]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/swap.c
media: pwc: Use correct device for DMA
[mirror_ubuntu-hirsute-kernel.git] / mm / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39
40 #include "internal.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
44
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
47
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
52 };
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
55 };
56
57 /*
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
60 */
61 struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68 struct pagevec activate_page;
69 #endif
70 };
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73 };
74
75 /*
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
78 */
79 static void __page_cache_release(struct page *page)
80 {
81 if (PageLRU(page)) {
82 struct lruvec *lruvec;
83 unsigned long flags;
84
85 lruvec = lock_page_lruvec_irqsave(page, &flags);
86 VM_BUG_ON_PAGE(!PageLRU(page), page);
87 __ClearPageLRU(page);
88 del_page_from_lru_list(page, lruvec, page_off_lru(page));
89 unlock_page_lruvec_irqrestore(lruvec, flags);
90 }
91 __ClearPageWaiters(page);
92 }
93
94 static void __put_single_page(struct page *page)
95 {
96 __page_cache_release(page);
97 mem_cgroup_uncharge(page);
98 free_unref_page(page);
99 }
100
101 static void __put_compound_page(struct page *page)
102 {
103 /*
104 * __page_cache_release() is supposed to be called for thp, not for
105 * hugetlb. This is because hugetlb page does never have PageLRU set
106 * (it's never listed to any LRU lists) and no memcg routines should
107 * be called for hugetlb (it has a separate hugetlb_cgroup.)
108 */
109 if (!PageHuge(page))
110 __page_cache_release(page);
111 destroy_compound_page(page);
112 }
113
114 void __put_page(struct page *page)
115 {
116 if (is_zone_device_page(page)) {
117 put_dev_pagemap(page->pgmap);
118
119 /*
120 * The page belongs to the device that created pgmap. Do
121 * not return it to page allocator.
122 */
123 return;
124 }
125
126 if (unlikely(PageCompound(page)))
127 __put_compound_page(page);
128 else
129 __put_single_page(page);
130 }
131 EXPORT_SYMBOL(__put_page);
132
133 /**
134 * put_pages_list() - release a list of pages
135 * @pages: list of pages threaded on page->lru
136 *
137 * Release a list of pages which are strung together on page.lru. Currently
138 * used by read_cache_pages() and related error recovery code.
139 */
140 void put_pages_list(struct list_head *pages)
141 {
142 while (!list_empty(pages)) {
143 struct page *victim;
144
145 victim = lru_to_page(pages);
146 list_del(&victim->lru);
147 put_page(victim);
148 }
149 }
150 EXPORT_SYMBOL(put_pages_list);
151
152 /*
153 * get_kernel_pages() - pin kernel pages in memory
154 * @kiov: An array of struct kvec structures
155 * @nr_segs: number of segments to pin
156 * @write: pinning for read/write, currently ignored
157 * @pages: array that receives pointers to the pages pinned.
158 * Should be at least nr_segs long.
159 *
160 * Returns number of pages pinned. This may be fewer than the number
161 * requested. If nr_pages is 0 or negative, returns 0. If no pages
162 * were pinned, returns -errno. Each page returned must be released
163 * with a put_page() call when it is finished with.
164 */
165 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
166 struct page **pages)
167 {
168 int seg;
169
170 for (seg = 0; seg < nr_segs; seg++) {
171 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
172 return seg;
173
174 pages[seg] = kmap_to_page(kiov[seg].iov_base);
175 get_page(pages[seg]);
176 }
177
178 return seg;
179 }
180 EXPORT_SYMBOL_GPL(get_kernel_pages);
181
182 /*
183 * get_kernel_page() - pin a kernel page in memory
184 * @start: starting kernel address
185 * @write: pinning for read/write, currently ignored
186 * @pages: array that receives pointer to the page pinned.
187 * Must be at least nr_segs long.
188 *
189 * Returns 1 if page is pinned. If the page was not pinned, returns
190 * -errno. The page returned must be released with a put_page() call
191 * when it is finished with.
