439 &shrink_attr.attr,
5440 &slabs_cpu_partial_attr.attr,
5441 #ifdef CONFIG_SLUB_DEBUG
5442 &total_objects_attr.attr,
5443 &slabs_attr.attr,
5444 &sanity_checks_attr.attr,
5445 &trace_attr.attr,
5446 &red_zone_attr.attr,
5447 &poison_attr.attr,
5448 &store_user_attr.attr,
5449 &validate_attr.attr,
5450 &alloc_calls_attr.attr,
5451 &free_calls_attr.attr,
5452 #endif
5453 #ifdef CONFIG_ZONE_DMA
5454 &cache_dma_attr.attr,
5455 #endif
5456 #ifdef CONFIG_NUMA
5457 &remote_node_defrag_ratio_attr.attr,
5458 #endif
5459 #ifdef CONFIG_SLUB_STATS
5460 &alloc_fastpath_attr.attr,
5461 &alloc_slowpath_attr.attr,
5462 &free_fastpath_attr.attr,
5463 &free_slowpath_attr.attr,
5464 &free_frozen_attr.attr,
5465 &free_add_partial_attr.attr,
5466 &free_remove_partial_attr.attr,
5467 &alloc_from_partial_attr.attr,
5468 &alloc_slab_attr.attr,
5469 &alloc_refill_attr.attr,
5470 &alloc_node_mismatch_attr.attr,
5471 &free_slab_attr.attr,
5472 &cpuslab_flush_attr.attr,
5473 &deactivate_full_attr.attr,
5474 &deactivate_empty_attr.attr,
5475 &deactivate_to_head_attr.attr,
5476 &deactivate_to_tail_attr.attr,
5477 &deactivate_remote_frees_attr.attr,
5478 &deactivate_bypass_attr.attr,
5479 &order_fallback_attr.attr,
5480 &cmpxchg_double_fail_attr.attr,
5481 &cmpxchg_double_cpu_fail_attr.attr,
5482 &cpu_partial_alloc_attr.attr,
5483 &cpu_partial_free_attr.attr,
5484 &cpu_partial_node_attr.attr,
5485 &cpu_partial_drain_attr.attr,
5486 #endif
5487 #ifdef CONFIG_FAILSLAB
5488 &failslab_attr.attr,
5489 #endif
5490 &usersize_attr.attr,
5491
5492 NULL
5493 };
5494
5495 static const struct attribute_group slab_attr_group = {
5496 .attrs = slab_attrs,
5497 };
5498
5499 static ssize_t slab_attr_show(struct kobject *kobj,
5500 struct attribute *attr,
5501 char *buf)
5502 {
5503 struct slab_attribute *attribute;
5504 struct kmem_cache *s;
5505 int err;
5506
5507 attribute = to_slab_attr(attr);
5508 s = to_slab(kobj);
5509
5510 if (!attribute->show)
5511 return -EIO;
5512
5513 err = attribute->show(s, buf);
5514
5515 return err;
5516 }
5517
5518 static ssize_t slab_attr_store(struct kobject *kobj,
5519 struct attribute *attr,
5520 const char *buf, size_t len)
5521 {
5522 struct slab_attribute *attribute;
5523 struct kmem_cache *s;
5524 int err;
5525
5526 attribute = to_slab_attr(attr);
5527 s = to_slab(kobj);
5528
5529 if (!attribute->store)
5530 return -EIO;
5531
5532 err = attribute->store(s, buf, len);
5533 #ifdef CONFIG_MEMCG
5534 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5535 struct kmem_cache *c;
5536
5537 mutex_lock(&slab_mutex);
5538 if (s->max_attr_size < len)
5539 s->max_attr_size = len;
5540
5541 /*
5542 * This is a best effort propagation, so this function's return
5543 * value will be determined by the parent cache only. This is
5544 * basically because not all attributes will have a well
5545 * defined semantics for rollbacks - most of the actions will
5546 * have permanent effects.
5547 *
5548 * Returning the error value of any of the children that fail
5549 * is not 100 % defined, in the sense that users seeing the
5550 * error code won't be able to know anything about the state of
5551 * the cache.
5552 *
5553 * Only returning the error code for the parent cache at least
5554 * has well defined semantics. The cache being written to
5555 * directly either failed or succeeded, in which case we loop
5556 * through the descendants with best-effort propagation.
5557 */
5558 for_each_memcg_cache(c, s)
5559 attribute->store(c, buf, len);
5560 mutex_unlock(&slab_mutex);
5561 }
5562 #endif
5563 return err;
5564 }
5565
5566 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5567 {
5568 #ifdef CONFIG_MEMCG
5569 int i;
5570 char *buffer = NULL;
5571 struct kmem_cache *root_cache;
5572
5573 if (is_root_cache(s))
5574 return;
5575
5576 root_cache = s->memcg_params.root_cache;
5577
5578 /*
5579 * This mean this cache had no attribute written. Therefore, no point
5580 * in copying default values around
5581 */
5582 if (!root_cache->max_attr_size)
5583 return;
5584
5585 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5586 char mbuf[64];
5587 char *buf;
5588 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5589 ssize_t len;
5590
5591 if (!attr || !attr->store || !attr->show)
5592 continue;
5593
5594 /*
5595 * It is really bad that we have to allocate here, so we will
5596 * do it only as a fallback. If we actually allocate, though,
5597 * we can just use the allocated buffer until the end.
