]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/sparse.c
Merge commit 'upstream-x86-virt' into WIP.x86/mm
[mirror_ubuntu-bionic-kernel.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21 * Permanent SPARSEMEM data:
22 *
23 * 1) mem_section - memory sections, mem_map's for valid memory
24 */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47 return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
67
68 if (slab_is_available())
69 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 else
71 section = memblock_virt_alloc_node(array_size, nid);
72
73 return section;
74 }
75
76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 struct mem_section *section;
80
81 if (mem_section[root])
82 return -EEXIST;
83
84 section = sparse_index_alloc(nid);
85 if (!section)
86 return -ENOMEM;
87
88 mem_section[root] = section;
89
90 return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95 return 0;
96 }
97 #endif
98
99 #ifdef CONFIG_SPARSEMEM_EXTREME
100 int __section_nr(struct mem_section* ms)
101 {
102 unsigned long root_nr;
103 struct mem_section *root = NULL;
104
105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 if (!root)
108 continue;
109
110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 break;
112 }
113
114 VM_BUG_ON(!root);
115
116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
119 int __section_nr(struct mem_section* ms)
120 {
121 return (int)(ms - mem_section[0]);
122 }
123 #endif
124
125 /*
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node. This keeps us from having to use another data structure. The
129 * node information is cleared just before we store the real mem_map.
130 */
131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133 return (nid << SECTION_NID_SHIFT);
134 }
135
136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138 return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140
141 /* Validate the physical addressing limitations of the model */
142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 unsigned long *end_pfn)
144 {
145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147 /*
148 * Sanity checks - do not allow an architecture to pass
149 * in larger pfns than the maximum scope of sparsemem:
150 */
151 if (*start_pfn > max_sparsemem_pfn) {
152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 *start_pfn, *end_pfn, max_sparsemem_pfn);
155 WARN_ON_ONCE(1);
156 *start_pfn = max_sparsemem_pfn;
157 *end_pfn = max_sparsemem_pfn;
158 } else if (*end_pfn > max_sparsemem_pfn) {
159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 *start_pfn, *end_pfn, max_sparsemem_pfn);
162 WARN_ON_ONCE(1);
163 *end_pfn = max_sparsemem_pfn;
164 }
165 }
166
167 /*
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each. But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
172 *
173 * Keeping track of this gives us an easy way to break out of
174 * those loops early.
175 */
176 int __highest_present_section_nr;
177 static void section_mark_present(struct mem_section *ms)
178 {
179 int section_nr = __section_nr(ms);
180
181 if (section_nr > __highest_present_section_nr)
182 __highest_present_section_nr = section_nr;
183
184 ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186
187 static inline int next_present_section_nr(int section_nr)
188 {
189 do {
190 section_nr++;
191 if (present_section_nr(section_nr))
192 return section_nr;
193 } while ((section_nr < NR_MEM_SECTIONS) &&
194 (section_nr <= __highest_present_section_nr));
195
196 return -1;
197 }
198 #define for_each_present_section_nr(start, section_nr) \
199 for (section_nr = next_present_section_nr(start-1); \
200 ((section_nr >= 0) && \
201 (section_nr < NR_MEM_SECTIONS) && \
202 (section_nr <= __highest_present_section_nr)); \
203 section_nr = next_present_section_nr(section_nr))
204
205 /* Record a memory area against a node. */
206 void __init memory_present(int nid, unsigned long start, unsigned long end)
207 {
208 unsigned long pfn;
209
210 start &= PAGE_SECTION_MASK;
211 mminit_validate_memmodel_limits(&start, &end);
212 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
213 unsigned long section = pfn_to_section_nr(pfn);
214 struct mem_section *ms;
215
216 sparse_index_init(section, nid);
217 set_section_nid(section, nid);
218
219 ms = __nr_to_section(section);
220 if (!ms->section_mem_map) {
221 ms->section_mem_map = sparse_encode_early_nid(nid) |
222 SECTION_IS_ONLINE;
223 section_mark_present(ms);
224 }
225 }
226 }
227
228 /*
229 * Only used by the i386 NUMA architecures, but relatively
230 * generic code.
