]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/swap.c
3baca701bb78a8c6eb9c3c0b5d2e794834f94497
[mirror_ubuntu-bionic-kernel.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34
35 #include "internal.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
39
40 /* How many pages do we try to swap or page in/out together? */
41 int page_cluster;
42
43 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
44 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
45 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
46
47 /*
48 * This path almost never happens for VM activity - pages are normally
49 * freed via pagevecs. But it gets used by networking.
50 */
51 static void __page_cache_release(struct page *page)
52 {
53 if (PageLRU(page)) {
54 struct zone *zone = page_zone(page);
55 struct lruvec *lruvec;
56 unsigned long flags;
57
58 spin_lock_irqsave(&zone->lru_lock, flags);
59 lruvec = mem_cgroup_page_lruvec(page, zone);
60 VM_BUG_ON_PAGE(!PageLRU(page), page);
61 __ClearPageLRU(page);
62 del_page_from_lru_list(page, lruvec, page_off_lru(page));
63 spin_unlock_irqrestore(&zone->lru_lock, flags);
64 }
65 }
66
67 static void __put_single_page(struct page *page)
68 {
69 __page_cache_release(page);
70 free_hot_cold_page(page, false);
71 }
72
73 static void __put_compound_page(struct page *page)
74 {
75 compound_page_dtor *dtor;
76
77 __page_cache_release(page);
78 dtor = get_compound_page_dtor(page);
79 (*dtor)(page);
80 }
81
82 /**
83 * Two special cases here: we could avoid taking compound_lock_irqsave
84 * and could skip the tail refcounting(in _mapcount).
85 *
86 * 1. Hugetlbfs page:
87 *
88 * PageHeadHuge will remain true until the compound page
89 * is released and enters the buddy allocator, and it could
90 * not be split by __split_huge_page_refcount().
91 *
92 * So if we see PageHeadHuge set, and we have the tail page pin,
93 * then we could safely put head page.
94 *
95 * 2. Slab THP page:
96 *
97 * PG_slab is cleared before the slab frees the head page, and
98 * tail pin cannot be the last reference left on the head page,
99 * because the slab code is free to reuse the compound page
100 * after a kfree/kmem_cache_free without having to check if
101 * there's any tail pin left. In turn all tail pinsmust be always
102 * released while the head is still pinned by the slab code
103 * and so we know PG_slab will be still set too.
104 *
105 * So if we see PageSlab set, and we have the tail page pin,
106 * then we could safely put head page.
107 */
108 static __always_inline
109 void put_unrefcounted_compound_page(struct page *page_head, struct page *page)
110 {
111 /*
112 * If @page is a THP tail, we must read the tail page
113 * flags after the head page flags. The
114 * __split_huge_page_refcount side enforces write memory barriers
115 * between clearing PageTail and before the head page
116 * can be freed and reallocated.
117 */
118 smp_rmb();
119 if (likely(PageTail(page))) {
120 /*
121 * __split_huge_page_refcount cannot race
122 * here, see the comment above this function.
123 */
124 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
125 VM_BUG_ON_PAGE(page_mapcount(page) != 0, page);
126 if (put_page_testzero(page_head)) {
127 /*
128 * If this is the tail of a slab THP page,
129 * the tail pin must not be the last reference
130 * held on the page, because the PG_slab cannot
131 * be cleared before all tail pins (which skips
132 * the _mapcount tail refcounting) have been
133 * released.
134 *
135 * If this is the tail of a hugetlbfs page,
136 * the tail pin may be the last reference on
137 * the page instead, because PageHeadHuge will
138 * not go away until the compound page enters
139 * the buddy allocator.
140 */
141 VM_BUG_ON_PAGE(PageSlab(page_head), page_head);
142 __put_compound_page(page_head);
143 }
144 } else
145 /*
146 * __split_huge_page_refcount run before us,
147 * @page was a THP tail. The split @page_head
148 * has been freed and reallocated as slab or
149 * hugetlbfs page of smaller order (only
150 * possible if reallocated as slab on x86).
151 */
152 if (put_page_testzero(page))
153 __put_single_page(page);
154 }
155
156 static __always_inline
157 void put_refcounted_compound_page(struct page *page_head, struct page *page)
158 {
159 if (likely(page != page_head && get_page_unless_zero(page_head))) {
160 unsigned long flags;
161
162 /*
163 * @page_head wasn't a dangling pointer but it may not
164 * be a head page anymore by the time we obtain the
165 * lock. That is ok as long as it can't be freed from
166 * under us.
