]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/sparse.c
Merge tag 'efi-urgent-2020-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16
17 #include "internal.h"
18 #include <asm/dma.h>
19 #include <asm/pgalloc.h>
20
21 /*
22 * Permanent SPARSEMEM data:
23 *
24 * 1) mem_section - memory sections, mem_map's for valid memory
25 */
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section **mem_section;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30 ____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36 * If we did not store the node number in the page then we have to
37 * do a lookup in the section_to_node_table in order to find which
38 * node the page belongs to.
39 */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45
46 int page_to_nid(const struct page *page)
47 {
48 return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51
52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54 section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65 struct mem_section *section = NULL;
66 unsigned long array_size = SECTIONS_PER_ROOT *
67 sizeof(struct mem_section);
68
69 if (slab_is_available()) {
70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 } else {
72 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
73 nid);
74 if (!section)
75 panic("%s: Failed to allocate %lu bytes nid=%d\n",
76 __func__, array_size, nid);
77 }
78
79 return section;
80 }
81
82 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
83 {
84 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
85 struct mem_section *section;
86
87 /*
88 * An existing section is possible in the sub-section hotplug
89 * case. First hot-add instantiates, follow-on hot-add reuses
90 * the existing section.
91 *
92 * The mem_hotplug_lock resolves the apparent race below.
93 */
94 if (mem_section[root])
95 return 0;
96
97 section = sparse_index_alloc(nid);
98 if (!section)
99 return -ENOMEM;
100
101 mem_section[root] = section;
102
103 return 0;
104 }
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr, int nid)
107 {
108 return 0;
109 }
110 #endif
111
112 #ifdef CONFIG_SPARSEMEM_EXTREME
113 unsigned long __section_nr(struct mem_section *ms)
114 {
115 unsigned long root_nr;
116 struct mem_section *root = NULL;
117
118 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
119 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
120 if (!root)
121 continue;
122
123 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
124 break;
125 }
126
127 VM_BUG_ON(!root);
128
129 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
130 }
131 #else
132 unsigned long __section_nr(struct mem_section *ms)
133 {
134 return (unsigned long)(ms - mem_section[0]);
135 }
136 #endif
137
138 /*
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node. This keeps us from having to use another data structure. The
142 * node information is cleared just before we store the real mem_map.
143 */
144 static inline unsigned long sparse_encode_early_nid(int nid)
145 {
146 return (nid << SECTION_NID_SHIFT);
147 }
148
149 static inline int sparse_early_nid(struct mem_section *section)
150 {
151 return (section->section_mem_map >> SECTION_NID_SHIFT);
152 }
153
154 /* Validate the physical addressing limitations of the model */
155 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
156 unsigned long *end_pfn)
157 {
158 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
159
160 /*
161 * Sanity checks - do not allow an architecture to pass
162 * in larger pfns than the maximum scope of sparsemem:
163 */
164 if (*start_pfn > max_sparsemem_pfn) {
165 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167 *start_pfn, *end_pfn, max_sparsemem_pfn);
168 WARN_ON_ONCE(1);
169 *start_pfn = max_sparsemem_pfn;
170 *end_pfn = max_sparsemem_pfn;
171 } else if (*end_pfn > max_sparsemem_pfn) {
172 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174 *start_pfn, *end_pfn, max_sparsemem_pfn);
175 WARN_ON_ONCE(1);
176 *end_pfn = max_sparsemem_pfn;
177 }
178 }
179
180 /*
181 * There are a number of times that we loop over NR_MEM_SECTIONS,
182 * looking for section_present() on each. But, when we have very
183 * large physical address spaces, NR_MEM_SECTIONS can also be
184 * very large which makes the loops quite long.
185 *
186 * Keeping track of this gives us an easy way to break out of
187 * those loops early.
