]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/swap.c
6fdd72ec15b01b4552480e02ad639de0a73d79de
[mirror_ubuntu-eoan-kernel.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33
34 #include "internal.h"
35
36 /* How many pages do we try to swap or page in/out together? */
37 int page_cluster;
38
39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
42
43 /*
44 * This path almost never happens for VM activity - pages are normally
45 * freed via pagevecs. But it gets used by networking.
46 */
47 static void __page_cache_release(struct page *page)
48 {
49 if (PageLRU(page)) {
50 unsigned long flags;
51 struct zone *zone = page_zone(page);
52
53 spin_lock_irqsave(&zone->lru_lock, flags);
54 VM_BUG_ON(!PageLRU(page));
55 __ClearPageLRU(page);
56 del_page_from_lru_list(zone, page, page_off_lru(page));
57 spin_unlock_irqrestore(&zone->lru_lock, flags);
58 }
59 }
60
61 static void __put_single_page(struct page *page)
62 {
63 __page_cache_release(page);
64 free_hot_cold_page(page, 0);
65 }
66
67 static void __put_compound_page(struct page *page)
68 {
69 compound_page_dtor *dtor;
70
71 __page_cache_release(page);
72 dtor = get_compound_page_dtor(page);
73 (*dtor)(page);
74 }
75
76 static void put_compound_page(struct page *page)
77 {
78 if (unlikely(PageTail(page))) {
79 /* __split_huge_page_refcount can run under us */
80 struct page *page_head = compound_trans_head(page);
81
82 if (likely(page != page_head &&
83 get_page_unless_zero(page_head))) {
84 unsigned long flags;
85
86 /*
87 * THP can not break up slab pages so avoid taking
88 * compound_lock(). Slab performs non-atomic bit ops
89 * on page->flags for better performance. In particular
90 * slab_unlock() in slub used to be a hot path. It is
91 * still hot on arches that do not support
92 * this_cpu_cmpxchg_double().
93 */
94 if (PageSlab(page_head)) {
95 if (PageTail(page)) {
96 if (put_page_testzero(page_head))
97 VM_BUG_ON(1);
98
99 atomic_dec(&page->_mapcount);
100 goto skip_lock_tail;
101 } else
102 goto skip_lock;
103 }
104 /*
105 * page_head wasn't a dangling pointer but it
106 * may not be a head page anymore by the time
107 * we obtain the lock. That is ok as long as it
108 * can't be freed from under us.
109 */
110 flags = compound_lock_irqsave(page_head);
111 if (unlikely(!PageTail(page))) {
112 /* __split_huge_page_refcount run before us */
113 compound_unlock_irqrestore(page_head, flags);
114 skip_lock:
115 if (put_page_testzero(page_head))
116 __put_single_page(page_head);
117 out_put_single:
118 if (put_page_testzero(page))
119 __put_single_page(page);
120 return;
121 }
122 VM_BUG_ON(page_head != page->first_page);
123 /*
124 * We can release the refcount taken by
125 * get_page_unless_zero() now that
126 * __split_huge_page_refcount() is blocked on
127 * the compound_lock.
128 */
129 if (put_page_testzero(page_head))
130 VM_BUG_ON(1);
131 /* __split_huge_page_refcount will wait now */
132 VM_BUG_ON(page_mapcount(page) <= 0);
133 atomic_dec(&page->_mapcount);
134 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
135 VM_BUG_ON(atomic_read(&page->_count) != 0);
136 compound_unlock_irqrestore(page_head, flags);
137
138 skip_lock_tail:
139 if (put_page_testzero(page_head)) {
140 if (PageHead(page_head))
141 __put_compound_page(page_head);
142 else
143 __put_single_page(page_head);
144 }
145 } else {
146 /* page_head is a dangling pointer */
147 VM_BUG_ON(PageTail(page));
148 goto out_put_single;
149 }
150 } else if (put_page_testzero(page)) {
151 if (PageHead(page))
152 __put_compound_page(page);
153 else
154 __put_single_page(page);
155 }
156 }
157
158 void put_page(struct page *page)
159 {
160 if (unlikely(PageCompound(page)))
161 put_compound_page(page);
162 else if (put_page_testzero(page))
163 __put_single_page(page);
164 }
165 EXPORT_SYMBOL(put_page);
166
167 /*
168 * This function is exported but must not be called by anything other
169 * than get_page(). It implements the slow path of get_page().