192 */
193 int get_kernel_page(unsigned long start, int write, struct page **pages)
194 {
195 const struct kvec kiov = {
196 .iov_base = (void *)start,
197 .iov_len = PAGE_SIZE
198 };
199
200 return get_kernel_pages(&kiov, 1, write, pages);
201 }
202 EXPORT_SYMBOL_GPL(get_kernel_page);
203
204 static void pagevec_lru_move_fn(struct pagevec *pvec,
205 void (*move_fn)(struct page *page, struct lruvec *lruvec))
206 {
207 int i;
208 struct lruvec *lruvec = NULL;
209 unsigned long flags = 0;
210
211 for (i = 0; i < pagevec_count(pvec); i++) {
212 struct page *page = pvec->pages[i];
213
214 /* block memcg migration during page moving between lru */
215 if (!TestClearPageLRU(page))
216 continue;
217
218 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
219 (*move_fn)(page, lruvec);
220
221 SetPageLRU(page);
222 }
223 if (lruvec)
224 unlock_page_lruvec_irqrestore(lruvec, flags);
225 release_pages(pvec->pages, pvec->nr);
226 pagevec_reinit(pvec);
227 }
228
229 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
230 {
231 if (!PageUnevictable(page)) {
232 del_page_from_lru_list(page, lruvec, page_lru(page));
233 ClearPageActive(page);
234 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
235 __count_vm_events(PGROTATED, thp_nr_pages(page));
236 }
237 }
238
239 /*
240 * Writeback is about to end against a page which has been marked for immediate
241 * reclaim. If it still appears to be reclaimable, move it to the tail of the
242 * inactive list.
243 *
244 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
245 */
246 void rotate_reclaimable_page(struct page *page)
247 {
248 if (!PageLocked(page) && !PageDirty(page) &&
249 !PageUnevictable(page) && PageLRU(page)) {
250 struct pagevec *pvec;
251 unsigned long flags;
252
253 get_page(page);
254 local_lock_irqsave(&lru_rotate.lock, flags);
255 pvec = this_cpu_ptr(&lru_rotate.pvec);
256 if (!pagevec_add(pvec, page) || PageCompound(page))
257 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
258 local_unlock_irqrestore(&lru_rotate.lock, flags);
259 }
260 }
261
262 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
263 {
264 do {
265 unsigned long lrusize;
266
267 /*
268 * Hold lruvec->lru_lock is safe here, since
269 * 1) The pinned lruvec in reclaim, or
270 * 2) From a pre-LRU page during refault (which also holds the
271 * rcu lock, so would be safe even if the page was on the LRU
272 * and could move simultaneously to a new lruvec).
273 */
274 spin_lock_irq(&lruvec->lru_lock);
275 /* Record cost event */
276 if (file)
277 lruvec->file_cost += nr_pages;
278 else
279 lruvec->anon_cost += nr_pages;
280
281 /*
282 * Decay previous events
283 *
284 * Because workloads change over time (and to avoid
285 * overflow) we keep these statistics as a floating
286 * average, which ends up weighing recent refaults
287 * more than old ones.
288 */
289 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
290 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
291 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
292 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
293
294 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
295 lruvec->file_cost /= 2;
296 lruvec->anon_cost /= 2;
297 }
298 spin_unlock_irq(&lruvec->lru_lock);
299 } while ((lruvec = parent_lruvec(lruvec)));
300 }
301
302 void lru_note_cost_page(struct page *page)
303 {
304 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
305 page_is_file_lru(page), thp_nr_pages(page));
306 }
307
308 static void __activate_page(struct page *page, struct lruvec *lruvec)
309 {
310 if (!PageActive(page) && !PageUnevictable(page)) {
311 int lru = page_lru_base_type(page);
312 int nr_pages = thp_nr_pages(page);
313
314 del_page_from_lru_list(page, lruvec, lru);
315 SetPageActive(page);
316 lru += LRU_ACTIVE;
317 add_page_to_lru_list(page, lruvec, lru);
318 trace_mm_lru_activate(page);
319
320 __count_vm_events(PGACTIVATE, nr_pages);
321 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
322 nr_pages);
323 }
324 }
325
326 #ifdef CONFIG_SMP
327 static void activate_page_drain(int cpu)
328 {
329 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
330
331 if (pagevec_count(pvec))
332 pagevec_lru_move_fn(pvec, __activate_page);
333 }
334
335 static bool need_activate_page_drain(int cpu)
336 {
