]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/swap.c
mailmap: update the email address for Chris Chiu
[mirror_ubuntu-jammy-kernel.git] / mm / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39
40 #include "internal.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
44
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
47
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
52 };
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
55 };
56
57 /*
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
60 */
61 struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68 struct pagevec activate_page;
69 #endif
70 };
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73 };
74
75 /*
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
78 */
79 static void __page_cache_release(struct page *page)
80 {
81 if (PageLRU(page)) {
82 struct lruvec *lruvec;
83 unsigned long flags;
84
85 lruvec = lock_page_lruvec_irqsave(page, &flags);
86 del_page_from_lru_list(page, lruvec);
87 __clear_page_lru_flags(page);
88 unlock_page_lruvec_irqrestore(lruvec, flags);
89 }
90 __ClearPageWaiters(page);
91 }
92
93 static void __put_single_page(struct page *page)
94 {
95 __page_cache_release(page);
96 mem_cgroup_uncharge(page);
97 free_unref_page(page);
98 }
99
100 static void __put_compound_page(struct page *page)
101 {
102 /*
103 * __page_cache_release() is supposed to be called for thp, not for
104 * hugetlb. This is because hugetlb page does never have PageLRU set
105 * (it's never listed to any LRU lists) and no memcg routines should
106 * be called for hugetlb (it has a separate hugetlb_cgroup.)
107 */
108 if (!PageHuge(page))
109 __page_cache_release(page);
110 destroy_compound_page(page);
111 }
112
113 void __put_page(struct page *page)
114 {
115 if (is_zone_device_page(page)) {
116 put_dev_pagemap(page->pgmap);
117
118 /*
119 * The page belongs to the device that created pgmap. Do
120 * not return it to page allocator.
121 */
122 return;
123 }
124
125 if (unlikely(PageCompound(page)))
126 __put_compound_page(page);
127 else
128 __put_single_page(page);
129 }
130 EXPORT_SYMBOL(__put_page);
131
132 /**
133 * put_pages_list() - release a list of pages
134 * @pages: list of pages threaded on page->lru
135 *
136 * Release a list of pages which are strung together on page.lru. Currently
137 * used by read_cache_pages() and related error recovery code.
138 */
139 void put_pages_list(struct list_head *pages)
140 {
141 while (!list_empty(pages)) {
142 struct page *victim;
143
144 victim = lru_to_page(pages);
145 list_del(&victim->lru);
146 put_page(victim);
147 }
148 }
149 EXPORT_SYMBOL(put_pages_list);
150
151 /*
152 * get_kernel_pages() - pin kernel pages in memory
153 * @kiov: An array of struct kvec structures
154 * @nr_segs: number of segments to pin
155 * @write: pinning for read/write, currently ignored
156 * @pages: array that receives pointers to the pages pinned.
157 * Should be at least nr_segs long.
158 *
159 * Returns number of pages pinned. This may be fewer than the number
160 * requested. If nr_pages is 0 or negative, returns 0. If no pages
161 * were pinned, returns -errno. Each page returned must be released
162 * with a put_page() call when it is finished with.
163 */
164 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
165 struct page **pages)
166 {
167 int seg;
168
169 for (seg = 0; seg < nr_segs; seg++) {
170 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
171 return seg;
172
173 pages[seg] = kmap_to_page(kiov[seg].iov_base);
174 get_page(pages[seg]);
175 }
176
177 return seg;
178 }
179 EXPORT_SYMBOL_GPL(get_kernel_pages);
180
181 /*
182 * get_kernel_page() - pin a kernel page in memory
183 * @start: starting kernel address
184 * @write: pinning for read/write, currently ignored
185 * @pages: array that receives pointer to the page pinned.
186 * Must be at least nr_segs long.
187 *
188 * Returns 1 if page is pinned. If the page was not pinned, returns
189 * -errno. The page returned must be released with a put_page() call
190 * when it is finished with.
