]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/sparse.c
mm/sparsemem: Fix ARM64 boot crash when CONFIG_SPARSEMEM_EXTREME=y
[mirror_ubuntu-bionic-kernel.git] / mm / sparse.c
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
13
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18
19 /*
20 * Permanent SPARSEMEM data:
21 *
22 * 1) mem_section - memory sections, mem_map's for valid memory
23 */
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section **mem_section;
26 #else
27 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
28 ____cacheline_internodealigned_in_smp;
29 #endif
30 EXPORT_SYMBOL(mem_section);
31
32 #ifdef NODE_NOT_IN_PAGE_FLAGS
33 /*
34 * If we did not store the node number in the page then we have to
35 * do a lookup in the section_to_node_table in order to find which
36 * node the page belongs to.
37 */
38 #if MAX_NUMNODES <= 256
39 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40 #else
41 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #endif
43
44 int page_to_nid(const struct page *page)
45 {
46 return section_to_node_table[page_to_section(page)];
47 }
48 EXPORT_SYMBOL(page_to_nid);
49
50 static void set_section_nid(unsigned long section_nr, int nid)
51 {
52 section_to_node_table[section_nr] = nid;
53 }
54 #else /* !NODE_NOT_IN_PAGE_FLAGS */
55 static inline void set_section_nid(unsigned long section_nr, int nid)
56 {
57 }
58 #endif
59
60 #ifdef CONFIG_SPARSEMEM_EXTREME
61 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
62 {
63 struct mem_section *section = NULL;
64 unsigned long array_size = SECTIONS_PER_ROOT *
65 sizeof(struct mem_section);
66
67 if (slab_is_available())
68 section = kzalloc_node(array_size, GFP_KERNEL, nid);
69 else
70 section = memblock_virt_alloc_node(array_size, nid);
71
72 return section;
73 }
74
75 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
76 {
77 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
78 struct mem_section *section;
79
80 if (mem_section[root])
81 return -EEXIST;
82
83 section = sparse_index_alloc(nid);
84 if (!section)
85 return -ENOMEM;
86
87 mem_section[root] = section;
88
89 return 0;
90 }
91 #else /* !SPARSEMEM_EXTREME */
92 static inline int sparse_index_init(unsigned long section_nr, int nid)
93 {
94 return 0;
95 }
96 #endif
97
98 #ifdef CONFIG_SPARSEMEM_EXTREME
99 int __section_nr(struct mem_section* ms)
100 {
101 unsigned long root_nr;
102 struct mem_section *root = NULL;
103
104 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
105 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
106 if (!root)
107 continue;
108
109 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
110 break;
111 }
112
113 VM_BUG_ON(!root);
114
115 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
116 }
117 #else
118 int __section_nr(struct mem_section* ms)
119 {
120 return (int)(ms - mem_section[0]);
121 }
122 #endif
123
124 /*
125 * During early boot, before section_mem_map is used for an actual
126 * mem_map, we use section_mem_map to store the section's NUMA
127 * node. This keeps us from having to use another data structure. The
128 * node information is cleared just before we store the real mem_map.
129 */
130 static inline unsigned long sparse_encode_early_nid(int nid)
131 {
132 return (nid << SECTION_NID_SHIFT);
133 }
134
135 static inline int sparse_early_nid(struct mem_section *section)
136 {
137 return (section->section_mem_map >> SECTION_NID_SHIFT);
138 }
139
140 /* Validate the physical addressing limitations of the model */
141 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
142 unsigned long *end_pfn)
143 {
144 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
145
146 /*
147 * Sanity checks - do not allow an architecture to pass
148 * in larger pfns than the maximum scope of sparsemem:
149 */
150 if (*start_pfn > max_sparsemem_pfn) {
151 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
152 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
153 *start_pfn, *end_pfn, max_sparsemem_pfn);
154 WARN_ON_ONCE(1);
155 *start_pfn = max_sparsemem_pfn;
156 *end_pfn = max_sparsemem_pfn;
157 } else if (*end_pfn > max_sparsemem_pfn) {
158 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
159 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
160 *start_pfn, *end_pfn, max_sparsemem_pfn);
161 WARN_ON_ONCE(1);
162 *end_pfn = max_sparsemem_pfn;
163 }
164 }
165
166 /*
167 * There are a number of times that we loop over NR_MEM_SECTIONS,
168 * looking for section_present() on each. But, when we have very
169 * large physical address spaces, NR_MEM_SECTIONS can also be
170 * very large which makes the loops quite long.
