]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/sparse.c
ACPI: sysfs: Refactor param_get_trace_state() to drop dead code
[mirror_ubuntu-jammy-kernel.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16
17 #include "internal.h"
18 #include <asm/dma.h>
19
20 /*
21 * Permanent SPARSEMEM data:
22 *
23 * 1) mem_section - memory sections, mem_map's for valid memory
24 */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47 return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
67
68 if (slab_is_available()) {
69 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 } else {
71 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72 nid);
73 if (!section)
74 panic("%s: Failed to allocate %lu bytes nid=%d\n",
75 __func__, array_size, nid);
76 }
77
78 return section;
79 }
80
81 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 {
83 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84 struct mem_section *section;
85
86 /*
87 * An existing section is possible in the sub-section hotplug
88 * case. First hot-add instantiates, follow-on hot-add reuses
89 * the existing section.
90 *
91 * The mem_hotplug_lock resolves the apparent race below.
92 */
93 if (mem_section[root])
94 return 0;
95
96 section = sparse_index_alloc(nid);
97 if (!section)
98 return -ENOMEM;
99
100 mem_section[root] = section;
101
102 return 0;
103 }
104 #else /* !SPARSEMEM_EXTREME */
105 static inline int sparse_index_init(unsigned long section_nr, int nid)
106 {
107 return 0;
108 }
109 #endif
110
111 #ifdef CONFIG_SPARSEMEM_EXTREME
112 unsigned long __section_nr(struct mem_section *ms)
113 {
114 unsigned long root_nr;
115 struct mem_section *root = NULL;
116
117 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119 if (!root)
120 continue;
121
122 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123 break;
124 }
125
126 VM_BUG_ON(!root);
127
128 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129 }
130 #else
131 unsigned long __section_nr(struct mem_section *ms)
132 {
133 return (unsigned long)(ms - mem_section[0]);
134 }
135 #endif
136
137 /*
138 * During early boot, before section_mem_map is used for an actual
139 * mem_map, we use section_mem_map to store the section's NUMA
140 * node. This keeps us from having to use another data structure. The
141 * node information is cleared just before we store the real mem_map.
142 */
143 static inline unsigned long sparse_encode_early_nid(int nid)
144 {
145 return (nid << SECTION_NID_SHIFT);
146 }
147
148 static inline int sparse_early_nid(struct mem_section *section)
149 {
150 return (section->section_mem_map >> SECTION_NID_SHIFT);
151 }
152
153 /* Validate the physical addressing limitations of the model */
154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155 unsigned long *end_pfn)
156 {
157 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158
159 /*
160 * Sanity checks - do not allow an architecture to pass
161 * in larger pfns than the maximum scope of sparsemem:
162 */
163 if (*start_pfn > max_sparsemem_pfn) {
164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 *start_pfn, *end_pfn, max_sparsemem_pfn);
167 WARN_ON_ONCE(1);
168 *start_pfn = max_sparsemem_pfn;
169 *end_pfn = max_sparsemem_pfn;
170 } else if (*end_pfn > max_sparsemem_pfn) {
171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 *start_pfn, *end_pfn, max_sparsemem_pfn);
174 WARN_ON_ONCE(1);
175 *end_pfn = max_sparsemem_pfn;
176 }
177 }
178
179 /*
180 * There are a number of times that we loop over NR_MEM_SECTIONS,
181 * looking for section_present() on each. But, when we have very
182 * large physical address spaces, NR_MEM_SECTIONS can also be
183 * very large which makes the loops quite long.
184 *
185 * Keeping track of this gives us an easy way to break out of
186 * those loops early.