231 */
232 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
233 unsigned long end_pfn)
234 {
235 unsigned long pfn;
236 unsigned long nr_pages = 0;
237
238 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
239 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
240 if (nid != early_pfn_to_nid(pfn))
241 continue;
242
243 if (pfn_present(pfn))
244 nr_pages += PAGES_PER_SECTION;
245 }
246
247 return nr_pages * sizeof(struct page);
248 }
249
250 /*
251 * Subtle, we encode the real pfn into the mem_map such that
252 * the identity pfn - section_mem_map will return the actual
253 * physical page frame number.
254 */
255 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
256 {
257 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
258 }
259
260 /*
261 * Decode mem_map from the coded memmap
262 */
263 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
264 {
265 /* mask off the extra low bits of information */
266 coded_mem_map &= SECTION_MAP_MASK;
267 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
268 }
269
270 static int __meminit sparse_init_one_section(struct mem_section *ms,
271 unsigned long pnum, struct page *mem_map,
272 unsigned long *pageblock_bitmap)
273 {
274 if (!present_section(ms))
275 return -EINVAL;
276
277 ms->section_mem_map &= ~SECTION_MAP_MASK;
278 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
279 SECTION_HAS_MEM_MAP;
280 ms->pageblock_flags = pageblock_bitmap;
281
282 return 1;
283 }
284
285 unsigned long usemap_size(void)
286 {
287 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
288 }
289
290 #ifdef CONFIG_MEMORY_HOTPLUG
291 static unsigned long *__kmalloc_section_usemap(void)
292 {
293 return kmalloc(usemap_size(), GFP_KERNEL);
294 }
295 #endif /* CONFIG_MEMORY_HOTPLUG */
296
297 #ifdef CONFIG_MEMORY_HOTREMOVE
298 static unsigned long * __init
299 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
300 unsigned long size)
301 {
302 unsigned long goal, limit;
303 unsigned long *p;
304 int nid;
305 /*
306 * A page may contain usemaps for other sections preventing the
307 * page being freed and making a section unremovable while
308 * other sections referencing the usemap remain active. Similarly,
309 * a pgdat can prevent a section being removed. If section A
310 * contains a pgdat and section B contains the usemap, both
311 * sections become inter-dependent. This allocates usemaps
312 * from the same section as the pgdat where possible to avoid
313 * this problem.
314 */
315 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
316 limit = goal + (1UL << PA_SECTION_SHIFT);
317 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
318 again:
319 p = memblock_virt_alloc_try_nid_nopanic(size,
320 SMP_CACHE_BYTES, goal, limit,
321 nid);
322 if (!p && limit) {
323 limit = 0;
324 goto again;
325 }
326 return p;
327 }
328
329 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
330 {
331 unsigned long usemap_snr, pgdat_snr;
332 static unsigned long old_usemap_snr;
333 static unsigned long old_pgdat_snr;
334 struct pglist_data *pgdat = NODE_DATA(nid);
335 int usemap_nid;
336
337 /* First call */
338 if (!old_usemap_snr) {
339 old_usemap_snr = NR_MEM_SECTIONS;
340 old_pgdat_snr = NR_MEM_SECTIONS;
341 }
342
343 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
344 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
345 if (usemap_snr == pgdat_snr)
346 return;
347
348 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
349 /* skip redundant message */
350 return;
351
352 old_usemap_snr = usemap_snr;
353 old_pgdat_snr = pgdat_snr;
354
355 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
356 if (usemap_nid != nid) {
357 pr_info("node %d must be removed before remove section %ld\n",
358 nid, usemap_snr);
359 return;
360 }
361 /*
362 * There is a circular dependency.
363 * Some platforms allow un-removable section because they will just
364 * gather other removable sections for dynamic partitioning.
365 * Just notify un-removable section's number here.
