]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/sparse.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / mm / sparse.c
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
11 #include <asm/dma.h>
12
13 /*
14 * Permanent SPARSEMEM data:
15 *
16 * 1) mem_section - memory sections, mem_map's for valid memory
17 */
18 #ifdef CONFIG_SPARSEMEM_EXTREME
19 struct mem_section *mem_section[NR_SECTION_ROOTS]
20 ____cacheline_internodealigned_in_smp;
21 #else
22 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
23 ____cacheline_internodealigned_in_smp;
24 #endif
25 EXPORT_SYMBOL(mem_section);
26
27 #ifdef NODE_NOT_IN_PAGE_FLAGS
28 /*
29 * If we did not store the node number in the page then we have to
30 * do a lookup in the section_to_node_table in order to find which
31 * node the page belongs to.
32 */
33 #if MAX_NUMNODES <= 256
34 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
35 #else
36 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
37 #endif
38
39 int page_to_nid(struct page *page)
40 {
41 return section_to_node_table[page_to_section(page)];
42 }
43 EXPORT_SYMBOL(page_to_nid);
44
45 static void set_section_nid(unsigned long section_nr, int nid)
46 {
47 section_to_node_table[section_nr] = nid;
48 }
49 #else /* !NODE_NOT_IN_PAGE_FLAGS */
50 static inline void set_section_nid(unsigned long section_nr, int nid)
51 {
52 }
53 #endif
54
55 #ifdef CONFIG_SPARSEMEM_EXTREME
56 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
57 {
58 struct mem_section *section = NULL;
59 unsigned long array_size = SECTIONS_PER_ROOT *
60 sizeof(struct mem_section);
61
62 if (slab_is_available())
63 section = kmalloc_node(array_size, GFP_KERNEL, nid);
64 else
65 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
66
67 if (section)
68 memset(section, 0, array_size);
69
70 return section;
71 }
72
73 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
74 {
75 static DEFINE_SPINLOCK(index_init_lock);
76 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
77 struct mem_section *section;
78 int ret = 0;
79
80 if (mem_section[root])
81 return -EEXIST;
82
83 section = sparse_index_alloc(nid);
84 /*
85 * This lock keeps two different sections from
86 * reallocating for the same index
87 */
88 spin_lock(&index_init_lock);
89
90 if (mem_section[root]) {
91 ret = -EEXIST;
92 goto out;
93 }
94
95 mem_section[root] = section;
96 out:
97 spin_unlock(&index_init_lock);
98 return ret;
99 }
100 #else /* !SPARSEMEM_EXTREME */
101 static inline int sparse_index_init(unsigned long section_nr, int nid)
102 {
103 return 0;
104 }
105 #endif
106
107 /*
108 * Although written for the SPARSEMEM_EXTREME case, this happens
109 * to also work for the flat array case becase
110 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
111 */
112 int __section_nr(struct mem_section* ms)
113 {
114 unsigned long root_nr;
115 struct mem_section* root;
116
117 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119 if (!root)
120 continue;
121
122 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123 break;
124 }
125
126 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
127 }
128
129 /*
130 * During early boot, before section_mem_map is used for an actual
131 * mem_map, we use section_mem_map to store the section's NUMA
132 * node. This keeps us from having to use another data structure. The
133 * node information is cleared just before we store the real mem_map.
134 */
135 static inline unsigned long sparse_encode_early_nid(int nid)
136 {
137 return (nid << SECTION_NID_SHIFT);
138 }
139
140 static inline int sparse_early_nid(struct mem_section *section)
141 {
142 return (section->section_mem_map >> SECTION_NID_SHIFT);
143 }
144
145 /* Record a memory area against a node. */
146 void __init memory_present(int nid, unsigned long start, unsigned long end)
147 {
148 unsigned long pfn;
149
150 start &= PAGE_SECTION_MASK;
151 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
152 unsigned long section = pfn_to_section_nr(pfn);
153 struct mem_section *ms;
154
155 sparse_index_init(section, nid);
156 set_section_nid(section, nid);
157
158 ms = __nr_to_section(section);
159 if (!ms->section_mem_map)
160 ms->section_mem_map = sparse_encode_early_nid(nid) |
161 SECTION_MARKED_PRESENT;
162 }
163 }
164
165 /*
166 * Only used by the i386 NUMA architecures, but relatively
167 * generic code.
