]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/swap.c
Merge tag 'edac_for_4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[mirror_ubuntu-artful-kernel.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53
54 /*
55 * This path almost never happens for VM activity - pages are normally
56 * freed via pagevecs. But it gets used by networking.
57 */
58 static void __page_cache_release(struct page *page)
59 {
60 if (PageLRU(page)) {
61 struct zone *zone = page_zone(page);
62 struct lruvec *lruvec;
63 unsigned long flags;
64
65 spin_lock_irqsave(zone_lru_lock(zone), flags);
66 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
67 VM_BUG_ON_PAGE(!PageLRU(page), page);
68 __ClearPageLRU(page);
69 del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
71 }
72 __ClearPageWaiters(page);
73 mem_cgroup_uncharge(page);
74 }
75
76 static void __put_single_page(struct page *page)
77 {
78 __page_cache_release(page);
79 free_hot_cold_page(page, false);
80 }
81
82 static void __put_compound_page(struct page *page)
83 {
84 compound_page_dtor *dtor;
85
86 /*
87 * __page_cache_release() is supposed to be called for thp, not for
88 * hugetlb. This is because hugetlb page does never have PageLRU set
89 * (it's never listed to any LRU lists) and no memcg routines should
90 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 */
92 if (!PageHuge(page))
93 __page_cache_release(page);
94 dtor = get_compound_page_dtor(page);
95 (*dtor)(page);
96 }
97
98 void __put_page(struct page *page)
99 {
100 if (unlikely(PageCompound(page)))
101 __put_compound_page(page);
102 else
103 __put_single_page(page);
104 }
105 EXPORT_SYMBOL(__put_page);
106
107 /**
108 * put_pages_list() - release a list of pages
109 * @pages: list of pages threaded on page->lru
110 *
111 * Release a list of pages which are strung together on page.lru. Currently
112 * used by read_cache_pages() and related error recovery code.
113 */
114 void put_pages_list(struct list_head *pages)
115 {
116 while (!list_empty(pages)) {
117 struct page *victim;
118
119 victim = list_entry(pages->prev, struct page, lru);
120 list_del(&victim->lru);
121 put_page(victim);
122 }
123 }
124 EXPORT_SYMBOL(put_pages_list);
125
126 /*
127 * get_kernel_pages() - pin kernel pages in memory
128 * @kiov: An array of struct kvec structures
129 * @nr_segs: number of segments to pin
130 * @write: pinning for read/write, currently ignored
131 * @pages: array that receives pointers to the pages pinned.
132 * Should be at least nr_segs long.
133 *
134 * Returns number of pages pinned. This may be fewer than the number
135 * requested. If nr_pages is 0 or negative, returns 0. If no pages
136 * were pinned, returns -errno. Each page returned must be released
137 * with a put_page() call when it is finished with.
138 */
139 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
140 struct page **pages)
141 {
142 int seg;
143
144 for (seg = 0; seg < nr_segs; seg++) {
145 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
146 return seg;
147
148 pages[seg] = kmap_to_page(kiov[seg].iov_base);
149 get_page(pages[seg]);
150 }
151
152 return seg;
153 }
154 EXPORT_SYMBOL_GPL(get_kernel_pages);
155
156 /*
157 * get_kernel_page() - pin a kernel page in memory
158 * @start: starting kernel address
159 * @write: pinning for read/write, currently ignored
160 * @pages: array that receives pointer to the page pinned.
161 * Must be at least nr_segs long.
162 *
163 * Returns 1 if page is pinned. If the page was not pinned, returns
164 * -errno. The page returned must be released with a put_page() call
165 * when it is finished with.