167 */
168 flags = compound_lock_irqsave(page_head);
169 if (unlikely(!PageTail(page))) {
170 /* __split_huge_page_refcount run before us */
171 compound_unlock_irqrestore(page_head, flags);
172 if (put_page_testzero(page_head)) {
173 /*
174 * The @page_head may have been freed
175 * and reallocated as a compound page
176 * of smaller order and then freed
177 * again. All we know is that it
178 * cannot have become: a THP page, a
179 * compound page of higher order, a
180 * tail page. That is because we
181 * still hold the refcount of the
182 * split THP tail and page_head was
183 * the THP head before the split.
184 */
185 if (PageHead(page_head))
186 __put_compound_page(page_head);
187 else
188 __put_single_page(page_head);
189 }
190 out_put_single:
191 if (put_page_testzero(page))
192 __put_single_page(page);
193 return;
194 }
195 VM_BUG_ON_PAGE(page_head != page->first_page, page);
196 /*
197 * We can release the refcount taken by
198 * get_page_unless_zero() now that
199 * __split_huge_page_refcount() is blocked on the
200 * compound_lock.
201 */
202 if (put_page_testzero(page_head))
203 VM_BUG_ON_PAGE(1, page_head);
204 /* __split_huge_page_refcount will wait now */
205 VM_BUG_ON_PAGE(page_mapcount(page) <= 0, page);
206 atomic_dec(&page->_mapcount);
207 VM_BUG_ON_PAGE(atomic_read(&page_head->_count) <= 0, page_head);
208 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
209 compound_unlock_irqrestore(page_head, flags);
210
211 if (put_page_testzero(page_head)) {
212 if (PageHead(page_head))
213 __put_compound_page(page_head);
214 else
215 __put_single_page(page_head);
216 }
217 } else {
218 /* @page_head is a dangling pointer */
219 VM_BUG_ON_PAGE(PageTail(page), page);
220 goto out_put_single;
221 }
222 }
223
224 static void put_compound_page(struct page *page)
225 {
226 struct page *page_head;
227
228 /*
229 * We see the PageCompound set and PageTail not set, so @page maybe:
230 * 1. hugetlbfs head page, or
231 * 2. THP head page.
232 */
233 if (likely(!PageTail(page))) {
234 if (put_page_testzero(page)) {
235 /*
236 * By the time all refcounts have been released
237 * split_huge_page cannot run anymore from under us.
238 */
239 if (PageHead(page))
240 __put_compound_page(page);
241 else
242 __put_single_page(page);
243 }
244 return;
245 }
246
247 /*
248 * We see the PageCompound set and PageTail set, so @page maybe:
249 * 1. a tail hugetlbfs page, or
250 * 2. a tail THP page, or
251 * 3. a split THP page.
252 *
253 * Case 3 is possible, as we may race with
254 * __split_huge_page_refcount tearing down a THP page.
255 */
256 page_head = compound_head_by_tail(page);
257 if (!__compound_tail_refcounted(page_head))
258 put_unrefcounted_compound_page(page_head, page);
259 else
260 put_refcounted_compound_page(page_head, page);
261 }
262
263 void put_page(struct page *page)
264 {
265 if (unlikely(PageCompound(page)))
266 put_compound_page(page);
267 else if (put_page_testzero(page))
268 __put_single_page(page);
269 }
270 EXPORT_SYMBOL(put_page);
271
272 /*
273 * This function is exported but must not be called by anything other
274 * than get_page(). It implements the slow path of get_page().
275 */
276 bool __get_page_tail(struct page *page)
277 {
278 /*
279 * This takes care of get_page() if run on a tail page
280 * returned by one of the get_user_pages/follow_page variants.
281 * get_user_pages/follow_page itself doesn't need the compound
282 * lock because it runs __get_page_tail_foll() under the
283 * proper PT lock that already serializes against
284 * split_huge_page().
285 */
286 unsigned long flags;
287 bool got;
288 struct page *page_head = compound_head(page);
289
290 /* Ref to put_compound_page() comment. */
291 if (!__compound_tail_refcounted(page_head)) {
292 smp_rmb();
293 if (likely(PageTail(page))) {
294 /*
295 * This is a hugetlbfs page or a slab
296 * page. __split_huge_page_refcount
297 * cannot race here.
