]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/sparse.c
mm/sparse.c: introduce a new function clear_subsection_map()
[mirror_ubuntu-jammy-kernel.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16
17 #include "internal.h"
18 #include <asm/dma.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
21
22 /*
23 * Permanent SPARSEMEM data:
24 *
25 * 1) mem_section - memory sections, mem_map's for valid memory
26 */
27 #ifdef CONFIG_SPARSEMEM_EXTREME
28 struct mem_section **mem_section;
29 #else
30 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
31 ____cacheline_internodealigned_in_smp;
32 #endif
33 EXPORT_SYMBOL(mem_section);
34
35 #ifdef NODE_NOT_IN_PAGE_FLAGS
36 /*
37 * If we did not store the node number in the page then we have to
38 * do a lookup in the section_to_node_table in order to find which
39 * node the page belongs to.
40 */
41 #if MAX_NUMNODES <= 256
42 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #else
44 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
45 #endif
46
47 int page_to_nid(const struct page *page)
48 {
49 return section_to_node_table[page_to_section(page)];
50 }
51 EXPORT_SYMBOL(page_to_nid);
52
53 static void set_section_nid(unsigned long section_nr, int nid)
54 {
55 section_to_node_table[section_nr] = nid;
56 }
57 #else /* !NODE_NOT_IN_PAGE_FLAGS */
58 static inline void set_section_nid(unsigned long section_nr, int nid)
59 {
60 }
61 #endif
62
63 #ifdef CONFIG_SPARSEMEM_EXTREME
64 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
65 {
66 struct mem_section *section = NULL;
67 unsigned long array_size = SECTIONS_PER_ROOT *
68 sizeof(struct mem_section);
69
70 if (slab_is_available()) {
71 section = kzalloc_node(array_size, GFP_KERNEL, nid);
72 } else {
73 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
74 nid);
75 if (!section)
76 panic("%s: Failed to allocate %lu bytes nid=%d\n",
77 __func__, array_size, nid);
78 }
79
80 return section;
81 }
82
83 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
84 {
85 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86 struct mem_section *section;
87
88 /*
89 * An existing section is possible in the sub-section hotplug
90 * case. First hot-add instantiates, follow-on hot-add reuses
91 * the existing section.
92 *
93 * The mem_hotplug_lock resolves the apparent race below.
94 */
95 if (mem_section[root])
96 return 0;
97
98 section = sparse_index_alloc(nid);
99 if (!section)
100 return -ENOMEM;
101
102 mem_section[root] = section;
103
104 return 0;
105 }
106 #else /* !SPARSEMEM_EXTREME */
107 static inline int sparse_index_init(unsigned long section_nr, int nid)
108 {
109 return 0;
110 }
111 #endif
112
113 #ifdef CONFIG_SPARSEMEM_EXTREME
114 unsigned long __section_nr(struct mem_section *ms)
115 {
116 unsigned long root_nr;
117 struct mem_section *root = NULL;
118
119 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121 if (!root)
122 continue;
123
124 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125 break;
126 }
127
128 VM_BUG_ON(!root);
129
130 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131 }
132 #else
133 unsigned long __section_nr(struct mem_section *ms)
134 {
135 return (unsigned long)(ms - mem_section[0]);
136 }
137 #endif
138
139 /*
140 * During early boot, before section_mem_map is used for an actual
141 * mem_map, we use section_mem_map to store the section's NUMA
142 * node. This keeps us from having to use another data structure. The
143 * node information is cleared just before we store the real mem_map.
144 */
145 static inline unsigned long sparse_encode_early_nid(int nid)
146 {
147 return (nid << SECTION_NID_SHIFT);
148 }
149
150 static inline int sparse_early_nid(struct mem_section *section)
151 {
152 return (section->section_mem_map >> SECTION_NID_SHIFT);
153 }
154
155 /* Validate the physical addressing limitations of the model */
156 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157 unsigned long *end_pfn)
158 {
159 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160
161 /*
162 * Sanity checks - do not allow an architecture to pass
163 * in larger pfns than the maximum scope of sparsemem:
164 */
165 if (*start_pfn > max_sparsemem_pfn) {
166 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168 *start_pfn, *end_pfn, max_sparsemem_pfn);
169 WARN_ON_ONCE(1);
170 *start_pfn = max_sparsemem_pfn;
171 *end_pfn = max_sparsemem_pfn;
172 } else if (*end_pfn > max_sparsemem_pfn) {
173 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175 *start_pfn, *end_pfn, max_sparsemem_pfn);
176 WARN_ON_ONCE(1);
177 *end_pfn = max_sparsemem_pfn;
178 }
179 }
180
181 /*
182 * There are a number of times that we loop over NR_MEM_SECTIONS,
183 * looking for section_present() on each. But, when we have very
184 * large physical address spaces, NR_MEM_SECTIONS can also be
185 * very large which makes the loops quite long.
