]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/swap.c
65a74c89e7cf7dc742e1425491b4007c36c6b2d3
[mirror_ubuntu-kernels.git] / mm / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48
49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
50 struct lru_rotate {
51 local_lock_t lock;
52 struct pagevec pvec;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56 };
57
58 /*
59 * The following struct pagevec are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62 struct lru_pvecs {
63 local_lock_t lock;
64 struct pagevec lru_add;
65 struct pagevec lru_deactivate_file;
66 struct pagevec lru_deactivate;
67 struct pagevec lru_lazyfree;
68 #ifdef CONFIG_SMP
69 struct pagevec activate_page;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74 };
75
76 /*
77 * This path almost never happens for VM activity - pages are normally
78 * freed via pagevecs. But it gets used by networking.
79 */
80 static void __page_cache_release(struct page *page)
81 {
82 if (PageLRU(page)) {
83 struct lruvec *lruvec;
84 unsigned long flags;
85
86 lruvec = lock_page_lruvec_irqsave(page, &flags);
87 del_page_from_lru_list(page, lruvec);
88 __clear_page_lru_flags(page);
89 unlock_page_lruvec_irqrestore(lruvec, flags);
90 }
91 __ClearPageWaiters(page);
92 }
93
94 static void __put_single_page(struct page *page)
95 {
96 __page_cache_release(page);
97 mem_cgroup_uncharge(page_folio(page));
98 free_unref_page(page, 0);
99 }
100
101 static void __put_compound_page(struct page *page)
102 {
103 /*
104 * __page_cache_release() is supposed to be called for thp, not for
105 * hugetlb. This is because hugetlb page does never have PageLRU set
106 * (it's never listed to any LRU lists) and no memcg routines should
107 * be called for hugetlb (it has a separate hugetlb_cgroup.)
108 */
109 if (!PageHuge(page))
110 __page_cache_release(page);
111 destroy_compound_page(page);
112 }
113
114 void __put_page(struct page *page)
115 {
116 if (is_zone_device_page(page)) {
117 put_dev_pagemap(page->pgmap);
118
119 /*
120 * The page belongs to the device that created pgmap. Do
121 * not return it to page allocator.
122 */
123 return;
124 }
125
126 if (unlikely(PageCompound(page)))
127 __put_compound_page(page);
128 else
129 __put_single_page(page);
130 }
131 EXPORT_SYMBOL(__put_page);
132
133 /**
134 * put_pages_list() - release a list of pages
135 * @pages: list of pages threaded on page->lru
136 *
137 * Release a list of pages which are strung together on page.lru. Currently
138 * used by read_cache_pages() and related error recovery code.
139 */
140 void put_pages_list(struct list_head *pages)
141 {
142 while (!list_empty(pages)) {
143 struct page *victim;
144
145 victim = lru_to_page(pages);
146 list_del(&victim->lru);
147 put_page(victim);
148 }
149 }
150 EXPORT_SYMBOL(put_pages_list);
151
152 /*
153 * get_kernel_pages() - pin kernel pages in memory
154 * @kiov: An array of struct kvec structures
155 * @nr_segs: number of segments to pin
156 * @write: pinning for read/write, currently ignored
157 * @pages: array that receives pointers to the pages pinned.
158 * Should be at least nr_segs long.
159 *
160 * Returns number of pages pinned. This may be fewer than the number
161 * requested. If nr_pages is 0 or negative, returns 0. If no pages
162 * were pinned, returns -errno. Each page returned must be released
163 * with a put_page() call when it is finished with.