191 */
192 int get_kernel_page(unsigned long start, int write, struct page **pages)
193 {
194 const struct kvec kiov = {
195 .iov_base = (void *)start,
196 .iov_len = PAGE_SIZE
197 };
198
199 return get_kernel_pages(&kiov, 1, write, pages);
200 }
201 EXPORT_SYMBOL_GPL(get_kernel_page);
202
203 static void pagevec_lru_move_fn(struct pagevec *pvec,
204 void (*move_fn)(struct page *page, struct lruvec *lruvec))
205 {
206 int i;
207 struct lruvec *lruvec = NULL;
208 unsigned long flags = 0;
209
210 for (i = 0; i < pagevec_count(pvec); i++) {
211 struct page *page = pvec->pages[i];
212
213 /* block memcg migration during page moving between lru */
214 if (!TestClearPageLRU(page))
215 continue;
216
217 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
218 (*move_fn)(page, lruvec);
219
220 SetPageLRU(page);
221 }
222 if (lruvec)
223 unlock_page_lruvec_irqrestore(lruvec, flags);
224 release_pages(pvec->pages, pvec->nr);
225 pagevec_reinit(pvec);
226 }
227
228 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
229 {
230 if (!PageUnevictable(page)) {
231 del_page_from_lru_list(page, lruvec);
232 ClearPageActive(page);
233 add_page_to_lru_list_tail(page, lruvec);
234 __count_vm_events(PGROTATED, thp_nr_pages(page));
235 }
236 }
237
238 /*
239 * Writeback is about to end against a page which has been marked for immediate
240 * reclaim. If it still appears to be reclaimable, move it to the tail of the
241 * inactive list.
242 *
243 * rotate_reclaimable_page() must disable IRQs, to prevent nasty races.
244 */
245 void rotate_reclaimable_page(struct page *page)
246 {
247 if (!PageLocked(page) && !PageDirty(page) &&
248 !PageUnevictable(page) && PageLRU(page)) {
249 struct pagevec *pvec;
250 unsigned long flags;
251
252 get_page(page);
253 local_lock_irqsave(&lru_rotate.lock, flags);
254 pvec = this_cpu_ptr(&lru_rotate.pvec);
255 if (!pagevec_add(pvec, page) || PageCompound(page))
256 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
257 local_unlock_irqrestore(&lru_rotate.lock, flags);
258 }
259 }
260
261 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
262 {
263 do {
264 unsigned long lrusize;
265
266 /*
267 * Hold lruvec->lru_lock is safe here, since
268 * 1) The pinned lruvec in reclaim, or
269 * 2) From a pre-LRU page during refault (which also holds the
270 * rcu lock, so would be safe even if the page was on the LRU
271 * and could move simultaneously to a new lruvec).
272 */
273 spin_lock_irq(&lruvec->lru_lock);
274 /* Record cost event */
275 if (file)
276 lruvec->file_cost += nr_pages;
277 else
278 lruvec->anon_cost += nr_pages;
279
280 /*
281 * Decay previous events
282 *
283 * Because workloads change over time (and to avoid
284 * overflow) we keep these statistics as a floating
285 * average, which ends up weighing recent refaults
286 * more than old ones.