298 */
299 VM_BUG_ON_PAGE(!PageHead(page_head), page_head);
300 __get_page_tail_foll(page, true);
301 return true;
302 } else {
303 /*
304 * __split_huge_page_refcount run
305 * before us, "page" was a THP
306 * tail. The split page_head has been
307 * freed and reallocated as slab or
308 * hugetlbfs page of smaller order
309 * (only possible if reallocated as
310 * slab on x86).
311 */
312 return false;
313 }
314 }
315
316 got = false;
317 if (likely(page != page_head && get_page_unless_zero(page_head))) {
318 /*
319 * page_head wasn't a dangling pointer but it
320 * may not be a head page anymore by the time
321 * we obtain the lock. That is ok as long as it
322 * can't be freed from under us.
323 */
324 flags = compound_lock_irqsave(page_head);
325 /* here __split_huge_page_refcount won't run anymore */
326 if (likely(PageTail(page))) {
327 __get_page_tail_foll(page, false);
328 got = true;
329 }
330 compound_unlock_irqrestore(page_head, flags);
331 if (unlikely(!got))
332 put_page(page_head);
333 }
334 return got;
335 }
336 EXPORT_SYMBOL(__get_page_tail);
337
338 /**
339 * put_pages_list() - release a list of pages
340 * @pages: list of pages threaded on page->lru
341 *
342 * Release a list of pages which are strung together on page.lru. Currently
343 * used by read_cache_pages() and related error recovery code.
344 */
345 void put_pages_list(struct list_head *pages)
346 {
347 while (!list_empty(pages)) {
348 struct page *victim;
349
350 victim = list_entry(pages->prev, struct page, lru);
351 list_del(&victim->lru);
352 page_cache_release(victim);
353 }
354 }
355 EXPORT_SYMBOL(put_pages_list);
356
357 /*
358 * get_kernel_pages() - pin kernel pages in memory
359 * @kiov: An array of struct kvec structures
360 * @nr_segs: number of segments to pin
361 * @write: pinning for read/write, currently ignored
362 * @pages: array that receives pointers to the pages pinned.
363 * Should be at least nr_segs long.
364 *
365 * Returns number of pages pinned. This may be fewer than the number
366 * requested. If nr_pages is 0 or negative, returns 0. If no pages
367 * were pinned, returns -errno. Each page returned must be released
368 * with a put_page() call when it is finished with.
369 */
370 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
371 struct page **pages)
372 {
373 int seg;
374
375 for (seg = 0; seg < nr_segs; seg++) {
376 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
377 return seg;
378
379 pages[seg] = kmap_to_page(kiov[seg].iov_base);
380 page_cache_get(pages[seg]);
381 }
382
383 return seg;
384 }
385 EXPORT_SYMBOL_GPL(get_kernel_pages);
386
387 /*
388 * get_kernel_page() - pin a kernel page in memory
389 * @start: starting kernel address
390 * @write: pinning for read/write, currently ignored
391 * @pages: array that receives pointer to the page pinned.
392 * Must be at least nr_segs long.
393 *
394 * Returns 1 if page is pinned. If the page was not pinned, returns
395 * -errno. The page returned must be released with a put_page() call
396 * when it is finished with.
397 */
398 int get_kernel_page(unsigned long start, int write, struct page **pages)
399 {
400 const struct kvec kiov = {
401 .iov_base = (void *)start,
402 .iov_len = PAGE_SIZE
403 };
404
405 return get_kernel_pages(&kiov, 1, write, pages);
406 }
407 EXPORT_SYMBOL_GPL(get_kernel_page);
408
409 static void pagevec_lru_move_fn(struct pagevec *pvec,
410 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
411 void *arg)
412 {
413 int i;
414 struct zone *zone = NULL;
415 struct lruvec *lruvec;
416 unsigned long flags = 0;
417
418 for (i = 0; i < pagevec_count(pvec); i++) {
419 struct page *page = pvec->pages[i];
420 struct zone *pagezone = page_zone(page);
421
422 if (pagezone != zone) {
423 if (zone)
424 spin_unlock_irqrestore(&zone->lru_lock, flags);
425 zone = pagezone;
426 spin_lock_irqsave(&zone->lru_lock, flags);
427 }
428
429 lruvec = mem_cgroup_page_lruvec(page, zone);
430 (*move_fn)(page, lruvec, arg);
431 }
432 if (zone)
433 spin_unlock_irqrestore(&zone->lru_lock, flags);
434 release_pages(pvec->pages, pvec->nr, pvec->cold);
435 pagevec_reinit(pvec);
436 }
437
438 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
439 void *arg)
440 {
441 int *pgmoved = arg;
442
443 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
444 enum lru_list lru = page_lru_base_type(page);
445 list_move_tail(&page->lru, &lruvec->lists[lru]);
446 (*pgmoved)++;
447 }
448 }
449
450 /*
451 * pagevec_move_tail() must be called with IRQ disabled.