188 */
189 unsigned long __highest_present_section_nr;
190 static void section_mark_present(struct mem_section *ms)
191 {
192 unsigned long section_nr = __section_nr(ms);
193
194 if (section_nr > __highest_present_section_nr)
195 __highest_present_section_nr = section_nr;
196
197 ms->section_mem_map |= SECTION_MARKED_PRESENT;
198 }
199
200 #define for_each_present_section_nr(start, section_nr) \
201 for (section_nr = next_present_section_nr(start-1); \
202 ((section_nr != -1) && \
203 (section_nr <= __highest_present_section_nr)); \
204 section_nr = next_present_section_nr(section_nr))
205
206 static inline unsigned long first_present_section_nr(void)
207 {
208 return next_present_section_nr(-1);
209 }
210
211 #ifdef CONFIG_SPARSEMEM_VMEMMAP
212 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
213 unsigned long nr_pages)
214 {
215 int idx = subsection_map_index(pfn);
216 int end = subsection_map_index(pfn + nr_pages - 1);
217
218 bitmap_set(map, idx, end - idx + 1);
219 }
220
221 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
222 {
223 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
224 unsigned long nr, start_sec = pfn_to_section_nr(pfn);
225
226 if (!nr_pages)
227 return;
228
229 for (nr = start_sec; nr <= end_sec; nr++) {
230 struct mem_section *ms;
231 unsigned long pfns;
232
233 pfns = min(nr_pages, PAGES_PER_SECTION
234 - (pfn & ~PAGE_SECTION_MASK));
235 ms = __nr_to_section(nr);
236 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
237
238 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
239 pfns, subsection_map_index(pfn),
240 subsection_map_index(pfn + pfns - 1));
241
242 pfn += pfns;
243 nr_pages -= pfns;
244 }
245 }
246 #else
247 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
248 {
249 }
250 #endif
251
252 /* Record a memory area against a node. */
253 void __init memory_present(int nid, unsigned long start, unsigned long end)
254 {
255 unsigned long pfn;
256
257 #ifdef CONFIG_SPARSEMEM_EXTREME
258 if (unlikely(!mem_section)) {
259 unsigned long size, align;
260
261 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
262 align = 1 << (INTERNODE_CACHE_SHIFT);
263 mem_section = memblock_alloc(size, align);
264 if (!mem_section)
265 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
266 __func__, size, align);
267 }
268 #endif
269
270 start &= PAGE_SECTION_MASK;
271 mminit_validate_memmodel_limits(&start, &end);
272 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
273 unsigned long section = pfn_to_section_nr(pfn);
274 struct mem_section *ms;
275
276 sparse_index_init(section, nid);
277 set_section_nid(section, nid);
278
279 ms = __nr_to_section(section);
280 if (!ms->section_mem_map) {
281 ms->section_mem_map = sparse_encode_early_nid(nid) |
282 SECTION_IS_ONLINE;
283 section_mark_present(ms);
284 }
285 }
286 }
287
288 /*
289 * Mark all memblocks as present using memory_present(). This is a
290 * convenience function that is useful for a number of arches
291 * to mark all of the systems memory as present during initialization.
292 */
293 void __init memblocks_present(void)
294 {
295 struct memblock_region *reg;
296
297 for_each_memblock(memory, reg) {
298 memory_present(memblock_get_region_node(reg),
299 memblock_region_memory_base_pfn(reg),
300 memblock_region_memory_end_pfn(reg));
301 }
302 }
303
304 /*
305 * Subtle, we encode the real pfn into the mem_map such that
306 * the identity pfn - section_mem_map will return the actual
307 * physical page frame number.
308 */
309 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
310 {
311 unsigned long coded_mem_map =
312 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
313 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
314 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
315 return coded_mem_map;
316 }
317
318 /*
319 * Decode mem_map from the coded memmap
320 */
321 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
322 {
323 /* mask off the extra low bits of information */
324 coded_mem_map &= SECTION_MAP_MASK;
325 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
326 }
327
328 static void __meminit sparse_init_one_section(struct mem_section *ms,
329 unsigned long pnum, struct page *mem_map,
330 struct mem_section_usage *usage, unsigned long flags)
331 {
332 ms->section_mem_map &= ~SECTION_MAP_MASK;
333 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
334 | SECTION_HAS_MEM_MAP | flags;
335 ms->usage = usage;
336 }
337
338 static unsigned long usemap_size(void)
339 {
340 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
341 }
342
343 size_t mem_section_usage_size(void)
344 {
345 return sizeof(struct mem_section_usage) + usemap_size();
346 }
347
348 #ifdef CONFIG_MEMORY_HOTREMOVE
349 static struct mem_section_usage * __init
350 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
351 unsigned long size)
352 {
353 struct mem_section_usage *usage;
354 unsigned long goal, limit;
355 int nid;
356 /*
357 * A page may contain usemaps for other sections preventing the
358 * page being freed and making a section unremovable while
359 * other sections referencing the usemap remain active. Similarly,
360 * a pgdat can prevent a section being removed. If section A
361 * contains a pgdat and section B contains the usemap, both
362 * sections become inter-dependent. This allocates usemaps
363 * from the same section as the pgdat where possible to avoid
364 * this problem.
