]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/sparse.c
net: wan: x25_asy: mark expected switch fall-through
[mirror_ubuntu-bionic-kernel.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21 * Permanent SPARSEMEM data:
22 *
23 * 1) mem_section - memory sections, mem_map's for valid memory
24 */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section *mem_section[NR_SECTION_ROOTS]
27 ____cacheline_internodealigned_in_smp;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30 ____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36 * If we did not store the node number in the page then we have to
37 * do a lookup in the section_to_node_table in order to find which
38 * node the page belongs to.
39 */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45
46 int page_to_nid(const struct page *page)
47 {
48 return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51
52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54 section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65 struct mem_section *section = NULL;
66 unsigned long array_size = SECTIONS_PER_ROOT *
67 sizeof(struct mem_section);
68
69 if (slab_is_available())
70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 else
72 section = memblock_virt_alloc_node(array_size, nid);
73
74 return section;
75 }
76
77 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
78 {
79 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80 struct mem_section *section;
81
82 if (mem_section[root])
83 return -EEXIST;
84
85 section = sparse_index_alloc(nid);
86 if (!section)
87 return -ENOMEM;
88
89 mem_section[root] = section;
90
91 return 0;
92 }
93 #else /* !SPARSEMEM_EXTREME */
94 static inline int sparse_index_init(unsigned long section_nr, int nid)
95 {
96 return 0;
97 }
98 #endif
99
100 #ifdef CONFIG_SPARSEMEM_EXTREME
101 int __section_nr(struct mem_section* ms)
102 {
103 unsigned long root_nr;
104 struct mem_section* root;
105
106 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
107 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
108 if (!root)
109 continue;
110
111 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
112 break;
113 }
114
115 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
116
117 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
118 }
119 #else
120 int __section_nr(struct mem_section* ms)
121 {
122 return (int)(ms - mem_section[0]);
123 }
124 #endif
125
126 /*
127 * During early boot, before section_mem_map is used for an actual
128 * mem_map, we use section_mem_map to store the section's NUMA
129 * node. This keeps us from having to use another data structure. The
130 * node information is cleared just before we store the real mem_map.
131 */
132 static inline unsigned long sparse_encode_early_nid(int nid)
133 {
134 return (nid << SECTION_NID_SHIFT);
135 }
136
137 static inline int sparse_early_nid(struct mem_section *section)
138 {
139 return (section->section_mem_map >> SECTION_NID_SHIFT);
140 }
141
142 /* Validate the physical addressing limitations of the model */
143 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
144 unsigned long *end_pfn)
145 {
146 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
147
148 /*
149 * Sanity checks - do not allow an architecture to pass
150 * in larger pfns than the maximum scope of sparsemem:
151 */
152 if (*start_pfn > max_sparsemem_pfn) {
153 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
154 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
155 *start_pfn, *end_pfn, max_sparsemem_pfn);
156 WARN_ON_ONCE(1);
157 *start_pfn = max_sparsemem_pfn;
158 *end_pfn = max_sparsemem_pfn;
159 } else if (*end_pfn > max_sparsemem_pfn) {
160 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
161 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
162 *start_pfn, *end_pfn, max_sparsemem_pfn);
163 WARN_ON_ONCE(1);
164 *end_pfn = max_sparsemem_pfn;
165 }
166 }
167
168 /*
169 * There are a number of times that we loop over NR_MEM_SECTIONS,
170 * looking for section_present() on each. But, when we have very
171 * large physical address spaces, NR_MEM_SECTIONS can also be
172 * very large which makes the loops quite long.
173 *
174 * Keeping track of this gives us an easy way to break out of
175 * those loops early.
176 */
177 int __highest_present_section_nr;
178 static void section_mark_present(struct mem_section *ms)
179 {
180 int section_nr = __section_nr(ms);
181
182 if (section_nr > __highest_present_section_nr)
183 __highest_present_section_nr = section_nr;
184
185 ms->section_mem_map |= SECTION_MARKED_PRESENT;
186 }
187
188 static inline int next_present_section_nr(int section_nr)
189 {
190 do {
191 section_nr++;
192 if (present_section_nr(section_nr))
193 return section_nr;
194 } while ((section_nr < NR_MEM_SECTIONS) &&
195 (section_nr <= __highest_present_section_nr));
196
197 return -1;
198 }
199 #define for_each_present_section_nr(start, section_nr) \
200 for (section_nr = next_present_section_nr(start-1); \
201 ((section_nr >= 0) && \
202 (section_nr < NR_MEM_SECTIONS) && \
203 (section_nr <= __highest_present_section_nr)); \
204 section_nr = next_present_section_nr(section_nr))
205
206 /* Record a memory area against a node. */
207 void __init memory_present(int nid, unsigned long start, unsigned long end)
208 {
209 unsigned long pfn;
210
211 start &= PAGE_SECTION_MASK;
212 mminit_validate_memmodel_limits(&start, &end);
213 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
214 unsigned long section = pfn_to_section_nr(pfn);
215 struct mem_section *ms;
216
217 sparse_index_init(section, nid);
218 set_section_nid(section, nid);
219
220 ms = __nr_to_section(section);
221 if (!ms->section_mem_map) {
222 ms->section_mem_map = sparse_encode_early_nid(nid) |
223 SECTION_IS_ONLINE;
224 section_mark_present(ms);
225 }
226 }
227 }
228
229 /*
230 * Only used by the i386 NUMA architecures, but relatively
231 * generic code.