337 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
338 }
339
340 static void activate_page(struct page *page)
341 {
342 page = compound_head(page);
343 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
344 struct pagevec *pvec;
345
346 local_lock(&lru_pvecs.lock);
347 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
348 get_page(page);
349 if (!pagevec_add(pvec, page) || PageCompound(page))
350 pagevec_lru_move_fn(pvec, __activate_page);
351 local_unlock(&lru_pvecs.lock);
352 }
353 }
354
355 #else
356 static inline void activate_page_drain(int cpu)
357 {
358 }
359
360 static void activate_page(struct page *page)
361 {
362 struct lruvec *lruvec;
363
364 page = compound_head(page);
365 if (TestClearPageLRU(page)) {
366 lruvec = lock_page_lruvec_irq(page);
367 __activate_page(page, lruvec);
368 unlock_page_lruvec_irq(lruvec);
369 SetPageLRU(page);
370 }
371 }
372 #endif
373
374 static void __lru_cache_activate_page(struct page *page)
375 {
376 struct pagevec *pvec;
377 int i;
378
379 local_lock(&lru_pvecs.lock);
380 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
381
382 /*
383 * Search backwards on the optimistic assumption that the page being
384 * activated has just been added to this pagevec. Note that only
385 * the local pagevec is examined as a !PageLRU page could be in the
386 * process of being released, reclaimed, migrated or on a remote
387 * pagevec that is currently being drained. Furthermore, marking
388 * a remote pagevec's page PageActive potentially hits a race where
389 * a page is marked PageActive just after it is added to the inactive
390 * list causing accounting errors and BUG_ON checks to trigger.
391 */
392 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
393 struct page *pagevec_page = pvec->pages[i];
394
395 if (pagevec_page == page) {
396 SetPageActive(page);
397 break;
398 }
399 }
400
401 local_unlock(&lru_pvecs.lock);
402 }
403
404 /*
405 * Mark a page as having seen activity.
406 *
407 * inactive,unreferenced -> inactive,referenced
408 * inactive,referenced -> active,unreferenced
409 * active,unreferenced -> active,referenced
410 *
411 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
412 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
413 */
414 void mark_page_accessed(struct page *page)
415 {
416 page = compound_head(page);
417
418 if (!PageReferenced(page)) {
419 SetPageReferenced(page);
420 } else if (PageUnevictable(page)) {
421 /*
422 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
423 * this list is never rotated or maintained, so marking an
424 * evictable page accessed has no effect.
425 */
426 } else if (!PageActive(page)) {
427 /*
428 * If the page is on the LRU, queue it for activation via
429 * lru_pvecs.activate_page. Otherwise, assume the page is on a
430 * pagevec, mark it active and it'll be moved to the active
431 * LRU on the next drain.
432 */
433 if (PageLRU(page))
434 activate_page(page);
435 else
436 __lru_cache_activate_page(page);
437 ClearPageReferenced(page);
438 workingset_activation(page);
439 }
440 if (page_is_idle(page))
441 clear_page_idle(page);
442 }
443 EXPORT_SYMBOL(mark_page_accessed);
444
445 /**
446 * lru_cache_add - add a page to a page list
447 * @page: the page to be added to the LRU.
448 *
449 * Queue the page for addition to the LRU via pagevec. The decision on whether
450 * to add the page to the [in]active [file|anon] list is deferred until the
451 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
452 * have the page added to the active list using mark_page_accessed().
453 */
454 void lru_cache_add(struct page *page)
455 {
456 struct pagevec *pvec;
457
458 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
459 VM_BUG_ON_PAGE(PageLRU(page), page);
460
461 get_page(page);
462 local_lock(&lru_pvecs.lock);
463 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
464 if (!pagevec_add(pvec, page) || PageCompound(page))
465 __pagevec_lru_add(pvec);
466 local_unlock(&lru_pvecs.lock);
467 }
468 EXPORT_SYMBOL(lru_cache_add);
469
470 /**
471 * lru_cache_add_inactive_or_unevictable
472 * @page: the page to be added to LRU
473 * @vma: vma in which page is mapped for determining reclaimability
474 *
475 * Place @page on the inactive or unevictable LRU list, depending on its
476 * evictability.