170 */
171 bool __get_page_tail(struct page *page)
172 {
173 /*
174 * This takes care of get_page() if run on a tail page
175 * returned by one of the get_user_pages/follow_page variants.
176 * get_user_pages/follow_page itself doesn't need the compound
177 * lock because it runs __get_page_tail_foll() under the
178 * proper PT lock that already serializes against
179 * split_huge_page().
180 */
181 unsigned long flags;
182 bool got = false;
183 struct page *page_head = compound_trans_head(page);
184
185 if (likely(page != page_head && get_page_unless_zero(page_head))) {
186
187 /* Ref to put_compound_page() comment. */
188 if (PageSlab(page_head)) {
189 if (likely(PageTail(page))) {
190 __get_page_tail_foll(page, false);
191 return true;
192 } else {
193 put_page(page_head);
194 return false;
195 }
196 }
197
198 /*
199 * page_head wasn't a dangling pointer but it
200 * may not be a head page anymore by the time
201 * we obtain the lock. That is ok as long as it
202 * can't be freed from under us.
203 */
204 flags = compound_lock_irqsave(page_head);
205 /* here __split_huge_page_refcount won't run anymore */
206 if (likely(PageTail(page))) {
207 __get_page_tail_foll(page, false);
208 got = true;
209 }
210 compound_unlock_irqrestore(page_head, flags);
211 if (unlikely(!got))
212 put_page(page_head);
213 }
214 return got;
215 }
216 EXPORT_SYMBOL(__get_page_tail);
217
218 /**
219 * put_pages_list() - release a list of pages
220 * @pages: list of pages threaded on page->lru
221 *
222 * Release a list of pages which are strung together on page.lru. Currently
223 * used by read_cache_pages() and related error recovery code.
224 */
225 void put_pages_list(struct list_head *pages)
226 {
227 while (!list_empty(pages)) {
228 struct page *victim;
229
230 victim = list_entry(pages->prev, struct page, lru);
231 list_del(&victim->lru);
232 page_cache_release(victim);
233 }
234 }
235 EXPORT_SYMBOL(put_pages_list);
236
237 static void pagevec_lru_move_fn(struct pagevec *pvec,
238 void (*move_fn)(struct page *page, void *arg),
239 void *arg)
240 {
241 int i;
242 struct zone *zone = NULL;
243 unsigned long flags = 0;
244
245 for (i = 0; i < pagevec_count(pvec); i++) {
246 struct page *page = pvec->pages[i];
247 struct zone *pagezone = page_zone(page);
248
249 if (pagezone != zone) {
250 if (zone)
251 spin_unlock_irqrestore(&zone->lru_lock, flags);
252 zone = pagezone;
253 spin_lock_irqsave(&zone->lru_lock, flags);
254 }
255
256 (*move_fn)(page, arg);
257 }
258 if (zone)
259 spin_unlock_irqrestore(&zone->lru_lock, flags);
260 release_pages(pvec->pages, pvec->nr, pvec->cold);
261 pagevec_reinit(pvec);
262 }
263
264 static void pagevec_move_tail_fn(struct page *page, void *arg)
265 {
266 int *pgmoved = arg;
267
268 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
269 enum lru_list lru = page_lru_base_type(page);
270 struct lruvec *lruvec;
271
272 lruvec = mem_cgroup_lru_move_lists(page_zone(page),
273 page, lru, lru);
274 list_move_tail(&page->lru, &lruvec->lists[lru]);
275 (*pgmoved)++;
276 }
277 }
278
279 /*
280 * pagevec_move_tail() must be called with IRQ disabled.
281 * Otherwise this may cause nasty races.
282 */
283 static void pagevec_move_tail(struct pagevec *pvec)
284 {
285 int pgmoved = 0;
286
287 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
288 __count_vm_events(PGROTATED, pgmoved);
289 }
290
291 /*
292 * Writeback is about to end against a page which has been marked for immediate
293 * reclaim. If it still appears to be reclaimable, move it to the tail of the
294 * inactive list.