186 *
187 * Keeping track of this gives us an easy way to break out of
188 * those loops early.
189 */
190 unsigned long __highest_present_section_nr;
191 static void section_mark_present(struct mem_section *ms)
192 {
193 unsigned long section_nr = __section_nr(ms);
194
195 if (section_nr > __highest_present_section_nr)
196 __highest_present_section_nr = section_nr;
197
198 ms->section_mem_map |= SECTION_MARKED_PRESENT;
199 }
200
201 #define for_each_present_section_nr(start, section_nr) \
202 for (section_nr = next_present_section_nr(start-1); \
203 ((section_nr != -1) && \
204 (section_nr <= __highest_present_section_nr)); \
205 section_nr = next_present_section_nr(section_nr))
206
207 static inline unsigned long first_present_section_nr(void)
208 {
209 return next_present_section_nr(-1);
210 }
211
212 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
213 unsigned long nr_pages)
214 {
215 int idx = subsection_map_index(pfn);
216 int end = subsection_map_index(pfn + nr_pages - 1);
217
218 bitmap_set(map, idx, end - idx + 1);
219 }
220
221 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
222 {
223 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
224 unsigned long nr, start_sec = pfn_to_section_nr(pfn);
225
226 if (!nr_pages)
227 return;
228
229 for (nr = start_sec; nr <= end_sec; nr++) {
230 struct mem_section *ms;
231 unsigned long pfns;
232
233 pfns = min(nr_pages, PAGES_PER_SECTION
234 - (pfn & ~PAGE_SECTION_MASK));
235 ms = __nr_to_section(nr);
236 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
237
238 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
239 pfns, subsection_map_index(pfn),
240 subsection_map_index(pfn + pfns - 1));
241
242 pfn += pfns;
243 nr_pages -= pfns;
244 }
245 }
246
247 /* Record a memory area against a node. */
248 void __init memory_present(int nid, unsigned long start, unsigned long end)
249 {
250 unsigned long pfn;
251
252 #ifdef CONFIG_SPARSEMEM_EXTREME
253 if (unlikely(!mem_section)) {
254 unsigned long size, align;
255
256 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
257 align = 1 << (INTERNODE_CACHE_SHIFT);
258 mem_section = memblock_alloc(size, align);
259 if (!mem_section)
260 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
261 __func__, size, align);
262 }
263 #endif
264
265 start &= PAGE_SECTION_MASK;
266 mminit_validate_memmodel_limits(&start, &end);
267 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
268 unsigned long section = pfn_to_section_nr(pfn);
269 struct mem_section *ms;
270
271 sparse_index_init(section, nid);
272 set_section_nid(section, nid);
273
274 ms = __nr_to_section(section);
275 if (!ms->section_mem_map) {
276 ms->section_mem_map = sparse_encode_early_nid(nid) |
277 SECTION_IS_ONLINE;
278 section_mark_present(ms);
279 }
280 }
281 }
282
283 /*
284 * Mark all memblocks as present using memory_present(). This is a
285 * convienence function that is useful for a number of arches
286 * to mark all of the systems memory as present during initialization.
287 */
288 void __init memblocks_present(void)
289 {
290 struct memblock_region *reg;
291
292 for_each_memblock(memory, reg) {
293 memory_present(memblock_get_region_node(reg),
294 memblock_region_memory_base_pfn(reg),
295 memblock_region_memory_end_pfn(reg));
296 }
297 }
298
299 /*
300 * Subtle, we encode the real pfn into the mem_map such that
301 * the identity pfn - section_mem_map will return the actual
302 * physical page frame number.