287 */
288 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
289 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
290 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
291 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
292
293 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
294 lruvec->file_cost /= 2;
295 lruvec->anon_cost /= 2;
296 }
297 spin_unlock_irq(&lruvec->lru_lock);
298 } while ((lruvec = parent_lruvec(lruvec)));
299 }
300
301 void lru_note_cost_page(struct page *page)
302 {
303 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
304 page_is_file_lru(page), thp_nr_pages(page));
305 }
306
307 static void __activate_page(struct page *page, struct lruvec *lruvec)
308 {
309 if (!PageActive(page) && !PageUnevictable(page)) {
310 int nr_pages = thp_nr_pages(page);
311
312 del_page_from_lru_list(page, lruvec);
313 SetPageActive(page);
314 add_page_to_lru_list(page, lruvec);
315 trace_mm_lru_activate(page);
316
317 __count_vm_events(PGACTIVATE, nr_pages);
318 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
319 nr_pages);
320 }
321 }
322
323 #ifdef CONFIG_SMP
324 static void activate_page_drain(int cpu)
325 {
326 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
327
328 if (pagevec_count(pvec))
329 pagevec_lru_move_fn(pvec, __activate_page);
330 }
331
332 static bool need_activate_page_drain(int cpu)
333 {
334 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
335 }
336
337 static void activate_page(struct page *page)
338 {
339 page = compound_head(page);
340 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
341 struct pagevec *pvec;
342
343 local_lock(&lru_pvecs.lock);
344 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
345 get_page(page);
346 if (!pagevec_add(pvec, page) || PageCompound(page))
347 pagevec_lru_move_fn(pvec, __activate_page);
348 local_unlock(&lru_pvecs.lock);
349 }
350 }
351
352 #else
353 static inline void activate_page_drain(int cpu)
354 {
355 }
356
357 static void activate_page(struct page *page)
358 {
359 struct lruvec *lruvec;
360
361 page = compound_head(page);
362 if (TestClearPageLRU(page)) {
363 lruvec = lock_page_lruvec_irq(page);
364 __activate_page(page, lruvec);
365 unlock_page_lruvec_irq(lruvec);
366 SetPageLRU(page);
367 }
368 }
369 #endif
370
371 static void __lru_cache_activate_page(struct page *page)
372 {
373 struct pagevec *pvec;
374 int i;
375
376 local_lock(&lru_pvecs.lock);
377 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
378
379 /*
380 * Search backwards on the optimistic assumption that the page being
381 * activated has just been added to this pagevec. Note that only
382 * the local pagevec is examined as a !PageLRU page could be in the
383 * process of being released, reclaimed, migrated or on a remote
384 * pagevec that is currently being drained. Furthermore, marking
385 * a remote pagevec's page PageActive potentially hits a race where
386 * a page is marked PageActive just after it is added to the inactive
387 * list causing accounting errors and BUG_ON checks to trigger.
388 */
389 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
390 struct page *pagevec_page = pvec->pages[i];
391
392 if (pagevec_page == page) {
393 SetPageActive(page);
394 break;
395 }
396 }
397
398 local_unlock(&lru_pvecs.lock);
399 }
400
401 /*
402 * Mark a page as having seen activity.
403 *
404 * inactive,unreferenced -> inactive,referenced
405 * inactive,referenced -> active,unreferenced
406 * active,unreferenced -> active,referenced
407 *
408 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
409 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
410 */
411 void mark_page_accessed(struct page *page)
412 {
413 page = compound_head(page);
414
415 if (!PageReferenced(page)) {
416 SetPageReferenced(page);
417 } else if (PageUnevictable(page)) {
418 /*
419 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
420 * this list is never rotated or maintained, so marking an
421 * evictable page accessed has no effect.
422 */
423 } else if (!PageActive(page)) {
424 /*
425 * If the page is on the LRU, queue it for activation via
426 * lru_pvecs.activate_page. Otherwise, assume the page is on a
427 * pagevec, mark it active and it'll be moved to the active
428 * LRU on the next drain.
429 */
430 if (PageLRU(page))
431 activate_page(page);
432 else
433 __lru_cache_activate_page(page);
434 ClearPageReferenced(page);
435 workingset_activation(page);
436 }
437 if (page_is_idle(page))
438 clear_page_idle(page);
439 }
440 EXPORT_SYMBOL(mark_page_accessed);
441
442 /**
443 * lru_cache_add - add a page to a page list
444 * @page: the page to be added to the LRU.
445 *
446 * Queue the page for addition to the LRU via pagevec. The decision on whether
447 * to add the page to the [in]active [file|anon] list is deferred until the
448 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
449 * have the page added to the active list using mark_page_accessed().
450 */
451 void lru_cache_add(struct page *page)
452 {
453 struct pagevec *pvec;
454
455 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
456 VM_BUG_ON_PAGE(PageLRU(page), page);
457
458 get_page(page);
459 local_lock(&lru_pvecs.lock);
460 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
461 if (!pagevec_add(pvec, page) || PageCompound(page))
462 __pagevec_lru_add(pvec);
463 local_unlock(&lru_pvecs.lock);
464 }
465 EXPORT_SYMBOL(lru_cache_add);
466
467 /**
468 * lru_cache_add_inactive_or_unevictable
469 * @page: the page to be added to LRU
470 * @vma: vma in which page is mapped for determining reclaimability
471 *
472 * Place @page on the inactive or unevictable LRU list, depending on its
473 * evictability.