164 */
165 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
166 struct page **pages)
167 {
168 int seg;
169
170 for (seg = 0; seg < nr_segs; seg++) {
171 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
172 return seg;
173
174 pages[seg] = kmap_to_page(kiov[seg].iov_base);
175 get_page(pages[seg]);
176 }
177
178 return seg;
179 }
180 EXPORT_SYMBOL_GPL(get_kernel_pages);
181
182 static void pagevec_lru_move_fn(struct pagevec *pvec,
183 void (*move_fn)(struct page *page, struct lruvec *lruvec))
184 {
185 int i;
186 struct lruvec *lruvec = NULL;
187 unsigned long flags = 0;
188
189 for (i = 0; i < pagevec_count(pvec); i++) {
190 struct page *page = pvec->pages[i];
191
192 /* block memcg migration during page moving between lru */
193 if (!TestClearPageLRU(page))
194 continue;
195
196 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
197 (*move_fn)(page, lruvec);
198
199 SetPageLRU(page);
200 }
201 if (lruvec)
202 unlock_page_lruvec_irqrestore(lruvec, flags);
203 release_pages(pvec->pages, pvec->nr);
204 pagevec_reinit(pvec);
205 }
206
207 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
208 {
209 struct folio *folio = page_folio(page);
210
211 if (!folio_test_unevictable(folio)) {
212 lruvec_del_folio(lruvec, folio);
213 folio_clear_active(folio);
214 lruvec_add_folio_tail(lruvec, folio);
215 __count_vm_events(PGROTATED, folio_nr_pages(folio));
216 }
217 }
218
219 /* return true if pagevec needs to drain */
220 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
221 {
222 bool ret = false;
223
224 if (!pagevec_add(pvec, page) || PageCompound(page) ||
225 lru_cache_disabled())
226 ret = true;
227
228 return ret;
229 }
230
231 /*
232 * Writeback is about to end against a folio which has been marked for
233 * immediate reclaim. If it still appears to be reclaimable, move it
234 * to the tail of the inactive list.
235 *
236 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
237 */
238 void folio_rotate_reclaimable(struct folio *folio)
239 {
240 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
241 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
242 struct pagevec *pvec;
243 unsigned long flags;
244
245 folio_get(folio);
246 local_lock_irqsave(&lru_rotate.lock, flags);
247 pvec = this_cpu_ptr(&lru_rotate.pvec);
248 if (pagevec_add_and_need_flush(pvec, &folio->page))
249 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
250 local_unlock_irqrestore(&lru_rotate.lock, flags);
251 }
252 }
253
254 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
255 {
256 do {
257 unsigned long lrusize;
258
259 /*
260 * Hold lruvec->lru_lock is safe here, since
261 * 1) The pinned lruvec in reclaim, or
262 * 2) From a pre-LRU page during refault (which also holds the
263 * rcu lock, so would be safe even if the page was on the LRU
264 * and could move simultaneously to a new lruvec).
265 */
266 spin_lock_irq(&lruvec->lru_lock);
267 /* Record cost event */
268 if (file)
269 lruvec->file_cost += nr_pages;
270 else
271 lruvec->anon_cost += nr_pages;
272
273 /*
274 * Decay previous events
275 *
276 * Because workloads change over time (and to avoid
277 * overflow) we keep these statistics as a floating
278 * average, which ends up weighing recent refaults
279 * more than old ones.
280 */
281 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
282 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
283 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
284 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
285
286 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
287 lruvec->file_cost /= 2;
288 lruvec->anon_cost /= 2;
289 }
290 spin_unlock_irq(&lruvec->lru_lock);
291 } while ((lruvec = parent_lruvec(lruvec)));
292 }
293
294 void lru_note_cost_page(struct page *page)
295 {
296 struct folio *folio = page_folio(page);
297 lru_note_cost(folio_lruvec(folio),
298 page_is_file_lru(page), thp_nr_pages(page));
299 }
300
301 static void __activate_page(struct page *page, struct lruvec *lruvec)
302 {
303 if (!PageActive(page) && !PageUnevictable(page)) {
304 int nr_pages = thp_nr_pages(page);
305
306 del_page_from_lru_list(page, lruvec);
307 SetPageActive(page);
308 add_page_to_lru_list(page, lruvec);
309 trace_mm_lru_activate(page);
310
311 __count_vm_events(PGACTIVATE, nr_pages);
312 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
313 nr_pages);
314 }
315 }
316
317 #ifdef CONFIG_SMP
318 static void activate_page_drain(int cpu)
319 {
320 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
321
322 if (pagevec_count(pvec))
323 pagevec_lru_move_fn(pvec, __activate_page);
324 }
325
326 static bool need_activate_page_drain(int cpu)
327 {
328 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
329 }
330