452 * Otherwise this may cause nasty races.
453 */
454 static void pagevec_move_tail(struct pagevec *pvec)
455 {
456 int pgmoved = 0;
457
458 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
459 __count_vm_events(PGROTATED, pgmoved);
460 }
461
462 /*
463 * Writeback is about to end against a page which has been marked for immediate
464 * reclaim. If it still appears to be reclaimable, move it to the tail of the
465 * inactive list.
466 */
467 void rotate_reclaimable_page(struct page *page)
468 {
469 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
470 !PageUnevictable(page) && PageLRU(page)) {
471 struct pagevec *pvec;
472 unsigned long flags;
473
474 page_cache_get(page);
475 local_irq_save(flags);
476 pvec = this_cpu_ptr(&lru_rotate_pvecs);
477 if (!pagevec_add(pvec, page))
478 pagevec_move_tail(pvec);
479 local_irq_restore(flags);
480 }
481 }
482
483 static void update_page_reclaim_stat(struct lruvec *lruvec,
484 int file, int rotated)
485 {
486 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
487
488 reclaim_stat->recent_scanned[file]++;
489 if (rotated)
490 reclaim_stat->recent_rotated[file]++;
491 }
492
493 static void __activate_page(struct page *page, struct lruvec *lruvec,
494 void *arg)
495 {
496 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
497 int file = page_is_file_cache(page);
498 int lru = page_lru_base_type(page);
499
500 del_page_from_lru_list(page, lruvec, lru);
501 SetPageActive(page);
502 lru += LRU_ACTIVE;
503 add_page_to_lru_list(page, lruvec, lru);
504 trace_mm_lru_activate(page);
505
506 __count_vm_event(PGACTIVATE);
507 update_page_reclaim_stat(lruvec, file, 1);
508 }
509 }
510
511 #ifdef CONFIG_SMP
512 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
513
514 static void activate_page_drain(int cpu)
515 {
516 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
517
518 if (pagevec_count(pvec))
519 pagevec_lru_move_fn(pvec, __activate_page, NULL);
520 }
521
522 static bool need_activate_page_drain(int cpu)
523 {
524 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
525 }
526
527 void activate_page(struct page *page)
528 {
529 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
530 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
531
532 page_cache_get(page);
533 if (!pagevec_add(pvec, page))
534 pagevec_lru_move_fn(pvec, __activate_page, NULL);
535 put_cpu_var(activate_page_pvecs);
536 }
537 }
538
539 #else
540 static inline void activate_page_drain(int cpu)
541 {
542 }
543
544 static bool need_activate_page_drain(int cpu)
545 {
546 return false;
547 }
548
549 void activate_page(struct page *page)
550 {
551 struct zone *zone = page_zone(page);
552
553 spin_lock_irq(&zone->lru_lock);
554 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
555 spin_unlock_irq(&zone->lru_lock);
556 }
557 #endif
558
559 static void __lru_cache_activate_page(struct page *page)
560 {
561 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
562 int i;
563
564 /*
565 * Search backwards on the optimistic assumption that the page being
566 * activated has just been added to this pagevec. Note that only
567 * the local pagevec is examined as a !PageLRU page could be in the
568 * process of being released, reclaimed, migrated or on a remote
569 * pagevec that is currently being drained. Furthermore, marking
570 * a remote pagevec's page PageActive potentially hits a race where
571 * a page is marked PageActive just after it is added to the inactive
572 * list causing accounting errors and BUG_ON checks to trigger.
573 */
574 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
575 struct page *pagevec_page = pvec->pages[i];
576
577 if (pagevec_page == page) {
578 SetPageActive(page);
579 break;
580 }
581 }
582
583 put_cpu_var(lru_add_pvec);
584 }
585
586 /*
587 * Mark a page as having seen activity.