171 *
172 * Keeping track of this gives us an easy way to break out of
173 * those loops early.
174 */
175 int __highest_present_section_nr;
176 static void section_mark_present(struct mem_section *ms)
177 {
178 int section_nr = __section_nr(ms);
179
180 if (section_nr > __highest_present_section_nr)
181 __highest_present_section_nr = section_nr;
182
183 ms->section_mem_map |= SECTION_MARKED_PRESENT;
184 }
185
186 static inline int next_present_section_nr(int section_nr)
187 {
188 do {
189 section_nr++;
190 if (present_section_nr(section_nr))
191 return section_nr;
192 } while ((section_nr < NR_MEM_SECTIONS) &&
193 (section_nr <= __highest_present_section_nr));
194
195 return -1;
196 }
197 #define for_each_present_section_nr(start, section_nr) \
198 for (section_nr = next_present_section_nr(start-1); \
199 ((section_nr >= 0) && \
200 (section_nr < NR_MEM_SECTIONS) && \
201 (section_nr <= __highest_present_section_nr)); \
202 section_nr = next_present_section_nr(section_nr))
203
204 /* Record a memory area against a node. */
205 void __init memory_present(int nid, unsigned long start, unsigned long end)
206 {
207 unsigned long pfn;
208
209 #ifdef CONFIG_SPARSEMEM_EXTREME
210 if (unlikely(!mem_section)) {
211 unsigned long size, align;
212
213 size = sizeof(struct mem_section) * NR_SECTION_ROOTS;
214 align = 1 << (INTERNODE_CACHE_SHIFT);
215 mem_section = memblock_virt_alloc(size, align);
216 }
217 #endif
218
219 start &= PAGE_SECTION_MASK;
220 mminit_validate_memmodel_limits(&start, &end);
221 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
222 unsigned long section = pfn_to_section_nr(pfn);
223 struct mem_section *ms;
224
225 sparse_index_init(section, nid);
226 set_section_nid(section, nid);
227
228 ms = __nr_to_section(section);
229 if (!ms->section_mem_map) {
230 ms->section_mem_map = sparse_encode_early_nid(nid) |
231 SECTION_IS_ONLINE;
232 section_mark_present(ms);
233 }
234 }
235 }
236
237 /*
238 * Only used by the i386 NUMA architecures, but relatively
239 * generic code.
240 */
241 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
242 unsigned long end_pfn)
243 {
244 unsigned long pfn;
245 unsigned long nr_pages = 0;
246
247 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
248 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
249 if (nid != early_pfn_to_nid(pfn))
250 continue;
251
252 if (pfn_present(pfn))
253 nr_pages += PAGES_PER_SECTION;
254 }
255
256 return nr_pages * sizeof(struct page);
257 }
258
259 /*
260 * Subtle, we encode the real pfn into the mem_map such that
261 * the identity pfn - section_mem_map will return the actual
262 * physical page frame number.