365 */
366 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
367 limit = goal + (1UL << PA_SECTION_SHIFT);
368 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
369 again:
370 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
371 if (!usage && limit) {
372 limit = 0;
373 goto again;
374 }
375 return usage;
376 }
377
378 static void __init check_usemap_section_nr(int nid,
379 struct mem_section_usage *usage)
380 {
381 unsigned long usemap_snr, pgdat_snr;
382 static unsigned long old_usemap_snr;
383 static unsigned long old_pgdat_snr;
384 struct pglist_data *pgdat = NODE_DATA(nid);
385 int usemap_nid;
386
387 /* First call */
388 if (!old_usemap_snr) {
389 old_usemap_snr = NR_MEM_SECTIONS;
390 old_pgdat_snr = NR_MEM_SECTIONS;
391 }
392
393 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
394 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
395 if (usemap_snr == pgdat_snr)
396 return;
397
398 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
399 /* skip redundant message */
400 return;
401
402 old_usemap_snr = usemap_snr;
403 old_pgdat_snr = pgdat_snr;
404
405 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
406 if (usemap_nid != nid) {
407 pr_info("node %d must be removed before remove section %ld\n",
408 nid, usemap_snr);
409 return;
410 }
411 /*
412 * There is a circular dependency.
413 * Some platforms allow un-removable section because they will just
414 * gather other removable sections for dynamic partitioning.
415 * Just notify un-removable section's number here.
416 */
417 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
418 usemap_snr, pgdat_snr, nid);
419 }
420 #else
421 static struct mem_section_usage * __init
422 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
423 unsigned long size)
424 {
425 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
426 }
427
428 static void __init check_usemap_section_nr(int nid,
429 struct mem_section_usage *usage)
430 {
431 }
432 #endif /* CONFIG_MEMORY_HOTREMOVE */
433
434 #ifdef CONFIG_SPARSEMEM_VMEMMAP
435 static unsigned long __init section_map_size(void)
436 {
437 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
438 }
439
440 #else
441 static unsigned long __init section_map_size(void)
442 {
443 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
444 }
445
446 struct page __init *__populate_section_memmap(unsigned long pfn,
447 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
448 {
449 unsigned long size = section_map_size();
450 struct page *map = sparse_buffer_alloc(size);
451 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
452
453 if (map)
454 return map;
455
456 map = memblock_alloc_try_nid_raw(size, size, addr,
457 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
458 if (!map)
459 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
460 __func__, size, PAGE_SIZE, nid, &addr);
461
462 return map;
463 }
464 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
465
466 static void *sparsemap_buf __meminitdata;
467 static void *sparsemap_buf_end __meminitdata;
468
469 static inline void __meminit sparse_buffer_free(unsigned long size)
470 {
471 WARN_ON(!sparsemap_buf || size == 0);
472 memblock_free_early(__pa(sparsemap_buf), size);
473 }
474
475 static void __init sparse_buffer_init(unsigned long size, int nid)
476 {
477 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
478 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
479 /*
480 * Pre-allocated buffer is mainly used by __populate_section_memmap
481 * and we want it to be properly aligned to the section size - this is
482 * especially the case for VMEMMAP which maps memmap to PMDs
483 */
484 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
485 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
486 sparsemap_buf_end = sparsemap_buf + size;
487 }
488
489 static void __init sparse_buffer_fini(void)
490 {
491 unsigned long size = sparsemap_buf_end - sparsemap_buf;
492
493 if (sparsemap_buf && size > 0)
494 sparse_buffer_free(size);
495 sparsemap_buf = NULL;
496 }
497
498 void * __meminit sparse_buffer_alloc(unsigned long size)
499 {
500 void *ptr = NULL;
501
502 if (sparsemap_buf) {
503 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
504 if (ptr + size > sparsemap_buf_end)
505 ptr = NULL;
506 else {
507 /* Free redundant aligned space */
508 if ((unsigned long)(ptr - sparsemap_buf) > 0)
509 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
510 sparsemap_buf = ptr + size;
511 }
512 }
513 return ptr;
514 }
515
516 void __weak __meminit vmemmap_populate_print_last(void)
517 {
518 }
519
520 /*
521 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
522 * And number of present sections in this node is map_count.