366 */
367 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
368 usemap_snr, pgdat_snr, nid);
369 }
370 #else
371 static unsigned long * __init
372 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
373 unsigned long size)
374 {
375 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
376 }
377
378 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
379 {
380 }
381 #endif /* CONFIG_MEMORY_HOTREMOVE */
382
383 static void __init sparse_early_usemaps_alloc_node(void *data,
384 unsigned long pnum_begin,
385 unsigned long pnum_end,
386 unsigned long usemap_count, int nodeid)
387 {
388 void *usemap;
389 unsigned long pnum;
390 unsigned long **usemap_map = (unsigned long **)data;
391 int size = usemap_size();
392
393 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
394 size * usemap_count);
395 if (!usemap) {
396 pr_warn("%s: allocation failed\n", __func__);
397 return;
398 }
399
400 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
401 if (!present_section_nr(pnum))
402 continue;
403 usemap_map[pnum] = usemap;
404 usemap += size;
405 check_usemap_section_nr(nodeid, usemap_map[pnum]);
406 }
407 }
408
409 #ifndef CONFIG_SPARSEMEM_VMEMMAP
410 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
411 {
412 struct page *map;
413 unsigned long size;
414
415 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
416 if (map)
417 return map;
418
419 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
420 map = memblock_virt_alloc_try_nid(size,
421 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
422 BOOTMEM_ALLOC_ACCESSIBLE, nid);
423 return map;
424 }
425 void __init sparse_mem_maps_populate_node(struct page **map_map,
426 unsigned long pnum_begin,
427 unsigned long pnum_end,
428 unsigned long map_count, int nodeid)
429 {
430 void *map;
431 unsigned long pnum;
432 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
433
434 map = alloc_remap(nodeid, size * map_count);
435 if (map) {
436 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
437 if (!present_section_nr(pnum))
438 continue;
439 map_map[pnum] = map;
440 map += size;
441 }
442 return;
443 }
444
445 size = PAGE_ALIGN(size);
446 map = memblock_virt_alloc_try_nid(size * map_count,
447 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
448 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
449 if (map) {
450 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
451 if (!present_section_nr(pnum))
452 continue;
453 map_map[pnum] = map;
454 map += size;
455 }
456 return;
457 }
458
459 /* fallback */
460 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
461 struct mem_section *ms;
462
463 if (!present_section_nr(pnum))
464 continue;
465 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
466 if (map_map[pnum])
467 continue;
468 ms = __nr_to_section(pnum);
469 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
470 __func__);
471 ms->section_mem_map = 0;
472 }
473 }
474 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
475
476 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
477 static void __init sparse_early_mem_maps_alloc_node(void *data,
478 unsigned long pnum_begin,
479 unsigned long pnum_end,
480 unsigned long map_count, int nodeid)
481 {
482 struct page **map_map = (struct page **)data;
483 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
484 map_count, nodeid);
485 }
486 #else
487 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
488 {
489 struct page *map;
490 struct mem_section *ms = __nr_to_section(pnum);
491 int nid = sparse_early_nid(ms);
492
493 map = sparse_mem_map_populate(pnum, nid);
494 if (map)
495 return map;
496
497 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
498 __func__);
499 ms->section_mem_map = 0;
500 return NULL;
501 }
502 #endif
503
504 void __weak __meminit vmemmap_populate_print_last(void)
505 {
506 }
507
508 /**
509 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
510 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
511 */
512 static void __init alloc_usemap_and_memmap(void (*alloc_func)
513 (void *, unsigned long, unsigned long,
514 unsigned long, int), void *data)
515 {
516 unsigned long pnum;
517 unsigned long map_count;
518 int nodeid_begin = 0;
519 unsigned long pnum_begin = 0;
520
521 for_each_present_section_nr(0, pnum) {
522 struct mem_section *ms;
523
524 ms = __nr_to_section(pnum);
525 nodeid_begin = sparse_early_nid(ms);
526 pnum_begin = pnum;
527 break;
528 }
529 map_count = 1;
530 for_each_present_section_nr(pnum_begin + 1, pnum) {
531 struct mem_section *ms;
532 int nodeid;
533
534 ms = __nr_to_section(pnum);
535 nodeid = sparse_early_nid(ms);
536 if (nodeid == nodeid_begin) {
537 map_count++;
538 continue;
539 }
540 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
541 alloc_func(data, pnum_begin, pnum,
542 map_count, nodeid_begin);
543 /* new start, update count etc*/
544 nodeid_begin = nodeid;
545 pnum_begin = pnum;
546 map_count = 1;
547 }
548 /* ok, last chunk */
549 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
550 map_count, nodeid_begin);
551 }
552
553 /*
554 * Allocate the accumulated non-linear sections, allocate a mem_map
555 * for each and record the physical to section mapping.
556 */
557 void __init sparse_init(void)
558 {
559 unsigned long pnum;
560 struct page *map;
561 unsigned long *usemap;
562 unsigned long **usemap_map;
563 int size;
564 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
565 int size2;
566 struct page **map_map;
567 #endif
568
569 /* see include/linux/mmzone.h 'struct mem_section' definition */
570 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
571
572 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
573 set_pageblock_order();
574
575 /*
576 * map is using big page (aka 2M in x86 64 bit)
577 * usemap is less one page (aka 24 bytes)
578 * so alloc 2M (with 2M align) and 24 bytes in turn will
579 * make next 2M slip to one more 2M later.