303 */
304 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
305 {
306 unsigned long coded_mem_map =
307 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
308 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
309 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
310 return coded_mem_map;
311 }
312
313 /*
314 * Decode mem_map from the coded memmap
315 */
316 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
317 {
318 /* mask off the extra low bits of information */
319 coded_mem_map &= SECTION_MAP_MASK;
320 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
321 }
322
323 static void __meminit sparse_init_one_section(struct mem_section *ms,
324 unsigned long pnum, struct page *mem_map,
325 struct mem_section_usage *usage, unsigned long flags)
326 {
327 ms->section_mem_map &= ~SECTION_MAP_MASK;
328 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
329 | SECTION_HAS_MEM_MAP | flags;
330 ms->usage = usage;
331 }
332
333 static unsigned long usemap_size(void)
334 {
335 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
336 }
337
338 size_t mem_section_usage_size(void)
339 {
340 return sizeof(struct mem_section_usage) + usemap_size();
341 }
342
343 #ifdef CONFIG_MEMORY_HOTREMOVE
344 static struct mem_section_usage * __init
345 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
346 unsigned long size)
347 {
348 struct mem_section_usage *usage;
349 unsigned long goal, limit;
350 int nid;
351 /*
352 * A page may contain usemaps for other sections preventing the
353 * page being freed and making a section unremovable while
354 * other sections referencing the usemap remain active. Similarly,
355 * a pgdat can prevent a section being removed. If section A
356 * contains a pgdat and section B contains the usemap, both
357 * sections become inter-dependent. This allocates usemaps
358 * from the same section as the pgdat where possible to avoid
359 * this problem.
360 */
361 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
362 limit = goal + (1UL << PA_SECTION_SHIFT);
363 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
364 again:
365 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
366 if (!usage && limit) {
367 limit = 0;
368 goto again;
369 }
370 return usage;
371 }
372
373 static void __init check_usemap_section_nr(int nid,
374 struct mem_section_usage *usage)
375 {
376 unsigned long usemap_snr, pgdat_snr;
377 static unsigned long old_usemap_snr;
378 static unsigned long old_pgdat_snr;
379 struct pglist_data *pgdat = NODE_DATA(nid);
380 int usemap_nid;
381
382 /* First call */
383 if (!old_usemap_snr) {
384 old_usemap_snr = NR_MEM_SECTIONS;
385 old_pgdat_snr = NR_MEM_SECTIONS;
386 }
387
388 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
389 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
390 if (usemap_snr == pgdat_snr)
391 return;
392
393 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
394 /* skip redundant message */
395 return;
396
397 old_usemap_snr = usemap_snr;
398 old_pgdat_snr = pgdat_snr;
399
400 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
401 if (usemap_nid != nid) {
402 pr_info("node %d must be removed before remove section %ld\n",
403 nid, usemap_snr);
404 return;
405 }
406 /*
407 * There is a circular dependency.
408 * Some platforms allow un-removable section because they will just
409 * gather other removable sections for dynamic partitioning.
410 * Just notify un-removable section's number here.
411 */
412 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
413 usemap_snr, pgdat_snr, nid);
414 }
415 #else
416 static struct mem_section_usage * __init
417 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
418 unsigned long size)
419 {
420 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
421 }
422
423 static void __init check_usemap_section_nr(int nid,
424 struct mem_section_usage *usage)
425 {
426 }
427 #endif /* CONFIG_MEMORY_HOTREMOVE */
428
429 #ifdef CONFIG_SPARSEMEM_VMEMMAP
430 static unsigned long __init section_map_size(void)
431 {
432 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
433 }
434
435 #else
436 static unsigned long __init section_map_size(void)
437 {
438 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
439 }
440
441 struct page __init *__populate_section_memmap(unsigned long pfn,
442 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
443 {
444 unsigned long size = section_map_size();
445 struct page *map = sparse_buffer_alloc(size);
446 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
447
448 if (map)
449 return map;
450
451 map = memblock_alloc_try_nid_raw(size, size, addr,
452 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
453 if (!map)
454 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
455 __func__, size, PAGE_SIZE, nid, &addr);
456
457 return map;
458 }
459 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
460
461 static void *sparsemap_buf __meminitdata;
462 static void *sparsemap_buf_end __meminitdata;
463
464 static inline void __meminit sparse_buffer_free(unsigned long size)
465 {
466 WARN_ON(!sparsemap_buf || size == 0);
467 memblock_free_early(__pa(sparsemap_buf), size);
468 }
469
470 static void __init sparse_buffer_init(unsigned long size, int nid)
471 {
472 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
473 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
474 /*
475 * Pre-allocated buffer is mainly used by __populate_section_memmap
476 * and we want it to be properly aligned to the section size - this is
477 * especially the case for VMEMMAP which maps memmap to PMDs
478 */
479 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
480 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
481 sparsemap_buf_end = sparsemap_buf + size;
482 }
483
484 static void __init sparse_buffer_fini(void)
485 {
486 unsigned long size = sparsemap_buf_end - sparsemap_buf;
487
488 if (sparsemap_buf && size > 0)
489 sparse_buffer_free(size);
490 sparsemap_buf = NULL;
491 }
492
493 void * __meminit sparse_buffer_alloc(unsigned long size)
494 {
495 void *ptr = NULL;
496
497 if (sparsemap_buf) {
498 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
499 if (ptr + size > sparsemap_buf_end)
500 ptr = NULL;
501 else {
502 /* Free redundant aligned space */
503 if ((unsigned long)(ptr - sparsemap_buf) > 0)
504 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
505 sparsemap_buf = ptr + size;
506 }
507 }
508 return ptr;
509 }
510
511 void __weak __meminit vmemmap_populate_print_last(void)
512 {
513 }
514
515 /*
516 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
517 * And number of present sections in this node is map_count.
