]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/sparse.c
slub: Move map/flag clearing to __free_slab
[mirror_ubuntu-artful-kernel.git] / mm / sparse.c
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include <asm/dma.h>
12 #include <asm/pgalloc.h>
13 #include <asm/pgtable.h>
14
15 /*
16 * Permanent SPARSEMEM data:
17 *
18 * 1) mem_section - memory sections, mem_map's for valid memory
19 */
20 #ifdef CONFIG_SPARSEMEM_EXTREME
21 struct mem_section *mem_section[NR_SECTION_ROOTS]
22 ____cacheline_internodealigned_in_smp;
23 #else
24 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
25 ____cacheline_internodealigned_in_smp;
26 #endif
27 EXPORT_SYMBOL(mem_section);
28
29 #ifdef NODE_NOT_IN_PAGE_FLAGS
30 /*
31 * If we did not store the node number in the page then we have to
32 * do a lookup in the section_to_node_table in order to find which
33 * node the page belongs to.
34 */
35 #if MAX_NUMNODES <= 256
36 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
37 #else
38 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #endif
40
41 int page_to_nid(struct page *page)
42 {
43 return section_to_node_table[page_to_section(page)];
44 }
45 EXPORT_SYMBOL(page_to_nid);
46
47 static void set_section_nid(unsigned long section_nr, int nid)
48 {
49 section_to_node_table[section_nr] = nid;
50 }
51 #else /* !NODE_NOT_IN_PAGE_FLAGS */
52 static inline void set_section_nid(unsigned long section_nr, int nid)
53 {
54 }
55 #endif
56
57 #ifdef CONFIG_SPARSEMEM_EXTREME
58 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
59 {
60 struct mem_section *section = NULL;
61 unsigned long array_size = SECTIONS_PER_ROOT *
62 sizeof(struct mem_section);
63
64 if (slab_is_available())
65 section = kmalloc_node(array_size, GFP_KERNEL, nid);
66 else
67 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
68
69 if (section)
70 memset(section, 0, array_size);
71
72 return section;
73 }
74
75 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
76 {
77 static DEFINE_SPINLOCK(index_init_lock);
78 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 struct mem_section *section;
80 int ret = 0;
81
82 if (mem_section[root])
83 return -EEXIST;
84
85 section = sparse_index_alloc(nid);
86 if (!section)
87 return -ENOMEM;
88 /*
89 * This lock keeps two different sections from
90 * reallocating for the same index
91 */
92 spin_lock(&index_init_lock);
93
94 if (mem_section[root]) {
95 ret = -EEXIST;
96 goto out;
97 }
98
99 mem_section[root] = section;
100 out:
101 spin_unlock(&index_init_lock);
102 return ret;
103 }
104 #else /* !SPARSEMEM_EXTREME */
105 static inline int sparse_index_init(unsigned long section_nr, int nid)
106 {
107 return 0;
108 }
109 #endif
110
111 /*
112 * Although written for the SPARSEMEM_EXTREME case, this happens
113 * to also work for the flat array case because
114 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
115 */
116 int __section_nr(struct mem_section* ms)
117 {
118 unsigned long root_nr;
119 struct mem_section* root;
120
121 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
122 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
123 if (!root)
124 continue;
125
126 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
127 break;
128 }
129
130 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131 }
132
133 /*
134 * During early boot, before section_mem_map is used for an actual
135 * mem_map, we use section_mem_map to store the section's NUMA
136 * node. This keeps us from having to use another data structure. The
137 * node information is cleared just before we store the real mem_map.
138 */
139 static inline unsigned long sparse_encode_early_nid(int nid)
140 {
141 return (nid << SECTION_NID_SHIFT);
142 }
143
144 static inline int sparse_early_nid(struct mem_section *section)
145 {
146 return (section->section_mem_map >> SECTION_NID_SHIFT);
147 }
148
149 /* Record a memory area against a node. */
150 void __init memory_present(int nid, unsigned long start, unsigned long end)
151 {
152 unsigned long pfn;
153
154 start &= PAGE_SECTION_MASK;
155 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
156 unsigned long section = pfn_to_section_nr(pfn);
157 struct mem_section *ms;
158
159 sparse_index_init(section, nid);
160 set_section_nid(section, nid);
161
162 ms = __nr_to_section(section);
163 if (!ms->section_mem_map)
164 ms->section_mem_map = sparse_encode_early_nid(nid) |
165 SECTION_MARKED_PRESENT;
166 }
167 }
168
169 /*
170 * Only used by the i386 NUMA architecures, but relatively
171 * generic code.
172 */
173 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
174 unsigned long end_pfn)
175 {
176 unsigned long pfn;
177 unsigned long nr_pages = 0;
178
179 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
180 if (nid != early_pfn_to_nid(pfn))
181 continue;
182
183 if (pfn_present(pfn))
184 nr_pages += PAGES_PER_SECTION;
185 }
186
187 return nr_pages * sizeof(struct page);
188 }
189
190 /*
191 * Subtle, we encode the real pfn into the mem_map such that
192 * the identity pfn - section_mem_map will return the actual
193 * physical page frame number.
194 */
195 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
196 {
197 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
198 }
199
200 /*
201 * We need this if we ever free the mem_maps. While not implemented yet,
202 * this function is included for parity with its sibling.
