1 // SPDX-License-Identifier: GPL-2.0
3 * sparse memory mappings.
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/bootmem_info.h>
22 * Permanent SPARSEMEM data:
24 * 1) mem_section - memory sections, mem_map's for valid memory
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section
**mem_section
;
29 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
30 ____cacheline_internodealigned_in_smp
;
32 EXPORT_SYMBOL(mem_section
);
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
36 * If we did not store the node number in the page then we have to
37 * do a lookup in the section_to_node_table in order to find which
38 * node the page belongs to.
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
43 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
46 int page_to_nid(const struct page
*page
)
48 return section_to_node_table
[page_to_section(page
)];
50 EXPORT_SYMBOL(page_to_nid
);
52 static void set_section_nid(unsigned long section_nr
, int nid
)
54 section_to_node_table
[section_nr
] = nid
;
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr
, int nid
)
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline
struct mem_section __ref
*sparse_index_alloc(int nid
)
65 struct mem_section
*section
= NULL
;
66 unsigned long array_size
= SECTIONS_PER_ROOT
*
67 sizeof(struct mem_section
);
69 if (slab_is_available()) {
70 section
= kzalloc_node(array_size
, GFP_KERNEL
, nid
);
72 section
= memblock_alloc_node(array_size
, SMP_CACHE_BYTES
,
75 panic("%s: Failed to allocate %lu bytes nid=%d\n",
76 __func__
, array_size
, nid
);
82 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
84 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
85 struct mem_section
*section
;
88 * An existing section is possible in the sub-section hotplug
89 * case. First hot-add instantiates, follow-on hot-add reuses
90 * the existing section.
92 * The mem_hotplug_lock resolves the apparent race below.
94 if (mem_section
[root
])
97 section
= sparse_index_alloc(nid
);
101 mem_section
[root
] = section
;
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
113 * During early boot, before section_mem_map is used for an actual
114 * mem_map, we use section_mem_map to store the section's NUMA
115 * node. This keeps us from having to use another data structure. The
116 * node information is cleared just before we store the real mem_map.
118 static inline unsigned long sparse_encode_early_nid(int nid
)
120 return ((unsigned long)nid
<< SECTION_NID_SHIFT
);
123 static inline int sparse_early_nid(struct mem_section
*section
)
125 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
128 /* Validate the physical addressing limitations of the model */
129 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
130 unsigned long *end_pfn
)
132 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
135 * Sanity checks - do not allow an architecture to pass
136 * in larger pfns than the maximum scope of sparsemem:
138 if (*start_pfn
> max_sparsemem_pfn
) {
139 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
140 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
141 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
143 *start_pfn
= max_sparsemem_pfn
;
144 *end_pfn
= max_sparsemem_pfn
;
145 } else if (*end_pfn
> max_sparsemem_pfn
) {
146 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
147 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
148 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
150 *end_pfn
= max_sparsemem_pfn
;
155 * There are a number of times that we loop over NR_MEM_SECTIONS,
156 * looking for section_present() on each. But, when we have very
157 * large physical address spaces, NR_MEM_SECTIONS can also be
158 * very large which makes the loops quite long.