523 */
524 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
525 unsigned long pnum_end,
526 unsigned long map_count)
527 {
528 struct mem_section_usage *usage;
529 unsigned long pnum;
530 struct page *map;
531
532 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
533 mem_section_usage_size() * map_count);
534 if (!usage) {
535 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
536 goto failed;
537 }
538 sparse_buffer_init(map_count * section_map_size(), nid);
539 for_each_present_section_nr(pnum_begin, pnum) {
540 unsigned long pfn = section_nr_to_pfn(pnum);
541
542 if (pnum >= pnum_end)
543 break;
544
545 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
546 nid, NULL);
547 if (!map) {
548 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
549 __func__, nid);
550 pnum_begin = pnum;
551 goto failed;
552 }
553 check_usemap_section_nr(nid, usage);
554 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
555 SECTION_IS_EARLY);
556 usage = (void *) usage + mem_section_usage_size();
557 }
558 sparse_buffer_fini();
559 return;
560 failed:
561 /* We failed to allocate, mark all the following pnums as not present */
562 for_each_present_section_nr(pnum_begin, pnum) {
563 struct mem_section *ms;
564
565 if (pnum >= pnum_end)
566 break;
567 ms = __nr_to_section(pnum);
568 ms->section_mem_map = 0;
569 }
570 }
571
572 /*
573 * Allocate the accumulated non-linear sections, allocate a mem_map
574 * for each and record the physical to section mapping.
575 */
576 void __init sparse_init(void)
577 {
578 unsigned long pnum_begin = first_present_section_nr();
579 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
580 unsigned long pnum_end, map_count = 1;
581
582 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
583 set_pageblock_order();
584
585 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
586 int nid = sparse_early_nid(__nr_to_section(pnum_end));
587
588 if (nid == nid_begin) {
589 map_count++;
590 continue;
591 }
592 /* Init node with sections in range [pnum_begin, pnum_end) */
593 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
594 nid_begin = nid;
595 pnum_begin = pnum_end;
596 map_count = 1;
597 }
598 /* cover the last node */
599 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
600 vmemmap_populate_print_last();
601 }
602
603 #ifdef CONFIG_MEMORY_HOTPLUG
604
605 /* Mark all memory sections within the pfn range as online */
606 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
607 {
608 unsigned long pfn;
609
610 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
611 unsigned long section_nr = pfn_to_section_nr(pfn);
612 struct mem_section *ms;
613
614 /* onlining code should never touch invalid ranges */
615 if (WARN_ON(!valid_section_nr(section_nr)))
616 continue;
617
618 ms = __nr_to_section(section_nr);
619 ms->section_mem_map |= SECTION_IS_ONLINE;
620 }
621 }
622
623 #ifdef CONFIG_MEMORY_HOTREMOVE
624 /* Mark all memory sections within the pfn range as offline */
625 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
626 {
627 unsigned long pfn;
628
629 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
630 unsigned long section_nr = pfn_to_section_nr(pfn);
631 struct mem_section *ms;
632
633 /*
634 * TODO this needs some double checking. Offlining code makes
635 * sure to check pfn_valid but those checks might be just bogus
636 */
637 if (WARN_ON(!valid_section_nr(section_nr)))
638 continue;
639
640 ms = __nr_to_section(section_nr);
641 ms->section_mem_map &= ~SECTION_IS_ONLINE;
642 }
643 }
644 #endif
645
646 #ifdef CONFIG_SPARSEMEM_VMEMMAP
647 static struct page * __meminit populate_section_memmap(unsigned long pfn,
648 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
649 {
650 return __populate_section_memmap(pfn, nr_pages, nid, altmap);
651 }
652
653 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
654 struct vmem_altmap *altmap)
655 {
656 unsigned long start = (unsigned long) pfn_to_page(pfn);
657 unsigned long end = start + nr_pages * sizeof(struct page);
658
659 vmemmap_free(start, end, altmap);
660 }
661 static void free_map_bootmem(struct page *memmap)
662 {
663 unsigned long start = (unsigned long)memmap;
664 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
665
666 vmemmap_free(start, end, NULL);
667 }
668
669 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
670 {
671 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