477 */
478 void lru_cache_add_inactive_or_unevictable(struct page *page,
479 struct vm_area_struct *vma)
480 {
481 bool unevictable;
482
483 VM_BUG_ON_PAGE(PageLRU(page), page);
484
485 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
486 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
487 int nr_pages = thp_nr_pages(page);
488 /*
489 * We use the irq-unsafe __mod_zone_page_stat because this
490 * counter is not modified from interrupt context, and the pte
491 * lock is held(spinlock), which implies preemption disabled.
492 */
493 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
494 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
495 }
496 lru_cache_add(page);
497 }
498
499 /*
500 * If the page can not be invalidated, it is moved to the
501 * inactive list to speed up its reclaim. It is moved to the
502 * head of the list, rather than the tail, to give the flusher
503 * threads some time to write it out, as this is much more
504 * effective than the single-page writeout from reclaim.
505 *
506 * If the page isn't page_mapped and dirty/writeback, the page
507 * could reclaim asap using PG_reclaim.
508 *
509 * 1. active, mapped page -> none
510 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
511 * 3. inactive, mapped page -> none
512 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
513 * 5. inactive, clean -> inactive, tail
514 * 6. Others -> none
515 *
516 * In 4, why it moves inactive's head, the VM expects the page would
517 * be write it out by flusher threads as this is much more effective
518 * than the single-page writeout from reclaim.
519 */
520 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
521 {
522 int lru;
523 bool active;
524 int nr_pages = thp_nr_pages(page);
525
526 if (PageUnevictable(page))
527 return;
528
529 /* Some processes are using the page */
530 if (page_mapped(page))
531 return;
532
533 active = PageActive(page);
534 lru = page_lru_base_type(page);
535
536 del_page_from_lru_list(page, lruvec, lru + active);
537 ClearPageActive(page);
538 ClearPageReferenced(page);
539
540 if (PageWriteback(page) || PageDirty(page)) {
541 /*
542 * PG_reclaim could be raced with end_page_writeback
543 * It can make readahead confusing. But race window
544 * is _really_ small and it's non-critical problem.
545 */
546 add_page_to_lru_list(page, lruvec, lru);
547 SetPageReclaim(page);
548 } else {
549 /*
550 * The page's writeback ends up during pagevec
551 * We moves tha page into tail of inactive.
552 */
553 add_page_to_lru_list_tail(page, lruvec, lru);
554 __count_vm_events(PGROTATED, nr_pages);
555 }
556
557 if (active) {
558 __count_vm_events(PGDEACTIVATE, nr_pages);
559 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
560 nr_pages);
561 }
562 }
563
564 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
565 {
566 if (PageActive(page) && !PageUnevictable(page)) {
567 int lru = page_lru_base_type(page);
568 int nr_pages = thp_nr_pages(page);
569
570 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
571 ClearPageActive(page);
572 ClearPageReferenced(page);
573 add_page_to_lru_list(page, lruvec, lru);
574
575 __count_vm_events(PGDEACTIVATE, nr_pages);
576 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
577 nr_pages);
578 }
579 }
580
581 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
582 {
583 if (PageAnon(page) && PageSwapBacked(page) &&
584 !PageSwapCache(page) && !PageUnevictable(page)) {
585 bool active = PageActive(page);
586 int nr_pages = thp_nr_pages(page);
587
588 del_page_from_lru_list(page, lruvec,
589 LRU_INACTIVE_ANON + active);
590 ClearPageActive(page);
591 ClearPageReferenced(page);
592 /*
593 * Lazyfree pages are clean anonymous pages. They have
594 * PG_swapbacked flag cleared, to distinguish them from normal
595 * anonymous pages
596 */
597 ClearPageSwapBacked(page);
598 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
599
600 __count_vm_events(PGLAZYFREE, nr_pages);
601 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
602 nr_pages);
603 }
604 }
605
606 /*
607 * Drain pages out of the cpu's pagevecs.
608 * Either "cpu" is the current CPU, and preemption has already been
609 * disabled; or "cpu" is being hot-unplugged, and is already dead.
