]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/sparse.c
drm/fb: add support for not enabling fbcon on non-desktop displays [v2]
[mirror_ubuntu-bionic-kernel.git] / mm / sparse.c
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
13
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18
19 /*
20 * Permanent SPARSEMEM data:
21 *
22 * 1) mem_section - memory sections, mem_map's for valid memory
23 */
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26 ____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47 return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
67
68 if (slab_is_available())
69 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 else
71 section = memblock_virt_alloc_node(array_size, nid);
72
73 return section;
74 }
75
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 struct mem_section *section;
80
81 if (mem_section[root])
82 return -EEXIST;
83
84 section = sparse_index_alloc(nid);
85 if (!section)
86 return -ENOMEM;
87
88 mem_section[root] = section;
89
90 return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95 return 0;
96 }
97 #endif
98
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102 unsigned long root_nr;
103 struct mem_section* root;
104
105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 if (!root)
108 continue;
109
110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 break;
112 }
113
114 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
115
116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121 return (int)(ms - mem_section[0]);
122 }
123 #endif
124
125 /*
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node. This keeps us from having to use another data structure. The
129 * node information is cleared just before we store the real mem_map.
130 */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133 return (nid << SECTION_NID_SHIFT);
134 }
135
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138 return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 unsigned long *end_pfn)
144 {
145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147 /*
148 * Sanity checks - do not allow an architecture to pass
149 * in larger pfns than the maximum scope of sparsemem:
150 */
151 if (*start_pfn > max_sparsemem_pfn) {
152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 *start_pfn, *end_pfn, max_sparsemem_pfn);
155 WARN_ON_ONCE(1);
156 *start_pfn = max_sparsemem_pfn;
157 *end_pfn = max_sparsemem_pfn;
158 } else if (*end_pfn > max_sparsemem_pfn) {
159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 *start_pfn, *end_pfn, max_sparsemem_pfn);
162 WARN_ON_ONCE(1);
163 *end_pfn = max_sparsemem_pfn;
164 }
165 }
166
167 /*
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each. But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
172 *
173 * Keeping track of this gives us an easy way to break out of
174 * those loops early.
175 */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179 int section_nr = __section_nr(ms);
180
181 if (section_nr > __highest_present_section_nr)
182 __highest_present_section_nr = section_nr;
183
184 ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186
187 static inline int next_present_section_nr(int section_nr)
188 {
189 do {
190 section_nr++;
191 if (present_section_nr(section_nr))
192 return section_nr;
193 } while ((section_nr < NR_MEM_SECTIONS) &&
194 (section_nr <= __highest_present_section_nr));
195
196 return -1;
197 }
198 #define for_each_present_section_nr(start, section_nr) \
199 for (section_nr = next_present_section_nr(start-1); \
200 ((section_nr >= 0) && \
201 (section_nr < NR_MEM_SECTIONS) && \
202 (section_nr <= __highest_present_section_nr)); \
203 section_nr = next_present_section_nr(section_nr))
204
205 /* Record a memory area against a node. */
206 void __init memory_present(int nid, unsigned long start, unsigned long end)
207 {
208 unsigned long pfn;
209
210 start &= PAGE_SECTION_MASK;
211 mminit_validate_memmodel_limits(&start, &end);
212 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
213 unsigned long section = pfn_to_section_nr(pfn);
214 struct mem_section *ms;
215
216 sparse_index_init(section, nid);
217 set_section_nid(section, nid);
218
219 ms = __nr_to_section(section);
220 if (!ms->section_mem_map) {
221 ms->section_mem_map = sparse_encode_early_nid(nid) |
222 SECTION_IS_ONLINE;
223 section_mark_present(ms);
224 }
225 }
226 }
227
228 /*
229 * Only used by the i386 NUMA architecures, but relatively
230 * generic code.
231 */
232 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
233 unsigned long end_pfn)
234 {
235 unsigned long pfn;
236 unsigned long nr_pages = 0;
237
238 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
239 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
240 if (nid != early_pfn_to_nid(pfn))
241 continue;
242
243 if (pfn_present(pfn))
244 nr_pages += PAGES_PER_SECTION;
245 }
246
247 return nr_pages * sizeof(struct page);
248 }
249
250 /*
251 * Subtle, we encode the real pfn into the mem_map such that
252 * the identity pfn - section_mem_map will return the actual
253 * physical page frame number.