263 */
264 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
265 {
266 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
267 }
268
269 /*
270 * Decode mem_map from the coded memmap
271 */
272 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
273 {
274 /* mask off the extra low bits of information */
275 coded_mem_map &= SECTION_MAP_MASK;
276 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
277 }
278
279 static int __meminit sparse_init_one_section(struct mem_section *ms,
280 unsigned long pnum, struct page *mem_map,
281 unsigned long *pageblock_bitmap)
282 {
283 if (!present_section(ms))
284 return -EINVAL;
285
286 ms->section_mem_map &= ~SECTION_MAP_MASK;
287 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
288 SECTION_HAS_MEM_MAP;
289 ms->pageblock_flags = pageblock_bitmap;
290
291 return 1;
292 }
293
294 unsigned long usemap_size(void)
295 {
296 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
297 }
298
299 #ifdef CONFIG_MEMORY_HOTPLUG
300 static unsigned long *__kmalloc_section_usemap(void)
301 {
302 return kmalloc(usemap_size(), GFP_KERNEL);
303 }
304 #endif /* CONFIG_MEMORY_HOTPLUG */
305
306 #ifdef CONFIG_MEMORY_HOTREMOVE
307 static unsigned long * __init
308 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
309 unsigned long size)
310 {
311 unsigned long goal, limit;
312 unsigned long *p;
313 int nid;
314 /*
315 * A page may contain usemaps for other sections preventing the
316 * page being freed and making a section unremovable while
317 * other sections referencing the usemap remain active. Similarly,
318 * a pgdat can prevent a section being removed. If section A
319 * contains a pgdat and section B contains the usemap, both
320 * sections become inter-dependent. This allocates usemaps
321 * from the same section as the pgdat where possible to avoid
322 * this problem.
323 */
324 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
325 limit = goal + (1UL << PA_SECTION_SHIFT);
326 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
327 again:
328 p = memblock_virt_alloc_try_nid_nopanic(size,
329 SMP_CACHE_BYTES, goal, limit,
330 nid);
331 if (!p && limit) {
332 limit = 0;
333 goto again;
334 }
335 return p;
336 }
337
338 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
339 {
340 unsigned long usemap_snr, pgdat_snr;
341 static unsigned long old_usemap_snr;
342 static unsigned long old_pgdat_snr;
343 struct pglist_data *pgdat = NODE_DATA(nid);
344 int usemap_nid;
345
346 /* First call */
347 if (!old_usemap_snr) {
348 old_usemap_snr = NR_MEM_SECTIONS;
349 old_pgdat_snr = NR_MEM_SECTIONS;
350 }
351
352 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
353 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
354 if (usemap_snr == pgdat_snr)
355 return;
356
357 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
358 /* skip redundant message */
359 return;
360
361 old_usemap_snr = usemap_snr;
362 old_pgdat_snr = pgdat_snr;
363
364 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
365 if (usemap_nid != nid) {
366 pr_info("node %d must be removed before remove section %ld\n",
367 nid, usemap_snr);
368 return;
369 }
370 /*
371 * There is a circular dependency.
372 * Some platforms allow un-removable section because they will just
373 * gather other removable sections for dynamic partitioning.
374 * Just notify un-removable section's number here.
375 */
376 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
377 usemap_snr, pgdat_snr, nid);
378 }
379 #else
380 static unsigned long * __init
381 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
382 unsigned long size)
383 {
384 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
385 }
386
387 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
388 {
389 }
390 #endif /* CONFIG_MEMORY_HOTREMOVE */
391
392 static void __init sparse_early_usemaps_alloc_node(void *data,
393 unsigned long pnum_begin,
394 unsigned long pnum_end,
395 unsigned long usemap_count, int nodeid)
396 {
397 void *usemap;
398 unsigned long pnum;
399 unsigned long **usemap_map = (unsigned long **)data;
400 int size = usemap_size();
401
402 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
403 size * usemap_count);
404 if (!usemap) {
405 pr_warn("%s: allocation failed\n", __func__);
406 return;
407 }
408
409 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
410 if (!present_section_nr(pnum))
411 continue;
412 usemap_map[pnum] = usemap;
413 usemap += size;
414 check_usemap_section_nr(nodeid, usemap_map[pnum]);
415 }
416 }
417
418 #ifndef CONFIG_SPARSEMEM_VMEMMAP
419 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
420 {
421 struct page *map;
422 unsigned long size;
423
424 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