610 */
611 void lru_add_drain_cpu(int cpu)
612 {
613 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
614
615 if (pagevec_count(pvec))
616 __pagevec_lru_add(pvec);
617
618 pvec = &per_cpu(lru_rotate.pvec, cpu);
619 /* Disabling interrupts below acts as a compiler barrier. */
620 if (data_race(pagevec_count(pvec))) {
621 unsigned long flags;
622
623 /* No harm done if a racing interrupt already did this */
624 local_lock_irqsave(&lru_rotate.lock, flags);
625 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
626 local_unlock_irqrestore(&lru_rotate.lock, flags);
627 }
628
629 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
630 if (pagevec_count(pvec))
631 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
632
633 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
634 if (pagevec_count(pvec))
635 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
636
637 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
638 if (pagevec_count(pvec))
639 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
640
641 activate_page_drain(cpu);
642 }
643
644 /**
645 * deactivate_file_page - forcefully deactivate a file page
646 * @page: page to deactivate
647 *
648 * This function hints the VM that @page is a good reclaim candidate,
649 * for example if its invalidation fails due to the page being dirty
650 * or under writeback.
651 */
652 void deactivate_file_page(struct page *page)
653 {
654 /*
655 * In a workload with many unevictable page such as mprotect,
656 * unevictable page deactivation for accelerating reclaim is pointless.
657 */
658 if (PageUnevictable(page))
659 return;
660
661 if (likely(get_page_unless_zero(page))) {
662 struct pagevec *pvec;
663
664 local_lock(&lru_pvecs.lock);
665 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
666
667 if (!pagevec_add(pvec, page) || PageCompound(page))
668 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
669 local_unlock(&lru_pvecs.lock);
670 }
671 }
672
673 /*
674 * deactivate_page - deactivate a page
675 * @page: page to deactivate
676 *
677 * deactivate_page() moves @page to the inactive list if @page was on the active
678 * list and was not an unevictable page. This is done to accelerate the reclaim
679 * of @page.
680 */
681 void deactivate_page(struct page *page)
682 {
683 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
684 struct pagevec *pvec;
685
686 local_lock(&lru_pvecs.lock);
687 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
688 get_page(page);
689 if (!pagevec_add(pvec, page) || PageCompound(page))
690 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
691 local_unlock(&lru_pvecs.lock);
692 }
693 }
694
695 /**
696 * mark_page_lazyfree - make an anon page lazyfree
697 * @page: page to deactivate
698 *
699 * mark_page_lazyfree() moves @page to the inactive file list.
700 * This is done to accelerate the reclaim of @page.
701 */
702 void mark_page_lazyfree(struct page *page)
703 {
704 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
705 !PageSwapCache(page) && !PageUnevictable(page)) {
706 struct pagevec *pvec;
707
708 local_lock(&lru_pvecs.lock);
709 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
710 get_page(page);
711 if (!pagevec_add(pvec, page) || PageCompound(page))
712 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
713 local_unlock(&lru_pvecs.lock);
714 }
715 }
716
717 void lru_add_drain(void)
718 {
719 local_lock(&lru_pvecs.lock);
720 lru_add_drain_cpu(smp_processor_id());
721 local_unlock(&lru_pvecs.lock);
722 }
723
724 void lru_add_drain_cpu_zone(struct zone *zone)
725 {
726 local_lock(&lru_pvecs.lock);
727 lru_add_drain_cpu(smp_processor_id());
728 drain_local_pages(zone);
729 local_unlock(&lru_pvecs.lock);
730 }
731
732 #ifdef CONFIG_SMP
733
734 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
735
736 static void lru_add_drain_per_cpu(struct work_struct *dummy)
737 {
738 lru_add_drain();
739 }
740
741 /*
742 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
743 * kworkers being shut down before our page_alloc_cpu_dead callback is
744 * executed on the offlined cpu.
745 * Calling this function with cpu hotplug locks held can actually lead
746 * to obscure indirect dependencies via WQ context.
747 */
748 void lru_add_drain_all(void)
749 {
750 /*
751 * lru_drain_gen - Global pages generation number
752 *
753 * (A) Definition: global lru_drain_gen = x implies that all generations
754 * 0 < n <= x are already *scheduled* for draining.
755 *
756 * This is an optimization for the highly-contended use case where a
757 * user space workload keeps constantly generating a flow of pages for
758 * each CPU.
759 */
760 static unsigned int lru_drain_gen;
761 static struct cpumask has_work;
762 static DEFINE_MUTEX(lock);
763 unsigned cpu, this_gen;
764
765 /*
766 * Make sure nobody triggers this path before mm_percpu_wq is fully
767 * initialized.