232 */
233 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
234 unsigned long end_pfn)
235 {
236 unsigned long pfn;
237 unsigned long nr_pages = 0;
238
239 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
240 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
241 if (nid != early_pfn_to_nid(pfn))
242 continue;
243
244 if (pfn_present(pfn))
245 nr_pages += PAGES_PER_SECTION;
246 }
247
248 return nr_pages * sizeof(struct page);
249 }
250
251 /*
252 * Subtle, we encode the real pfn into the mem_map such that
253 * the identity pfn - section_mem_map will return the actual
254 * physical page frame number.
255 */
256 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
257 {
258 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
259 }
260
261 /*
262 * Decode mem_map from the coded memmap
263 */
264 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
265 {
266 /* mask off the extra low bits of information */
267 coded_mem_map &= SECTION_MAP_MASK;
268 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
269 }
270
271 static int __meminit sparse_init_one_section(struct mem_section *ms,
272 unsigned long pnum, struct page *mem_map,
273 unsigned long *pageblock_bitmap)
274 {
275 if (!present_section(ms))
276 return -EINVAL;
277
278 ms->section_mem_map &= ~SECTION_MAP_MASK;
279 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
280 SECTION_HAS_MEM_MAP;
281 ms->pageblock_flags = pageblock_bitmap;
282
283 return 1;
284 }
285
286 unsigned long usemap_size(void)
287 {
288 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
289 }
290
291 #ifdef CONFIG_MEMORY_HOTPLUG
292 static unsigned long *__kmalloc_section_usemap(void)
293 {
294 return kmalloc(usemap_size(), GFP_KERNEL);
295 }
296 #endif /* CONFIG_MEMORY_HOTPLUG */
297
298 #ifdef CONFIG_MEMORY_HOTREMOVE
299 static unsigned long * __init
300 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
301 unsigned long size)
302 {
303 unsigned long goal, limit;
304 unsigned long *p;
305 int nid;
306 /*
307 * A page may contain usemaps for other sections preventing the
308 * page being freed and making a section unremovable while
309 * other sections referencing the usemap remain active. Similarly,
310 * a pgdat can prevent a section being removed. If section A
311 * contains a pgdat and section B contains the usemap, both
312 * sections become inter-dependent. This allocates usemaps
313 * from the same section as the pgdat where possible to avoid
314 * this problem.
315 */
316 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
317 limit = goal + (1UL << PA_SECTION_SHIFT);
318 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
319 again:
320 p = memblock_virt_alloc_try_nid_nopanic(size,
321 SMP_CACHE_BYTES, goal, limit,
322 nid);
323 if (!p && limit) {
324 limit = 0;
325 goto again;
326 }
327 return p;
328 }
329
330 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
331 {
332 unsigned long usemap_snr, pgdat_snr;
333 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
334 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
335 struct pglist_data *pgdat = NODE_DATA(nid);
336 int usemap_nid;
337
338 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
339 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
340 if (usemap_snr == pgdat_snr)
341 return;
342
343 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
344 /* skip redundant message */
345 return;
346
347 old_usemap_snr = usemap_snr;
348 old_pgdat_snr = pgdat_snr;
349
350 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
351 if (usemap_nid != nid) {
352 pr_info("node %d must be removed before remove section %ld\n",
353 nid, usemap_snr);
354 return;
355 }
356 /*
357 * There is a circular dependency.
358 * Some platforms allow un-removable section because they will just
359 * gather other removable sections for dynamic partitioning.
360 * Just notify un-removable section's number here.