672 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
673 struct mem_section *ms = __pfn_to_section(pfn);
674 unsigned long *subsection_map = ms->usage
675 ? &ms->usage->subsection_map[0] : NULL;
676
677 subsection_mask_set(map, pfn, nr_pages);
678 if (subsection_map)
679 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
680
681 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
682 "section already deactivated (%#lx + %ld)\n",
683 pfn, nr_pages))
684 return -EINVAL;
685
686 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
687 return 0;
688 }
689
690 static bool is_subsection_map_empty(struct mem_section *ms)
691 {
692 return bitmap_empty(&ms->usage->subsection_map[0],
693 SUBSECTIONS_PER_SECTION);
694 }
695
696 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
697 {
698 struct mem_section *ms = __pfn_to_section(pfn);
699 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
700 unsigned long *subsection_map;
701 int rc = 0;
702
703 subsection_mask_set(map, pfn, nr_pages);
704
705 subsection_map = &ms->usage->subsection_map[0];
706
707 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
708 rc = -EINVAL;
709 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
710 rc = -EEXIST;
711 else
712 bitmap_or(subsection_map, map, subsection_map,
713 SUBSECTIONS_PER_SECTION);
714
715 return rc;
716 }
717 #else
718 struct page * __meminit populate_section_memmap(unsigned long pfn,
719 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
720 {
721 return kvmalloc_node(array_size(sizeof(struct page),
722 PAGES_PER_SECTION), GFP_KERNEL, nid);
723 }
724
725 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
726 struct vmem_altmap *altmap)
727 {
728 kvfree(pfn_to_page(pfn));
729 }
730
731 static void free_map_bootmem(struct page *memmap)
732 {
733 unsigned long maps_section_nr, removing_section_nr, i;
734 unsigned long magic, nr_pages;
735 struct page *page = virt_to_page(memmap);
736
737 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
738 >> PAGE_SHIFT;
739
740 for (i = 0; i < nr_pages; i++, page++) {
741 magic = (unsigned long) page->freelist;
742
743 BUG_ON(magic == NODE_INFO);
744
745 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
746 removing_section_nr = page_private(page);
747
748 /*
749 * When this function is called, the removing section is
750 * logical offlined state. This means all pages are isolated
751 * from page allocator. If removing section's memmap is placed
752 * on the same section, it must not be freed.
753 * If it is freed, page allocator may allocate it which will
754 * be removed physically soon.
755 */
756 if (maps_section_nr != removing_section_nr)
757 put_page_bootmem(page);
758 }
759 }
760
761 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
762 {
763 return 0;
764 }
765
766 static bool is_subsection_map_empty(struct mem_section *ms)
767 {
768 return true;
769 }
770
771 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
772 {
773 return 0;
774 }
775 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
776
777 /*
778 * To deactivate a memory region, there are 3 cases to handle across
779 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
780 *
781 * 1. deactivation of a partial hot-added section (only possible in
782 * the SPARSEMEM_VMEMMAP=y case).
783 * a) section was present at memory init.
784 * b) section was hot-added post memory init.
785 * 2. deactivation of a complete hot-added section.
786 * 3. deactivation of a complete section from memory init.
787 *
788 * For 1, when subsection_map does not empty we will not be freeing the
789 * usage map, but still need to free the vmemmap range.
790 *
791 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
792 */
793 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
794 struct vmem_altmap *altmap)
795 {
796 struct mem_section *ms = __pfn_to_section(pfn);
797 bool section_is_early = early_section(ms);
798 struct page *memmap = NULL;
799 bool empty;
800
801 if (clear_subsection_map(pfn, nr_pages))
802 return;
803
804 empty = is_subsection_map_empty(ms);
805 if (empty) {
806 unsigned long section_nr = pfn_to_section_nr(pfn);
807
808 /*
809 * When removing an early section, the usage map is kept (as the
810 * usage maps of other sections fall into the same page). It
811 * will be re-used when re-adding the section - which is then no
812 * longer an early section. If the usage map is PageReserved, it
813 * was allocated during boot.