474 */
475 void lru_cache_add_inactive_or_unevictable(struct page *page,
476 struct vm_area_struct *vma)
477 {
478 bool unevictable;
479
480 VM_BUG_ON_PAGE(PageLRU(page), page);
481
482 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
483 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
484 int nr_pages = thp_nr_pages(page);
485 /*
486 * We use the irq-unsafe __mod_zone_page_stat because this
487 * counter is not modified from interrupt context, and the pte
488 * lock is held(spinlock), which implies preemption disabled.
489 */
490 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
491 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
492 }
493 lru_cache_add(page);
494 }
495
496 /*
497 * If the page can not be invalidated, it is moved to the
498 * inactive list to speed up its reclaim. It is moved to the
499 * head of the list, rather than the tail, to give the flusher
500 * threads some time to write it out, as this is much more
501 * effective than the single-page writeout from reclaim.
502 *
503 * If the page isn't page_mapped and dirty/writeback, the page
504 * could reclaim asap using PG_reclaim.
505 *
506 * 1. active, mapped page -> none
507 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
508 * 3. inactive, mapped page -> none
509 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
510 * 5. inactive, clean -> inactive, tail
511 * 6. Others -> none
512 *
513 * In 4, why it moves inactive's head, the VM expects the page would
514 * be write it out by flusher threads as this is much more effective
515 * than the single-page writeout from reclaim.
516 */
517 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
518 {
519 bool active = PageActive(page);
520 int nr_pages = thp_nr_pages(page);
521
522 if (PageUnevictable(page))
523 return;
524
525 /* Some processes are using the page */
526 if (page_mapped(page))
527 return;
528
529 del_page_from_lru_list(page, lruvec);
530 ClearPageActive(page);
531 ClearPageReferenced(page);
532
533 if (PageWriteback(page) || PageDirty(page)) {
534 /*
535 * PG_reclaim could be raced with end_page_writeback
536 * It can make readahead confusing. But race window
537 * is _really_ small and it's non-critical problem.
538 */
539 add_page_to_lru_list(page, lruvec);
540 SetPageReclaim(page);
541 } else {
542 /*
543 * The page's writeback ends up during pagevec
544 * We moves tha page into tail of inactive.
545 */
546 add_page_to_lru_list_tail(page, lruvec);
547 __count_vm_events(PGROTATED, nr_pages);
548 }
549
550 if (active) {
551 __count_vm_events(PGDEACTIVATE, nr_pages);
552 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
553 nr_pages);
554 }
555 }
556
557 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
558 {
559 if (PageActive(page) && !PageUnevictable(page)) {
560 int nr_pages = thp_nr_pages(page);
561
562 del_page_from_lru_list(page, lruvec);
563 ClearPageActive(page);
564 ClearPageReferenced(page);
565 add_page_to_lru_list(page, lruvec);
566
567 __count_vm_events(PGDEACTIVATE, nr_pages);
568 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
569 nr_pages);
570 }
571 }
572
573 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
574 {
575 if (PageAnon(page) && PageSwapBacked(page) &&
576 !PageSwapCache(page) && !PageUnevictable(page)) {
577 int nr_pages = thp_nr_pages(page);
578
579 del_page_from_lru_list(page, lruvec);
580 ClearPageActive(page);
581 ClearPageReferenced(page);
582 /*
583 * Lazyfree pages are clean anonymous pages. They have
584 * PG_swapbacked flag cleared, to distinguish them from normal
585 * anonymous pages
586 */
587 ClearPageSwapBacked(page);
588 add_page_to_lru_list(page, lruvec);
589
590 __count_vm_events(PGLAZYFREE, nr_pages);
591 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
592 nr_pages);
593 }
594 }
595
596 /*
597 * Drain pages out of the cpu's pagevecs.