331 static void activate_page(struct page *page)
332 {
333 page = compound_head(page);
334 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
335 struct pagevec *pvec;
336
337 local_lock(&lru_pvecs.lock);
338 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
339 get_page(page);
340 if (pagevec_add_and_need_flush(pvec, page))
341 pagevec_lru_move_fn(pvec, __activate_page);
342 local_unlock(&lru_pvecs.lock);
343 }
344 }
345
346 #else
347 static inline void activate_page_drain(int cpu)
348 {
349 }
350
351 static void activate_page(struct page *page)
352 {
353 struct lruvec *lruvec;
354
355 page = compound_head(page);
356 if (TestClearPageLRU(page)) {
357 lruvec = lock_page_lruvec_irq(page);
358 __activate_page(page, lruvec);
359 unlock_page_lruvec_irq(lruvec);
360 SetPageLRU(page);
361 }
362 }
363 #endif
364
365 static void __lru_cache_activate_page(struct page *page)
366 {
367 struct pagevec *pvec;
368 int i;
369
370 local_lock(&lru_pvecs.lock);
371 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
372
373 /*
374 * Search backwards on the optimistic assumption that the page being
375 * activated has just been added to this pagevec. Note that only
376 * the local pagevec is examined as a !PageLRU page could be in the
377 * process of being released, reclaimed, migrated or on a remote
378 * pagevec that is currently being drained. Furthermore, marking
379 * a remote pagevec's page PageActive potentially hits a race where
380 * a page is marked PageActive just after it is added to the inactive
381 * list causing accounting errors and BUG_ON checks to trigger.
382 */
383 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
384 struct page *pagevec_page = pvec->pages[i];
385
386 if (pagevec_page == page) {
387 SetPageActive(page);
388 break;
389 }
390 }
391
392 local_unlock(&lru_pvecs.lock);
393 }
394
395 /*
396 * Mark a page as having seen activity.
397 *
398 * inactive,unreferenced -> inactive,referenced
399 * inactive,referenced -> active,unreferenced
400 * active,unreferenced -> active,referenced
401 *
402 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
403 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
404 */
405 void mark_page_accessed(struct page *page)
406 {
407 page = compound_head(page);
408
409 if (!PageReferenced(page)) {
410 SetPageReferenced(page);
411 } else if (PageUnevictable(page)) {
412 /*
413 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
414 * this list is never rotated or maintained, so marking an
415 * evictable page accessed has no effect.
416 */
417 } else if (!PageActive(page)) {
418 /*
419 * If the page is on the LRU, queue it for activation via
420 * lru_pvecs.activate_page. Otherwise, assume the page is on a
421 * pagevec, mark it active and it'll be moved to the active
422 * LRU on the next drain.
423 */
424 if (PageLRU(page))
425 activate_page(page);
426 else
427 __lru_cache_activate_page(page);
428 ClearPageReferenced(page);
429 workingset_activation(page);
430 }
431 if (page_is_idle(page))
432 clear_page_idle(page);
433 }
434 EXPORT_SYMBOL(mark_page_accessed);
435
436 /**
437 * lru_cache_add - add a page to a page list
438 * @page: the page to be added to the LRU.
439 *
440 * Queue the page for addition to the LRU via pagevec. The decision on whether
441 * to add the page to the [in]active [file|anon] list is deferred until the
442 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
443 * have the page added to the active list using mark_page_accessed().
444 */
445 void lru_cache_add(struct page *page)
446 {
447 struct pagevec *pvec;
448
449 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
450 VM_BUG_ON_PAGE(PageLRU(page), page);
451
452 get_page(page);
453 local_lock(&lru_pvecs.lock);
454 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
455 if (pagevec_add_and_need_flush(pvec, page))
456 __pagevec_lru_add(pvec);
457 local_unlock(&lru_pvecs.lock);
458 }
459 EXPORT_SYMBOL(lru_cache_add);
460
461 /**
462 * lru_cache_add_inactive_or_unevictable
463 * @page: the page to be added to LRU
464 * @vma: vma in which page is mapped for determining reclaimability
465 *
466 * Place @page on the inactive or unevictable LRU list, depending on its
467 * evictability.
468 */
469 void lru_cache_add_inactive_or_unevictable(struct page *page,
470 struct vm_area_struct *vma)
471 {
472 bool unevictable;
473
474 VM_BUG_ON_PAGE(PageLRU(page), page);
475
476 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
477 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
478 int nr_pages = thp_nr_pages(page);
479 /*
480 * We use the irq-unsafe __mod_zone_page_state because this
481 * counter is not modified from interrupt context, and the pte
482 * lock is held(spinlock), which implies preemption disabled.