5598 *
5599 * Most of the slub attributes will tend to be very small in
5600 * size, but sysfs allows buffers up to a page, so they can
5601 * theoretically happen.
5602 */
5603 if (buffer)
5604 buf = buffer;
5605 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5606 buf = mbuf;
5607 else {
5608 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5609 if (WARN_ON(!buffer))
5610 continue;
5611 buf = buffer;
5612 }
5613
5614 len = attr->show(root_cache, buf);
5615 if (len > 0)
5616 attr->store(s, buf, len);
5617 }
5618
5619 if (buffer)
5620 free_page((unsigned long)buffer);
5621 #endif /* CONFIG_MEMCG */
5622 }
5623
5624 static void kmem_cache_release(struct kobject *k)
5625 {
5626 slab_kmem_cache_release(to_slab(k));
5627 }
5628
5629 static const struct sysfs_ops slab_sysfs_ops = {
5630 .show = slab_attr_show,
5631 .store = slab_attr_store,
5632 };
5633
5634 static struct kobj_type slab_ktype = {
5635 .sysfs_ops = &slab_sysfs_ops,
5636 .release = kmem_cache_release,
5637 };
5638
5639 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5640 {
5641 struct kobj_type *ktype = get_ktype(kobj);
5642
5643 if (ktype == &slab_ktype)
5644 return 1;
5645 return 0;
5646 }
5647
5648 static const struct kset_uevent_ops slab_uevent_ops = {
5649 .filter = uevent_filter,
5650 };
5651
5652 static struct kset *slab_kset;
5653
5654 static inline struct kset *cache_kset(struct kmem_cache *s)
5655 {
5656 #ifdef CONFIG_MEMCG
5657 if (!is_root_cache(s))
5658 return s->memcg_params.root_cache->memcg_kset;
5659 #endif
5660 return slab_kset;
5661 }
5662
5663 #define ID_STR_LENGTH 64
5664
5665 /* Create a unique string id for a slab cache:
5666 *
5667 * Format :[flags-]size
5668 */
5669 static char *create_unique_id(struct kmem_cache *s)
5670 {
5671 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5672 char *p = name;
5673
5674 BUG_ON(!name);
5675
5676 *p++ = ':';
5677 /*
5678 * First flags affecting slabcache operations. We will only
5679 * get here for aliasable slabs so we do not need to support
5680 * too many flags. The flags here must cover all flags that
5681 * are matched during merging to guarantee that the id is
5682 * unique.
5683 */
5684 if (s->flags & SLAB_CACHE_DMA)
5685 *p++ = 'd';
5686 if (s->flags & SLAB_CACHE_DMA32)
5687 *p++ = 'D';
5688 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5689 *p++ = 'a';
5690 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5691 *p++ = 'F';
5692 if (s->flags & SLAB_ACCOUNT)
5693 *p++ = 'A';
5694 if (p != name + 1)
5695 *p++ = '-';
5696 p += sprintf(p, "%07u", s->size);
5697
5698 BUG_ON(p > name + ID_STR_LENGTH - 1);
5699 return name;
5700 }
5701
5702 static void sysfs_slab_remove_workfn(struct work_struct *work)
5703 {
5704 struct kmem_cache *s =
5705 container_of(work, struct kmem_cache, kobj_remove_work);
5706
5707 if (!s->kobj.state_in_sysfs)
5708 /*
5709 * For a memcg cache, this may be called during
5710 * deactivation and again on shutdown. Remove only once.
5711 * A cache is never shut down before deactivation is
5712 * complete, so no need to worry about synchronization.
5713 */
5714 goto out;
5715
5716 #ifdef CONFIG_MEMCG
5717 kset_unregister(s->memcg_kset);
5718 #endif
5719 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5720 out:
5721 kobject_put(&s->kobj);
5722 }
5723
5724 static int sysfs_slab_add(struct kmem_cache *s)
5725 {
5726 int err;
5727 const char *name;
5728 struct kset *kset = cache_kset(s);
5729 int unmergeable = slab_unmergeable(s);
5730
5731 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5732
5733 if (!kset) {
5734 kobject_init(&s->kobj, &slab_ktype);
5735 return 0;
5736 }
5737
5738 if (!unmergeable && disable_higher_order_debug &&
5739 (slub_debug & DEBUG_METADATA_FLAGS))
5740 unmergeable = 1;
5741
5742 if (unmergeable) {
5743 /*
5744 * Slabcache can never be merged so we can use the name proper.
5745 * This is typically the case for debug situations. In that
5746 * case we can catch duplicate names easily.