598 * Either "cpu" is the current CPU, and preemption has already been
599 * disabled; or "cpu" is being hot-unplugged, and is already dead.
600 */
601 void lru_add_drain_cpu(int cpu)
602 {
603 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
604
605 if (pagevec_count(pvec))
606 __pagevec_lru_add(pvec);
607
608 pvec = &per_cpu(lru_rotate.pvec, cpu);
609 /* Disabling interrupts below acts as a compiler barrier. */
610 if (data_race(pagevec_count(pvec))) {
611 unsigned long flags;
612
613 /* No harm done if a racing interrupt already did this */
614 local_lock_irqsave(&lru_rotate.lock, flags);
615 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
616 local_unlock_irqrestore(&lru_rotate.lock, flags);
617 }
618
619 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
620 if (pagevec_count(pvec))
621 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
622
623 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
624 if (pagevec_count(pvec))
625 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
626
627 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
628 if (pagevec_count(pvec))
629 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
630
631 activate_page_drain(cpu);
632 }
633
634 /**
635 * deactivate_file_page - forcefully deactivate a file page
636 * @page: page to deactivate
637 *
638 * This function hints the VM that @page is a good reclaim candidate,
639 * for example if its invalidation fails due to the page being dirty
640 * or under writeback.
641 */
642 void deactivate_file_page(struct page *page)
643 {
644 /*
645 * In a workload with many unevictable page such as mprotect,
646 * unevictable page deactivation for accelerating reclaim is pointless.
647 */
648 if (PageUnevictable(page))
649 return;
650
651 if (likely(get_page_unless_zero(page))) {
652 struct pagevec *pvec;
653
654 local_lock(&lru_pvecs.lock);
655 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
656
657 if (!pagevec_add(pvec, page) || PageCompound(page))
658 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
659 local_unlock(&lru_pvecs.lock);
660 }
661 }
662
663 /*
664 * deactivate_page - deactivate a page
665 * @page: page to deactivate
666 *
667 * deactivate_page() moves @page to the inactive list if @page was on the active
668 * list and was not an unevictable page. This is done to accelerate the reclaim
669 * of @page.
670 */
671 void deactivate_page(struct page *page)
672 {
673 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
674 struct pagevec *pvec;
675
676 local_lock(&lru_pvecs.lock);
677 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
678 get_page(page);
679 if (!pagevec_add(pvec, page) || PageCompound(page))
680 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
681 local_unlock(&lru_pvecs.lock);
682 }
683 }
684
685 /**
686 * mark_page_lazyfree - make an anon page lazyfree
687 * @page: page to deactivate
688 *
689 * mark_page_lazyfree() moves @page to the inactive file list.
690 * This is done to accelerate the reclaim of @page.
691 */
692 void mark_page_lazyfree(struct page *page)
693 {
694 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
695 !PageSwapCache(page) && !PageUnevictable(page)) {
696 struct pagevec *pvec;
697
698 local_lock(&lru_pvecs.lock);
699 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
700 get_page(page);
701 if (!pagevec_add(pvec, page) || PageCompound(page))
702 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
703 local_unlock(&lru_pvecs.lock);
704 }
705 }
706
707 void lru_add_drain(void)
708 {
709 local_lock(&lru_pvecs.lock);
710 lru_add_drain_cpu(smp_processor_id());
711 local_unlock(&lru_pvecs.lock);
712 }
713
714 void lru_add_drain_cpu_zone(struct zone *zone)
715 {
716 local_lock(&lru_pvecs.lock);
717 lru_add_drain_cpu(smp_processor_id());
718 drain_local_pages(zone);
719 local_unlock(&lru_pvecs.lock);
720 }
721
722 #ifdef CONFIG_SMP
723
724 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
725
726 static void lru_add_drain_per_cpu(struct work_struct *dummy)
727 {
728 lru_add_drain();
729 }
730
731 /*
732 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
733 * kworkers being shut down before our page_alloc_cpu_dead callback is
734 * executed on the offlined cpu.