483 */
484 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
485 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
486 }
487 lru_cache_add(page);
488 }
489
490 /*
491 * If the page can not be invalidated, it is moved to the
492 * inactive list to speed up its reclaim. It is moved to the
493 * head of the list, rather than the tail, to give the flusher
494 * threads some time to write it out, as this is much more
495 * effective than the single-page writeout from reclaim.
496 *
497 * If the page isn't page_mapped and dirty/writeback, the page
498 * could reclaim asap using PG_reclaim.
499 *
500 * 1. active, mapped page -> none
501 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
502 * 3. inactive, mapped page -> none
503 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
504 * 5. inactive, clean -> inactive, tail
505 * 6. Others -> none
506 *
507 * In 4, why it moves inactive's head, the VM expects the page would
508 * be write it out by flusher threads as this is much more effective
509 * than the single-page writeout from reclaim.
510 */
511 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
512 {
513 bool active = PageActive(page);
514 int nr_pages = thp_nr_pages(page);
515
516 if (PageUnevictable(page))
517 return;
518
519 /* Some processes are using the page */
520 if (page_mapped(page))
521 return;
522
523 del_page_from_lru_list(page, lruvec);
524 ClearPageActive(page);
525 ClearPageReferenced(page);
526
527 if (PageWriteback(page) || PageDirty(page)) {
528 /*
529 * PG_reclaim could be raced with end_page_writeback
530 * It can make readahead confusing. But race window
531 * is _really_ small and it's non-critical problem.
532 */
533 add_page_to_lru_list(page, lruvec);
534 SetPageReclaim(page);
535 } else {
536 /*
537 * The page's writeback ends up during pagevec
538 * We move that page into tail of inactive.
539 */
540 add_page_to_lru_list_tail(page, lruvec);
541 __count_vm_events(PGROTATED, nr_pages);
542 }
543
544 if (active) {
545 __count_vm_events(PGDEACTIVATE, nr_pages);
546 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
547 nr_pages);
548 }
549 }
550
551 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
552 {
553 if (PageActive(page) && !PageUnevictable(page)) {
554 int nr_pages = thp_nr_pages(page);
555
556 del_page_from_lru_list(page, lruvec);
557 ClearPageActive(page);
558 ClearPageReferenced(page);
559 add_page_to_lru_list(page, lruvec);
560
561 __count_vm_events(PGDEACTIVATE, nr_pages);
562 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
563 nr_pages);
564 }
565 }
566
567 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
568 {
569 if (PageAnon(page) && PageSwapBacked(page) &&
570 !PageSwapCache(page) && !PageUnevictable(page)) {
571 int nr_pages = thp_nr_pages(page);
572
573 del_page_from_lru_list(page, lruvec);
574 ClearPageActive(page);
575 ClearPageReferenced(page);
576 /*
577 * Lazyfree pages are clean anonymous pages. They have
578 * PG_swapbacked flag cleared, to distinguish them from normal
579 * anonymous pages
580 */
581 ClearPageSwapBacked(page);
582 add_page_to_lru_list(page, lruvec);
583
584 __count_vm_events(PGLAZYFREE, nr_pages);
585 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
586 nr_pages);
587 }
588 }
589
590 /*
591 * Drain pages out of the cpu's pagevecs.
592 * Either "cpu" is the current CPU, and preemption has already been
593 * disabled; or "cpu" is being hot-unplugged, and is already dead.
594 */
595 void lru_add_drain_cpu(int cpu)
596 {
597 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
598
599 if (pagevec_count(pvec))
600 __pagevec_lru_add(pvec);
601
602 pvec = &per_cpu(lru_rotate.pvec, cpu);
603 /* Disabling interrupts below acts as a compiler barrier. */
604 if (data_race(pagevec_count(pvec))) {
605 unsigned long flags;
606
607 /* No harm done if a racing interrupt already did this */
608 local_lock_irqsave(&lru_rotate.lock, flags);
609 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
610 local_unlock_irqrestore(&lru_rotate.lock, flags);
611 }
612
613 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
614 if (pagevec_count(pvec))
615 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
616
617 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
618 if (pagevec_count(pvec))
619 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
620
621 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
622 if (pagevec_count(pvec))
623 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
624
625 activate_page_drain(cpu);
626 }
627
628 /**
629 * deactivate_file_page - forcefully deactivate a file page
630 * @page: page to deactivate
631 *
632 * This function hints the VM that @page is a good reclaim candidate,
633 * for example if its invalidation fails due to the page being dirty
634 * or under writeback.