160 * Keeping track of this gives us an easy way to break out of
163 unsigned long __highest_present_section_nr
;
164 static void __section_mark_present(struct mem_section
*ms
,
165 unsigned long section_nr
)
167 if (section_nr
> __highest_present_section_nr
)
168 __highest_present_section_nr
= section_nr
;
170 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
173 #define for_each_present_section_nr(start, section_nr) \
174 for (section_nr = next_present_section_nr(start-1); \
175 ((section_nr != -1) && \
176 (section_nr <= __highest_present_section_nr)); \
177 section_nr = next_present_section_nr(section_nr))
179 static inline unsigned long first_present_section_nr(void)
181 return next_present_section_nr(-1);
184 #ifdef CONFIG_SPARSEMEM_VMEMMAP
185 static void subsection_mask_set(unsigned long *map
, unsigned long pfn
,
186 unsigned long nr_pages
)
188 int idx
= subsection_map_index(pfn
);
189 int end
= subsection_map_index(pfn
+ nr_pages
- 1);
191 bitmap_set(map
, idx
, end
- idx
+ 1);
194 void __init
subsection_map_init(unsigned long pfn
, unsigned long nr_pages
)
196 int end_sec
= pfn_to_section_nr(pfn
+ nr_pages
- 1);
197 unsigned long nr
, start_sec
= pfn_to_section_nr(pfn
);
202 for (nr
= start_sec
; nr
<= end_sec
; nr
++) {
203 struct mem_section
*ms
;
206 pfns
= min(nr_pages
, PAGES_PER_SECTION
207 - (pfn
& ~PAGE_SECTION_MASK
));
208 ms
= __nr_to_section(nr
);
209 subsection_mask_set(ms
->usage
->subsection_map
, pfn
, pfns
);
211 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__
, nr
,
212 pfns
, subsection_map_index(pfn
),
213 subsection_map_index(pfn
+ pfns
- 1));
220 void __init
subsection_map_init(unsigned long pfn
, unsigned long nr_pages
)
225 /* Record a memory area against a node. */
226 static void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
230 #ifdef CONFIG_SPARSEMEM_EXTREME
231 if (unlikely(!mem_section
)) {
232 unsigned long size
, align
;
234 size
= sizeof(struct mem_section
*) * NR_SECTION_ROOTS
;
235 align
= 1 << (INTERNODE_CACHE_SHIFT
);
236 mem_section
= memblock_alloc(size
, align
);
238 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
239 __func__
, size
, align
);
243 start
&= PAGE_SECTION_MASK
;
244 mminit_validate_memmodel_limits(&start
, &end
);
245 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
246 unsigned long section
= pfn_to_section_nr(pfn
);
247 struct mem_section
*ms
;
249 sparse_index_init(section
, nid
);
250 set_section_nid(section
, nid
);
252 ms
= __nr_to_section(section
);
253 if (!ms
->section_mem_map
) {
254 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
256 __section_mark_present(ms
, section
);
262 * Mark all memblocks as present using memory_present().
263 * This is a convenience function that is useful to mark all of the systems
264 * memory as present during initialization.
266 static void __init
memblocks_present(void)
268 unsigned long start
, end
;
271 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
)
272 memory_present(nid
, start
, end
);
276 * Subtle, we encode the real pfn into the mem_map such that
277 * the identity pfn - section_mem_map will return the actual
278 * physical page frame number.
280 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
282 unsigned long coded_mem_map
=
283 (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
284 BUILD_BUG_ON(SECTION_MAP_LAST_BIT
> (1UL<<PFN_SECTION_SHIFT
));
285 BUG_ON(coded_mem_map
& ~SECTION_MAP_MASK
);
286 return coded_mem_map
;
289 #ifdef CONFIG_MEMORY_HOTPLUG
291 * Decode mem_map from the coded memmap
293 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
295 /* mask off the extra low bits of information */
296 coded_mem_map
&= SECTION_MAP_MASK
;
297 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
299 #endif /* CONFIG_MEMORY_HOTPLUG */
301 static void __meminit
sparse_init_one_section(struct mem_section
*ms
,
302 unsigned long pnum
, struct page
*mem_map
,
303 struct mem_section_usage
*usage
, unsigned long flags
)
305 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
306 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
)
307 | SECTION_HAS_MEM_MAP
| flags
;
311 static unsigned long usemap_size(void)
313 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS
) * sizeof(unsigned long);
316 size_t mem_section_usage_size(void)
318 return sizeof(struct mem_section_usage
) + usemap_size();
321 static inline phys_addr_t
pgdat_to_phys(struct pglist_data
*pgdat
)
324 VM_BUG_ON(pgdat
!= &contig_page_data
);
325 return __pa_symbol(&contig_page_data
);
331 #ifdef CONFIG_MEMORY_HOTREMOVE
332 static struct mem_section_usage
* __init
333 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