518 */
519 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
520 unsigned long pnum_end,
521 unsigned long map_count)
522 {
523 struct mem_section_usage *usage;
524 unsigned long pnum;
525 struct page *map;
526
527 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
528 mem_section_usage_size() * map_count);
529 if (!usage) {
530 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
531 goto failed;
532 }
533 sparse_buffer_init(map_count * section_map_size(), nid);
534 for_each_present_section_nr(pnum_begin, pnum) {
535 unsigned long pfn = section_nr_to_pfn(pnum);
536
537 if (pnum >= pnum_end)
538 break;
539
540 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
541 nid, NULL);
542 if (!map) {
543 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
544 __func__, nid);
545 pnum_begin = pnum;
546 goto failed;
547 }
548 check_usemap_section_nr(nid, usage);
549 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
550 SECTION_IS_EARLY);
551 usage = (void *) usage + mem_section_usage_size();
552 }
553 sparse_buffer_fini();
554 return;
555 failed:
556 /* We failed to allocate, mark all the following pnums as not present */
557 for_each_present_section_nr(pnum_begin, pnum) {
558 struct mem_section *ms;
559
560 if (pnum >= pnum_end)
561 break;
562 ms = __nr_to_section(pnum);
563 ms->section_mem_map = 0;
564 }
565 }
566
567 /*
568 * Allocate the accumulated non-linear sections, allocate a mem_map
569 * for each and record the physical to section mapping.
570 */
571 void __init sparse_init(void)
572 {
573 unsigned long pnum_begin = first_present_section_nr();
574 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
575 unsigned long pnum_end, map_count = 1;
576
577 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
578 set_pageblock_order();
579
580 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
581 int nid = sparse_early_nid(__nr_to_section(pnum_end));
582
583 if (nid == nid_begin) {
584 map_count++;
585 continue;
586 }
587 /* Init node with sections in range [pnum_begin, pnum_end) */
588 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
589 nid_begin = nid;
590 pnum_begin = pnum_end;
591 map_count = 1;
592 }
593 /* cover the last node */
594 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
595 vmemmap_populate_print_last();
596 }
597
598 #ifdef CONFIG_MEMORY_HOTPLUG
599
600 /* Mark all memory sections within the pfn range as online */
601 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
602 {
603 unsigned long pfn;
604
605 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
606 unsigned long section_nr = pfn_to_section_nr(pfn);
607 struct mem_section *ms;
608
609 /* onlining code should never touch invalid ranges */
610 if (WARN_ON(!valid_section_nr(section_nr)))
611 continue;
612
613 ms = __nr_to_section(section_nr);
614 ms->section_mem_map |= SECTION_IS_ONLINE;
615 }
616 }
617
618 #ifdef CONFIG_MEMORY_HOTREMOVE
619 /* Mark all memory sections within the pfn range as offline */
620 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
621 {
622 unsigned long pfn;
623
624 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
625 unsigned long section_nr = pfn_to_section_nr(pfn);
626 struct mem_section *ms;
627
628 /*
629 * TODO this needs some double checking. Offlining code makes
630 * sure to check pfn_valid but those checks might be just bogus
631 */
632 if (WARN_ON(!valid_section_nr(section_nr)))
633 continue;
634
635 ms = __nr_to_section(section_nr);
636 ms->section_mem_map &= ~SECTION_IS_ONLINE;
637 }
638 }
639 #endif
640
641 #ifdef CONFIG_SPARSEMEM_VMEMMAP
642 static struct page * __meminit populate_section_memmap(unsigned long pfn,
643 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
644 {
645 return __populate_section_memmap(pfn, nr_pages, nid, altmap);
646 }
647
648 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
649 struct vmem_altmap *altmap)
650 {
651 unsigned long start = (unsigned long) pfn_to_page(pfn);
652 unsigned long end = start + nr_pages * sizeof(struct page);
653
654 vmemmap_free(start, end, altmap);
655 }
656 static void free_map_bootmem(struct page *memmap)