635 */
636 void deactivate_file_page(struct page *page)
637 {
638 /*
639 * In a workload with many unevictable page such as mprotect,
640 * unevictable page deactivation for accelerating reclaim is pointless.
641 */
642 if (PageUnevictable(page))
643 return;
644
645 if (likely(get_page_unless_zero(page))) {
646 struct pagevec *pvec;
647
648 local_lock(&lru_pvecs.lock);
649 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
650
651 if (pagevec_add_and_need_flush(pvec, page))
652 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
653 local_unlock(&lru_pvecs.lock);
654 }
655 }
656
657 /*
658 * deactivate_page - deactivate a page
659 * @page: page to deactivate
660 *
661 * deactivate_page() moves @page to the inactive list if @page was on the active
662 * list and was not an unevictable page. This is done to accelerate the reclaim
663 * of @page.
664 */
665 void deactivate_page(struct page *page)
666 {
667 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
668 struct pagevec *pvec;
669
670 local_lock(&lru_pvecs.lock);
671 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
672 get_page(page);
673 if (pagevec_add_and_need_flush(pvec, page))
674 pagevec_lru_move_fn(pvec, lru_deactivate_fn);
675 local_unlock(&lru_pvecs.lock);
676 }
677 }
678
679 /**
680 * mark_page_lazyfree - make an anon page lazyfree
681 * @page: page to deactivate
682 *
683 * mark_page_lazyfree() moves @page to the inactive file list.
684 * This is done to accelerate the reclaim of @page.
685 */
686 void mark_page_lazyfree(struct page *page)
687 {
688 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
689 !PageSwapCache(page) && !PageUnevictable(page)) {
690 struct pagevec *pvec;
691
692 local_lock(&lru_pvecs.lock);
693 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
694 get_page(page);
695 if (pagevec_add_and_need_flush(pvec, page))
696 pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
697 local_unlock(&lru_pvecs.lock);
698 }
699 }
700
701 void lru_add_drain(void)
702 {
703 local_lock(&lru_pvecs.lock);
704 lru_add_drain_cpu(smp_processor_id());
705 local_unlock(&lru_pvecs.lock);
706 }
707
708 /*
709 * It's called from per-cpu workqueue context in SMP case so
710 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
711 * the same cpu. It shouldn't be a problem in !SMP case since
712 * the core is only one and the locks will disable preemption.
713 */
714 static void lru_add_and_bh_lrus_drain(void)
715 {
716 local_lock(&lru_pvecs.lock);
717 lru_add_drain_cpu(smp_processor_id());
718 local_unlock(&lru_pvecs.lock);
719 invalidate_bh_lrus_cpu();
720 }
721
722 void lru_add_drain_cpu_zone(struct zone *zone)
723 {
724 local_lock(&lru_pvecs.lock);
725 lru_add_drain_cpu(smp_processor_id());
726 drain_local_pages(zone);
727 local_unlock(&lru_pvecs.lock);
728 }
729
730 #ifdef CONFIG_SMP
731
732 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
733
734 static void lru_add_drain_per_cpu(struct work_struct *dummy)
735 {
736 lru_add_and_bh_lrus_drain();
737 }
738
739 /*
740 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
741 * kworkers being shut down before our page_alloc_cpu_dead callback is
742 * executed on the offlined cpu.
743 * Calling this function with cpu hotplug locks held can actually lead
744 * to obscure indirect dependencies via WQ context.
745 */
746 inline void __lru_add_drain_all(bool force_all_cpus)
747 {
748 /*
749 * lru_drain_gen - Global pages generation number
750 *
751 * (A) Definition: global lru_drain_gen = x implies that all generations
752 * 0 < n <= x are already *scheduled* for draining.
753 *
754 * This is an optimization for the highly-contended use case where a
755 * user space workload keeps constantly generating a flow of pages for
756 * each CPU.