336 struct mem_section_usage
*usage
;
337 unsigned long goal
, limit
;
340 * A page may contain usemaps for other sections preventing the
341 * page being freed and making a section unremovable while
342 * other sections referencing the usemap remain active. Similarly,
343 * a pgdat can prevent a section being removed. If section A
344 * contains a pgdat and section B contains the usemap, both
345 * sections become inter-dependent. This allocates usemaps
346 * from the same section as the pgdat where possible to avoid
349 goal
= pgdat_to_phys(pgdat
) & (PAGE_SECTION_MASK
<< PAGE_SHIFT
);
350 limit
= goal
+ (1UL << PA_SECTION_SHIFT
);
351 nid
= early_pfn_to_nid(goal
>> PAGE_SHIFT
);
353 usage
= memblock_alloc_try_nid(size
, SMP_CACHE_BYTES
, goal
, limit
, nid
);
354 if (!usage
&& limit
) {
361 static void __init
check_usemap_section_nr(int nid
,
362 struct mem_section_usage
*usage
)
364 unsigned long usemap_snr
, pgdat_snr
;
365 static unsigned long old_usemap_snr
;
366 static unsigned long old_pgdat_snr
;
367 struct pglist_data
*pgdat
= NODE_DATA(nid
);
371 if (!old_usemap_snr
) {
372 old_usemap_snr
= NR_MEM_SECTIONS
;
373 old_pgdat_snr
= NR_MEM_SECTIONS
;
376 usemap_snr
= pfn_to_section_nr(__pa(usage
) >> PAGE_SHIFT
);
377 pgdat_snr
= pfn_to_section_nr(pgdat_to_phys(pgdat
) >> PAGE_SHIFT
);
378 if (usemap_snr
== pgdat_snr
)
381 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
382 /* skip redundant message */
385 old_usemap_snr
= usemap_snr
;
386 old_pgdat_snr
= pgdat_snr
;
388 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
389 if (usemap_nid
!= nid
) {
390 pr_info("node %d must be removed before remove section %ld\n",
395 * There is a circular dependency.
396 * Some platforms allow un-removable section because they will just
397 * gather other removable sections for dynamic partitioning.
398 * Just notify un-removable section's number here.
400 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
401 usemap_snr
, pgdat_snr
, nid
);
404 static struct mem_section_usage
* __init
405 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
408 return memblock_alloc_node(size
, SMP_CACHE_BYTES
, pgdat
->node_id
);
411 static void __init
check_usemap_section_nr(int nid
,
412 struct mem_section_usage
*usage
)
415 #endif /* CONFIG_MEMORY_HOTREMOVE */
417 #ifdef CONFIG_SPARSEMEM_VMEMMAP
418 static unsigned long __init
section_map_size(void)
420 return ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
, PMD_SIZE
);
424 static unsigned long __init
section_map_size(void)
426 return PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
);
429 struct page __init
*__populate_section_memmap(unsigned long pfn
,
430 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
432 unsigned long size
= section_map_size();
433 struct page
*map
= sparse_buffer_alloc(size
);
434 phys_addr_t addr
= __pa(MAX_DMA_ADDRESS
);
439 map
= memmap_alloc(size
, size
, addr
, nid
, false);
441 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
442 __func__
, size
, PAGE_SIZE
, nid
, &addr
);
446 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
448 static void *sparsemap_buf __meminitdata
;
449 static void *sparsemap_buf_end __meminitdata
;
451 static inline void __meminit
sparse_buffer_free(unsigned long size
)
453 WARN_ON(!sparsemap_buf
|| size
== 0);
454 memblock_free_early(__pa(sparsemap_buf
), size
);
457 static void __init
sparse_buffer_init(unsigned long size
, int nid
)
459 phys_addr_t addr
= __pa(MAX_DMA_ADDRESS
);
460 WARN_ON(sparsemap_buf
); /* forgot to call sparse_buffer_fini()? */
462 * Pre-allocated buffer is mainly used by __populate_section_memmap
463 * and we want it to be properly aligned to the section size - this is
464 * especially the case for VMEMMAP which maps memmap to PMDs
466 sparsemap_buf
= memmap_alloc(size
, section_map_size(), addr
, nid
, true);
467 sparsemap_buf_end
= sparsemap_buf
+ size
;
470 static void __init
sparse_buffer_fini(void)
472 unsigned long size
= sparsemap_buf_end
- sparsemap_buf
;
474 if (sparsemap_buf
&& size
> 0)
475 sparse_buffer_free(size
);
476 sparsemap_buf
= NULL
;
479 void * __meminit
sparse_buffer_alloc(unsigned long size
)
484 ptr
= (void *) roundup((unsigned long)sparsemap_buf
, size
);
485 if (ptr
+ size
> sparsemap_buf_end
)
488 /* Free redundant aligned space */
489 if ((unsigned long)(ptr
- sparsemap_buf
) > 0)
490 sparse_buffer_free((unsigned long)(ptr
- sparsemap_buf
));
491 sparsemap_buf
= ptr
+ size
;
497 void __weak __meminit
vmemmap_populate_print_last(void)
502 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
503 * And number of present sections in this node is map_count.