735 * Calling this function with cpu hotplug locks held can actually lead
736 * to obscure indirect dependencies via WQ context.
737 */
738 void lru_add_drain_all(void)
739 {
740 /*
741 * lru_drain_gen - Global pages generation number
742 *
743 * (A) Definition: global lru_drain_gen = x implies that all generations
744 * 0 < n <= x are already *scheduled* for draining.
745 *
746 * This is an optimization for the highly-contended use case where a
747 * user space workload keeps constantly generating a flow of pages for
748 * each CPU.
749 */
750 static unsigned int lru_drain_gen;
751 static struct cpumask has_work;
752 static DEFINE_MUTEX(lock);
753 unsigned cpu, this_gen;
754
755 /*
756 * Make sure nobody triggers this path before mm_percpu_wq is fully
757 * initialized.
758 */
759 if (WARN_ON(!mm_percpu_wq))
760 return;
761
762 /*
763 * Guarantee pagevec counter stores visible by this CPU are visible to
764 * other CPUs before loading the current drain generation.
765 */
766 smp_mb();
767
768 /*
769 * (B) Locally cache global LRU draining generation number
770 *
771 * The read barrier ensures that the counter is loaded before the mutex
772 * is taken. It pairs with smp_mb() inside the mutex critical section
773 * at (D).
774 */
775 this_gen = smp_load_acquire(&lru_drain_gen);
776
777 mutex_lock(&lock);
778
779 /*
780 * (C) Exit the draining operation if a newer generation, from another
781 * lru_add_drain_all(), was already scheduled for draining. Check (A).
782 */
783 if (unlikely(this_gen != lru_drain_gen))
784 goto done;
785
786 /*
787 * (D) Increment global generation number
788 *
789 * Pairs with smp_load_acquire() at (B), outside of the critical
790 * section. Use a full memory barrier to guarantee that the new global
791 * drain generation number is stored before loading pagevec counters.
792 *
793 * This pairing must be done here, before the for_each_online_cpu loop
794 * below which drains the page vectors.
795 *
796 * Let x, y, and z represent some system CPU numbers, where x < y < z.
797 * Assume CPU #z is is in the middle of the for_each_online_cpu loop
798 * below and has already reached CPU #y's per-cpu data. CPU #x comes
799 * along, adds some pages to its per-cpu vectors, then calls
800 * lru_add_drain_all().
801 *
802 * If the paired barrier is done at any later step, e.g. after the
803 * loop, CPU #x will just exit at (C) and miss flushing out all of its
804 * added pages.
805 */
806 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
807 smp_mb();
808
809 cpumask_clear(&has_work);
810 for_each_online_cpu(cpu) {
811 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
812
813 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
814 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
815 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
816 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
817 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
818 need_activate_page_drain(cpu)) {
819 INIT_WORK(work, lru_add_drain_per_cpu);
820 queue_work_on(cpu, mm_percpu_wq, work);
821 __cpumask_set_cpu(cpu, &has_work);
822 }
823 }
824
825 for_each_cpu(cpu, &has_work)
826 flush_work(&per_cpu(lru_add_drain_work, cpu));
827
828 done:
829 mutex_unlock(&lock);
830 }
831 #else
832 void lru_add_drain_all(void)
833 {
834 lru_add_drain();
835 }
836 #endif /* CONFIG_SMP */
837
838 /**
839 * release_pages - batched put_page()
840 * @pages: array of pages to release
841 * @nr: number of pages
842 *
843 * Decrement the reference count on all the pages in @pages. If it
844 * fell to zero, remove the page from the LRU and free it.
845 */
846 void release_pages(struct page **pages, int nr)
847 {
848 int i;
849 LIST_HEAD(pages_to_free);
850 struct lruvec *lruvec = NULL;
851 unsigned long flags;
852 unsigned int lock_batch;
853
854 for (i = 0; i < nr; i++) {
855 struct page *page = pages[i];
856
857 /*
858 * Make sure the IRQ-safe lock-holding time does not get
859 * excessive with a continuous string of pages from the
860 * same lruvec. The lock is held only if lruvec != NULL.