425 if (map)
426 return map;
427
428 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
429 map = memblock_virt_alloc_try_nid(size,
430 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
431 BOOTMEM_ALLOC_ACCESSIBLE, nid);
432 return map;
433 }
434 void __init sparse_mem_maps_populate_node(struct page **map_map,
435 unsigned long pnum_begin,
436 unsigned long pnum_end,
437 unsigned long map_count, int nodeid)
438 {
439 void *map;
440 unsigned long pnum;
441 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
442
443 map = alloc_remap(nodeid, size * map_count);
444 if (map) {
445 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
446 if (!present_section_nr(pnum))
447 continue;
448 map_map[pnum] = map;
449 map += size;
450 }
451 return;
452 }
453
454 size = PAGE_ALIGN(size);
455 map = memblock_virt_alloc_try_nid(size * map_count,
456 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
457 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
458 if (map) {
459 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
460 if (!present_section_nr(pnum))
461 continue;
462 map_map[pnum] = map;
463 map += size;
464 }
465 return;
466 }
467
468 /* fallback */
469 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
470 struct mem_section *ms;
471
472 if (!present_section_nr(pnum))
473 continue;
474 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
475 if (map_map[pnum])
476 continue;
477 ms = __nr_to_section(pnum);
478 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
479 __func__);
480 ms->section_mem_map = 0;
481 }
482 }
483 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
484
485 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
486 static void __init sparse_early_mem_maps_alloc_node(void *data,
487 unsigned long pnum_begin,
488 unsigned long pnum_end,
489 unsigned long map_count, int nodeid)
490 {
491 struct page **map_map = (struct page **)data;
492 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
493 map_count, nodeid);
494 }
495 #else
496 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
497 {
498 struct page *map;
499 struct mem_section *ms = __nr_to_section(pnum);
500 int nid = sparse_early_nid(ms);
501
502 map = sparse_mem_map_populate(pnum, nid);
503 if (map)
504 return map;
505
506 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
507 __func__);
508 ms->section_mem_map = 0;
509 return NULL;
510 }
511 #endif
512
513 void __weak __meminit vmemmap_populate_print_last(void)
514 {
515 }
516
517 /**
518 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
519 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
520 */
521 static void __init alloc_usemap_and_memmap(void (*alloc_func)
522 (void *, unsigned long, unsigned long,
523 unsigned long, int), void *data)
524 {
525 unsigned long pnum;
526 unsigned long map_count;
527 int nodeid_begin = 0;
528 unsigned long pnum_begin = 0;
529
530 for_each_present_section_nr(0, pnum) {
531 struct mem_section *ms;
532
533 ms = __nr_to_section(pnum);
534 nodeid_begin = sparse_early_nid(ms);
535 pnum_begin = pnum;
536 break;
537 }
538 map_count = 1;
539 for_each_present_section_nr(pnum_begin + 1, pnum) {
540 struct mem_section *ms;
541 int nodeid;
542
543 ms = __nr_to_section(pnum);
544 nodeid = sparse_early_nid(ms);
545 if (nodeid == nodeid_begin) {
546 map_count++;
547 continue;
548 }
549 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
550 alloc_func(data, pnum_begin, pnum,
551 map_count, nodeid_begin);
552 /* new start, update count etc*/
553 nodeid_begin = nodeid;
554 pnum_begin = pnum;
555 map_count = 1;
556 }
557 /* ok, last chunk */
558 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
559 map_count, nodeid_begin);
560 }
561
562 /*
563 * Allocate the accumulated non-linear sections, allocate a mem_map
564 * for each and record the physical to section mapping.
565 */
566 void __init sparse_init(void)
567 {
568 unsigned long pnum;
569 struct page *map;
570 unsigned long *usemap;
571 unsigned long **usemap_map;
572 int size;
573 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
574 int size2;
575 struct page **map_map;
576 #endif
577
578 /* see include/linux/mmzone.h 'struct mem_section' definition */
579 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
580
581 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
582 set_pageblock_order();
583
584 /*
585 * map is using big page (aka 2M in x86 64 bit)
586 * usemap is less one page (aka 24 bytes)
587 * so alloc 2M (with 2M align) and 24 bytes in turn will
588 * make next 2M slip to one more 2M later.
589 * then in big system, the memory will have a lot of holes...
590 * here try to allocate 2M pages continuously.