254 */
255 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
256 {
257 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
258 }
259
260 /*
261 * Decode mem_map from the coded memmap
262 */
263 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
264 {
265 /* mask off the extra low bits of information */
266 coded_mem_map &= SECTION_MAP_MASK;
267 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
268 }
269
270 static int __meminit sparse_init_one_section(struct mem_section *ms,
271 unsigned long pnum, struct page *mem_map,
272 unsigned long *pageblock_bitmap)
273 {
274 if (!present_section(ms))
275 return -EINVAL;
276
277 ms->section_mem_map &= ~SECTION_MAP_MASK;
278 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
279 SECTION_HAS_MEM_MAP;
280 ms->pageblock_flags = pageblock_bitmap;
281
282 return 1;
283 }
284
285 unsigned long usemap_size(void)
286 {
287 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
288 }
289
290 #ifdef CONFIG_MEMORY_HOTPLUG
291 static unsigned long *__kmalloc_section_usemap(void)
292 {
293 return kmalloc(usemap_size(), GFP_KERNEL);
294 }
295 #endif /* CONFIG_MEMORY_HOTPLUG */
296
297 #ifdef CONFIG_MEMORY_HOTREMOVE
298 static unsigned long * __init
299 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
300 unsigned long size)
301 {
302 unsigned long goal, limit;
303 unsigned long *p;
304 int nid;
305 /*
306 * A page may contain usemaps for other sections preventing the
307 * page being freed and making a section unremovable while
308 * other sections referencing the usemap remain active. Similarly,
309 * a pgdat can prevent a section being removed. If section A
310 * contains a pgdat and section B contains the usemap, both
311 * sections become inter-dependent. This allocates usemaps
312 * from the same section as the pgdat where possible to avoid
313 * this problem.
314 */
315 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
316 limit = goal + (1UL << PA_SECTION_SHIFT);
317 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
318 again:
319 p = memblock_virt_alloc_try_nid_nopanic(size,
320 SMP_CACHE_BYTES, goal, limit,
321 nid);
322 if (!p && limit) {
323 limit = 0;
324 goto again;
325 }
326 return p;
327 }
328
329 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
330 {
331 unsigned long usemap_snr, pgdat_snr;
332 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
333 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
334 struct pglist_data *pgdat = NODE_DATA(nid);
335 int usemap_nid;
336
337 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
338 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
339 if (usemap_snr == pgdat_snr)
340 return;
341
342 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
343 /* skip redundant message */
344 return;
345
346 old_usemap_snr = usemap_snr;
347 old_pgdat_snr = pgdat_snr;
348
349 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
350 if (usemap_nid != nid) {
351 pr_info("node %d must be removed before remove section %ld\n",
352 nid, usemap_snr);
353 return;
354 }
355 /*
356 * There is a circular dependency.
357 * Some platforms allow un-removable section because they will just
358 * gather other removable sections for dynamic partitioning.
359 * Just notify un-removable section's number here.