768 */
769 if (WARN_ON(!mm_percpu_wq))
770 return;
771
772 /*
773 * Guarantee pagevec counter stores visible by this CPU are visible to
774 * other CPUs before loading the current drain generation.
775 */
776 smp_mb();
777
778 /*
779 * (B) Locally cache global LRU draining generation number
780 *
781 * The read barrier ensures that the counter is loaded before the mutex
782 * is taken. It pairs with smp_mb() inside the mutex critical section
783 * at (D).
784 */
785 this_gen = smp_load_acquire(&lru_drain_gen);
786
787 mutex_lock(&lock);
788
789 /*
790 * (C) Exit the draining operation if a newer generation, from another
791 * lru_add_drain_all(), was already scheduled for draining. Check (A).
792 */
793 if (unlikely(this_gen != lru_drain_gen))
794 goto done;
795
796 /*
797 * (D) Increment global generation number
798 *
799 * Pairs with smp_load_acquire() at (B), outside of the critical
800 * section. Use a full memory barrier to guarantee that the new global
801 * drain generation number is stored before loading pagevec counters.
802 *
803 * This pairing must be done here, before the for_each_online_cpu loop
804 * below which drains the page vectors.
805 *
806 * Let x, y, and z represent some system CPU numbers, where x < y < z.
807 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
808 * below and has already reached CPU #y's per-cpu data. CPU #x comes
809 * along, adds some pages to its per-cpu vectors, then calls
810 * lru_add_drain_all().
811 *
812 * If the paired barrier is done at any later step, e.g. after the
813 * loop, CPU #x will just exit at (C) and miss flushing out all of its
814 * added pages.
815 */
816 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
817 smp_mb();
818
819 cpumask_clear(&has_work);
820 for_each_online_cpu(cpu) {
821 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
822
823 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
824 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
825 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
826 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
827 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
828 need_activate_page_drain(cpu)) {
829 INIT_WORK(work, lru_add_drain_per_cpu);
830 queue_work_on(cpu, mm_percpu_wq, work);
831 __cpumask_set_cpu(cpu, &has_work);
832 }
833 }
834
835 for_each_cpu(cpu, &has_work)
836 flush_work(&per_cpu(lru_add_drain_work, cpu));
837
838 done:
839 mutex_unlock(&lock);
840 }
841 #else
842 void lru_add_drain_all(void)
843 {
844 lru_add_drain();
845 }
846 #endif /* CONFIG_SMP */
847
848 /**
849 * release_pages - batched put_page()
850 * @pages: array of pages to release
851 * @nr: number of pages
852 *
853 * Decrement the reference count on all the pages in @pages. If it
854 * fell to zero, remove the page from the LRU and free it.
855 */
856 void release_pages(struct page **pages, int nr)
857 {
858 int i;
859 LIST_HEAD(pages_to_free);
860 struct lruvec *lruvec = NULL;
861 unsigned long flags;
862 unsigned int lock_batch;
863
864 for (i = 0; i < nr; i++) {
865 struct page *page = pages[i];
866
867 /*
868 * Make sure the IRQ-safe lock-holding time does not get
869 * excessive with a continuous string of pages from the
870 * same lruvec. The lock is held only if lruvec != NULL.
871 */
872 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
873 unlock_page_lruvec_irqrestore(lruvec, flags);
874 lruvec = NULL;
875 }
876
877 page = compound_head(page);
878 if (is_huge_zero_page(page))
879 continue;
880
881 if (is_zone_device_page(page)) {
882 if (lruvec) {
883 unlock_page_lruvec_irqrestore(lruvec, flags);
884 lruvec = NULL;
885 }
886 /*
887 * ZONE_DEVICE pages that return 'false' from
888 * page_is_devmap_managed() do not require special
889 * processing, and instead, expect a call to
890 * put_page_testzero().