757 */
758 static unsigned int lru_drain_gen;
759 static struct cpumask has_work;
760 static DEFINE_MUTEX(lock);
761 unsigned cpu, this_gen;
762
763 /*
764 * Make sure nobody triggers this path before mm_percpu_wq is fully
765 * initialized.
766 */
767 if (WARN_ON(!mm_percpu_wq))
768 return;
769
770 /*
771 * Guarantee pagevec counter stores visible by this CPU are visible to
772 * other CPUs before loading the current drain generation.
773 */
774 smp_mb();
775
776 /*
777 * (B) Locally cache global LRU draining generation number
778 *
779 * The read barrier ensures that the counter is loaded before the mutex
780 * is taken. It pairs with smp_mb() inside the mutex critical section
781 * at (D).
782 */
783 this_gen = smp_load_acquire(&lru_drain_gen);
784
785 mutex_lock(&lock);
786
787 /*
788 * (C) Exit the draining operation if a newer generation, from another
789 * lru_add_drain_all(), was already scheduled for draining. Check (A).
790 */
791 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
792 goto done;
793
794 /*
795 * (D) Increment global generation number
796 *
797 * Pairs with smp_load_acquire() at (B), outside of the critical
798 * section. Use a full memory barrier to guarantee that the new global
799 * drain generation number is stored before loading pagevec counters.
800 *
801 * This pairing must be done here, before the for_each_online_cpu loop
802 * below which drains the page vectors.
803 *
804 * Let x, y, and z represent some system CPU numbers, where x < y < z.
805 * Assume CPU #z is in the middle of the for_each_online_cpu loop
806 * below and has already reached CPU #y's per-cpu data. CPU #x comes
807 * along, adds some pages to its per-cpu vectors, then calls
808 * lru_add_drain_all().
809 *
810 * If the paired barrier is done at any later step, e.g. after the
811 * loop, CPU #x will just exit at (C) and miss flushing out all of its
812 * added pages.
813 */
814 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
815 smp_mb();
816
817 cpumask_clear(&has_work);
818 for_each_online_cpu(cpu) {
819 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
820
821 if (force_all_cpus ||
822 pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
823 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
824 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
825 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
826 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
827 need_activate_page_drain(cpu) ||
828 has_bh_in_lru(cpu, NULL)) {
829 INIT_WORK(work, lru_add_drain_per_cpu);
830 queue_work_on(cpu, mm_percpu_wq, work);
831 __cpumask_set_cpu(cpu, &has_work);
832 }
833 }
834
835 for_each_cpu(cpu, &has_work)
836 flush_work(&per_cpu(lru_add_drain_work, cpu));
837
838 done:
839 mutex_unlock(&lock);
840 }
841
842 void lru_add_drain_all(void)
843 {
844 __lru_add_drain_all(false);
845 }
846 #else
847 void lru_add_drain_all(void)
848 {
849 lru_add_drain();
850 }
851 #endif /* CONFIG_SMP */
852
853 atomic_t lru_disable_count = ATOMIC_INIT(0);
854
855 /*
856 * lru_cache_disable() needs to be called before we start compiling
857 * a list of pages to be migrated using isolate_lru_page().
858 * It drains pages on LRU cache and then disable on all cpus until
859 * lru_cache_enable is called.
860 *
861 * Must be paired with a call to lru_cache_enable().
862 */
863 void lru_cache_disable(void)
864 {
865 atomic_inc(&lru_disable_count);
866 #ifdef CONFIG_SMP
867 /*
868 * lru_add_drain_all in the force mode will schedule draining on
869 * all online CPUs so any calls of lru_cache_disabled wrapped by
870 * local_lock or preemption disabled would be ordered by that.
871 * The atomic operation doesn't need to have stronger ordering
872 * requirements because that is enforeced by the scheduling
873 * guarantees.
874 */
875 __lru_add_drain_all(true);
876 #else
877 lru_add_and_bh_lrus_drain();
878 #endif
879 }
880
881 /**
882 * release_pages - batched put_page()
883 * @pages: array of pages to release
884 * @nr: number of pages
885 *
886 * Decrement the reference count on all the pages in @pages. If it
887 * fell to zero, remove the page from the LRU and free it.