295 */
296 void rotate_reclaimable_page(struct page *page)
297 {
298 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
299 !PageUnevictable(page) && PageLRU(page)) {
300 struct pagevec *pvec;
301 unsigned long flags;
302
303 page_cache_get(page);
304 local_irq_save(flags);
305 pvec = &__get_cpu_var(lru_rotate_pvecs);
306 if (!pagevec_add(pvec, page))
307 pagevec_move_tail(pvec);
308 local_irq_restore(flags);
309 }
310 }
311
312 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
313 int file, int rotated)
314 {
315 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
316 struct zone_reclaim_stat *memcg_reclaim_stat;
317
318 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
319
320 reclaim_stat->recent_scanned[file]++;
321 if (rotated)
322 reclaim_stat->recent_rotated[file]++;
323
324 if (!memcg_reclaim_stat)
325 return;
326
327 memcg_reclaim_stat->recent_scanned[file]++;
328 if (rotated)
329 memcg_reclaim_stat->recent_rotated[file]++;
330 }
331
332 static void __activate_page(struct page *page, void *arg)
333 {
334 struct zone *zone = page_zone(page);
335
336 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
337 int file = page_is_file_cache(page);
338 int lru = page_lru_base_type(page);
339 del_page_from_lru_list(zone, page, lru);
340
341 SetPageActive(page);
342 lru += LRU_ACTIVE;
343 add_page_to_lru_list(zone, page, lru);
344 __count_vm_event(PGACTIVATE);
345
346 update_page_reclaim_stat(zone, page, file, 1);
347 }
348 }
349
350 #ifdef CONFIG_SMP
351 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
352
353 static void activate_page_drain(int cpu)
354 {
355 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
356
357 if (pagevec_count(pvec))
358 pagevec_lru_move_fn(pvec, __activate_page, NULL);
359 }
360
361 void activate_page(struct page *page)
362 {
363 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
364 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
365
366 page_cache_get(page);
367 if (!pagevec_add(pvec, page))
368 pagevec_lru_move_fn(pvec, __activate_page, NULL);
369 put_cpu_var(activate_page_pvecs);
370 }
371 }
372
373 #else
374 static inline void activate_page_drain(int cpu)
375 {
376 }
377
378 void activate_page(struct page *page)
379 {
380 struct zone *zone = page_zone(page);
381
382 spin_lock_irq(&zone->lru_lock);
383 __activate_page(page, NULL);
384 spin_unlock_irq(&zone->lru_lock);
385 }
386 #endif
387
388 /*
389 * Mark a page as having seen activity.
390 *
391 * inactive,unreferenced -> inactive,referenced
392 * inactive,referenced -> active,unreferenced
393 * active,unreferenced -> active,referenced
394 */
395 void mark_page_accessed(struct page *page)
396 {
397 if (!PageActive(page) && !PageUnevictable(page) &&
398 PageReferenced(page) && PageLRU(page)) {
399 activate_page(page);
400 ClearPageReferenced(page);
401 } else if (!PageReferenced(page)) {
402 SetPageReferenced(page);
403 }
404 }
405 EXPORT_SYMBOL(mark_page_accessed);
406
407 void __lru_cache_add(struct page *page, enum lru_list lru)
408 {
409 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
410
411 page_cache_get(page);
412 if (!pagevec_add(pvec, page))
413 __pagevec_lru_add(pvec, lru);
414 put_cpu_var(lru_add_pvecs);
415 }
416 EXPORT_SYMBOL(__lru_cache_add);
417
418 /**
419 * lru_cache_add_lru - add a page to a page list
420 * @page: the page to be added to the LRU.
421 * @lru: the LRU list to which the page is added.
422 */
423 void lru_cache_add_lru(struct page *page, enum lru_list lru)
424 {
425 if (PageActive(page)) {
426 VM_BUG_ON(PageUnevictable(page));
427 ClearPageActive(page);
428 } else if (PageUnevictable(page)) {
429 VM_BUG_ON(PageActive(page));
430 ClearPageUnevictable(page);
431 }
432
433 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
434 __lru_cache_add(page, lru);
435 }
436
437 /**
438 * add_page_to_unevictable_list - add a page to the unevictable list
439 * @page: the page to be added to the unevictable list
440 *
441 * Add page directly to its zone's unevictable list. To avoid races with
442 * tasks that might be making the page evictable, through eg. munlock,
443 * munmap or exit, while it's not on the lru, we want to add the page
444 * while it's locked or otherwise "invisible" to other tasks. This is
445 * difficult to do when using the pagevec cache, so bypass that.