166 */
167 int get_kernel_page(unsigned long start, int write, struct page **pages)
168 {
169 const struct kvec kiov = {
170 .iov_base = (void *)start,
171 .iov_len = PAGE_SIZE
172 };
173
174 return get_kernel_pages(&kiov, 1, write, pages);
175 }
176 EXPORT_SYMBOL_GPL(get_kernel_page);
177
178 static void pagevec_lru_move_fn(struct pagevec *pvec,
179 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
180 void *arg)
181 {
182 int i;
183 struct pglist_data *pgdat = NULL;
184 struct lruvec *lruvec;
185 unsigned long flags = 0;
186
187 for (i = 0; i < pagevec_count(pvec); i++) {
188 struct page *page = pvec->pages[i];
189 struct pglist_data *pagepgdat = page_pgdat(page);
190
191 if (pagepgdat != pgdat) {
192 if (pgdat)
193 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
194 pgdat = pagepgdat;
195 spin_lock_irqsave(&pgdat->lru_lock, flags);
196 }
197
198 lruvec = mem_cgroup_page_lruvec(page, pgdat);
199 (*move_fn)(page, lruvec, arg);
200 }
201 if (pgdat)
202 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
203 release_pages(pvec->pages, pvec->nr, pvec->cold);
204 pagevec_reinit(pvec);
205 }
206
207 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
208 void *arg)
209 {
210 int *pgmoved = arg;
211
212 if (PageLRU(page) && !PageUnevictable(page)) {
213 del_page_from_lru_list(page, lruvec, page_lru(page));
214 ClearPageActive(page);
215 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
216 (*pgmoved)++;
217 }
218 }
219
220 /*
221 * pagevec_move_tail() must be called with IRQ disabled.
222 * Otherwise this may cause nasty races.
223 */
224 static void pagevec_move_tail(struct pagevec *pvec)
225 {
226 int pgmoved = 0;
227
228 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
229 __count_vm_events(PGROTATED, pgmoved);
230 }
231
232 /*
233 * Writeback is about to end against a page which has been marked for immediate
234 * reclaim. If it still appears to be reclaimable, move it to the tail of the
235 * inactive list.
236 */
237 void rotate_reclaimable_page(struct page *page)
238 {
239 if (!PageLocked(page) && !PageDirty(page) &&
240 !PageUnevictable(page) && PageLRU(page)) {
241 struct pagevec *pvec;
242 unsigned long flags;
243
244 get_page(page);
245 local_irq_save(flags);
246 pvec = this_cpu_ptr(&lru_rotate_pvecs);
247 if (!pagevec_add(pvec, page) || PageCompound(page))
248 pagevec_move_tail(pvec);
249 local_irq_restore(flags);
250 }
251 }
252
253 static void update_page_reclaim_stat(struct lruvec *lruvec,
254 int file, int rotated)
255 {
256 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
257
258 reclaim_stat->recent_scanned[file]++;
259 if (rotated)
260 reclaim_stat->recent_rotated[file]++;
261 }
262
263 static void __activate_page(struct page *page, struct lruvec *lruvec,
264 void *arg)
265 {
266 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
267 int file = page_is_file_cache(page);
268 int lru = page_lru_base_type(page);
269
270 del_page_from_lru_list(page, lruvec, lru);
271 SetPageActive(page);
272 lru += LRU_ACTIVE;
273 add_page_to_lru_list(page, lruvec, lru);
274 trace_mm_lru_activate(page);
275
276 __count_vm_event(PGACTIVATE);
277 update_page_reclaim_stat(lruvec, file, 1);
278 }
279 }
280
281 #ifdef CONFIG_SMP
282 static void activate_page_drain(int cpu)
283 {
284 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
285
286 if (pagevec_count(pvec))
287 pagevec_lru_move_fn(pvec, __activate_page, NULL);
288 }
289
290 static bool need_activate_page_drain(int cpu)
291 {
292 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
293 }
294
295 void activate_page(struct page *page)
296 {
297 page = compound_head(page);
298 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
299 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
300
301 get_page(page);
302 if (!pagevec_add(pvec, page) || PageCompound(page))
303 pagevec_lru_move_fn(pvec, __activate_page, NULL);
304 put_cpu_var(activate_page_pvecs);
305 }
306 }
307
308 #else
309 static inline void activate_page_drain(int cpu)
310 {
311 }
312
313 static bool need_activate_page_drain(int cpu)
314 {
315 return false;
316 }
317
318 void activate_page(struct page *page)
319 {
320 struct zone *zone = page_zone(page);
321
322 page = compound_head(page);
323 spin_lock_irq(zone_lru_lock(zone));
324 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
325 spin_unlock_irq(zone_lru_lock(zone));
326 }
327 #endif
328
329 static void __lru_cache_activate_page(struct page *page)
330 {
331 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
332 int i;
333
334 /*
335 * Search backwards on the optimistic assumption that the page being
336 * activated has just been added to this pagevec. Note that only
337 * the local pagevec is examined as a !PageLRU page could be in the
338 * process of being released, reclaimed, migrated or on a remote
339 * pagevec that is currently being drained. Furthermore, marking
340 * a remote pagevec's page PageActive potentially hits a race where
341 * a page is marked PageActive just after it is added to the inactive
342 * list causing accounting errors and BUG_ON checks to trigger.