888 */
889 void release_pages(struct page **pages, int nr)
890 {
891 int i;
892 LIST_HEAD(pages_to_free);
893 struct lruvec *lruvec = NULL;
894 unsigned long flags;
895 unsigned int lock_batch;
896
897 for (i = 0; i < nr; i++) {
898 struct page *page = pages[i];
899
900 /*
901 * Make sure the IRQ-safe lock-holding time does not get
902 * excessive with a continuous string of pages from the
903 * same lruvec. The lock is held only if lruvec != NULL.
904 */
905 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
906 unlock_page_lruvec_irqrestore(lruvec, flags);
907 lruvec = NULL;
908 }
909
910 page = compound_head(page);
911 if (is_huge_zero_page(page))
912 continue;
913
914 if (is_zone_device_page(page)) {
915 if (lruvec) {
916 unlock_page_lruvec_irqrestore(lruvec, flags);
917 lruvec = NULL;
918 }
919 /*
920 * ZONE_DEVICE pages that return 'false' from
921 * page_is_devmap_managed() do not require special
922 * processing, and instead, expect a call to
923 * put_page_testzero().
924 */
925 if (page_is_devmap_managed(page)) {
926 put_devmap_managed_page(page);
927 continue;
928 }
929 if (put_page_testzero(page))
930 put_dev_pagemap(page->pgmap);
931 continue;
932 }
933
934 if (!put_page_testzero(page))
935 continue;
936
937 if (PageCompound(page)) {
938 if (lruvec) {
939 unlock_page_lruvec_irqrestore(lruvec, flags);
940 lruvec = NULL;
941 }
942 __put_compound_page(page);
943 continue;
944 }
945
946 if (PageLRU(page)) {
947 struct lruvec *prev_lruvec = lruvec;
948
949 lruvec = relock_page_lruvec_irqsave(page, lruvec,
950 &flags);
951 if (prev_lruvec != lruvec)
952 lock_batch = 0;
953
954 del_page_from_lru_list(page, lruvec);
955 __clear_page_lru_flags(page);
956 }
957
958 __ClearPageWaiters(page);
959
960 list_add(&page->lru, &pages_to_free);
961 }
962 if (lruvec)
963 unlock_page_lruvec_irqrestore(lruvec, flags);
964
965 mem_cgroup_uncharge_list(&pages_to_free);
966 free_unref_page_list(&pages_to_free);
967 }
968 EXPORT_SYMBOL(release_pages);
969
970 /*
971 * The pages which we're about to release may be in the deferred lru-addition
972 * queues. That would prevent them from really being freed right now. That's
973 * OK from a correctness point of view but is inefficient - those pages may be
974 * cache-warm and we want to give them back to the page allocator ASAP.
975 *
976 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
977 * and __pagevec_lru_add_active() call release_pages() directly to avoid
978 * mutual recursion.
979 */
980 void __pagevec_release(struct pagevec *pvec)
981 {
982 if (!pvec->percpu_pvec_drained) {
983 lru_add_drain();
984 pvec->percpu_pvec_drained = true;
985 }
986 release_pages(pvec->pages, pagevec_count(pvec));
987 pagevec_reinit(pvec);
988 }
989 EXPORT_SYMBOL(__pagevec_release);
990
991 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec)
992 {
993 int was_unevictable = TestClearPageUnevictable(page);
994 int nr_pages = thp_nr_pages(page);
995
996 VM_BUG_ON_PAGE(PageLRU(page), page);
997
998 /*
999 * Page becomes evictable in two ways:
1000 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1001 * 2) Before acquiring LRU lock to put the page to correct LRU and then
1002 * a) do PageLRU check with lock [check_move_unevictable_pages]
1003 * b) do PageLRU check before lock [clear_page_mlock]
1004 *
1005 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1006 * following strict ordering:
1007 *
1008 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
1009 *
1010 * SetPageLRU() TestClearPageMlocked()
1011 * smp_mb() // explicit ordering // above provides strict
1012 * // ordering
1013 * PageMlocked() PageLRU()
1014 *
1015 *
1016 * if '#1' does not observe setting of PG_lru by '#0' and fails
1017 * isolation, the explicit barrier will make sure that page_evictable
1018 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1019 * can be reordered after PageMlocked check and can make '#1' to fail
1020 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1021 * looking at the same page) and the evictable page will be stranded
1022 * in an unevictable LRU.