360 */
361 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
362 usemap_snr, pgdat_snr, nid);
363 }
364 #else
365 static unsigned long * __init
366 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
367 unsigned long size)
368 {
369 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
370 }
371
372 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
373 {
374 }
375 #endif /* CONFIG_MEMORY_HOTREMOVE */
376
377 static void __init sparse_early_usemaps_alloc_node(void *data,
378 unsigned long pnum_begin,
379 unsigned long pnum_end,
380 unsigned long usemap_count, int nodeid)
381 {
382 void *usemap;
383 unsigned long pnum;
384 unsigned long **usemap_map = (unsigned long **)data;
385 int size = usemap_size();
386
387 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
388 size * usemap_count);
389 if (!usemap) {
390 pr_warn("%s: allocation failed\n", __func__);
391 return;
392 }
393
394 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395 if (!present_section_nr(pnum))
396 continue;
397 usemap_map[pnum] = usemap;
398 usemap += size;
399 check_usemap_section_nr(nodeid, usemap_map[pnum]);
400 }
401 }
402
403 #ifndef CONFIG_SPARSEMEM_VMEMMAP
404 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
405 {
406 struct page *map;
407 unsigned long size;
408
409 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
410 if (map)
411 return map;
412
413 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
414 map = memblock_virt_alloc_try_nid(size,
415 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
416 BOOTMEM_ALLOC_ACCESSIBLE, nid);
417 return map;
418 }
419 void __init sparse_mem_maps_populate_node(struct page **map_map,
420 unsigned long pnum_begin,
421 unsigned long pnum_end,
422 unsigned long map_count, int nodeid)
423 {
424 void *map;
425 unsigned long pnum;
426 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
427
428 map = alloc_remap(nodeid, size * map_count);
429 if (map) {
430 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
431 if (!present_section_nr(pnum))
432 continue;
433 map_map[pnum] = map;
434 map += size;
435 }
436 return;
437 }
438
439 size = PAGE_ALIGN(size);
440 map = memblock_virt_alloc_try_nid(size * map_count,
441 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
442 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
443 if (map) {
444 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
445 if (!present_section_nr(pnum))
446 continue;
447 map_map[pnum] = map;
448 map += size;
449 }
450 return;
451 }
452
453 /* fallback */
454 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
455 struct mem_section *ms;
456
457 if (!present_section_nr(pnum))
458 continue;
459 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
460 if (map_map[pnum])
461 continue;
462 ms = __nr_to_section(pnum);
463 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
464 __func__);
465 ms->section_mem_map = 0;
466 }
467 }
468 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
469
470 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
471 static void __init sparse_early_mem_maps_alloc_node(void *data,
472 unsigned long pnum_begin,
473 unsigned long pnum_end,
474 unsigned long map_count, int nodeid)
475 {
476 struct page **map_map = (struct page **)data;
477 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
478 map_count, nodeid);
479 }
480 #else
481 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
482 {
483 struct page *map;
484 struct mem_section *ms = __nr_to_section(pnum);
485 int nid = sparse_early_nid(ms);
486
487 map = sparse_mem_map_populate(pnum, nid);
488 if (map)
489 return map;
490
491 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
492 __func__);
493 ms->section_mem_map = 0;
494 return NULL;
495 }
496 #endif
497
498 void __weak __meminit vmemmap_populate_print_last(void)
499 {
500 }
501
502 /**
503 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
504 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
505 */
506 static void __init alloc_usemap_and_memmap(void (*alloc_func)
507 (void *, unsigned long, unsigned long,
508 unsigned long, int), void *data)
509 {
510 unsigned long pnum;
511 unsigned long map_count;
512 int nodeid_begin = 0;
513 unsigned long pnum_begin = 0;
514
515 for_each_present_section_nr(0, pnum) {
516 struct mem_section *ms;
517
518 ms = __nr_to_section(pnum);
519 nodeid_begin = sparse_early_nid(ms);
520 pnum_begin = pnum;
521 break;
522 }
523 map_count = 1;
524 for_each_present_section_nr(pnum_begin + 1, pnum) {
525 struct mem_section *ms;
526 int nodeid;
527
528 ms = __nr_to_section(pnum);
529 nodeid = sparse_early_nid(ms);
530 if (nodeid == nodeid_begin) {
531 map_count++;
532 continue;
533 }
534 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
535 alloc_func(data, pnum_begin, pnum,
536 map_count, nodeid_begin);
537 /* new start, update count etc*/
538 nodeid_begin = nodeid;
539 pnum_begin = pnum;
540 map_count = 1;
541 }
542 /* ok, last chunk */
543 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
544 map_count, nodeid_begin);
545 }
546
547 /*
548 * Allocate the accumulated non-linear sections, allocate a mem_map
549 * for each and record the physical to section mapping.
550 */
551 void __init sparse_init(void)
552 {
553 unsigned long pnum;
554 struct page *map;
555 unsigned long *usemap;
556 unsigned long **usemap_map;
557 int size;
558 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
559 int size2;
560 struct page **map_map;
561 #endif
562
563 /* see include/linux/mmzone.h 'struct mem_section' definition */
564 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
565
566 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
567 set_pageblock_order();
568
569 /*
570 * map is using big page (aka 2M in x86 64 bit)
571 * usemap is less one page (aka 24 bytes)
572 * so alloc 2M (with 2M align) and 24 bytes in turn will
573 * make next 2M slip to one more 2M later.