588 *
589 * inactive,unreferenced -> inactive,referenced
590 * inactive,referenced -> active,unreferenced
591 * active,unreferenced -> active,referenced
592 *
593 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
594 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
595 */
596 void mark_page_accessed(struct page *page)
597 {
598 if (!PageActive(page) && !PageUnevictable(page) &&
599 PageReferenced(page)) {
600
601 /*
602 * If the page is on the LRU, queue it for activation via
603 * activate_page_pvecs. Otherwise, assume the page is on a
604 * pagevec, mark it active and it'll be moved to the active
605 * LRU on the next drain.
606 */
607 if (PageLRU(page))
608 activate_page(page);
609 else
610 __lru_cache_activate_page(page);
611 ClearPageReferenced(page);
612 if (page_is_file_cache(page))
613 workingset_activation(page);
614 } else if (!PageReferenced(page)) {
615 SetPageReferenced(page);
616 }
617 }
618 EXPORT_SYMBOL(mark_page_accessed);
619
620 static void __lru_cache_add(struct page *page)
621 {
622 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
623
624 page_cache_get(page);
625 if (!pagevec_space(pvec))
626 __pagevec_lru_add(pvec);
627 pagevec_add(pvec, page);
628 put_cpu_var(lru_add_pvec);
629 }
630
631 /**
632 * lru_cache_add: add a page to the page lists
633 * @page: the page to add
634 */
635 void lru_cache_add_anon(struct page *page)
636 {
637 if (PageActive(page))
638 ClearPageActive(page);
639 __lru_cache_add(page);
640 }
641
642 void lru_cache_add_file(struct page *page)
643 {
644 if (PageActive(page))
645 ClearPageActive(page);
646 __lru_cache_add(page);
647 }
648 EXPORT_SYMBOL(lru_cache_add_file);
649
650 /**
651 * lru_cache_add - add a page to a page list
652 * @page: the page to be added to the LRU.
653 *
654 * Queue the page for addition to the LRU via pagevec. The decision on whether
655 * to add the page to the [in]active [file|anon] list is deferred until the
656 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
657 * have the page added to the active list using mark_page_accessed().
658 */
659 void lru_cache_add(struct page *page)
660 {
661 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
662 VM_BUG_ON_PAGE(PageLRU(page), page);
663 __lru_cache_add(page);
664 }
665
666 /**
667 * add_page_to_unevictable_list - add a page to the unevictable list
668 * @page: the page to be added to the unevictable list
669 *
670 * Add page directly to its zone's unevictable list. To avoid races with
671 * tasks that might be making the page evictable, through eg. munlock,
672 * munmap or exit, while it's not on the lru, we want to add the page
673 * while it's locked or otherwise "invisible" to other tasks. This is
674 * difficult to do when using the pagevec cache, so bypass that.
675 */
676 void add_page_to_unevictable_list(struct page *page)
677 {
678 struct zone *zone = page_zone(page);
679 struct lruvec *lruvec;
680
681 spin_lock_irq(&zone->lru_lock);
682 lruvec = mem_cgroup_page_lruvec(page, zone);
683 ClearPageActive(page);
684 SetPageUnevictable(page);
685 SetPageLRU(page);
686 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
687 spin_unlock_irq(&zone->lru_lock);
688 }
689
690 /**
691 * lru_cache_add_active_or_unevictable
692 * @page: the page to be added to LRU
693 * @vma: vma in which page is mapped for determining reclaimability
694 *
695 * Place @page on the active or unevictable LRU list, depending on its
696 * evictability. Note that if the page is not evictable, it goes
697 * directly back onto it's zone's unevictable list, it does NOT use a
698 * per cpu pagevec.
699 */
700 void lru_cache_add_active_or_unevictable(struct page *page,
701 struct vm_area_struct *vma)
702 {
703 VM_BUG_ON_PAGE(PageLRU(page), page);
704
705 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
706 SetPageActive(page);
707 lru_cache_add(page);
708 return;
709 }
710
711 if (!TestSetPageMlocked(page)) {
712 /*
713 * We use the irq-unsafe __mod_zone_page_stat because this
714 * counter is not modified from interrupt context, and the pte
715 * lock is held(spinlock), which implies preemption disabled.
716 */
717 __mod_zone_page_state(page_zone(page), NR_MLOCK,
718 hpage_nr_pages(page));
719 count_vm_event(UNEVICTABLE_PGMLOCKED);
720 }
721 add_page_to_unevictable_list(page);
722 }
723
724 /*
725 * If the page can not be invalidated, it is moved to the
726 * inactive list to speed up its reclaim. It is moved to the
727 * head of the list, rather than the tail, to give the flusher
728 * threads some time to write it out, as this is much more
729 * effective than the single-page writeout from reclaim.