361 */
362 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
363 usemap_snr, pgdat_snr, nid);
364 }
365 #else
366 static unsigned long * __init
367 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
368 unsigned long size)
369 {
370 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
371 }
372
373 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
374 {
375 }
376 #endif /* CONFIG_MEMORY_HOTREMOVE */
377
378 static void __init sparse_early_usemaps_alloc_node(void *data,
379 unsigned long pnum_begin,
380 unsigned long pnum_end,
381 unsigned long usemap_count, int nodeid)
382 {
383 void *usemap;
384 unsigned long pnum;
385 unsigned long **usemap_map = (unsigned long **)data;
386 int size = usemap_size();
387
388 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
389 size * usemap_count);
390 if (!usemap) {
391 pr_warn("%s: allocation failed\n", __func__);
392 return;
393 }
394
395 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
396 if (!present_section_nr(pnum))
397 continue;
398 usemap_map[pnum] = usemap;
399 usemap += size;
400 check_usemap_section_nr(nodeid, usemap_map[pnum]);
401 }
402 }
403
404 #ifndef CONFIG_SPARSEMEM_VMEMMAP
405 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
406 {
407 struct page *map;
408 unsigned long size;
409
410 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
411 if (map)
412 return map;
413
414 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
415 map = memblock_virt_alloc_try_nid(size,
416 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
417 BOOTMEM_ALLOC_ACCESSIBLE, nid);
418 return map;
419 }
420 void __init sparse_mem_maps_populate_node(struct page **map_map,
421 unsigned long pnum_begin,
422 unsigned long pnum_end,
423 unsigned long map_count, int nodeid)
424 {
425 void *map;
426 unsigned long pnum;
427 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
428
429 map = alloc_remap(nodeid, size * map_count);
430 if (map) {
431 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
432 if (!present_section_nr(pnum))
433 continue;
434 map_map[pnum] = map;
435 map += size;
436 }
437 return;
438 }
439
440 size = PAGE_ALIGN(size);
441 map = memblock_virt_alloc_try_nid(size * map_count,
442 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
443 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
444 if (map) {
445 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
446 if (!present_section_nr(pnum))
447 continue;
448 map_map[pnum] = map;
449 map += size;
450 }
451 return;
452 }
453
454 /* fallback */
455 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
456 struct mem_section *ms;
457
458 if (!present_section_nr(pnum))
459 continue;
460 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
461 if (map_map[pnum])
462 continue;
463 ms = __nr_to_section(pnum);
464 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
465 __func__);
466 ms->section_mem_map = 0;
467 }
468 }
469 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
470
471 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
472 static void __init sparse_early_mem_maps_alloc_node(void *data,
473 unsigned long pnum_begin,
474 unsigned long pnum_end,
475 unsigned long map_count, int nodeid)
476 {
477 struct page **map_map = (struct page **)data;
478 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
479 map_count, nodeid);
480 }
481 #else
482 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
483 {
484 struct page *map;
485 struct mem_section *ms = __nr_to_section(pnum);
486 int nid = sparse_early_nid(ms);
487
488 map = sparse_mem_map_populate(pnum, nid);
489 if (map)
490 return map;
491
492 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
493 __func__);
494 ms->section_mem_map = 0;
495 return NULL;
496 }
497 #endif
498
499 void __weak __meminit vmemmap_populate_print_last(void)
500 {
501 }
502
503 /**
504 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
505 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
506 */
507 static void __init alloc_usemap_and_memmap(void (*alloc_func)
508 (void *, unsigned long, unsigned long,
509 unsigned long, int), void *data)
510 {
511 unsigned long pnum;
512 unsigned long map_count;
513 int nodeid_begin = 0;
514 unsigned long pnum_begin = 0;
515
516 for_each_present_section_nr(0, pnum) {
517 struct mem_section *ms;
518
519 ms = __nr_to_section(pnum);
520 nodeid_begin = sparse_early_nid(ms);
521 pnum_begin = pnum;
522 break;
523 }
524 map_count = 1;
525 for_each_present_section_nr(pnum_begin + 1, pnum) {
526 struct mem_section *ms;
527 int nodeid;
528
529 ms = __nr_to_section(pnum);
530 nodeid = sparse_early_nid(ms);
531 if (nodeid == nodeid_begin) {
532 map_count++;
533 continue;
534 }
535 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
536 alloc_func(data, pnum_begin, pnum,
537 map_count, nodeid_begin);
538 /* new start, update count etc*/
539 nodeid_begin = nodeid;
540 pnum_begin = pnum;
541 map_count = 1;
542 }
543 /* ok, last chunk */
544 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
545 map_count, nodeid_begin);
546 }
547
548 /*
549 * Allocate the accumulated non-linear sections, allocate a mem_map
550 * for each and record the physical to section mapping.