343 */
344 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
345 struct page *pagevec_page = pvec->pages[i];
346
347 if (pagevec_page == page) {
348 SetPageActive(page);
349 break;
350 }
351 }
352
353 put_cpu_var(lru_add_pvec);
354 }
355
356 /*
357 * Mark a page as having seen activity.
358 *
359 * inactive,unreferenced -> inactive,referenced
360 * inactive,referenced -> active,unreferenced
361 * active,unreferenced -> active,referenced
362 *
363 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
364 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
365 */
366 void mark_page_accessed(struct page *page)
367 {
368 page = compound_head(page);
369 if (!PageActive(page) && !PageUnevictable(page) &&
370 PageReferenced(page)) {
371
372 /*
373 * If the page is on the LRU, queue it for activation via
374 * activate_page_pvecs. Otherwise, assume the page is on a
375 * pagevec, mark it active and it'll be moved to the active
376 * LRU on the next drain.
377 */
378 if (PageLRU(page))
379 activate_page(page);
380 else
381 __lru_cache_activate_page(page);
382 ClearPageReferenced(page);
383 if (page_is_file_cache(page))
384 workingset_activation(page);
385 } else if (!PageReferenced(page)) {
386 SetPageReferenced(page);
387 }
388 if (page_is_idle(page))
389 clear_page_idle(page);
390 }
391 EXPORT_SYMBOL(mark_page_accessed);
392
393 static void __lru_cache_add(struct page *page)
394 {
395 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
396
397 get_page(page);
398 if (!pagevec_add(pvec, page) || PageCompound(page))
399 __pagevec_lru_add(pvec);
400 put_cpu_var(lru_add_pvec);
401 }
402
403 /**
404 * lru_cache_add: add a page to the page lists
405 * @page: the page to add
406 */
407 void lru_cache_add_anon(struct page *page)
408 {
409 if (PageActive(page))
410 ClearPageActive(page);
411 __lru_cache_add(page);
412 }
413
414 void lru_cache_add_file(struct page *page)
415 {
416 if (PageActive(page))
417 ClearPageActive(page);
418 __lru_cache_add(page);
419 }
420 EXPORT_SYMBOL(lru_cache_add_file);
421
422 /**
423 * lru_cache_add - add a page to a page list
424 * @page: the page to be added to the LRU.
425 *
426 * Queue the page for addition to the LRU via pagevec. The decision on whether
427 * to add the page to the [in]active [file|anon] list is deferred until the
428 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
429 * have the page added to the active list using mark_page_accessed().
430 */
431 void lru_cache_add(struct page *page)
432 {
433 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
434 VM_BUG_ON_PAGE(PageLRU(page), page);
435 __lru_cache_add(page);
436 }
437
438 /**
439 * add_page_to_unevictable_list - add a page to the unevictable list
440 * @page: the page to be added to the unevictable list
441 *
442 * Add page directly to its zone's unevictable list. To avoid races with
443 * tasks that might be making the page evictable, through eg. munlock,
444 * munmap or exit, while it's not on the lru, we want to add the page
445 * while it's locked or otherwise "invisible" to other tasks. This is
446 * difficult to do when using the pagevec cache, so bypass that.