1023 */
1024 SetPageLRU(page);
1025 smp_mb__after_atomic();
1026
1027 if (page_evictable(page)) {
1028 if (was_unevictable)
1029 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1030 } else {
1031 ClearPageActive(page);
1032 SetPageUnevictable(page);
1033 if (!was_unevictable)
1034 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1035 }
1036
1037 add_page_to_lru_list(page, lruvec);
1038 trace_mm_lru_insertion(page);
1039 }
1040
1041 /*
1042 * Add the passed pages to the LRU, then drop the caller's refcount
1043 * on them. Reinitialises the caller's pagevec.
1044 */
1045 void __pagevec_lru_add(struct pagevec *pvec)
1046 {
1047 int i;
1048 struct lruvec *lruvec = NULL;
1049 unsigned long flags = 0;
1050
1051 for (i = 0; i < pagevec_count(pvec); i++) {
1052 struct page *page = pvec->pages[i];
1053
1054 lruvec = relock_page_lruvec_irqsave(page, lruvec, &flags);
1055 __pagevec_lru_add_fn(page, lruvec);
1056 }
1057 if (lruvec)
1058 unlock_page_lruvec_irqrestore(lruvec, flags);
1059 release_pages(pvec->pages, pvec->nr);
1060 pagevec_reinit(pvec);
1061 }
1062
1063 /**
1064 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1065 * @pvec: The pagevec to prune
1066 *
1067 * find_get_entries() fills both pages and XArray value entries (aka
1068 * exceptional entries) into the pagevec. This function prunes all
1069 * exceptionals from @pvec without leaving holes, so that it can be
1070 * passed on to page-only pagevec operations.
1071 */
1072 void pagevec_remove_exceptionals(struct pagevec *pvec)
1073 {
1074 int i, j;
1075
1076 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1077 struct page *page = pvec->pages[i];
1078 if (!xa_is_value(page))
1079 pvec->pages[j++] = page;
1080 }
1081 pvec->nr = j;
1082 }
1083
1084 /**
1085 * pagevec_lookup_range - gang pagecache lookup
1086 * @pvec: Where the resulting pages are placed
1087 * @mapping: The address_space to search
1088 * @start: The starting page index
1089 * @end: The final page index
1090 *
1091 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1092 * pages in the mapping starting from index @start and upto index @end
1093 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1094 * reference against the pages in @pvec.
1095 *
1096 * The search returns a group of mapping-contiguous pages with ascending
1097 * indexes. There may be holes in the indices due to not-present pages. We
1098 * also update @start to index the next page for the traversal.
1099 *
1100 * pagevec_lookup_range() returns the number of pages which were found. If this
1101 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1102 * reached.
1103 */
1104 unsigned pagevec_lookup_range(struct pagevec *pvec,
1105 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1106 {
1107 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1108 pvec->pages);
1109 return pagevec_count(pvec);
1110 }
1111 EXPORT_SYMBOL(pagevec_lookup_range);
1112
1113 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1114 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1115 xa_mark_t tag)
1116 {
1117 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1118 PAGEVEC_SIZE, pvec->pages);
1119 return pagevec_count(pvec);
1120 }
1121 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1122
1123 /*
1124 * Perform any setup for the swap system
1125 */
1126 void __init swap_setup(void)
1127 {
1128 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1129
1130 /* Use a smaller cluster for small-memory machines */
1131 if (megs < 16)
1132 page_cluster = 2;
1133 else
1134 page_cluster = 3;
1135 /*
1136 * Right now other parts of the system means that we
1137 * _really_ don't want to cluster much more
1138 */
1139 }
1140
1141 #ifdef CONFIG_DEV_PAGEMAP_OPS
1142 void put_devmap_managed_page(struct page *page)
1143 {
1144 int count;
1145
1146 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1147 return;
1148
1149 count = page_ref_dec_return(page);
1150
1151 /*
1152 * devmap page refcounts are 1-based, rather than 0-based: if
1153 * refcount is 1, then the page is free and the refcount is
1154 * stable because nobody holds a reference on the page.
1155 */
1156 if (count == 1)
1157 free_devmap_managed_page(page);
1158 else if (!count)
1159 __put_page(page);
1160 }
1161 EXPORT_SYMBOL(put_devmap_managed_page);
1162 #endif