730 *
731 * If the page isn't page_mapped and dirty/writeback, the page
732 * could reclaim asap using PG_reclaim.
733 *
734 * 1. active, mapped page -> none
735 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
736 * 3. inactive, mapped page -> none
737 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
738 * 5. inactive, clean -> inactive, tail
739 * 6. Others -> none
740 *
741 * In 4, why it moves inactive's head, the VM expects the page would
742 * be write it out by flusher threads as this is much more effective
743 * than the single-page writeout from reclaim.
744 */
745 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
746 void *arg)
747 {
748 int lru, file;
749 bool active;
750
751 if (!PageLRU(page))
752 return;
753
754 if (PageUnevictable(page))
755 return;
756
757 /* Some processes are using the page */
758 if (page_mapped(page))
759 return;
760
761 active = PageActive(page);
762 file = page_is_file_cache(page);
763 lru = page_lru_base_type(page);
764
765 del_page_from_lru_list(page, lruvec, lru + active);
766 ClearPageActive(page);
767 ClearPageReferenced(page);
768 add_page_to_lru_list(page, lruvec, lru);
769
770 if (PageWriteback(page) || PageDirty(page)) {
771 /*
772 * PG_reclaim could be raced with end_page_writeback
773 * It can make readahead confusing. But race window
774 * is _really_ small and it's non-critical problem.
775 */
776 SetPageReclaim(page);
777 } else {
778 /*
779 * The page's writeback ends up during pagevec
780 * We moves tha page into tail of inactive.
781 */
782 list_move_tail(&page->lru, &lruvec->lists[lru]);
783 __count_vm_event(PGROTATED);
784 }
785
786 if (active)
787 __count_vm_event(PGDEACTIVATE);
788 update_page_reclaim_stat(lruvec, file, 0);
789 }
790
791 /*
792 * Drain pages out of the cpu's pagevecs.
793 * Either "cpu" is the current CPU, and preemption has already been
794 * disabled; or "cpu" is being hot-unplugged, and is already dead.
795 */
796 void lru_add_drain_cpu(int cpu)
797 {
798 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
799
800 if (pagevec_count(pvec))
801 __pagevec_lru_add(pvec);
802
803 pvec = &per_cpu(lru_rotate_pvecs, cpu);
804 if (pagevec_count(pvec)) {
805 unsigned long flags;
806
807 /* No harm done if a racing interrupt already did this */
808 local_irq_save(flags);
809 pagevec_move_tail(pvec);
810 local_irq_restore(flags);
811 }
812
813 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
814 if (pagevec_count(pvec))
815 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
816
817 activate_page_drain(cpu);
818 }
819
820 /**
821 * deactivate_page - forcefully deactivate a page
822 * @page: page to deactivate
823 *
824 * This function hints the VM that @page is a good reclaim candidate,
825 * for example if its invalidation fails due to the page being dirty
826 * or under writeback.
827 */
828 void deactivate_page(struct page *page)
829 {
830 /*
831 * In a workload with many unevictable page such as mprotect, unevictable
832 * page deactivation for accelerating reclaim is pointless.
833 */
834 if (PageUnevictable(page))
835 return;
836
837 if (likely(get_page_unless_zero(page))) {
838 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
839
840 if (!pagevec_add(pvec, page))
841 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
842 put_cpu_var(lru_deactivate_pvecs);
843 }
844 }
845
846 void lru_add_drain(void)
847 {
848 lru_add_drain_cpu(get_cpu());
849 put_cpu();
850 }
851
852 static void lru_add_drain_per_cpu(struct work_struct *dummy)
853 {
854 lru_add_drain();
855 }
856
857 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
858
859 void lru_add_drain_all(void)
860 {
861 static DEFINE_MUTEX(lock);
862 static struct cpumask has_work;
863 int cpu;
864
865 mutex_lock(&lock);
866 get_online_cpus();
867 cpumask_clear(&has_work);
868
869 for_each_online_cpu(cpu) {
870 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
871
872 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
873 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
874 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
875 need_activate_page_drain(cpu)) {
876 INIT_WORK(work, lru_add_drain_per_cpu);
877 schedule_work_on(cpu, work);
878 cpumask_set_cpu(cpu, &has_work);
879 }
880 }
881
882 for_each_cpu(cpu, &has_work)
883 flush_work(&per_cpu(lru_add_drain_work, cpu));
884
885 put_online_cpus();
886 mutex_unlock(&lock);
887 }
888
889 /*
890 * Batched page_cache_release(). Decrement the reference count on all the
891 * passed pages. If it fell to zero then remove the page from the LRU and
892 * free it.