861 */
862 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
863 unlock_page_lruvec_irqrestore(lruvec, flags);
864 lruvec = NULL;
865 }
866
867 page = compound_head(page);
868 if (is_huge_zero_page(page))
869 continue;
870
871 if (is_zone_device_page(page)) {
872 if (lruvec) {
873 unlock_page_lruvec_irqrestore(lruvec, flags);
874 lruvec = NULL;
875 }
876 /*
877 * ZONE_DEVICE pages that return 'false' from
878 * page_is_devmap_managed() do not require special
879 * processing, and instead, expect a call to
880 * put_page_testzero().
881 */
882 if (page_is_devmap_managed(page)) {
883 put_devmap_managed_page(page);
884 continue;
885 }
886 if (put_page_testzero(page))
887 put_dev_pagemap(page->pgmap);
888 continue;
889 }
890
891 if (!put_page_testzero(page))
892 continue;
893
894 if (PageCompound(page)) {
895 if (lruvec) {
896 unlock_page_lruvec_irqrestore(lruvec, flags);
897 lruvec = NULL;
898 }
899 __put_compound_page(page);
900 continue;
901 }
902
903 if (PageLRU(page)) {
904 struct lruvec *prev_lruvec = lruvec;
905
906 lruvec = relock_page_lruvec_irqsave(page, lruvec,
907 &flags);
908 if (prev_lruvec != lruvec)
909 lock_batch = 0;
910
911 del_page_from_lru_list(page, lruvec);
912 __clear_page_lru_flags(page);
913 }
914
915 __ClearPageWaiters(page);
916
917 list_add(&page->lru, &pages_to_free);
918 }
919 if (lruvec)
920 unlock_page_lruvec_irqrestore(lruvec, flags);
921
922 mem_cgroup_uncharge_list(&pages_to_free);
923 free_unref_page_list(&pages_to_free);
924 }
925 EXPORT_SYMBOL(release_pages);
926
927 /*
928 * The pages which we're about to release may be in the deferred lru-addition
929 * queues. That would prevent them from really being freed right now. That's
930 * OK from a correctness point of view but is inefficient - those pages may be
931 * cache-warm and we want to give them back to the page allocator ASAP.
932 *
933 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
934 * and __pagevec_lru_add_active() call release_pages() directly to avoid
935 * mutual recursion.
936 */
937 void __pagevec_release(struct pagevec *pvec)
938 {
939 if (!pvec->percpu_pvec_drained) {
940 lru_add_drain();
941 pvec->percpu_pvec_drained = true;
942 }
943 release_pages(pvec->pages, pagevec_count(pvec));
944 pagevec_reinit(pvec);
945 }
946 EXPORT_SYMBOL(__pagevec_release);
947
948 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
949 {
950 int was_unevictable = TestClearPageUnevictable(page);
951 int nr_pages = thp_nr_pages(page);
952
953 VM_BUG_ON_PAGE(PageLRU(page), page);
954
955 /*
956 * Page becomes evictable in two ways:
957 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
958 * 2) Before acquiring LRU lock to put the page to correct LRU and then
959 * a) do PageLRU check with lock [check_move_unevictable_pages]
960 * b) do PageLRU check before lock [clear_page_mlock]
961 *
962 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
963 * following strict ordering:
964 *
965 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
966 *
967 * SetPageLRU() TestClearPageMlocked()
968 * smp_mb() // explicit ordering // above provides strict
969 * // ordering
970 * PageMlocked() PageLRU()
971 *
972 *
973 * if '#1' does not observe setting of PG_lru by '#0' and fails
974 * isolation, the explicit barrier will make sure that page_evictable
975 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
976 * can be reordered after PageMlocked check and can make '#1' to fail
977 * the isolation of the page whose Mlocked bit is cleared (#0 is also
978 * looking at the same page) and the evictable page will be stranded
979 * in an unevictable LRU.