5747 */
5748 sysfs_remove_link(&slab_kset->kobj, s->name);
5749 name = s->name;
5750 } else {
5751 /*
5752 * Create a unique name for the slab as a target
5753 * for the symlinks.
5754 */
5755 name = create_unique_id(s);
5756 }
5757
5758 s->kobj.kset = kset;
5759 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5760 if (err)
5761 goto out;
5762
5763 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5764 if (err)
5765 goto out_del_kobj;
5766
5767 #ifdef CONFIG_MEMCG
5768 if (is_root_cache(s) && memcg_sysfs_enabled) {
5769 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5770 if (!s->memcg_kset) {
5771 err = -ENOMEM;
5772 goto out_del_kobj;
5773 }
5774 }
5775 #endif
5776
5777 kobject_uevent(&s->kobj, KOBJ_ADD);
5778 if (!unmergeable) {
5779 /* Setup first alias */
5780 sysfs_slab_alias(s, s->name);
5781 }
5782 out:
5783 if (!unmergeable)
5784 kfree(name);
5785 return err;
5786 out_del_kobj:
5787 kobject_del(&s->kobj);
5788 goto out;
5789 }
5790
5791 static void sysfs_slab_remove(struct kmem_cache *s)
5792 {
5793 if (slab_state < FULL)
5794 /*
5795 * Sysfs has not been setup yet so no need to remove the
5796 * cache from sysfs.
5797 */
5798 return;
5799
5800 kobject_get(&s->kobj);
5801 schedule_work(&s->kobj_remove_work);
5802 }
5803
5804 void sysfs_slab_unlink(struct kmem_cache *s)
5805 {
5806 if (slab_state >= FULL)
5807 kobject_del(&s->kobj);
5808 }
5809
5810 void sysfs_slab_release(struct kmem_cache *s)
5811 {
5812 if (slab_state >= FULL)
5813 kobject_put(&s->kobj);
5814 }
5815
5816 /*
5817 * Need to buffer aliases during bootup until sysfs becomes
5818 * available lest we lose that information.
5819 */
5820 struct saved_alias {
5821 struct kmem_cache *s;
5822 const char *name;
5823 struct saved_alias *next;
5824 };
5825
5826 static struct saved_alias *alias_list;
5827
5828 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5829 {
5830 struct saved_alias *al;
5831
5832 if (slab_state == FULL) {
5833 /*
5834 * If we have a leftover link then remove it.
5835 */
5836 sysfs_remove_link(&slab_kset->kobj, name);
5837 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5838 }
5839
5840 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5841 if (!al)
5842 return -ENOMEM;
5843
5844 al->s = s;
5845 al->name = name;
5846 al->next = alias_list;
5847 alias_list = al;
5848 return 0;
5849 }
5850
5851 static int __init slab_sysfs_init(void)
5852 {
5853 struct kmem_cache *s;
5854 int err;
5855
5856 mutex_lock(&slab_mutex);
5857
5858 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5859 if (!slab_kset) {
5860 mutex_unlock(&slab_mutex);
5861 pr_err("Cannot register slab subsystem.\n");
5862 return -ENOSYS;
5863 }
5864
5865 slab_state = FULL;
5866
5867 list_for_each_entry(s, &slab_caches, list) {
5868 err = sysfs_slab_add(s);
5869 if (err)
5870 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5871 s->name);
5872 }
5873
5874 while (alias_list) {
5875 struct saved_alias *al = alias_list;
5876
5877 alias_list = alias_list->next;
5878 err = sysfs_slab_alias(al->s, al->name);
5879 if (err)
5880 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5881 al->name);
5882 kfree(al);
5883 }
5884
5885 mutex_unlock(&slab_mutex);
5886 resiliency_test();
5887 return 0;
5888 }
5889
5890 __initcall(slab_sysfs_init);
5891 #endif /* CONFIG_SYSFS */
5892
5893 /*
5894 * The /proc/slabinfo ABI
5895 */
5896 #ifdef CONFIG_SLUB_DEBUG
5897 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5898 {
5899 unsigned long nr_slabs = 0;
5900 unsigned long nr_objs = 0;
5901 unsigned long nr_free = 0;
5902 int node;
5903 struct kmem_cache_node *n;
5904
5905 for_each_kmem_cache_node(s, node, n) {
5906 nr_slabs += node_nr_slabs(n);
5907 nr_objs += node_nr_objs(n);
5908 nr_free += count_partial(n, count_free);
5909 }
5910
5911 sinfo->active_objs = nr_objs - nr_free;
5912 sinfo->num_objs = nr_objs;
5913 sinfo->active_slabs = nr_slabs;
5914 sinfo->num_slabs = nr_slabs;
5915 sinfo->objects_per_slab = oo_objects(s->oo);
5916 sinfo->cache_order = oo_order(s->oo);
5917 }
5918
5919 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5920 {
5921 }
5922
5923 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5924 size_t count, loff_t *ppos)
5925 {
5926 return -EIO;
5927 }
5928 #endif /* CONFIG_SLUB_DEBUG */