187 */
188 unsigned long __highest_present_section_nr;
189 static void section_mark_present(struct mem_section *ms)
190 {
191 unsigned long section_nr = __section_nr(ms);
192
193 if (section_nr > __highest_present_section_nr)
194 __highest_present_section_nr = section_nr;
195
196 ms->section_mem_map |= SECTION_MARKED_PRESENT;
197 }
198
199 #define for_each_present_section_nr(start, section_nr) \
200 for (section_nr = next_present_section_nr(start-1); \
201 ((section_nr != -1) && \
202 (section_nr <= __highest_present_section_nr)); \
203 section_nr = next_present_section_nr(section_nr))
204
205 static inline unsigned long first_present_section_nr(void)
206 {
207 return next_present_section_nr(-1);
208 }
209
210 #ifdef CONFIG_SPARSEMEM_VMEMMAP
211 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
212 unsigned long nr_pages)
213 {
214 int idx = subsection_map_index(pfn);
215 int end = subsection_map_index(pfn + nr_pages - 1);
216
217 bitmap_set(map, idx, end - idx + 1);
218 }
219
220 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221 {
222 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
223 unsigned long nr, start_sec = pfn_to_section_nr(pfn);
224
225 if (!nr_pages)
226 return;
227
228 for (nr = start_sec; nr <= end_sec; nr++) {
229 struct mem_section *ms;
230 unsigned long pfns;
231
232 pfns = min(nr_pages, PAGES_PER_SECTION
233 - (pfn & ~PAGE_SECTION_MASK));
234 ms = __nr_to_section(nr);
235 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
236
237 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
238 pfns, subsection_map_index(pfn),
239 subsection_map_index(pfn + pfns - 1));
240
241 pfn += pfns;
242 nr_pages -= pfns;
243 }
244 }
245 #else
246 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
247 {
248 }
249 #endif
250
251 /* Record a memory area against a node. */
252 static void __init memory_present(int nid, unsigned long start, unsigned long end)
253 {
254 unsigned long pfn;
255
256 #ifdef CONFIG_SPARSEMEM_EXTREME
257 if (unlikely(!mem_section)) {
258 unsigned long size, align;
259
260 size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
261 align = 1 << (INTERNODE_CACHE_SHIFT);
262 mem_section = memblock_alloc(size, align);
263 if (!mem_section)
264 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
265 __func__, size, align);
266 }
267 #endif
268
269 start &= PAGE_SECTION_MASK;
270 mminit_validate_memmodel_limits(&start, &end);
271 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
272 unsigned long section = pfn_to_section_nr(pfn);
273 struct mem_section *ms;
274
275 sparse_index_init(section, nid);
276 set_section_nid(section, nid);
277
278 ms = __nr_to_section(section);
279 if (!ms->section_mem_map) {
280 ms->section_mem_map = sparse_encode_early_nid(nid) |
281 SECTION_IS_ONLINE;
282 section_mark_present(ms);
283 }
284 }
285 }
286
287 /*
288 * Mark all memblocks as present using memory_present().
289 * This is a convenience function that is useful to mark all of the systems
290 * memory as present during initialization.
291 */
292 static void __init memblocks_present(void)
293 {
294 unsigned long start, end;
295 int i, nid;
296
297 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
298 memory_present(nid, start, end);
299 }
300
301 /*
302 * Subtle, we encode the real pfn into the mem_map such that
303 * the identity pfn - section_mem_map will return the actual
304 * physical page frame number.
305 */
306 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
307 {
308 unsigned long coded_mem_map =
309 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
310 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
311 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
312 return coded_mem_map;
313 }
314
315 #ifdef CONFIG_MEMORY_HOTPLUG
316 /*
317 * Decode mem_map from the coded memmap
318 */
319 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
320 {
321 /* mask off the extra low bits of information */
322 coded_mem_map &= SECTION_MAP_MASK;
323 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
324 }
325 #endif /* CONFIG_MEMORY_HOTPLUG */
326
327 static void __meminit sparse_init_one_section(struct mem_section *ms,
328 unsigned long pnum, struct page *mem_map,
329 struct mem_section_usage *usage, unsigned long flags)
330 {
331 ms->section_mem_map &= ~SECTION_MAP_MASK;
332 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
333 | SECTION_HAS_MEM_MAP | flags;
334 ms->usage = usage;
335 }
336
337 static unsigned long usemap_size(void)
338 {
339 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
340 }
341
342 size_t mem_section_usage_size(void)
343 {
344 return sizeof(struct mem_section_usage) + usemap_size();
345 }
346
347 #ifdef CONFIG_MEMORY_HOTREMOVE
348 static struct mem_section_usage * __init
349 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
350 unsigned long size)
351 {
352 struct mem_section_usage *usage;
353 unsigned long goal, limit;
354 int nid;
355 /*
356 * A page may contain usemaps for other sections preventing the
357 * page being freed and making a section unremovable while
358 * other sections referencing the usemap remain active. Similarly,
359 * a pgdat can prevent a section being removed. If section A
360 * contains a pgdat and section B contains the usemap, both
361 * sections become inter-dependent. This allocates usemaps
362 * from the same section as the pgdat where possible to avoid
363 * this problem.