657 {
658 unsigned long start = (unsigned long)memmap;
659 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
660
661 vmemmap_free(start, end, NULL);
662 }
663 #else
664 struct page * __meminit populate_section_memmap(unsigned long pfn,
665 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
666 {
667 return kvmalloc_node(array_size(sizeof(struct page),
668 PAGES_PER_SECTION), GFP_KERNEL, nid);
669 }
670
671 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
672 struct vmem_altmap *altmap)
673 {
674 kvfree(pfn_to_page(pfn));
675 }
676
677 static void free_map_bootmem(struct page *memmap)
678 {
679 unsigned long maps_section_nr, removing_section_nr, i;
680 unsigned long magic, nr_pages;
681 struct page *page = virt_to_page(memmap);
682
683 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
684 >> PAGE_SHIFT;
685
686 for (i = 0; i < nr_pages; i++, page++) {
687 magic = (unsigned long) page->freelist;
688
689 BUG_ON(magic == NODE_INFO);
690
691 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
692 removing_section_nr = page_private(page);
693
694 /*
695 * When this function is called, the removing section is
696 * logical offlined state. This means all pages are isolated
697 * from page allocator. If removing section's memmap is placed
698 * on the same section, it must not be freed.
699 * If it is freed, page allocator may allocate it which will
700 * be removed physically soon.
701 */
702 if (maps_section_nr != removing_section_nr)
703 put_page_bootmem(page);
704 }
705 }
706 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
707
708 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
709 {
710 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
711 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
712 struct mem_section *ms = __pfn_to_section(pfn);
713 unsigned long *subsection_map = ms->usage
714 ? &ms->usage->subsection_map[0] : NULL;
715
716 subsection_mask_set(map, pfn, nr_pages);
717 if (subsection_map)
718 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
719
720 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
721 "section already deactivated (%#lx + %ld)\n",
722 pfn, nr_pages))
723 return -EINVAL;
724
725 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
726 return 0;
727 }
728
729 static bool is_subsection_map_empty(struct mem_section *ms)
730 {
731 return bitmap_empty(&ms->usage->subsection_map[0],
732 SUBSECTIONS_PER_SECTION);
733 }
734
735 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
736 struct vmem_altmap *altmap)
737 {
738 struct mem_section *ms = __pfn_to_section(pfn);
739 bool section_is_early = early_section(ms);
740 struct page *memmap = NULL;
741 bool empty;
742
743 if (clear_subsection_map(pfn, nr_pages))
744 return;
745 /*
746 * There are 3 cases to handle across two configurations
747 * (SPARSEMEM_VMEMMAP={y,n}):
748 *
749 * 1/ deactivation of a partial hot-added section (only possible
750 * in the SPARSEMEM_VMEMMAP=y case).
751 * a/ section was present at memory init
752 * b/ section was hot-added post memory init
753 * 2/ deactivation of a complete hot-added section
754 * 3/ deactivation of a complete section from memory init
755 *
756 * For 1/, when subsection_map does not empty we will not be
757 * freeing the usage map, but still need to free the vmemmap
758 * range.
759 *
760 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
761 */
762 empty = is_subsection_map_empty(ms);
763 if (empty) {
764 unsigned long section_nr = pfn_to_section_nr(pfn);
765
766 /*
767 * When removing an early section, the usage map is kept (as the
768 * usage maps of other sections fall into the same page). It
769 * will be re-used when re-adding the section - which is then no
770 * longer an early section. If the usage map is PageReserved, it
771 * was allocated during boot.
772 */
773 if (!PageReserved(virt_to_page(ms->usage))) {
774 kfree(ms->usage);
775 ms->usage = NULL;
776 }
777 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
778 /*
779 * Mark the section invalid so that valid_section()
780 * return false. This prevents code from dereferencing
781 * ms->usage array.