447 */
448 void add_page_to_unevictable_list(struct page *page)
449 {
450 struct pglist_data *pgdat = page_pgdat(page);
451 struct lruvec *lruvec;
452
453 spin_lock_irq(&pgdat->lru_lock);
454 lruvec = mem_cgroup_page_lruvec(page, pgdat);
455 ClearPageActive(page);
456 SetPageUnevictable(page);
457 SetPageLRU(page);
458 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
459 spin_unlock_irq(&pgdat->lru_lock);
460 }
461
462 /**
463 * lru_cache_add_active_or_unevictable
464 * @page: the page to be added to LRU
465 * @vma: vma in which page is mapped for determining reclaimability
466 *
467 * Place @page on the active or unevictable LRU list, depending on its
468 * evictability. Note that if the page is not evictable, it goes
469 * directly back onto it's zone's unevictable list, it does NOT use a
470 * per cpu pagevec.
471 */
472 void lru_cache_add_active_or_unevictable(struct page *page,
473 struct vm_area_struct *vma)
474 {
475 VM_BUG_ON_PAGE(PageLRU(page), page);
476
477 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
478 SetPageActive(page);
479 lru_cache_add(page);
480 return;
481 }
482
483 if (!TestSetPageMlocked(page)) {
484 /*
485 * We use the irq-unsafe __mod_zone_page_stat because this
486 * counter is not modified from interrupt context, and the pte
487 * lock is held(spinlock), which implies preemption disabled.
488 */
489 __mod_zone_page_state(page_zone(page), NR_MLOCK,
490 hpage_nr_pages(page));
491 count_vm_event(UNEVICTABLE_PGMLOCKED);
492 }
493 add_page_to_unevictable_list(page);
494 }
495
496 /*
497 * If the page can not be invalidated, it is moved to the
498 * inactive list to speed up its reclaim. It is moved to the
499 * head of the list, rather than the tail, to give the flusher
500 * threads some time to write it out, as this is much more
501 * effective than the single-page writeout from reclaim.
502 *
503 * If the page isn't page_mapped and dirty/writeback, the page
504 * could reclaim asap using PG_reclaim.
505 *
506 * 1. active, mapped page -> none
507 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
508 * 3. inactive, mapped page -> none
509 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
510 * 5. inactive, clean -> inactive, tail
511 * 6. Others -> none
512 *
513 * In 4, why it moves inactive's head, the VM expects the page would
514 * be write it out by flusher threads as this is much more effective
515 * than the single-page writeout from reclaim.
516 */
517 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
518 void *arg)
519 {
520 int lru, file;
521 bool active;
522
523 if (!PageLRU(page))
524 return;
525
526 if (PageUnevictable(page))
527 return;
528
529 /* Some processes are using the page */
530 if (page_mapped(page))
531 return;
532
533 active = PageActive(page);
534 file = page_is_file_cache(page);
535 lru = page_lru_base_type(page);
536
537 del_page_from_lru_list(page, lruvec, lru + active);
538 ClearPageActive(page);
539 ClearPageReferenced(page);
540 add_page_to_lru_list(page, lruvec, lru);
541
542 if (PageWriteback(page) || PageDirty(page)) {
543 /*
544 * PG_reclaim could be raced with end_page_writeback
545 * It can make readahead confusing. But race window
546 * is _really_ small and it's non-critical problem.
547 */
548 SetPageReclaim(page);
549 } else {
550 /*
551 * The page's writeback ends up during pagevec
552 * We moves tha page into tail of inactive.
553 */
554 list_move_tail(&page->lru, &lruvec->lists[lru]);
555 __count_vm_event(PGROTATED);
556 }
557
558 if (active)
559 __count_vm_event(PGDEACTIVATE);
560 update_page_reclaim_stat(lruvec, file, 0);
561 }
562
563
564 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
565 void *arg)
566 {
567 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
568 int file = page_is_file_cache(page);
569 int lru = page_lru_base_type(page);
570
571 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
572 ClearPageActive(page);
573 ClearPageReferenced(page);
574 add_page_to_lru_list(page, lruvec, lru);
575
576 __count_vm_event(PGDEACTIVATE);
577 update_page_reclaim_stat(lruvec, file, 0);
578 }
579 }
580
581 /*
582 * Drain pages out of the cpu's pagevecs.