580 * then in big system, the memory will have a lot of holes...
581 * here try to allocate 2M pages continuously.
582 *
583 * powerpc need to call sparse_init_one_section right after each
584 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
585 */
586 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
587 usemap_map = memblock_virt_alloc(size, 0);
588 if (!usemap_map)
589 panic("can not allocate usemap_map\n");
590 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
591 (void *)usemap_map);
592
593 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
594 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
595 map_map = memblock_virt_alloc(size2, 0);
596 if (!map_map)
597 panic("can not allocate map_map\n");
598 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
599 (void *)map_map);
600 #endif
601
602 for_each_present_section_nr(0, pnum) {
603 usemap = usemap_map[pnum];
604 if (!usemap)
605 continue;
606
607 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
608 map = map_map[pnum];
609 #else
610 map = sparse_early_mem_map_alloc(pnum);
611 #endif
612 if (!map)
613 continue;
614
615 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
616 usemap);
617 }
618
619 vmemmap_populate_print_last();
620
621 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
622 memblock_free_early(__pa(map_map), size2);
623 #endif
624 memblock_free_early(__pa(usemap_map), size);
625 }
626
627 #ifdef CONFIG_MEMORY_HOTPLUG
628
629 /* Mark all memory sections within the pfn range as online */
630 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
631 {
632 unsigned long pfn;
633
634 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
635 unsigned long section_nr = pfn_to_section_nr(pfn);
636 struct mem_section *ms;
637
638 /* onlining code should never touch invalid ranges */
639 if (WARN_ON(!valid_section_nr(section_nr)))
640 continue;
641
642 ms = __nr_to_section(section_nr);
643 ms->section_mem_map |= SECTION_IS_ONLINE;
644 }
645 }
646
647 #ifdef CONFIG_MEMORY_HOTREMOVE
648 /* Mark all memory sections within the pfn range as online */
649 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
650 {
651 unsigned long pfn;
652
653 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
654 unsigned long section_nr = pfn_to_section_nr(start_pfn);
655 struct mem_section *ms;
656
657 /*
658 * TODO this needs some double checking. Offlining code makes
659 * sure to check pfn_valid but those checks might be just bogus
660 */
661 if (WARN_ON(!valid_section_nr(section_nr)))
662 continue;
663
664 ms = __nr_to_section(section_nr);
665 ms->section_mem_map &= ~SECTION_IS_ONLINE;
666 }
667 }
668 #endif
669
670 #ifdef CONFIG_SPARSEMEM_VMEMMAP
671 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
672 {
673 /* This will make the necessary allocations eventually. */
674 return sparse_mem_map_populate(pnum, nid);
675 }
676 static void __kfree_section_memmap(struct page *memmap)
677 {
678 unsigned long start = (unsigned long)memmap;
679 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
680
681 vmemmap_free(start, end);
682 }
683 #ifdef CONFIG_MEMORY_HOTREMOVE
684 static void free_map_bootmem(struct page *memmap)
685 {
686 unsigned long start = (unsigned long)memmap;
687 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
688
689 vmemmap_free(start, end);
690 }
691 #endif /* CONFIG_MEMORY_HOTREMOVE */
692 #else
693 static struct page *__kmalloc_section_memmap(void)
694 {
695 struct page *page, *ret;
696 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
697
698 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
699 if (page)
700 goto got_map_page;
701
702 ret = vmalloc(memmap_size);
703 if (ret)
704 goto got_map_ptr;
705
706 return NULL;
707 got_map_page:
708 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
709 got_map_ptr:
710
711 return ret;
712 }
713
714 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
715 {
716 return __kmalloc_section_memmap();
717 }
718
719 static void __kfree_section_memmap(struct page *memmap)
720 {
721 if (is_vmalloc_addr(memmap))
722 vfree(memmap);
723 else
724 free_pages((unsigned long)memmap,
725 get_order(sizeof(struct page) * PAGES_PER_SECTION));
726 }
727
728 #ifdef CONFIG_MEMORY_HOTREMOVE
729 static void free_map_bootmem(struct page *memmap)
730 {
731 unsigned long maps_section_nr, removing_section_nr, i;
732 unsigned long magic, nr_pages;
733 struct page *page = virt_to_page(memmap);
734
735 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
736 >> PAGE_SHIFT;
737
738 for (i = 0; i < nr_pages; i++, page++) {
739 magic = (unsigned long) page->freelist;
740
741 BUG_ON(magic == NODE_INFO);
742
743 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
744 removing_section_nr = page_private(page);
745
746 /*
747 * When this function is called, the removing section is
748 * logical offlined state. This means all pages are isolated
749 * from page allocator. If removing section's memmap is placed
750 * on the same section, it must not be freed.