551 */
552 void __init sparse_init(void)
553 {
554 unsigned long pnum;
555 struct page *map;
556 unsigned long *usemap;
557 unsigned long **usemap_map;
558 int size;
559 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
560 int size2;
561 struct page **map_map;
562 #endif
563
564 /* see include/linux/mmzone.h 'struct mem_section' definition */
565 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
566
567 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
568 set_pageblock_order();
569
570 /*
571 * map is using big page (aka 2M in x86 64 bit)
572 * usemap is less one page (aka 24 bytes)
573 * so alloc 2M (with 2M align) and 24 bytes in turn will
574 * make next 2M slip to one more 2M later.
575 * then in big system, the memory will have a lot of holes...
576 * here try to allocate 2M pages continuously.
577 *
578 * powerpc need to call sparse_init_one_section right after each
579 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
580 */
581 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
582 usemap_map = memblock_virt_alloc(size, 0);
583 if (!usemap_map)
584 panic("can not allocate usemap_map\n");
585 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
586 (void *)usemap_map);
587
588 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
589 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
590 map_map = memblock_virt_alloc(size2, 0);
591 if (!map_map)
592 panic("can not allocate map_map\n");
593 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
594 (void *)map_map);
595 #endif
596
597 for_each_present_section_nr(0, pnum) {
598 usemap = usemap_map[pnum];
599 if (!usemap)
600 continue;
601
602 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
603 map = map_map[pnum];
604 #else
605 map = sparse_early_mem_map_alloc(pnum);
606 #endif
607 if (!map)
608 continue;
609
610 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
611 usemap);
612 }
613
614 vmemmap_populate_print_last();
615
616 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
617 memblock_free_early(__pa(map_map), size2);
618 #endif
619 memblock_free_early(__pa(usemap_map), size);
620 }
621
622 #ifdef CONFIG_MEMORY_HOTPLUG
623
624 /* Mark all memory sections within the pfn range as online */
625 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
626 {
627 unsigned long pfn;
628
629 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
630 unsigned long section_nr = pfn_to_section_nr(pfn);
631 struct mem_section *ms;
632
633 /* onlining code should never touch invalid ranges */
634 if (WARN_ON(!valid_section_nr(section_nr)))
635 continue;
636
637 ms = __nr_to_section(section_nr);
638 ms->section_mem_map |= SECTION_IS_ONLINE;
639 }
640 }
641
642 #ifdef CONFIG_MEMORY_HOTREMOVE
643 /* Mark all memory sections within the pfn range as online */
644 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
645 {
646 unsigned long pfn;
647
648 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
649 unsigned long section_nr = pfn_to_section_nr(start_pfn);
650 struct mem_section *ms;
651
652 /*
653 * TODO this needs some double checking. Offlining code makes
654 * sure to check pfn_valid but those checks might be just bogus
655 */
656 if (WARN_ON(!valid_section_nr(section_nr)))
657 continue;
658
659 ms = __nr_to_section(section_nr);
660 ms->section_mem_map &= ~SECTION_IS_ONLINE;
661 }
662 }
663 #endif
664
665 #ifdef CONFIG_SPARSEMEM_VMEMMAP
666 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
667 {
668 /* This will make the necessary allocations eventually. */
669 return sparse_mem_map_populate(pnum, nid);
670 }
671 static void __kfree_section_memmap(struct page *memmap)
672 {
673 unsigned long start = (unsigned long)memmap;
674 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
675
676 vmemmap_free(start, end);
677 }
678 #ifdef CONFIG_MEMORY_HOTREMOVE
679 static void free_map_bootmem(struct page *memmap)
680 {
681 unsigned long start = (unsigned long)memmap;
682 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
683
684 vmemmap_free(start, end);
685 }
686 #endif /* CONFIG_MEMORY_HOTREMOVE */
687 #else
688 static struct page *__kmalloc_section_memmap(void)
689 {
690 struct page *page, *ret;
691 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
692
693 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
694 if (page)
695 goto got_map_page;
696
697 ret = vmalloc(memmap_size);
698 if (ret)
699 goto got_map_ptr;
700
701 return NULL;
702 got_map_page:
703 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
704 got_map_ptr:
705
706 return ret;
707 }
708
709 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
710 {
711 return __kmalloc_section_memmap();
712 }
713
714 static void __kfree_section_memmap(struct page *memmap)
715 {
716 if (is_vmalloc_addr(memmap))
717 vfree(memmap);
718 else
719 free_pages((unsigned long)memmap,
720 get_order(sizeof(struct page) * PAGES_PER_SECTION));
721 }
722
723 #ifdef CONFIG_MEMORY_HOTREMOVE
724 static void free_map_bootmem(struct page *memmap)
725 {
726 unsigned long maps_section_nr, removing_section_nr, i;
727 unsigned long magic, nr_pages;
728 struct page *page = virt_to_page(memmap);
729
730 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
731 >> PAGE_SHIFT;
732
733 for (i = 0; i < nr_pages; i++, page++) {
734 magic = (unsigned long) page->freelist;
735
736 BUG_ON(magic == NODE_INFO);
737
738 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
739 removing_section_nr = page_private(page);
740
741 /*
742 * When this function is called, the removing section is
743 * logical offlined state. This means all pages are isolated
744 * from page allocator. If removing section's memmap is placed
745 * on the same section, it must not be freed.