891 */
892 if (page_is_devmap_managed(page)) {
893 put_devmap_managed_page(page);
894 continue;
895 }
896 if (put_page_testzero(page))
897 put_dev_pagemap(page->pgmap);
898 continue;
899 }
900
901 if (!put_page_testzero(page))
902 continue;
903
904 if (PageCompound(page)) {
905 if (lruvec) {
906 unlock_page_lruvec_irqrestore(lruvec, flags);
907 lruvec = NULL;
908 }
909 __put_compound_page(page);
910 continue;
911 }
912
913 if (PageLRU(page)) {
914 struct lruvec *prev_lruvec = lruvec;
915
916 lruvec = relock_page_lruvec_irqsave(page, lruvec,
917 &flags);
918 if (prev_lruvec != lruvec)
919 lock_batch = 0;
920
921 VM_BUG_ON_PAGE(!PageLRU(page), page);
922 __ClearPageLRU(page);
923 del_page_from_lru_list(page, lruvec, page_off_lru(page));
924 }
925
926 __ClearPageWaiters(page);
927
928 list_add(&page->lru, &pages_to_free);
929 }
930 if (lruvec)
931 unlock_page_lruvec_irqrestore(lruvec, flags);
932
933 mem_cgroup_uncharge_list(&pages_to_free);
934 free_unref_page_list(&pages_to_free);
935 }
936 EXPORT_SYMBOL(release_pages);
937
938 /*
939 * The pages which we're about to release may be in the deferred lru-addition
940 * queues. That would prevent them from really being freed right now. That's
941 * OK from a correctness point of view but is inefficient - those pages may be
942 * cache-warm and we want to give them back to the page allocator ASAP.
943 *
944 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
945 * and __pagevec_lru_add_active() call release_pages() directly to avoid
946 * mutual recursion.
947 */
948 void __pagevec_release(struct pagevec *pvec)
949 {
950 if (!pvec->percpu_pvec_drained) {
951 lru_add_drain();
952 pvec->percpu_pvec_drained = true;
953 }
954 release_pages(pvec->pages, pagevec_count(pvec));
955 pagevec_reinit(pvec);
956 }
957 EXPORT_SYMBOL(__pagevec_release);
958
959 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
960 {
961 enum lru_list lru;
962 int was_unevictable = TestClearPageUnevictable(page);
963 int nr_pages = thp_nr_pages(page);
964
965 VM_BUG_ON_PAGE(PageLRU(page), page);
966
967 /*
968 * Page becomes evictable in two ways:
969 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
970 * 2) Before acquiring LRU lock to put the page to correct LRU and then
971 * a) do PageLRU check with lock [check_move_unevictable_pages]
972 * b) do PageLRU check before lock [clear_page_mlock]
973 *
974 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
975 * following strict ordering:
976 *
977 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
978 *
979 * SetPageLRU() TestClearPageMlocked()
980 * smp_mb() // explicit ordering // above provides strict
981 * // ordering
982 * PageMlocked() PageLRU()
983 *
984 *
985 * if '#1' does not observe setting of PG_lru by '#0' and fails
986 * isolation, the explicit barrier will make sure that page_evictable
987 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
988 * can be reordered after PageMlocked check and can make '#1' to fail
989 * the isolation of the page whose Mlocked bit is cleared (#0 is also
990 * looking at the same page) and the evictable page will be stranded
991 * in an unevictable LRU.
992 */
993 SetPageLRU(page);
994 smp_mb__after_atomic();
995
996 if (page_evictable(page)) {
997 lru = page_lru(page);
998 if (was_unevictable)
999 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1000 } else {
1001 lru = LRU_UNEVICTABLE;
1002 ClearPageActive(page);
1003 SetPageUnevictable(page);
1004 if (!was_unevictable)
1005 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1006 }
1007
1008 add_page_to_lru_list(page, lruvec, lru);
1009 trace_mm_lru_insertion(page, lru);
1010 }
1011
1012 /*
1013 * Add the passed pages to the LRU, then drop the caller's refcount
1014 * on them. Reinitialises the caller's pagevec.
1015 */
1016 void __pagevec_lru_add(struct pagevec *pvec)
1017 {
1018 int i;
1019 struct lruvec *lruvec = NULL;
1020 unsigned long flags = 0;
1021
1022 for (i = 0; i < pagevec_count(pvec); i++) {
1023 struct page *page = pvec->pages[i];
1024
1025 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1026 __pagevec_lru_add_fn(page, lruvec);
1027 }
1028 if (lruvec)
1029 unlock_page_lruvec_irqrestore(lruvec, flags);
1030 release_pages(pvec->pages, pvec->nr);
1031 pagevec_reinit(pvec);
1032 }
1033
1034 /**
1035 * pagevec_lookup_entries - gang pagecache lookup
1036 * @pvec: Where the resulting entries are placed
1037 * @mapping: The address_space to search
1038 * @start: The starting entry index
1039 * @nr_entries: The maximum number of pages
1040 * @indices: The cache indices corresponding to the entries in @pvec
1041 *
1042 * pagevec_lookup_entries() will search for and return a group of up
1043 * to @nr_pages pages and shadow entries in the mapping. All
1044 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1045 * reference against actual pages in @pvec.