574 * then in big system, the memory will have a lot of holes...
575 * here try to allocate 2M pages continuously.
576 *
577 * powerpc need to call sparse_init_one_section right after each
578 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
579 */
580 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
581 usemap_map = memblock_virt_alloc(size, 0);
582 if (!usemap_map)
583 panic("can not allocate usemap_map\n");
584 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
585 (void *)usemap_map);
586
587 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
588 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
589 map_map = memblock_virt_alloc(size2, 0);
590 if (!map_map)
591 panic("can not allocate map_map\n");
592 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
593 (void *)map_map);
594 #endif
595
596 for_each_present_section_nr(0, pnum) {
597 usemap = usemap_map[pnum];
598 if (!usemap)
599 continue;
600
601 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
602 map = map_map[pnum];
603 #else
604 map = sparse_early_mem_map_alloc(pnum);
605 #endif
606 if (!map)
607 continue;
608
609 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
610 usemap);
611 }
612
613 vmemmap_populate_print_last();
614
615 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
616 memblock_free_early(__pa(map_map), size2);
617 #endif
618 memblock_free_early(__pa(usemap_map), size);
619 }
620
621 #ifdef CONFIG_MEMORY_HOTPLUG
622
623 /* Mark all memory sections within the pfn range as online */
624 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
625 {
626 unsigned long pfn;
627
628 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
629 unsigned long section_nr = pfn_to_section_nr(pfn);
630 struct mem_section *ms;
631
632 /* onlining code should never touch invalid ranges */
633 if (WARN_ON(!valid_section_nr(section_nr)))
634 continue;
635
636 ms = __nr_to_section(section_nr);
637 ms->section_mem_map |= SECTION_IS_ONLINE;
638 }
639 }
640
641 #ifdef CONFIG_MEMORY_HOTREMOVE
642 /* Mark all memory sections within the pfn range as online */
643 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
644 {
645 unsigned long pfn;
646
647 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
648 unsigned long section_nr = pfn_to_section_nr(start_pfn);
649 struct mem_section *ms;
650
651 /*
652 * TODO this needs some double checking. Offlining code makes
653 * sure to check pfn_valid but those checks might be just bogus
654 */
655 if (WARN_ON(!valid_section_nr(section_nr)))
656 continue;
657
658 ms = __nr_to_section(section_nr);
659 ms->section_mem_map &= ~SECTION_IS_ONLINE;
660 }
661 }
662 #endif
663
664 #ifdef CONFIG_SPARSEMEM_VMEMMAP
665 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
666 {
667 /* This will make the necessary allocations eventually. */
668 return sparse_mem_map_populate(pnum, nid);
669 }
670 static void __kfree_section_memmap(struct page *memmap)
671 {
672 unsigned long start = (unsigned long)memmap;
673 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
674
675 vmemmap_free(start, end);
676 }
677 #ifdef CONFIG_MEMORY_HOTREMOVE
678 static void free_map_bootmem(struct page *memmap)
679 {
680 unsigned long start = (unsigned long)memmap;
681 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
682
683 vmemmap_free(start, end);
684 }
685 #endif /* CONFIG_MEMORY_HOTREMOVE */
686 #else
687 static struct page *__kmalloc_section_memmap(void)
688 {
689 struct page *page, *ret;
690 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
691
692 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
693 if (page)
694 goto got_map_page;
695
696 ret = vmalloc(memmap_size);
697 if (ret)
698 goto got_map_ptr;
699
700 return NULL;
701 got_map_page:
702 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
703 got_map_ptr:
704
705 return ret;
706 }
707
708 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
709 {
710 return __kmalloc_section_memmap();
711 }
712
713 static void __kfree_section_memmap(struct page *memmap)
714 {
715 if (is_vmalloc_addr(memmap))
716 vfree(memmap);
717 else
718 free_pages((unsigned long)memmap,
719 get_order(sizeof(struct page) * PAGES_PER_SECTION));
720 }
721
722 #ifdef CONFIG_MEMORY_HOTREMOVE
723 static void free_map_bootmem(struct page *memmap)
724 {
725 unsigned long maps_section_nr, removing_section_nr, i;
726 unsigned long magic, nr_pages;
727 struct page *page = virt_to_page(memmap);
728
729 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
730 >> PAGE_SHIFT;
731
732 for (i = 0; i < nr_pages; i++, page++) {
733 magic = (unsigned long) page->freelist;
734
735 BUG_ON(magic == NODE_INFO);
736
737 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
738 removing_section_nr = page_private(page);
739
740 /*
741 * When this function is called, the removing section is
742 * logical offlined state. This means all pages are isolated
743 * from page allocator. If removing section's memmap is placed
744 * on the same section, it must not be freed.