364 */
365 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
366 limit = goal + (1UL << PA_SECTION_SHIFT);
367 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
368 again:
369 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
370 if (!usage && limit) {
371 limit = 0;
372 goto again;
373 }
374 return usage;
375 }
376
377 static void __init check_usemap_section_nr(int nid,
378 struct mem_section_usage *usage)
379 {
380 unsigned long usemap_snr, pgdat_snr;
381 static unsigned long old_usemap_snr;
382 static unsigned long old_pgdat_snr;
383 struct pglist_data *pgdat = NODE_DATA(nid);
384 int usemap_nid;
385
386 /* First call */
387 if (!old_usemap_snr) {
388 old_usemap_snr = NR_MEM_SECTIONS;
389 old_pgdat_snr = NR_MEM_SECTIONS;
390 }
391
392 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
393 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
394 if (usemap_snr == pgdat_snr)
395 return;
396
397 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
398 /* skip redundant message */
399 return;
400
401 old_usemap_snr = usemap_snr;
402 old_pgdat_snr = pgdat_snr;
403
404 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
405 if (usemap_nid != nid) {
406 pr_info("node %d must be removed before remove section %ld\n",
407 nid, usemap_snr);
408 return;
409 }
410 /*
411 * There is a circular dependency.
412 * Some platforms allow un-removable section because they will just
413 * gather other removable sections for dynamic partitioning.
414 * Just notify un-removable section's number here.
415 */
416 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
417 usemap_snr, pgdat_snr, nid);
418 }
419 #else
420 static struct mem_section_usage * __init
421 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
422 unsigned long size)
423 {
424 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
425 }
426
427 static void __init check_usemap_section_nr(int nid,
428 struct mem_section_usage *usage)
429 {
430 }
431 #endif /* CONFIG_MEMORY_HOTREMOVE */
432
433 #ifdef CONFIG_SPARSEMEM_VMEMMAP
434 static unsigned long __init section_map_size(void)
435 {
436 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
437 }
438
439 #else
440 static unsigned long __init section_map_size(void)
441 {
442 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
443 }
444
445 struct page __init *__populate_section_memmap(unsigned long pfn,
446 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
447 {
448 unsigned long size = section_map_size();
449 struct page *map = sparse_buffer_alloc(size);
450 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
451
452 if (map)
453 return map;
454
455 map = memblock_alloc_try_nid_raw(size, size, addr,
456 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
457 if (!map)
458 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
459 __func__, size, PAGE_SIZE, nid, &addr);
460
461 return map;
462 }
463 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
464
465 static void *sparsemap_buf __meminitdata;
466 static void *sparsemap_buf_end __meminitdata;
467
468 static inline void __meminit sparse_buffer_free(unsigned long size)
469 {
470 WARN_ON(!sparsemap_buf || size == 0);
471 memblock_free_early(__pa(sparsemap_buf), size);
472 }
473
474 static void __init sparse_buffer_init(unsigned long size, int nid)
475 {
476 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
477 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
478 /*
479 * Pre-allocated buffer is mainly used by __populate_section_memmap
480 * and we want it to be properly aligned to the section size - this is
481 * especially the case for VMEMMAP which maps memmap to PMDs
482 */
483 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
484 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
485 sparsemap_buf_end = sparsemap_buf + size;
486 }
487
488 static void __init sparse_buffer_fini(void)
489 {
490 unsigned long size = sparsemap_buf_end - sparsemap_buf;
491
492 if (sparsemap_buf && size > 0)
493 sparse_buffer_free(size);
494 sparsemap_buf = NULL;
495 }
496
497 void * __meminit sparse_buffer_alloc(unsigned long size)
498 {
499 void *ptr = NULL;
500
501 if (sparsemap_buf) {
502 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
503 if (ptr + size > sparsemap_buf_end)
504 ptr = NULL;
505 else {
506 /* Free redundant aligned space */
507 if ((unsigned long)(ptr - sparsemap_buf) > 0)
508 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
509 sparsemap_buf = ptr + size;
510 }
511 }
512 return ptr;
513 }
514
515 void __weak __meminit vmemmap_populate_print_last(void)
516 {
517 }
518
519 /*
520 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
521 * And number of present sections in this node is map_count.