814 */
815 if (!PageReserved(virt_to_page(ms->usage))) {
816 kfree(ms->usage);
817 ms->usage = NULL;
818 }
819 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
820 /*
821 * Mark the section invalid so that valid_section()
822 * return false. This prevents code from dereferencing
823 * ms->usage array.
824 */
825 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
826 }
827
828 if (section_is_early && memmap)
829 free_map_bootmem(memmap);
830 else
831 depopulate_section_memmap(pfn, nr_pages, altmap);
832
833 if (empty)
834 ms->section_mem_map = (unsigned long)NULL;
835 }
836
837 static struct page * __meminit section_activate(int nid, unsigned long pfn,
838 unsigned long nr_pages, struct vmem_altmap *altmap)
839 {
840 struct mem_section *ms = __pfn_to_section(pfn);
841 struct mem_section_usage *usage = NULL;
842 struct page *memmap;
843 int rc = 0;
844
845 if (!ms->usage) {
846 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
847 if (!usage)
848 return ERR_PTR(-ENOMEM);
849 ms->usage = usage;
850 }
851
852 rc = fill_subsection_map(pfn, nr_pages);
853 if (rc) {
854 if (usage)
855 ms->usage = NULL;
856 kfree(usage);
857 return ERR_PTR(rc);
858 }
859
860 /*
861 * The early init code does not consider partially populated
862 * initial sections, it simply assumes that memory will never be
863 * referenced. If we hot-add memory into such a section then we
864 * do not need to populate the memmap and can simply reuse what
865 * is already there.
866 */
867 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
868 return pfn_to_page(pfn);
869
870 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
871 if (!memmap) {
872 section_deactivate(pfn, nr_pages, altmap);
873 return ERR_PTR(-ENOMEM);
874 }
875
876 return memmap;
877 }
878
879 /**
880 * sparse_add_section - add a memory section, or populate an existing one
881 * @nid: The node to add section on
882 * @start_pfn: start pfn of the memory range
883 * @nr_pages: number of pfns to add in the section
884 * @altmap: device page map
885 *
886 * This is only intended for hotplug.
887 *
888 * Note that only VMEMMAP supports sub-section aligned hotplug,
889 * the proper alignment and size are gated by check_pfn_span().
890 *
891 *
892 * Return:
893 * * 0 - On success.
894 * * -EEXIST - Section has been present.
895 * * -ENOMEM - Out of memory.
896 */
897 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
898 unsigned long nr_pages, struct vmem_altmap *altmap)
899 {
900 unsigned long section_nr = pfn_to_section_nr(start_pfn);
901 struct mem_section *ms;
902 struct page *memmap;
903 int ret;
904
905 ret = sparse_index_init(section_nr, nid);
906 if (ret < 0)
907 return ret;
908
909 memmap = section_activate(nid, start_pfn, nr_pages, altmap);
910 if (IS_ERR(memmap))
911 return PTR_ERR(memmap);
912
913 /*
914 * Poison uninitialized struct pages in order to catch invalid flags
915 * combinations.
916 */
917 page_init_poison(memmap, sizeof(struct page) * nr_pages);
918
919 ms = __nr_to_section(section_nr);
920 set_section_nid(section_nr, nid);
921 section_mark_present(ms);
922
923 /* Align memmap to section boundary in the subsection case */
924 if (section_nr_to_pfn(section_nr) != start_pfn)
925 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
926 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
927
928 return 0;
929 }
930
931 #ifdef CONFIG_MEMORY_FAILURE
932 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
933 {
934 int i;
935
936 /*
937 * A further optimization is to have per section refcounted
938 * num_poisoned_pages. But that would need more space per memmap, so
939 * for now just do a quick global check to speed up this routine in the
940 * absence of bad pages.
941 */
942 if (atomic_long_read(&num_poisoned_pages) == 0)
943 return;
944
945 for (i = 0; i < nr_pages; i++) {
946 if (PageHWPoison(&memmap[i])) {
947 num_poisoned_pages_dec();
948 ClearPageHWPoison(&memmap[i]);
949 }
950 }
951 }
952 #else
953 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
954 {
955 }
956 #endif
957
958 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
959 unsigned long nr_pages, unsigned long map_offset,
960 struct vmem_altmap *altmap)
961 {
962 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
963 nr_pages - map_offset);
964 section_deactivate(pfn, nr_pages, altmap);
965 }
966 #endif /* CONFIG_MEMORY_HOTPLUG */