583 * Either "cpu" is the current CPU, and preemption has already been
584 * disabled; or "cpu" is being hot-unplugged, and is already dead.
585 */
586 void lru_add_drain_cpu(int cpu)
587 {
588 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
589
590 if (pagevec_count(pvec))
591 __pagevec_lru_add(pvec);
592
593 pvec = &per_cpu(lru_rotate_pvecs, cpu);
594 if (pagevec_count(pvec)) {
595 unsigned long flags;
596
597 /* No harm done if a racing interrupt already did this */
598 local_irq_save(flags);
599 pagevec_move_tail(pvec);
600 local_irq_restore(flags);
601 }
602
603 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
604 if (pagevec_count(pvec))
605 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
606
607 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
608 if (pagevec_count(pvec))
609 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
610
611 activate_page_drain(cpu);
612 }
613
614 /**
615 * deactivate_file_page - forcefully deactivate a file page
616 * @page: page to deactivate
617 *
618 * This function hints the VM that @page is a good reclaim candidate,
619 * for example if its invalidation fails due to the page being dirty
620 * or under writeback.
621 */
622 void deactivate_file_page(struct page *page)
623 {
624 /*
625 * In a workload with many unevictable page such as mprotect,
626 * unevictable page deactivation for accelerating reclaim is pointless.
627 */
628 if (PageUnevictable(page))
629 return;
630
631 if (likely(get_page_unless_zero(page))) {
632 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
633
634 if (!pagevec_add(pvec, page) || PageCompound(page))
635 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
636 put_cpu_var(lru_deactivate_file_pvecs);
637 }
638 }
639
640 /**
641 * deactivate_page - deactivate a page
642 * @page: page to deactivate
643 *
644 * deactivate_page() moves @page to the inactive list if @page was on the active
645 * list and was not an unevictable page. This is done to accelerate the reclaim
646 * of @page.
647 */
648 void deactivate_page(struct page *page)
649 {
650 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
651 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
652
653 get_page(page);
654 if (!pagevec_add(pvec, page) || PageCompound(page))
655 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
656 put_cpu_var(lru_deactivate_pvecs);
657 }
658 }
659
660 void lru_add_drain(void)
661 {
662 lru_add_drain_cpu(get_cpu());
663 put_cpu();
664 }
665
666 static void lru_add_drain_per_cpu(struct work_struct *dummy)
667 {
668 lru_add_drain();
669 }
670
671 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
672
673 void lru_add_drain_all(void)
674 {
675 static DEFINE_MUTEX(lock);
676 static struct cpumask has_work;
677 int cpu;
678
679 /*
680 * Make sure nobody triggers this path before mm_percpu_wq is fully
681 * initialized.
682 */
683 if (WARN_ON(!mm_percpu_wq))
684 return;
685
686 mutex_lock(&lock);
687 get_online_cpus();
688 cpumask_clear(&has_work);
689
690 for_each_online_cpu(cpu) {
691 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
692
693 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
694 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
695 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
696 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
697 need_activate_page_drain(cpu)) {
698 INIT_WORK(work, lru_add_drain_per_cpu);
699 queue_work_on(cpu, mm_percpu_wq, work);
700 cpumask_set_cpu(cpu, &has_work);
701 }
702 }
703
704 for_each_cpu(cpu, &has_work)
705 flush_work(&per_cpu(lru_add_drain_work, cpu));
706
707 put_online_cpus();
708 mutex_unlock(&lock);
709 }
710
711 /**
712 * release_pages - batched put_page()
713 * @pages: array of pages to release
714 * @nr: number of pages
715 * @cold: whether the pages are cache cold
716 *
717 * Decrement the reference count on all the pages in @pages. If it
718 * fell to zero, remove the page from the LRU and free it.