522 */
523 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
524 unsigned long pnum_end,
525 unsigned long map_count)
526 {
527 struct mem_section_usage *usage;
528 unsigned long pnum;
529 struct page *map;
530
531 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
532 mem_section_usage_size() * map_count);
533 if (!usage) {
534 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
535 goto failed;
536 }
537 sparse_buffer_init(map_count * section_map_size(), nid);
538 for_each_present_section_nr(pnum_begin, pnum) {
539 unsigned long pfn = section_nr_to_pfn(pnum);
540
541 if (pnum >= pnum_end)
542 break;
543
544 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
545 nid, NULL);
546 if (!map) {
547 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
548 __func__, nid);
549 pnum_begin = pnum;
550 sparse_buffer_fini();
551 goto failed;
552 }
553 check_usemap_section_nr(nid, usage);
554 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
555 SECTION_IS_EARLY);
556 usage = (void *) usage + mem_section_usage_size();
557 }
558 sparse_buffer_fini();
559 return;
560 failed:
561 /* We failed to allocate, mark all the following pnums as not present */
562 for_each_present_section_nr(pnum_begin, pnum) {
563 struct mem_section *ms;
564
565 if (pnum >= pnum_end)
566 break;
567 ms = __nr_to_section(pnum);
568 ms->section_mem_map = 0;
569 }
570 }
571
572 /*
573 * Allocate the accumulated non-linear sections, allocate a mem_map
574 * for each and record the physical to section mapping.
575 */
576 void __init sparse_init(void)
577 {
578 unsigned long pnum_end, pnum_begin, map_count = 1;
579 int nid_begin;
580
581 memblocks_present();
582
583 pnum_begin = first_present_section_nr();
584 nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
585
586 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
587 set_pageblock_order();
588
589 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
590 int nid = sparse_early_nid(__nr_to_section(pnum_end));
591
592 if (nid == nid_begin) {
593 map_count++;
594 continue;
595 }
596 /* Init node with sections in range [pnum_begin, pnum_end) */
597 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
598 nid_begin = nid;
599 pnum_begin = pnum_end;
600 map_count = 1;
601 }
602 /* cover the last node */
603 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
604 vmemmap_populate_print_last();
605 }
606
607 #ifdef CONFIG_MEMORY_HOTPLUG
608
609 /* Mark all memory sections within the pfn range as online */
610 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
611 {
612 unsigned long pfn;
613
614 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
615 unsigned long section_nr = pfn_to_section_nr(pfn);
616 struct mem_section *ms;
617
618 /* onlining code should never touch invalid ranges */
619 if (WARN_ON(!valid_section_nr(section_nr)))
620 continue;
621
622 ms = __nr_to_section(section_nr);
623 ms->section_mem_map |= SECTION_IS_ONLINE;
624 }
625 }
626
627 /* Mark all memory sections within the pfn range as offline */
628 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629 {
630 unsigned long pfn;
631
632 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
633 unsigned long section_nr = pfn_to_section_nr(pfn);
634 struct mem_section *ms;
635
636 /*
637 * TODO this needs some double checking. Offlining code makes
638 * sure to check pfn_valid but those checks might be just bogus
639 */
640 if (WARN_ON(!valid_section_nr(section_nr)))
641 continue;
642
643 ms = __nr_to_section(section_nr);
644 ms->section_mem_map &= ~SECTION_IS_ONLINE;
645 }
646 }
647
648 #ifdef CONFIG_SPARSEMEM_VMEMMAP
649 static struct page * __meminit populate_section_memmap(unsigned long pfn,
650 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
651 {
652 return __populate_section_memmap(pfn, nr_pages, nid, altmap);
653 }
654
655 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
656 struct vmem_altmap *altmap)
657 {
658 unsigned long start = (unsigned long) pfn_to_page(pfn);
659 unsigned long end = start + nr_pages * sizeof(struct page);
660
661 vmemmap_free(start, end, altmap);
662 }
663 static void free_map_bootmem(struct page *memmap)
664 {
665 unsigned long start = (unsigned long)memmap;
666 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
667
668 vmemmap_free(start, end, NULL);
669 }
670
671 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
672 {
673 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
674 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
675 struct mem_section *ms = __pfn_to_section(pfn);
676 unsigned long *subsection_map = ms->usage