505 static void __init
sparse_init_nid(int nid
, unsigned long pnum_begin
,
506 unsigned long pnum_end
,
507 unsigned long map_count
)
509 struct mem_section_usage
*usage
;
513 usage
= sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid
),
514 mem_section_usage_size() * map_count
);
516 pr_err("%s: node[%d] usemap allocation failed", __func__
, nid
);
519 sparse_buffer_init(map_count
* section_map_size(), nid
);
520 for_each_present_section_nr(pnum_begin
, pnum
) {
521 unsigned long pfn
= section_nr_to_pfn(pnum
);
523 if (pnum
>= pnum_end
)
526 map
= __populate_section_memmap(pfn
, PAGES_PER_SECTION
,
529 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
532 sparse_buffer_fini();
535 check_usemap_section_nr(nid
, usage
);
536 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
, usage
,
538 usage
= (void *) usage
+ mem_section_usage_size();
540 sparse_buffer_fini();
543 /* We failed to allocate, mark all the following pnums as not present */
544 for_each_present_section_nr(pnum_begin
, pnum
) {
545 struct mem_section
*ms
;
547 if (pnum
>= pnum_end
)
549 ms
= __nr_to_section(pnum
);
550 ms
->section_mem_map
= 0;
555 * Allocate the accumulated non-linear sections, allocate a mem_map
556 * for each and record the physical to section mapping.
558 void __init
sparse_init(void)
560 unsigned long pnum_end
, pnum_begin
, map_count
= 1;
565 pnum_begin
= first_present_section_nr();
566 nid_begin
= sparse_early_nid(__nr_to_section(pnum_begin
));
568 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
569 set_pageblock_order();
571 for_each_present_section_nr(pnum_begin
+ 1, pnum_end
) {
572 int nid
= sparse_early_nid(__nr_to_section(pnum_end
));
574 if (nid
== nid_begin
) {
578 /* Init node with sections in range [pnum_begin, pnum_end) */
579 sparse_init_nid(nid_begin
, pnum_begin
, pnum_end
, map_count
);
581 pnum_begin
= pnum_end
;
584 /* cover the last node */
585 sparse_init_nid(nid_begin
, pnum_begin
, pnum_end
, map_count
);
586 vmemmap_populate_print_last();
589 #ifdef CONFIG_MEMORY_HOTPLUG
591 /* Mark all memory sections within the pfn range as online */
592 void online_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
596 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
597 unsigned long section_nr
= pfn_to_section_nr(pfn
);
598 struct mem_section
*ms
;
600 /* onlining code should never touch invalid ranges */
601 if (WARN_ON(!valid_section_nr(section_nr
)))
604 ms
= __nr_to_section(section_nr
);
605 ms
->section_mem_map
|= SECTION_IS_ONLINE
;
609 /* Mark all memory sections within the pfn range as offline */
610 void offline_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
614 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
615 unsigned long section_nr
= pfn_to_section_nr(pfn
);
616 struct mem_section
*ms
;
619 * TODO this needs some double checking. Offlining code makes
620 * sure to check pfn_valid but those checks might be just bogus
622 if (WARN_ON(!valid_section_nr(section_nr
)))
625 ms
= __nr_to_section(section_nr
);
626 ms
->section_mem_map
&= ~SECTION_IS_ONLINE
;
630 #ifdef CONFIG_SPARSEMEM_VMEMMAP
631 static struct page
* __meminit
populate_section_memmap(unsigned long pfn
,
632 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
634 return __populate_section_memmap(pfn
, nr_pages
, nid
, altmap
);
637 static void depopulate_section_memmap(unsigned long pfn
, unsigned long nr_pages
,
638 struct vmem_altmap
*altmap
)
640 unsigned long start
= (unsigned long) pfn_to_page(pfn
);
641 unsigned long end
= start
+ nr_pages
* sizeof(struct page
);
643 vmemmap_free(start
, end
, altmap
);
645 static void free_map_bootmem(struct page
*memmap
)
647 unsigned long start
= (unsigned long)memmap
;
648 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
650 vmemmap_free(start
, end
, NULL
);
653 static int clear_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
655 DECLARE_BITMAP(map
, SUBSECTIONS_PER_SECTION
) = { 0 };
656 DECLARE_BITMAP(tmp
, SUBSECTIONS_PER_SECTION
) = { 0 };
657 struct mem_section
*ms
= __pfn_to_section(pfn