782 */
783 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
784 }
785
786 if (section_is_early && memmap)
787 free_map_bootmem(memmap);
788 else
789 depopulate_section_memmap(pfn, nr_pages, altmap);
790
791 if (empty)
792 ms->section_mem_map = (unsigned long)NULL;
793 }
794
795 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
796 {
797 struct mem_section *ms = __pfn_to_section(pfn);
798 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
799 unsigned long *subsection_map;
800 int rc = 0;
801
802 subsection_mask_set(map, pfn, nr_pages);
803
804 subsection_map = &ms->usage->subsection_map[0];
805
806 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
807 rc = -EINVAL;
808 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
809 rc = -EEXIST;
810 else
811 bitmap_or(subsection_map, map, subsection_map,
812 SUBSECTIONS_PER_SECTION);
813
814 return rc;
815 }
816
817 static struct page * __meminit section_activate(int nid, unsigned long pfn,
818 unsigned long nr_pages, struct vmem_altmap *altmap)
819 {
820 struct mem_section *ms = __pfn_to_section(pfn);
821 struct mem_section_usage *usage = NULL;
822 struct page *memmap;
823 int rc = 0;
824
825 if (!ms->usage) {
826 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
827 if (!usage)
828 return ERR_PTR(-ENOMEM);
829 ms->usage = usage;
830 }
831
832 rc = fill_subsection_map(pfn, nr_pages);
833 if (rc) {
834 if (usage)
835 ms->usage = NULL;
836 kfree(usage);
837 return ERR_PTR(rc);
838 }
839
840 /*
841 * The early init code does not consider partially populated
842 * initial sections, it simply assumes that memory will never be
843 * referenced. If we hot-add memory into such a section then we
844 * do not need to populate the memmap and can simply reuse what
845 * is already there.
846 */
847 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
848 return pfn_to_page(pfn);
849
850 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
851 if (!memmap) {
852 section_deactivate(pfn, nr_pages, altmap);
853 return ERR_PTR(-ENOMEM);
854 }
855
856 return memmap;
857 }
858
859 /**
860 * sparse_add_section - add a memory section, or populate an existing one
861 * @nid: The node to add section on
862 * @start_pfn: start pfn of the memory range
863 * @nr_pages: number of pfns to add in the section
864 * @altmap: device page map
865 *
866 * This is only intended for hotplug.
867 *
868 * Return:
869 * * 0 - On success.
870 * * -EEXIST - Section has been present.
871 * * -ENOMEM - Out of memory.
872 */
873 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
874 unsigned long nr_pages, struct vmem_altmap *altmap)
875 {
876 unsigned long section_nr = pfn_to_section_nr(start_pfn);
877 struct mem_section *ms;
878 struct page *memmap;
879 int ret;
880
881 ret = sparse_index_init(section_nr, nid);
882 if (ret < 0)
883 return ret;
884
885 memmap = section_activate(nid, start_pfn, nr_pages, altmap);
886 if (IS_ERR(memmap))
887 return PTR_ERR(memmap);
888
889 /*
890 * Poison uninitialized struct pages in order to catch invalid flags
891 * combinations.
892 */
893 page_init_poison(memmap, sizeof(struct page) * nr_pages);
894
895 ms = __nr_to_section(section_nr);
896 set_section_nid(section_nr, nid);
897 section_mark_present(ms);
898
899 /* Align memmap to section boundary in the subsection case */
900 if (section_nr_to_pfn(section_nr) != start_pfn)
901 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
902 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
903
904 return 0;
905 }
906
907 #ifdef CONFIG_MEMORY_FAILURE
908 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
909 {
910 int i;
911
912 /*
913 * A further optimization is to have per section refcounted
914 * num_poisoned_pages. But that would need more space per memmap, so
915 * for now just do a quick global check to speed up this routine in the
916 * absence of bad pages.
917 */
918 if (atomic_long_read(&num_poisoned_pages) == 0)
919 return;
920
921 for (i = 0; i < nr_pages; i++) {
922 if (PageHWPoison(&memmap[i])) {
923 num_poisoned_pages_dec();
924 ClearPageHWPoison(&memmap[i]);
925 }
926 }
927 }
928 #else
929 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
930 {
931 }
932 #endif
933
934 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
935 unsigned long nr_pages, unsigned long map_offset,
936 struct vmem_altmap *altmap)
937 {
938 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
939 nr_pages - map_offset);
940 section_deactivate(pfn, nr_pages, altmap);
941 }
942 #endif /* CONFIG_MEMORY_HOTPLUG */