591 *
592 * powerpc need to call sparse_init_one_section right after each
593 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
594 */
595 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
596 usemap_map = memblock_virt_alloc(size, 0);
597 if (!usemap_map)
598 panic("can not allocate usemap_map\n");
599 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
600 (void *)usemap_map);
601
602 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
603 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
604 map_map = memblock_virt_alloc(size2, 0);
605 if (!map_map)
606 panic("can not allocate map_map\n");
607 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
608 (void *)map_map);
609 #endif
610
611 for_each_present_section_nr(0, pnum) {
612 usemap = usemap_map[pnum];
613 if (!usemap)
614 continue;
615
616 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
617 map = map_map[pnum];
618 #else
619 map = sparse_early_mem_map_alloc(pnum);
620 #endif
621 if (!map)
622 continue;
623
624 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
625 usemap);
626 }
627
628 vmemmap_populate_print_last();
629
630 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
631 memblock_free_early(__pa(map_map), size2);
632 #endif
633 memblock_free_early(__pa(usemap_map), size);
634 }
635
636 #ifdef CONFIG_MEMORY_HOTPLUG
637
638 /* Mark all memory sections within the pfn range as online */
639 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
640 {
641 unsigned long pfn;
642
643 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
644 unsigned long section_nr = pfn_to_section_nr(pfn);
645 struct mem_section *ms;
646
647 /* onlining code should never touch invalid ranges */
648 if (WARN_ON(!valid_section_nr(section_nr)))
649 continue;
650
651 ms = __nr_to_section(section_nr);
652 ms->section_mem_map |= SECTION_IS_ONLINE;
653 }
654 }
655
656 #ifdef CONFIG_MEMORY_HOTREMOVE
657 /* Mark all memory sections within the pfn range as online */
658 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
659 {
660 unsigned long pfn;
661
662 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
663 unsigned long section_nr = pfn_to_section_nr(start_pfn);
664 struct mem_section *ms;
665
666 /*
667 * TODO this needs some double checking. Offlining code makes
668 * sure to check pfn_valid but those checks might be just bogus
669 */
670 if (WARN_ON(!valid_section_nr(section_nr)))
671 continue;
672
673 ms = __nr_to_section(section_nr);
674 ms->section_mem_map &= ~SECTION_IS_ONLINE;
675 }
676 }
677 #endif
678
679 #ifdef CONFIG_SPARSEMEM_VMEMMAP
680 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
681 {
682 /* This will make the necessary allocations eventually. */
683 return sparse_mem_map_populate(pnum, nid);
684 }
685 static void __kfree_section_memmap(struct page *memmap)
686 {
687 unsigned long start = (unsigned long)memmap;
688 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
689
690 vmemmap_free(start, end);
691 }
692 #ifdef CONFIG_MEMORY_HOTREMOVE
693 static void free_map_bootmem(struct page *memmap)
694 {
695 unsigned long start = (unsigned long)memmap;
696 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
697
698 vmemmap_free(start, end);
699 }
700 #endif /* CONFIG_MEMORY_HOTREMOVE */
701 #else
702 static struct page *__kmalloc_section_memmap(void)
703 {
704 struct page *page, *ret;
705 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
706
707 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
708 if (page)
709 goto got_map_page;
710
711 ret = vmalloc(memmap_size);
712 if (ret)
713 goto got_map_ptr;
714
715 return NULL;
716 got_map_page:
717 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
718 got_map_ptr:
719
720 return ret;
721 }
722
723 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
724 {
725 return __kmalloc_section_memmap();
726 }
727
728 static void __kfree_section_memmap(struct page *memmap)
729 {
730 if (is_vmalloc_addr(memmap))
731 vfree(memmap);
732 else
733 free_pages((unsigned long)memmap,
734 get_order(sizeof(struct page) * PAGES_PER_SECTION));
735 }
736
737 #ifdef CONFIG_MEMORY_HOTREMOVE
738 static void free_map_bootmem(struct page *memmap)
739 {
740 unsigned long maps_section_nr, removing_section_nr, i;
741 unsigned long magic, nr_pages;
742 struct page *page = virt_to_page(memmap);
743
744 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
745 >> PAGE_SHIFT;
746
747 for (i = 0; i < nr_pages; i++, page++) {
748 magic = (unsigned long) page->freelist;
749
750 BUG_ON(magic == NODE_INFO);
751
752 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
753 removing_section_nr = page_private(page);
754
755 /*
756 * When this function is called, the removing section is
757 * logical offlined state. This means all pages are isolated
758 * from page allocator. If removing section's memmap is placed
759 * on the same section, it must not be freed.