893 *
894 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
895 * for the remainder of the operation.
896 *
897 * The locking in this function is against shrink_inactive_list(): we recheck
898 * the page count inside the lock to see whether shrink_inactive_list()
899 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
900 * will free it.
901 */
902 void release_pages(struct page **pages, int nr, bool cold)
903 {
904 int i;
905 LIST_HEAD(pages_to_free);
906 struct zone *zone = NULL;
907 struct lruvec *lruvec;
908 unsigned long uninitialized_var(flags);
909
910 for (i = 0; i < nr; i++) {
911 struct page *page = pages[i];
912
913 if (unlikely(PageCompound(page))) {
914 if (zone) {
915 spin_unlock_irqrestore(&zone->lru_lock, flags);
916 zone = NULL;
917 }
918 put_compound_page(page);
919 continue;
920 }
921
922 if (!put_page_testzero(page))
923 continue;
924
925 if (PageLRU(page)) {
926 struct zone *pagezone = page_zone(page);
927
928 if (pagezone != zone) {
929 if (zone)
930 spin_unlock_irqrestore(&zone->lru_lock,
931 flags);
932 zone = pagezone;
933 spin_lock_irqsave(&zone->lru_lock, flags);
934 }
935
936 lruvec = mem_cgroup_page_lruvec(page, zone);
937 VM_BUG_ON_PAGE(!PageLRU(page), page);
938 __ClearPageLRU(page);
939 del_page_from_lru_list(page, lruvec, page_off_lru(page));
940 }
941
942 /* Clear Active bit in case of parallel mark_page_accessed */
943 __ClearPageActive(page);
944
945 list_add(&page->lru, &pages_to_free);
946 }
947 if (zone)
948 spin_unlock_irqrestore(&zone->lru_lock, flags);
949
950 free_hot_cold_page_list(&pages_to_free, cold);
951 }
952 EXPORT_SYMBOL(release_pages);
953
954 /*
955 * The pages which we're about to release may be in the deferred lru-addition
956 * queues. That would prevent them from really being freed right now. That's
957 * OK from a correctness point of view but is inefficient - those pages may be
958 * cache-warm and we want to give them back to the page allocator ASAP.
959 *
960 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
961 * and __pagevec_lru_add_active() call release_pages() directly to avoid
962 * mutual recursion.
963 */
964 void __pagevec_release(struct pagevec *pvec)
965 {
966 lru_add_drain();
967 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
968 pagevec_reinit(pvec);
969 }
970 EXPORT_SYMBOL(__pagevec_release);
971
972 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
973 /* used by __split_huge_page_refcount() */
974 void lru_add_page_tail(struct page *page, struct page *page_tail,
975 struct lruvec *lruvec, struct list_head *list)
976 {
977 const int file = 0;
978
979 VM_BUG_ON_PAGE(!PageHead(page), page);
980 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
981 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
982 VM_BUG_ON(NR_CPUS != 1 &&
983 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
984
985 if (!list)
986 SetPageLRU(page_tail);
987
988 if (likely(PageLRU(page)))
989 list_add_tail(&page_tail->lru, &page->lru);
990 else if (list) {
991 /* page reclaim is reclaiming a huge page */
992 get_page(page_tail);
993 list_add_tail(&page_tail->lru, list);
994 } else {
995 struct list_head *list_head;
996 /*
997 * Head page has not yet been counted, as an hpage,
998 * so we must account for each subpage individually.
999 *
1000 * Use the standard add function to put page_tail on the list,
1001 * but then correct its position so they all end up in order.