677 ? &ms->usage->subsection_map[0] : NULL;
678
679 subsection_mask_set(map, pfn, nr_pages);
680 if (subsection_map)
681 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
682
683 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
684 "section already deactivated (%#lx + %ld)\n",
685 pfn, nr_pages))
686 return -EINVAL;
687
688 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
689 return 0;
690 }
691
692 static bool is_subsection_map_empty(struct mem_section *ms)
693 {
694 return bitmap_empty(&ms->usage->subsection_map[0],
695 SUBSECTIONS_PER_SECTION);
696 }
697
698 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
699 {
700 struct mem_section *ms = __pfn_to_section(pfn);
701 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
702 unsigned long *subsection_map;
703 int rc = 0;
704
705 subsection_mask_set(map, pfn, nr_pages);
706
707 subsection_map = &ms->usage->subsection_map[0];
708
709 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
710 rc = -EINVAL;
711 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
712 rc = -EEXIST;
713 else
714 bitmap_or(subsection_map, map, subsection_map,
715 SUBSECTIONS_PER_SECTION);
716
717 return rc;
718 }
719 #else
720 struct page * __meminit populate_section_memmap(unsigned long pfn,
721 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
722 {
723 return kvmalloc_node(array_size(sizeof(struct page),
724 PAGES_PER_SECTION), GFP_KERNEL, nid);
725 }
726
727 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
728 struct vmem_altmap *altmap)
729 {
730 kvfree(pfn_to_page(pfn));
731 }
732
733 static void free_map_bootmem(struct page *memmap)
734 {
735 unsigned long maps_section_nr, removing_section_nr, i;
736 unsigned long magic, nr_pages;
737 struct page *page = virt_to_page(memmap);
738
739 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
740 >> PAGE_SHIFT;
741
742 for (i = 0; i < nr_pages; i++, page++) {
743 magic = (unsigned long) page->freelist;
744
745 BUG_ON(magic == NODE_INFO);
746
747 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
748 removing_section_nr = page_private(page);
749
750 /*
751 * When this function is called, the removing section is
752 * logical offlined state. This means all pages are isolated
753 * from page allocator. If removing section's memmap is placed
754 * on the same section, it must not be freed.
755 * If it is freed, page allocator may allocate it which will
756 * be removed physically soon.
757 */
758 if (maps_section_nr != removing_section_nr)
759 put_page_bootmem(page);
760 }
761 }
762
763 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
764 {
765 return 0;
766 }
767
768 static bool is_subsection_map_empty(struct mem_section *ms)
769 {
770 return true;
771 }
772
773 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
774 {
775 return 0;
776 }
777 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
778
779 /*
780 * To deactivate a memory region, there are 3 cases to handle across
781 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
782 *
783 * 1. deactivation of a partial hot-added section (only possible in
784 * the SPARSEMEM_VMEMMAP=y case).
785 * a) section was present at memory init.
786 * b) section was hot-added post memory init.
787 * 2. deactivation of a complete hot-added section.
788 * 3. deactivation of a complete section from memory init.
789 *
790 * For 1, when subsection_map does not empty we will not be freeing the
791 * usage map, but still need to free the vmemmap range.
792 *
793 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
794 */
795 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
796 struct vmem_altmap *altmap)
797 {
798 struct mem_section *ms = __pfn_to_section(pfn);
799 bool section_is_early = early_section(ms);
800 struct page *memmap = NULL;
801 bool empty;
802
803 if (clear_subsection_map(pfn, nr_pages))
804 return;
805
806 empty = is_subsection_map_empty(ms);
807 if (empty) {
808 unsigned long section_nr = pfn_to_section_nr(pfn);
809
810 /*
811 * When removing an early section, the usage map is kept (as the
812 * usage maps of other sections fall into the same page). It
813 * will be re-used when re-adding the section - which is then no
814 * longer an early section. If the usage map is PageReserved, it
815 * was allocated during boot.
816 */
817 if (!PageReserved(virt_to_page(ms->usage))) {
818 kfree(ms->usage);
819 ms->usage = NULL;
820 }
821 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
822 /*
823 * Mark the section invalid so that valid_section()
824 * return false. This prevents code from dereferencing
825 * ms->usage array.