719 */
720 void release_pages(struct page **pages, int nr, bool cold)
721 {
722 int i;
723 LIST_HEAD(pages_to_free);
724 struct pglist_data *locked_pgdat = NULL;
725 struct lruvec *lruvec;
726 unsigned long uninitialized_var(flags);
727 unsigned int uninitialized_var(lock_batch);
728
729 for (i = 0; i < nr; i++) {
730 struct page *page = pages[i];
731
732 /*
733 * Make sure the IRQ-safe lock-holding time does not get
734 * excessive with a continuous string of pages from the
735 * same pgdat. The lock is held only if pgdat != NULL.
736 */
737 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
738 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
739 locked_pgdat = NULL;
740 }
741
742 if (is_huge_zero_page(page))
743 continue;
744
745 page = compound_head(page);
746 if (!put_page_testzero(page))
747 continue;
748
749 if (PageCompound(page)) {
750 if (locked_pgdat) {
751 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
752 locked_pgdat = NULL;
753 }
754 __put_compound_page(page);
755 continue;
756 }
757
758 if (PageLRU(page)) {
759 struct pglist_data *pgdat = page_pgdat(page);
760
761 if (pgdat != locked_pgdat) {
762 if (locked_pgdat)
763 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
764 flags);
765 lock_batch = 0;
766 locked_pgdat = pgdat;
767 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
768 }
769
770 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
771 VM_BUG_ON_PAGE(!PageLRU(page), page);
772 __ClearPageLRU(page);
773 del_page_from_lru_list(page, lruvec, page_off_lru(page));
774 }
775
776 /* Clear Active bit in case of parallel mark_page_accessed */
777 __ClearPageActive(page);
778 __ClearPageWaiters(page);
779
780 list_add(&page->lru, &pages_to_free);
781 }
782 if (locked_pgdat)
783 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
784
785 mem_cgroup_uncharge_list(&pages_to_free);
786 free_hot_cold_page_list(&pages_to_free, cold);
787 }
788 EXPORT_SYMBOL(release_pages);
789
790 /*
791 * The pages which we're about to release may be in the deferred lru-addition
792 * queues. That would prevent them from really being freed right now. That's
793 * OK from a correctness point of view but is inefficient - those pages may be
794 * cache-warm and we want to give them back to the page allocator ASAP.
795 *
796 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
797 * and __pagevec_lru_add_active() call release_pages() directly to avoid
798 * mutual recursion.
799 */
800 void __pagevec_release(struct pagevec *pvec)
801 {
802 lru_add_drain();
803 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
804 pagevec_reinit(pvec);
805 }
806 EXPORT_SYMBOL(__pagevec_release);
807
808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
809 /* used by __split_huge_page_refcount() */
810 void lru_add_page_tail(struct page *page, struct page *page_tail,
811 struct lruvec *lruvec, struct list_head *list)
812 {
813 const int file = 0;
814
815 VM_BUG_ON_PAGE(!PageHead(page), page);
816 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
817 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
818 VM_BUG_ON(NR_CPUS != 1 &&
819 !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
820
821 if (!list)
822 SetPageLRU(page_tail);
823
824 if (likely(PageLRU(page)))
825 list_add_tail(&page_tail->lru, &page->lru);
826 else if (list) {
827 /* page reclaim is reclaiming a huge page */
828 get_page(page_tail);
829 list_add_tail(&page_tail->lru, list);
830 } else {
831 struct list_head *list_head;
832 /*
833 * Head page has not yet been counted, as an hpage,
834 * so we must account for each subpage individually.
835 *
836 * Use the standard add function to put page_tail on the list,
837 * but then correct its position so they all end up in order.