980 */
981 SetPageLRU(page);
982 smp_mb__after_atomic();
983
984 if (page_evictable(page)) {
985 if (was_unevictable)
986 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
987 } else {
988 ClearPageActive(page);
989 SetPageUnevictable(page);
990 if (!was_unevictable)
991 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
992 }
993
994 add_page_to_lru_list(page, lruvec);
995 trace_mm_lru_insertion(page);
996 }
997
998 /*
999 * Add the passed pages to the LRU, then drop the caller's refcount
1000 * on them. Reinitialises the caller's pagevec.
1001 */
1002 void __pagevec_lru_add(struct pagevec *pvec)
1003 {
1004 int i;
1005 struct lruvec *lruvec = NULL;
1006 unsigned long flags = 0;
1007
1008 for (i = 0; i < pagevec_count(pvec); i++) {
1009 struct page *page = pvec->pages[i];
1010
1011 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1012 __pagevec_lru_add_fn(page, lruvec);
1013 }
1014 if (lruvec)
1015 unlock_page_lruvec_irqrestore(lruvec, flags);
1016 release_pages(pvec->pages, pvec->nr);
1017 pagevec_reinit(pvec);
1018 }
1019
1020 /**
1021 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1022 * @pvec: The pagevec to prune
1023 *
1024 * find_get_entries() fills both pages and XArray value entries (aka
1025 * exceptional entries) into the pagevec. This function prunes all
1026 * exceptionals from @pvec without leaving holes, so that it can be
1027 * passed on to page-only pagevec operations.
1028 */
1029 void pagevec_remove_exceptionals(struct pagevec *pvec)
1030 {
1031 int i, j;
1032
1033 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1034 struct page *page = pvec->pages[i];
1035 if (!xa_is_value(page))
1036 pvec->pages[j++] = page;
1037 }
1038 pvec->nr = j;
1039 }
1040
1041 /**
1042 * pagevec_lookup_range - gang pagecache lookup
1043 * @pvec: Where the resulting pages are placed
1044 * @mapping: The address_space to search
1045 * @start: The starting page index
1046 * @end: The final page index
1047 *
1048 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1049 * pages in the mapping starting from index @start and upto index @end
1050 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1051 * reference against the pages in @pvec.
1052 *
1053 * The search returns a group of mapping-contiguous pages with ascending
1054 * indexes. There may be holes in the indices due to not-present pages. We
1055 * also update @start to index the next page for the traversal.
1056 *
1057 * pagevec_lookup_range() returns the number of pages which were found. If this
1058 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1059 * reached.
1060 */
1061 unsigned pagevec_lookup_range(struct pagevec *pvec,
1062 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1063 {
1064 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1065 pvec->pages);
1066 return pagevec_count(pvec);
1067 }
1068 EXPORT_SYMBOL(pagevec_lookup_range);
1069
1070 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1071 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1072 xa_mark_t tag)
1073 {
1074 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1075 PAGEVEC_SIZE, pvec->pages);
1076 return pagevec_count(pvec);
1077 }
1078 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1079
1080 /*
1081 * Perform any setup for the swap system
1082 */
1083 void __init swap_setup(void)
1084 {
1085 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1086
1087 /* Use a smaller cluster for small-memory machines */
1088 if (megs < 16)
1089 page_cluster = 2;
1090 else
1091 page_cluster = 3;
1092 /*
1093 * Right now other parts of the system means that we
1094 * _really_ don't want to cluster much more
1095 */
1096 }
1097
1098 #ifdef CONFIG_DEV_PAGEMAP_OPS
1099 void put_devmap_managed_page(struct page *page)
1100 {
1101 int count;
1102
1103 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1104 return;
1105
1106 count = page_ref_dec_return(page);
1107
1108 /*
1109 * devmap page refcounts are 1-based, rather than 0-based: if
1110 * refcount is 1, then the page is free and the refcount is
1111 * stable because nobody holds a reference on the page.
1112 */
1113 if (count == 1)
1114 free_devmap_managed_page(page);
1115 else if (!count)
1116 __put_page(page);
1117 }
1118 EXPORT_SYMBOL(put_devmap_managed_page);
1119 #endif