826 */
827 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
828 }
829
830 /*
831 * The memmap of early sections is always fully populated. See
832 * section_activate() and pfn_valid() .
833 */
834 if (!section_is_early)
835 depopulate_section_memmap(pfn, nr_pages, altmap);
836 else if (memmap)
837 free_map_bootmem(memmap);
838
839 if (empty)
840 ms->section_mem_map = (unsigned long)NULL;
841 }
842
843 static struct page * __meminit section_activate(int nid, unsigned long pfn,
844 unsigned long nr_pages, struct vmem_altmap *altmap)
845 {
846 struct mem_section *ms = __pfn_to_section(pfn);
847 struct mem_section_usage *usage = NULL;
848 struct page *memmap;
849 int rc = 0;
850
851 if (!ms->usage) {
852 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
853 if (!usage)
854 return ERR_PTR(-ENOMEM);
855 ms->usage = usage;
856 }
857
858 rc = fill_subsection_map(pfn, nr_pages);
859 if (rc) {
860 if (usage)
861 ms->usage = NULL;
862 kfree(usage);
863 return ERR_PTR(rc);
864 }
865
866 /*
867 * The early init code does not consider partially populated
868 * initial sections, it simply assumes that memory will never be
869 * referenced. If we hot-add memory into such a section then we
870 * do not need to populate the memmap and can simply reuse what
871 * is already there.
872 */
873 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
874 return pfn_to_page(pfn);
875
876 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
877 if (!memmap) {
878 section_deactivate(pfn, nr_pages, altmap);
879 return ERR_PTR(-ENOMEM);
880 }
881
882 return memmap;
883 }
884
885 /**
886 * sparse_add_section - add a memory section, or populate an existing one
887 * @nid: The node to add section on
888 * @start_pfn: start pfn of the memory range
889 * @nr_pages: number of pfns to add in the section
890 * @altmap: device page map
891 *
892 * This is only intended for hotplug.
893 *
894 * Note that only VMEMMAP supports sub-section aligned hotplug,
895 * the proper alignment and size are gated by check_pfn_span().
896 *
897 *
898 * Return:
899 * * 0 - On success.
900 * * -EEXIST - Section has been present.
901 * * -ENOMEM - Out of memory.
902 */
903 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
904 unsigned long nr_pages, struct vmem_altmap *altmap)
905 {
906 unsigned long section_nr = pfn_to_section_nr(start_pfn);
907 struct mem_section *ms;
908 struct page *memmap;
909 int ret;
910
911 ret = sparse_index_init(section_nr, nid);
912 if (ret < 0)
913 return ret;
914
915 memmap = section_activate(nid, start_pfn, nr_pages, altmap);
916 if (IS_ERR(memmap))
917 return PTR_ERR(memmap);
918
919 /*
920 * Poison uninitialized struct pages in order to catch invalid flags
921 * combinations.
922 */
923 page_init_poison(memmap, sizeof(struct page) * nr_pages);
924
925 ms = __nr_to_section(section_nr);
926 set_section_nid(section_nr, nid);
927 section_mark_present(ms);
928
929 /* Align memmap to section boundary in the subsection case */
930 if (section_nr_to_pfn(section_nr) != start_pfn)
931 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
932 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
933
934 return 0;
935 }
936
937 #ifdef CONFIG_MEMORY_FAILURE
938 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
939 {
940 int i;
941
942 /*
943 * A further optimization is to have per section refcounted
944 * num_poisoned_pages. But that would need more space per memmap, so
945 * for now just do a quick global check to speed up this routine in the
946 * absence of bad pages.
947 */
948 if (atomic_long_read(&num_poisoned_pages) == 0)
949 return;
950
951 for (i = 0; i < nr_pages; i++) {
952 if (PageHWPoison(&memmap[i])) {
953 num_poisoned_pages_dec();
954 ClearPageHWPoison(&memmap[i]);
955 }
956 }
957 }
958 #else
959 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
960 {
961 }
962 #endif
963
964 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
965 unsigned long nr_pages, unsigned long map_offset,
966 struct vmem_altmap *altmap)
967 {
968 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
969 nr_pages - map_offset);
970 section_deactivate(pfn, nr_pages, altmap);
971 }
972 #endif /* CONFIG_MEMORY_HOTPLUG */