);
658 unsigned long *subsection_map
= ms
->usage
659 ? &ms
->usage
->subsection_map
[0] : NULL
;
661 subsection_mask_set(map
, pfn
, nr_pages
);
663 bitmap_and(tmp
, map
, subsection_map
, SUBSECTIONS_PER_SECTION
);
665 if (WARN(!subsection_map
|| !bitmap_equal(tmp
, map
, SUBSECTIONS_PER_SECTION
),
666 "section already deactivated (%#lx + %ld)\n",
670 bitmap_xor(subsection_map
, map
, subsection_map
, SUBSECTIONS_PER_SECTION
);
674 static bool is_subsection_map_empty(struct mem_section
*ms
)
676 return bitmap_empty(&ms
->usage
->subsection_map
[0],
677 SUBSECTIONS_PER_SECTION
);
680 static int fill_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
682 struct mem_section
*ms
= __pfn_to_section(pfn
);
683 DECLARE_BITMAP(map
, SUBSECTIONS_PER_SECTION
) = { 0 };
684 unsigned long *subsection_map
;
687 subsection_mask_set(map
, pfn
, nr_pages
);
689 subsection_map
= &ms
->usage
->subsection_map
[0];
691 if (bitmap_empty(map
, SUBSECTIONS_PER_SECTION
))
693 else if (bitmap_intersects(map
, subsection_map
, SUBSECTIONS_PER_SECTION
))
696 bitmap_or(subsection_map
, map
, subsection_map
,
697 SUBSECTIONS_PER_SECTION
);
702 struct page
* __meminit
populate_section_memmap(unsigned long pfn
,
703 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
705 return kvmalloc_node(array_size(sizeof(struct page
),
706 PAGES_PER_SECTION
), GFP_KERNEL
, nid
);
709 static void depopulate_section_memmap(unsigned long pfn
, unsigned long nr_pages
,
710 struct vmem_altmap
*altmap
)
712 kvfree(pfn_to_page(pfn
));
715 static void free_map_bootmem(struct page
*memmap
)
717 unsigned long maps_section_nr
, removing_section_nr
, i
;
718 unsigned long magic
, nr_pages
;
719 struct page
*page
= virt_to_page(memmap
);
721 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
724 for (i
= 0; i
< nr_pages
; i
++, page
++) {
725 magic
= (unsigned long) page
->freelist
;
727 BUG_ON(magic
== NODE_INFO
);
729 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
730 removing_section_nr
= page_private(page
);
733 * When this function is called, the removing section is
734 * logical offlined state. This means all pages are isolated
735 * from page allocator. If removing section's memmap is placed
736 * on the same section, it must not be freed.
737 * If it is freed, page allocator may allocate it which will
738 * be removed physically soon.
740 if (maps_section_nr
!= removing_section_nr
)
741 put_page_bootmem(page
);
745 static int clear_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
750 static bool is_subsection_map_empty(struct mem_section
*ms
)
755 static int fill_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
759 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
762 * To deactivate a memory region, there are 3 cases to handle across
763 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
765 * 1. deactivation of a partial hot-added section (only possible in
766 * the SPARSEMEM_VMEMMAP=y case).
767 * a) section was present at memory init.
768 * b) section was hot-added post memory init.
769 * 2. deactivation of a complete hot-added section.
770 * 3. deactivation of a complete section from memory init.
772 * For 1, when subsection_map does not empty we will not be freeing the
773 * usage map, but still need to free the vmemmap range.
775 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
777 static void section_deactivate(unsigned long pfn
, unsigned long nr_pages
,
778 struct vmem_altmap
*altmap
)
780 struct mem_section
*ms
= __pfn_to_section(pfn
);
781 bool section_is_early
= early_section(ms
);
782 struct page
*memmap
= NULL
;
785 if (clear_subsection_map(pfn
, nr_pages
))
788 empty
= is_subsection_map_empty(ms
);
790 unsigned long section_nr
= pfn_to_section_nr(pfn
);
793 * When removing an early section, the usage map is kept (as the
794 * usage maps of other sections fall into the same page). It
795 * will be re-used when re-adding the section - which is then no
796 * longer an early section. If the usage map is PageReserved, it
797 * was allocated during boot.