746 * If it is freed, page allocator may allocate it which will
747 * be removed physically soon.
748 */
749 if (maps_section_nr != removing_section_nr)
750 put_page_bootmem(page);
751 }
752 }
753 #endif /* CONFIG_MEMORY_HOTREMOVE */
754 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
755
756 /*
757 * returns the number of sections whose mem_maps were properly
758 * set. If this is <=0, then that means that the passed-in
759 * map was not consumed and must be freed.
760 */
761 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
762 {
763 unsigned long section_nr = pfn_to_section_nr(start_pfn);
764 struct mem_section *ms;
765 struct page *memmap;
766 unsigned long *usemap;
767 unsigned long flags;
768 int ret;
769
770 /*
771 * no locking for this, because it does its own
772 * plus, it does a kmalloc
773 */
774 ret = sparse_index_init(section_nr, pgdat->node_id);
775 if (ret < 0 && ret != -EEXIST)
776 return ret;
777 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
778 if (!memmap)
779 return -ENOMEM;
780 usemap = __kmalloc_section_usemap();
781 if (!usemap) {
782 __kfree_section_memmap(memmap);
783 return -ENOMEM;
784 }
785
786 pgdat_resize_lock(pgdat, &flags);
787
788 ms = __pfn_to_section(start_pfn);
789 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
790 ret = -EEXIST;
791 goto out;
792 }
793
794 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
795
796 section_mark_present(ms);
797
798 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
799
800 out:
801 pgdat_resize_unlock(pgdat, &flags);
802 if (ret <= 0) {
803 kfree(usemap);
804 __kfree_section_memmap(memmap);
805 }
806 return ret;
807 }
808
809 #ifdef CONFIG_MEMORY_HOTREMOVE
810 #ifdef CONFIG_MEMORY_FAILURE
811 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
812 {
813 int i;
814
815 if (!memmap)
816 return;
817
818 for (i = 0; i < nr_pages; i++) {
819 if (PageHWPoison(&memmap[i])) {
820 atomic_long_sub(1, &num_poisoned_pages);
821 ClearPageHWPoison(&memmap[i]);
822 }
823 }
824 }
825 #else
826 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
827 {
828 }
829 #endif
830
831 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
832 {
833 struct page *usemap_page;
834
835 if (!usemap)
836 return;
837
838 usemap_page = virt_to_page(usemap);
839 /*
840 * Check to see if allocation came from hot-plug-add
841 */
842 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
843 kfree(usemap);
844 if (memmap)
845 __kfree_section_memmap(memmap);
846 return;
847 }
848
849 /*
850 * The usemap came from bootmem. This is packed with other usemaps
851 * on the section which has pgdat at boot time. Just keep it as is now.
852 */
853
854 if (memmap)
855 free_map_bootmem(memmap);
856 }
857
858 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
859 unsigned long map_offset)
860 {
861 struct page *memmap = NULL;
862 unsigned long *usemap = NULL, flags;
863 struct pglist_data *pgdat = zone->zone_pgdat;
864
865 pgdat_resize_lock(pgdat, &flags);
866 if (ms->section_mem_map) {
867 usemap = ms->pageblock_flags;
868 memmap = sparse_decode_mem_map(ms->section_mem_map,
869 __section_nr(ms));
870 ms->section_mem_map = 0;
871 ms->pageblock_flags = NULL;
872 }
873 pgdat_resize_unlock(pgdat, &flags);
874
875 clear_hwpoisoned_pages(memmap + map_offset,
876 PAGES_PER_SECTION - map_offset);
877 free_section_usemap(memmap, usemap);
878 }
879 #endif /* CONFIG_MEMORY_HOTREMOVE */
880 #endif /* CONFIG_MEMORY_HOTPLUG */