1002 */
1003 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
1004 list_head = page_tail->lru.prev;
1005 list_move_tail(&page_tail->lru, list_head);
1006 }
1007
1008 if (!PageUnevictable(page))
1009 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
1010 }
1011 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1012
1013 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
1014 void *arg)
1015 {
1016 int file = page_is_file_cache(page);
1017 int active = PageActive(page);
1018 enum lru_list lru = page_lru(page);
1019
1020 VM_BUG_ON_PAGE(PageLRU(page), page);
1021
1022 SetPageLRU(page);
1023 add_page_to_lru_list(page, lruvec, lru);
1024 update_page_reclaim_stat(lruvec, file, active);
1025 trace_mm_lru_insertion(page, lru);
1026 }
1027
1028 /*
1029 * Add the passed pages to the LRU, then drop the caller's refcount
1030 * on them. Reinitialises the caller's pagevec.
1031 */
1032 void __pagevec_lru_add(struct pagevec *pvec)
1033 {
1034 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1035 }
1036 EXPORT_SYMBOL(__pagevec_lru_add);
1037
1038 /**
1039 * pagevec_lookup_entries - gang pagecache lookup
1040 * @pvec: Where the resulting entries are placed
1041 * @mapping: The address_space to search
1042 * @start: The starting entry index
1043 * @nr_entries: The maximum number of entries
1044 * @indices: The cache indices corresponding to the entries in @pvec
1045 *
1046 * pagevec_lookup_entries() will search for and return a group of up
1047 * to @nr_entries pages and shadow entries in the mapping. All
1048 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1049 * reference against actual pages in @pvec.
1050 *
1051 * The search returns a group of mapping-contiguous entries with
1052 * ascending indexes. There may be holes in the indices due to
1053 * not-present entries.
1054 *
1055 * pagevec_lookup_entries() returns the number of entries which were
1056 * found.
1057 */
1058 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1059 struct address_space *mapping,
1060 pgoff_t start, unsigned nr_pages,
1061 pgoff_t *indices)
1062 {
1063 pvec->nr = find_get_entries(mapping, start, nr_pages,
1064 pvec->pages, indices);
1065 return pagevec_count(pvec);
1066 }
1067
1068 /**
1069 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1070 * @pvec: The pagevec to prune
1071 *
1072 * pagevec_lookup_entries() fills both pages and exceptional radix
1073 * tree entries into the pagevec. This function prunes all
1074 * exceptionals from @pvec without leaving holes, so that it can be
1075 * passed on to page-only pagevec operations.
1076 */
1077 void pagevec_remove_exceptionals(struct pagevec *pvec)
1078 {
1079 int i, j;
1080
1081 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1082 struct page *page = pvec->pages[i];
1083 if (!radix_tree_exceptional_entry(page))
1084 pvec->pages[j++] = page;
1085 }
1086 pvec->nr = j;
1087 }
1088
1089 /**
1090 * pagevec_lookup - gang pagecache lookup
1091 * @pvec: Where the resulting pages are placed
1092 * @mapping: The address_space to search
1093 * @start: The starting page index
1094 * @nr_pages: The maximum number of pages
1095 *
1096 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
1097 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
1098 * reference against the pages in @pvec.
1099 *
1100 * The search returns a group of mapping-contiguous pages with ascending
1101 * indexes. There may be holes in the indices due to not-present pages.
1102 *
1103 * pagevec_lookup() returns the number of pages which were found.
1104 */
1105 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
1106 pgoff_t start, unsigned nr_pages)
1107 {
1108 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
1109 return pagevec_count(pvec);
1110 }
1111 EXPORT_SYMBOL(pagevec_lookup);
1112
1113 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
1114 pgoff_t *index, int tag, unsigned nr_pages)
1115 {
1116 pvec->nr = find_get_pages_tag(mapping, index, tag,
1117 nr_pages, pvec->pages);
1118 return pagevec_count(pvec);
1119 }
1120 EXPORT_SYMBOL(pagevec_lookup_tag);
1121
1122 /*
1123 * Perform any setup for the swap system
1124 */
1125 void __init swap_setup(void)
1126 {
1127 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1128 #ifdef CONFIG_SWAP
1129 int i;
1130
1131 if (bdi_init(swapper_spaces[0].backing_dev_info))
1132 panic("Failed to init swap bdi");
1133 for (i = 0; i < MAX_SWAPFILES; i++) {
1134 spin_lock_init(&swapper_spaces[i].tree_lock);
1135 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
1136 }
1137 #endif
1138
1139 /* Use a smaller cluster for small-memory machines */
1140 if (megs < 16)
1141 page_cluster = 2;
1142 else
1143 page_cluster = 3;
1144 /*
1145 * Right now other parts of the system means that we
1146 * _really_ don't want to cluster much more
1147 */
1148 }