799 if (!PageReserved(virt_to_page(ms
->usage
))) {
803 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
805 * Mark the section invalid so that valid_section()
806 * return false. This prevents code from dereferencing
809 ms
->section_mem_map
&= ~SECTION_HAS_MEM_MAP
;
813 * The memmap of early sections is always fully populated. See
814 * section_activate() and pfn_valid() .
816 if (!section_is_early
)
817 depopulate_section_memmap(pfn
, nr_pages
, altmap
);
819 free_map_bootmem(memmap
);
822 ms
->section_mem_map
= (unsigned long)NULL
;
825 static struct page
* __meminit
section_activate(int nid
, unsigned long pfn
,
826 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
828 struct mem_section
*ms
= __pfn_to_section(pfn
);
829 struct mem_section_usage
*usage
= NULL
;
834 usage
= kzalloc(mem_section_usage_size(), GFP_KERNEL
);
836 return ERR_PTR(-ENOMEM
);
840 rc
= fill_subsection_map(pfn
, nr_pages
);
849 * The early init code does not consider partially populated
850 * initial sections, it simply assumes that memory will never be
851 * referenced. If we hot-add memory into such a section then we
852 * do not need to populate the memmap and can simply reuse what
855 if (nr_pages
< PAGES_PER_SECTION
&& early_section(ms
))
856 return pfn_to_page(pfn
);
858 memmap
= populate_section_memmap(pfn
, nr_pages
, nid
, altmap
);
860 section_deactivate(pfn
, nr_pages
, altmap
);
861 return ERR_PTR(-ENOMEM
);
868 * sparse_add_section - add a memory section, or populate an existing one
869 * @nid: The node to add section on
870 * @start_pfn: start pfn of the memory range
871 * @nr_pages: number of pfns to add in the section
872 * @altmap: device page map
874 * This is only intended for hotplug.
876 * Note that only VMEMMAP supports sub-section aligned hotplug,
877 * the proper alignment and size are gated by check_pfn_span().
882 * * -EEXIST - Section has been present.
883 * * -ENOMEM - Out of memory.
885 int __meminit
sparse_add_section(int nid
, unsigned long start_pfn
,
886 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
888 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
889 struct mem_section
*ms
;
893 ret
= sparse_index_init(section_nr
, nid
);
897 memmap
= section_activate(nid
, start_pfn
, nr_pages
, altmap
);
899 return PTR_ERR(memmap
);
902 * Poison uninitialized struct pages in order to catch invalid flags
905 page_init_poison(memmap
, sizeof(struct page
) * nr_pages
);
907 ms
= __nr_to_section(section_nr
);
908 set_section_nid(section_nr
, nid
);
909 __section_mark_present(ms
, section_nr
);
911 /* Align memmap to section boundary in the subsection case */
912 if (section_nr_to_pfn(section_nr
) != start_pfn
)
913 memmap
= pfn_to_page(section_nr_to_pfn(section_nr
));
914 sparse_init_one_section(ms
, section_nr
, memmap
, ms
->usage
, 0);
919 #ifdef CONFIG_MEMORY_FAILURE
920 static void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
925 * A further optimization is to have per section refcounted
926 * num_poisoned_pages. But that would need more space per memmap, so
927 * for now just do a quick global check to speed up this routine in the
928 * absence of bad pages.
930 if (atomic_long_read(&num_poisoned_pages
) == 0)
933 for (i
= 0; i
< nr_pages
; i
++) {
934 if (PageHWPoison(&memmap
[i
])) {
935 num_poisoned_pages_dec();
936 ClearPageHWPoison(&memmap
[i
]);
941 static inline void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
946 void sparse_remove_section(struct mem_section
*ms
, unsigned long pfn
,
947 unsigned long nr_pages
, unsigned long map_offset
,
948 struct vmem_altmap
*altmap
)
950 clear_hwpoisoned_pages(pfn_to_page(pfn
) + map_offset
,
951 nr_pages
- map_offset
);
952 section_deactivate(pfn
, nr_pages
, altmap
);
954 #endif /* CONFIG_MEMORY_HOTPLUG */