751 * If it is freed, page allocator may allocate it which will
752 * be removed physically soon.
753 */
754 if (maps_section_nr != removing_section_nr)
755 put_page_bootmem(page);
756 }
757 }
758 #endif /* CONFIG_MEMORY_HOTREMOVE */
759 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
760
761 /*
762 * returns the number of sections whose mem_maps were properly
763 * set. If this is <=0, then that means that the passed-in
764 * map was not consumed and must be freed.
765 */
766 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
767 {
768 unsigned long section_nr = pfn_to_section_nr(start_pfn);
769 struct mem_section *ms;
770 struct page *memmap;
771 unsigned long *usemap;
772 unsigned long flags;
773 int ret;
774
775 /*
776 * no locking for this, because it does its own
777 * plus, it does a kmalloc
778 */
779 ret = sparse_index_init(section_nr, pgdat->node_id);
780 if (ret < 0 && ret != -EEXIST)
781 return ret;
782 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
783 if (!memmap)
784 return -ENOMEM;
785 usemap = __kmalloc_section_usemap();
786 if (!usemap) {
787 __kfree_section_memmap(memmap);
788 return -ENOMEM;
789 }
790
791 pgdat_resize_lock(pgdat, &flags);
792
793 ms = __pfn_to_section(start_pfn);
794 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
795 ret = -EEXIST;
796 goto out;
797 }
798
799 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
800
801 section_mark_present(ms);
802
803 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
804
805 out:
806 pgdat_resize_unlock(pgdat, &flags);
807 if (ret <= 0) {
808 kfree(usemap);
809 __kfree_section_memmap(memmap);
810 }
811 return ret;
812 }
813
814 #ifdef CONFIG_MEMORY_HOTREMOVE
815 #ifdef CONFIG_MEMORY_FAILURE
816 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
817 {
818 int i;
819
820 if (!memmap)
821 return;
822
823 for (i = 0; i < nr_pages; i++) {
824 if (PageHWPoison(&memmap[i])) {
825 atomic_long_sub(1, &num_poisoned_pages);
826 ClearPageHWPoison(&memmap[i]);
827 }
828 }
829 }
830 #else
831 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
832 {
833 }
834 #endif
835
836 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
837 {
838 struct page *usemap_page;
839
840 if (!usemap)
841 return;
842
843 usemap_page = virt_to_page(usemap);
844 /*
845 * Check to see if allocation came from hot-plug-add
846 */
847 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
848 kfree(usemap);
849 if (memmap)
850 __kfree_section_memmap(memmap);
851 return;
852 }
853
854 /*
855 * The usemap came from bootmem. This is packed with other usemaps
856 * on the section which has pgdat at boot time. Just keep it as is now.
857 */
858
859 if (memmap)
860 free_map_bootmem(memmap);
861 }
862
863 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
864 unsigned long map_offset)
865 {
866 struct page *memmap = NULL;
867 unsigned long *usemap = NULL, flags;
868 struct pglist_data *pgdat = zone->zone_pgdat;
869
870 pgdat_resize_lock(pgdat, &flags);
871 if (ms->section_mem_map) {
872 usemap = ms->pageblock_flags;
873 memmap = sparse_decode_mem_map(ms->section_mem_map,
874 __section_nr(ms));
875 ms->section_mem_map = 0;
876 ms->pageblock_flags = NULL;
877 }
878 pgdat_resize_unlock(pgdat, &flags);
879
880 clear_hwpoisoned_pages(memmap + map_offset,
881 PAGES_PER_SECTION - map_offset);
882 free_section_usemap(memmap, usemap);
883 }
884 #endif /* CONFIG_MEMORY_HOTREMOVE */
885 #endif /* CONFIG_MEMORY_HOTPLUG */