838 */
839 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
840 list_head = page_tail->lru.prev;
841 list_move_tail(&page_tail->lru, list_head);
842 }
843
844 if (!PageUnevictable(page))
845 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
846 }
847 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
848
849 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
850 void *arg)
851 {
852 int file = page_is_file_cache(page);
853 int active = PageActive(page);
854 enum lru_list lru = page_lru(page);
855
856 VM_BUG_ON_PAGE(PageLRU(page), page);
857
858 SetPageLRU(page);
859 add_page_to_lru_list(page, lruvec, lru);
860 update_page_reclaim_stat(lruvec, file, active);
861 trace_mm_lru_insertion(page, lru);
862 }
863
864 /*
865 * Add the passed pages to the LRU, then drop the caller's refcount
866 * on them. Reinitialises the caller's pagevec.
867 */
868 void __pagevec_lru_add(struct pagevec *pvec)
869 {
870 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
871 }
872 EXPORT_SYMBOL(__pagevec_lru_add);
873
874 /**
875 * pagevec_lookup_entries - gang pagecache lookup
876 * @pvec: Where the resulting entries are placed
877 * @mapping: The address_space to search
878 * @start: The starting entry index
879 * @nr_entries: The maximum number of entries
880 * @indices: The cache indices corresponding to the entries in @pvec
881 *
882 * pagevec_lookup_entries() will search for and return a group of up
883 * to @nr_entries pages and shadow entries in the mapping. All
884 * entries are placed in @pvec. pagevec_lookup_entries() takes a
885 * reference against actual pages in @pvec.
886 *
887 * The search returns a group of mapping-contiguous entries with
888 * ascending indexes. There may be holes in the indices due to
889 * not-present entries.
890 *
891 * pagevec_lookup_entries() returns the number of entries which were
892 * found.
893 */
894 unsigned pagevec_lookup_entries(struct pagevec *pvec,
895 struct address_space *mapping,
896 pgoff_t start, unsigned nr_pages,
897 pgoff_t *indices)
898 {
899 pvec->nr = find_get_entries(mapping, start, nr_pages,
900 pvec->pages, indices);
901 return pagevec_count(pvec);
902 }
903
904 /**
905 * pagevec_remove_exceptionals - pagevec exceptionals pruning
906 * @pvec: The pagevec to prune
907 *
908 * pagevec_lookup_entries() fills both pages and exceptional radix
909 * tree entries into the pagevec. This function prunes all
910 * exceptionals from @pvec without leaving holes, so that it can be
911 * passed on to page-only pagevec operations.
912 */
913 void pagevec_remove_exceptionals(struct pagevec *pvec)
914 {
915 int i, j;
916
917 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
918 struct page *page = pvec->pages[i];
919 if (!radix_tree_exceptional_entry(page))
920 pvec->pages[j++] = page;
921 }
922 pvec->nr = j;
923 }
924
925 /**
926 * pagevec_lookup - gang pagecache lookup
927 * @pvec: Where the resulting pages are placed
928 * @mapping: The address_space to search
929 * @start: The starting page index
930 * @nr_pages: The maximum number of pages
931 *
932 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
933 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
934 * reference against the pages in @pvec.
935 *
936 * The search returns a group of mapping-contiguous pages with ascending
937 * indexes. There may be holes in the indices due to not-present pages.
938 *
939 * pagevec_lookup() returns the number of pages which were found.
940 */
941 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
942 pgoff_t start, unsigned nr_pages)
943 {
944 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
945 return pagevec_count(pvec);
946 }
947 EXPORT_SYMBOL(pagevec_lookup);
948
949 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
950 pgoff_t *index, int tag, unsigned nr_pages)
951 {
952 pvec->nr = find_get_pages_tag(mapping, index, tag,
953 nr_pages, pvec->pages);
954 return pagevec_count(pvec);
955 }
956 EXPORT_SYMBOL(pagevec_lookup_tag);
957
958 /*
959 * Perform any setup for the swap system
960 */
961 void __init swap_setup(void)
962 {
963 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
964
965 /* Use a smaller cluster for small-memory machines */
966 if (megs < 16)
967 page_cluster = 2;
968 else
969 page_cluster = 3;
970 /*
971 * Right now other parts of the system means that we
972 * _really_ don't want to cluster much more
973 */
974 }