203 */
204 static __attribute((unused))
205 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
206 {
207 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
208 }
209
210 static int __meminit sparse_init_one_section(struct mem_section *ms,
211 unsigned long pnum, struct page *mem_map,
212 unsigned long *pageblock_bitmap)
213 {
214 if (!present_section(ms))
215 return -EINVAL;
216
217 ms->section_mem_map &= ~SECTION_MAP_MASK;
218 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
219 SECTION_HAS_MEM_MAP;
220 ms->pageblock_flags = pageblock_bitmap;
221
222 return 1;
223 }
224
225 static unsigned long usemap_size(void)
226 {
227 unsigned long size_bytes;
228 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
229 size_bytes = roundup(size_bytes, sizeof(unsigned long));
230 return size_bytes;
231 }
232
233 #ifdef CONFIG_MEMORY_HOTPLUG
234 static unsigned long *__kmalloc_section_usemap(void)
235 {
236 return kmalloc(usemap_size(), GFP_KERNEL);
237 }
238 #endif /* CONFIG_MEMORY_HOTPLUG */
239
240 static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
241 {
242 unsigned long *usemap;
243 struct mem_section *ms = __nr_to_section(pnum);
244 int nid = sparse_early_nid(ms);
245
246 usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
247 if (usemap)
248 return usemap;
249
250 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
251 nid = 0;
252
253 printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
254 return NULL;
255 }
256
257 #ifndef CONFIG_SPARSEMEM_VMEMMAP
258 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
259 {
260 struct page *map;
261
262 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
263 if (map)
264 return map;
265
266 map = alloc_bootmem_node(NODE_DATA(nid),
267 sizeof(struct page) * PAGES_PER_SECTION);
268 return map;
269 }
270 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
271
272 struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
273 {
274 struct page *map;
275 struct mem_section *ms = __nr_to_section(pnum);
276 int nid = sparse_early_nid(ms);
277
278 map = sparse_mem_map_populate(pnum, nid);
279 if (map)
280 return map;
281
282 printk(KERN_ERR "%s: sparsemem memory map backing failed "
283 "some memory will not be available.\n", __FUNCTION__);
284 ms->section_mem_map = 0;
285 return NULL;
286 }
287
288 /*
289 * Allocate the accumulated non-linear sections, allocate a mem_map
290 * for each and record the physical to section mapping.
291 */
292 void __init sparse_init(void)
293 {
294 unsigned long pnum;
295 struct page *map;
296 unsigned long *usemap;
297
298 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
299 if (!present_section_nr(pnum))
300 continue;
301
302 map = sparse_early_mem_map_alloc(pnum);
303 if (!map)
304 continue;
305
306 usemap = sparse_early_usemap_alloc(pnum);
307 if (!usemap)
308 continue;
309
310 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
311 usemap);
312 }
313 }
314
315 #ifdef CONFIG_MEMORY_HOTPLUG
316 #ifdef CONFIG_SPARSEMEM_VMEMMAP
317 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
318 unsigned long nr_pages)
319 {
320 /* This will make the necessary allocations eventually. */
321 return sparse_mem_map_populate(pnum, nid);
322 }
323 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
324 {
325 return; /* XXX: Not implemented yet */
326 }
327 #else
328 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
329 {
330 struct page *page, *ret;
331 unsigned long memmap_size = sizeof(struct page) * nr_pages;
332
333 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
334 if (page)
335 goto got_map_page;
336
337 ret = vmalloc(memmap_size);
338 if (ret)
339 goto got_map_ptr;
340
341 return NULL;
342 got_map_page:
343 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
344 got_map_ptr:
345 memset(ret, 0, memmap_size);
346
347 return ret;
348 }
349
350 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
351 unsigned long nr_pages)
352 {
353 return __kmalloc_section_memmap(nr_pages);
354 }
355
356 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
357 {
358 if (is_vmalloc_addr(memmap))
359 vfree(memmap);
360 else
361 free_pages((unsigned long)memmap,
362 get_order(sizeof(struct page) * nr_pages));
363 }
364 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
365
366 /*
367 * returns the number of sections whose mem_maps were properly
368 * set. If this is <=0, then that means that the passed-in
369 * map was not consumed and must be freed.
370 */
371 int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
372 int nr_pages)
373 {
374 unsigned long section_nr = pfn_to_section_nr(start_pfn);
375 struct pglist_data *pgdat = zone->zone_pgdat;
376 struct mem_section *ms;
377 struct page *memmap;
378 unsigned long *usemap;
379 unsigned long flags;
380 int ret;
381
382 /*
383 * no locking for this, because it does its own
384 * plus, it does a kmalloc
385 */
386 ret = sparse_index_init(section_nr, pgdat->node_id);
387 if (ret < 0 && ret != -EEXIST)
388 return ret;
389 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
390 if (!memmap)
391 return -ENOMEM;
392 usemap = __kmalloc_section_usemap();
393 if (!usemap) {
394 __kfree_section_memmap(memmap, nr_pages);
395 return -ENOMEM;
396 }
397
398 pgdat_resize_lock(pgdat, &flags);
399
400 ms = __pfn_to_section(start_pfn);
401 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
402 ret = -EEXIST;
403 goto out;
404 }
405
406 ms->section_mem_map |= SECTION_MARKED_PRESENT;
407
408 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
409
410 out:
411 pgdat_resize_unlock(pgdat, &flags);
412 if (ret <= 0) {
413 kfree(usemap);
414 __kfree_section_memmap(memmap, nr_pages);
415 }
416 return ret;
417 }
418 #endif