168 */
169 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
170 unsigned long end_pfn)
171 {
172 unsigned long pfn;
173 unsigned long nr_pages = 0;
174
175 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
176 if (nid != early_pfn_to_nid(pfn))
177 continue;
178
179 if (pfn_valid(pfn))
180 nr_pages += PAGES_PER_SECTION;
181 }
182
183 return nr_pages * sizeof(struct page);
184 }
185
186 /*
187 * Subtle, we encode the real pfn into the mem_map such that
188 * the identity pfn - section_mem_map will return the actual
189 * physical page frame number.
190 */
191 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
192 {
193 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
194 }
195
196 /*
197 * We need this if we ever free the mem_maps. While not implemented yet,
198 * this function is included for parity with its sibling.
199 */
200 static __attribute((unused))
201 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
202 {
203 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
204 }
205
206 static int __meminit sparse_init_one_section(struct mem_section *ms,
207 unsigned long pnum, struct page *mem_map)
208 {
209 if (!valid_section(ms))
210 return -EINVAL;
211
212 ms->section_mem_map &= ~SECTION_MAP_MASK;
213 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum);
214
215 return 1;
216 }
217
218 __attribute__((weak)) __init
219 void *alloc_bootmem_high_node(pg_data_t *pgdat, unsigned long size)
220 {
221 return NULL;
222 }
223
224 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
225 {
226 struct page *map;
227 struct mem_section *ms = __nr_to_section(pnum);
228 int nid = sparse_early_nid(ms);
229
230 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
231 if (map)
232 return map;
233
234 map = alloc_bootmem_high_node(NODE_DATA(nid),
235 sizeof(struct page) * PAGES_PER_SECTION);
236 if (map)
237 return map;
238
239 map = alloc_bootmem_node(NODE_DATA(nid),
240 sizeof(struct page) * PAGES_PER_SECTION);
241 if (map)
242 return map;
243
244 printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
245 ms->section_mem_map = 0;
246 return NULL;
247 }
248
249 /*
250 * Allocate the accumulated non-linear sections, allocate a mem_map
251 * for each and record the physical to section mapping.
252 */
253 void __init sparse_init(void)
254 {
255 unsigned long pnum;
256 struct page *map;
257
258 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
259 if (!valid_section_nr(pnum))
260 continue;
261
262 map = sparse_early_mem_map_alloc(pnum);
263 if (!map)
264 continue;
265 sparse_init_one_section(__nr_to_section(pnum), pnum, map);
266 }
267 }
268
269 #ifdef CONFIG_MEMORY_HOTPLUG
270 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
271 {
272 struct page *page, *ret;
273 unsigned long memmap_size = sizeof(struct page) * nr_pages;
274
275 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
276 if (page)
277 goto got_map_page;
278
279 ret = vmalloc(memmap_size);
280 if (ret)
281 goto got_map_ptr;
282
283 return NULL;
284 got_map_page:
285 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
286 got_map_ptr:
287 memset(ret, 0, memmap_size);
288
289 return ret;
290 }
291
292 static int vaddr_in_vmalloc_area(void *addr)
293 {
294 if (addr >= (void *)VMALLOC_START &&
295 addr < (void *)VMALLOC_END)
296 return 1;
297 return 0;
298 }
299
300 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
301 {
302 if (vaddr_in_vmalloc_area(memmap))
303 vfree(memmap);
304 else
305 free_pages((unsigned long)memmap,
306 get_order(sizeof(struct page) * nr_pages));
307 }
308
309 /*
310 * returns the number of sections whose mem_maps were properly
311 * set. If this is <=0, then that means that the passed-in
312 * map was not consumed and must be freed.
313 */
314 int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
315 int nr_pages)
316 {
317 unsigned long section_nr = pfn_to_section_nr(start_pfn);
318 struct pglist_data *pgdat = zone->zone_pgdat;
319 struct mem_section *ms;
320 struct page *memmap;
321 unsigned long flags;
322 int ret;
323
324 /*
325 * no locking for this, because it does its own
326 * plus, it does a kmalloc
327 */
328 sparse_index_init(section_nr, pgdat->node_id);
329 memmap = __kmalloc_section_memmap(nr_pages);
330
331 pgdat_resize_lock(pgdat, &flags);
332
333 ms = __pfn_to_section(start_pfn);
334 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
335 ret = -EEXIST;
336 goto out;
337 }
338 ms->section_mem_map |= SECTION_MARKED_PRESENT;
339
340 ret = sparse_init_one_section(ms, section_nr, memmap);
341
342 out:
343 pgdat_resize_unlock(pgdat, &flags);
344 if (ret <= 0)
345 __kfree_section_memmap(memmap, nr_pages);
346 return ret;
347 }
348 #endif