1046 *
1047 * The search returns a group of mapping-contiguous entries with
1048 * ascending indexes. There may be holes in the indices due to
1049 * not-present entries.
1050 *
1051 * Only one subpage of a Transparent Huge Page is returned in one call:
1052 * allowing truncate_inode_pages_range() to evict the whole THP without
1053 * cycling through a pagevec of extra references.
1054 *
1055 * pagevec_lookup_entries() returns the number of entries which were
1056 * found.
1057 */
1058 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1059 struct address_space *mapping,
1060 pgoff_t start, unsigned nr_entries,
1061 pgoff_t *indices)
1062 {
1063 pvec->nr = find_get_entries(mapping, start, nr_entries,
1064 pvec->pages, indices);
1065 return pagevec_count(pvec);
1066 }
1067
1068 /**
1069 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1070 * @pvec: The pagevec to prune
1071 *
1072 * pagevec_lookup_entries() fills both pages and exceptional radix
1073 * tree entries into the pagevec. This function prunes all
1074 * exceptionals from @pvec without leaving holes, so that it can be
1075 * passed on to page-only pagevec operations.
1076 */
1077 void pagevec_remove_exceptionals(struct pagevec *pvec)
1078 {
1079 int i, j;
1080
1081 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1082 struct page *page = pvec->pages[i];
1083 if (!xa_is_value(page))
1084 pvec->pages[j++] = page;
1085 }
1086 pvec->nr = j;
1087 }
1088
1089 /**
1090 * pagevec_lookup_range - gang pagecache lookup
1091 * @pvec: Where the resulting pages are placed
1092 * @mapping: The address_space to search
1093 * @start: The starting page index
1094 * @end: The final page index
1095 *
1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1097 * pages in the mapping starting from index @start and upto index @end
1098 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1099 * reference against the pages in @pvec.
1100 *
1101 * The search returns a group of mapping-contiguous pages with ascending
1102 * indexes. There may be holes in the indices due to not-present pages. We
1103 * also update @start to index the next page for the traversal.
1104 *
1105 * pagevec_lookup_range() returns the number of pages which were found. If this
1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1107 * reached.
1108 */
1109 unsigned pagevec_lookup_range(struct pagevec *pvec,
1110 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1111 {
1112 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1113 pvec->pages);
1114 return pagevec_count(pvec);
1115 }
1116 EXPORT_SYMBOL(pagevec_lookup_range);
1117
1118 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1119 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1120 xa_mark_t tag)
1121 {
1122 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1123 PAGEVEC_SIZE, pvec->pages);
1124 return pagevec_count(pvec);
1125 }
1126 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1127
1128 /*
1129 * Perform any setup for the swap system
1130 */
1131 void __init swap_setup(void)
1132 {
1133 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1134
1135 /* Use a smaller cluster for small-memory machines */
1136 if (megs < 16)
1137 page_cluster = 2;
1138 else
1139 page_cluster = 3;
1140 /*
1141 * Right now other parts of the system means that we
1142 * _really_ don't want to cluster much more
1143 */
1144 }
1145
1146 #ifdef CONFIG_DEV_PAGEMAP_OPS
1147 void put_devmap_managed_page(struct page *page)
1148 {
1149 int count;
1150
1151 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1152 return;
1153
1154 count = page_ref_dec_return(page);
1155
1156 /*
1157 * devmap page refcounts are 1-based, rather than 0-based: if
1158 * refcount is 1, then the page is free and the refcount is
1159 * stable because nobody holds a reference on the page.
1160 */
1161 if (count == 1)
1162 free_devmap_managed_page(page);
1163 else if (!count)
1164 __put_page(page);
1165 }
1166 EXPORT_SYMBOL(put_devmap_managed_page);
1167 #endif