745 * If it is freed, page allocator may allocate it which will
746 * be removed physically soon.
747 */
748 if (maps_section_nr != removing_section_nr)
749 put_page_bootmem(page);
750 }
751 }
752 #endif /* CONFIG_MEMORY_HOTREMOVE */
753 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
754
755 /*
756 * returns the number of sections whose mem_maps were properly
757 * set. If this is <=0, then that means that the passed-in
758 * map was not consumed and must be freed.
759 */
760 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
761 {
762 unsigned long section_nr = pfn_to_section_nr(start_pfn);
763 struct mem_section *ms;
764 struct page *memmap;
765 unsigned long *usemap;
766 unsigned long flags;
767 int ret;
768
769 /*
770 * no locking for this, because it does its own
771 * plus, it does a kmalloc
772 */
773 ret = sparse_index_init(section_nr, pgdat->node_id);
774 if (ret < 0 && ret != -EEXIST)
775 return ret;
776 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
777 if (!memmap)
778 return -ENOMEM;
779 usemap = __kmalloc_section_usemap();
780 if (!usemap) {
781 __kfree_section_memmap(memmap);
782 return -ENOMEM;
783 }
784
785 pgdat_resize_lock(pgdat, &flags);
786
787 ms = __pfn_to_section(start_pfn);
788 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
789 ret = -EEXIST;
790 goto out;
791 }
792
793 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
794
795 section_mark_present(ms);
796
797 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
798
799 out:
800 pgdat_resize_unlock(pgdat, &flags);
801 if (ret <= 0) {
802 kfree(usemap);
803 __kfree_section_memmap(memmap);
804 }
805 return ret;
806 }
807
808 #ifdef CONFIG_MEMORY_HOTREMOVE
809 #ifdef CONFIG_MEMORY_FAILURE
810 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
811 {
812 int i;
813
814 if (!memmap)
815 return;
816
817 for (i = 0; i < nr_pages; i++) {
818 if (PageHWPoison(&memmap[i])) {
819 atomic_long_sub(1, &num_poisoned_pages);
820 ClearPageHWPoison(&memmap[i]);
821 }
822 }
823 }
824 #else
825 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
826 {
827 }
828 #endif
829
830 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
831 {
832 struct page *usemap_page;
833
834 if (!usemap)
835 return;
836
837 usemap_page = virt_to_page(usemap);
838 /*
839 * Check to see if allocation came from hot-plug-add
840 */
841 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
842 kfree(usemap);
843 if (memmap)
844 __kfree_section_memmap(memmap);
845 return;
846 }
847
848 /*
849 * The usemap came from bootmem. This is packed with other usemaps
850 * on the section which has pgdat at boot time. Just keep it as is now.
851 */
852
853 if (memmap)
854 free_map_bootmem(memmap);
855 }
856
857 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
858 unsigned long map_offset)
859 {
860 struct page *memmap = NULL;
861 unsigned long *usemap = NULL, flags;
862 struct pglist_data *pgdat = zone->zone_pgdat;
863
864 pgdat_resize_lock(pgdat, &flags);
865 if (ms->section_mem_map) {
866 usemap = ms->pageblock_flags;
867 memmap = sparse_decode_mem_map(ms->section_mem_map,
868 __section_nr(ms));
869 ms->section_mem_map = 0;
870 ms->pageblock_flags = NULL;
871 }
872 pgdat_resize_unlock(pgdat, &flags);
873
874 clear_hwpoisoned_pages(memmap + map_offset,
875 PAGES_PER_SECTION - map_offset);
876 free_section_usemap(memmap, usemap);
877 }
878 #endif /* CONFIG_MEMORY_HOTREMOVE */
879 #endif /* CONFIG_MEMORY_HOTPLUG */