760 * If it is freed, page allocator may allocate it which will
761 * be removed physically soon.
762 */
763 if (maps_section_nr != removing_section_nr)
764 put_page_bootmem(page);
765 }
766 }
767 #endif /* CONFIG_MEMORY_HOTREMOVE */
768 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
769
770 /*
771 * returns the number of sections whose mem_maps were properly
772 * set. If this is <=0, then that means that the passed-in
773 * map was not consumed and must be freed.
774 */
775 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
776 {
777 unsigned long section_nr = pfn_to_section_nr(start_pfn);
778 struct mem_section *ms;
779 struct page *memmap;
780 unsigned long *usemap;
781 unsigned long flags;
782 int ret;
783
784 /*
785 * no locking for this, because it does its own
786 * plus, it does a kmalloc
787 */
788 ret = sparse_index_init(section_nr, pgdat->node_id);
789 if (ret < 0 && ret != -EEXIST)
790 return ret;
791 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
792 if (!memmap)
793 return -ENOMEM;
794 usemap = __kmalloc_section_usemap();
795 if (!usemap) {
796 __kfree_section_memmap(memmap);
797 return -ENOMEM;
798 }
799
800 pgdat_resize_lock(pgdat, &flags);
801
802 ms = __pfn_to_section(start_pfn);
803 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
804 ret = -EEXIST;
805 goto out;
806 }
807
808 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
809
810 section_mark_present(ms);
811
812 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
813
814 out:
815 pgdat_resize_unlock(pgdat, &flags);
816 if (ret <= 0) {
817 kfree(usemap);
818 __kfree_section_memmap(memmap);
819 }
820 return ret;
821 }
822
823 #ifdef CONFIG_MEMORY_HOTREMOVE
824 #ifdef CONFIG_MEMORY_FAILURE
825 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
826 {
827 int i;
828
829 if (!memmap)
830 return;
831
832 for (i = 0; i < nr_pages; i++) {
833 if (PageHWPoison(&memmap[i])) {
834 atomic_long_sub(1, &num_poisoned_pages);
835 ClearPageHWPoison(&memmap[i]);
836 }
837 }
838 }
839 #else
840 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
841 {
842 }
843 #endif
844
845 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
846 {
847 struct page *usemap_page;
848
849 if (!usemap)
850 return;
851
852 usemap_page = virt_to_page(usemap);
853 /*
854 * Check to see if allocation came from hot-plug-add
855 */
856 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
857 kfree(usemap);
858 if (memmap)
859 __kfree_section_memmap(memmap);
860 return;
861 }
862
863 /*
864 * The usemap came from bootmem. This is packed with other usemaps
865 * on the section which has pgdat at boot time. Just keep it as is now.
866 */
867
868 if (memmap)
869 free_map_bootmem(memmap);
870 }
871
872 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
873 unsigned long map_offset)
874 {
875 struct page *memmap = NULL;
876 unsigned long *usemap = NULL, flags;
877 struct pglist_data *pgdat = zone->zone_pgdat;
878
879 pgdat_resize_lock(pgdat, &flags);
880 if (ms->section_mem_map) {
881 usemap = ms->pageblock_flags;
882 memmap = sparse_decode_mem_map(ms->section_mem_map,
883 __section_nr(ms));
884 ms->section_mem_map = 0;
885 ms->pageblock_flags = NULL;
886 }
887 pgdat_resize_unlock(pgdat, &flags);
888
889 clear_hwpoisoned_pages(memmap + map_offset,
890 PAGES_PER_SECTION - map_offset);
891 free_section_usemap(memmap, usemap);
892 }
893 #endif /* CONFIG_MEMORY_HOTREMOVE */
894 #endif /* CONFIG_MEMORY_HOTPLUG */