446 */
447 void add_page_to_unevictable_list(struct page *page)
448 {
449 struct zone *zone = page_zone(page);
450
451 spin_lock_irq(&zone->lru_lock);
452 SetPageUnevictable(page);
453 SetPageLRU(page);
454 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
455 spin_unlock_irq(&zone->lru_lock);
456 }
457
458 /*
459 * If the page can not be invalidated, it is moved to the
460 * inactive list to speed up its reclaim. It is moved to the
461 * head of the list, rather than the tail, to give the flusher
462 * threads some time to write it out, as this is much more
463 * effective than the single-page writeout from reclaim.
464 *
465 * If the page isn't page_mapped and dirty/writeback, the page
466 * could reclaim asap using PG_reclaim.
467 *
468 * 1. active, mapped page -> none
469 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
470 * 3. inactive, mapped page -> none
471 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
472 * 5. inactive, clean -> inactive, tail
473 * 6. Others -> none
474 *
475 * In 4, why it moves inactive's head, the VM expects the page would
476 * be write it out by flusher threads as this is much more effective
477 * than the single-page writeout from reclaim.
478 */
479 static void lru_deactivate_fn(struct page *page, void *arg)
480 {
481 int lru, file;
482 bool active;
483 struct zone *zone = page_zone(page);
484
485 if (!PageLRU(page))
486 return;
487
488 if (PageUnevictable(page))
489 return;
490
491 /* Some processes are using the page */
492 if (page_mapped(page))
493 return;
494
495 active = PageActive(page);
496
497 file = page_is_file_cache(page);
498 lru = page_lru_base_type(page);
499 del_page_from_lru_list(zone, page, lru + active);
500 ClearPageActive(page);
501 ClearPageReferenced(page);
502 add_page_to_lru_list(zone, page, lru);
503
504 if (PageWriteback(page) || PageDirty(page)) {
505 /*
506 * PG_reclaim could be raced with end_page_writeback
507 * It can make readahead confusing. But race window
508 * is _really_ small and it's non-critical problem.
509 */
510 SetPageReclaim(page);
511 } else {
512 struct lruvec *lruvec;
513 /*
514 * The page's writeback ends up during pagevec
515 * We moves tha page into tail of inactive.
516 */
517 lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru);
518 list_move_tail(&page->lru, &lruvec->lists[lru]);
519 __count_vm_event(PGROTATED);
520 }
521
522 if (active)
523 __count_vm_event(PGDEACTIVATE);
524 update_page_reclaim_stat(zone, page, file, 0);
525 }
526
527 /*
528 * Drain pages out of the cpu's pagevecs.
529 * Either "cpu" is the current CPU, and preemption has already been
530 * disabled; or "cpu" is being hot-unplugged, and is already dead.
531 */
532 void lru_add_drain_cpu(int cpu)
533 {
534 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
535 struct pagevec *pvec;
536 int lru;
537
538 for_each_lru(lru) {
539 pvec = &pvecs[lru - LRU_BASE];
540 if (pagevec_count(pvec))
541 __pagevec_lru_add(pvec, lru);
542 }
543
544 pvec = &per_cpu(lru_rotate_pvecs, cpu);
545 if (pagevec_count(pvec)) {
546 unsigned long flags;
547
548 /* No harm done if a racing interrupt already did this */
549 local_irq_save(flags);
550 pagevec_move_tail(pvec);
551 local_irq_restore(flags);
552 }
553
554 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
555 if (pagevec_count(pvec))
556 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
557
558 activate_page_drain(cpu);
559 }
560
561 /**
562 * deactivate_page - forcefully deactivate a page
563 * @page: page to deactivate
564 *
565 * This function hints the VM that @page is a good reclaim candidate,
566 * for example if its invalidation fails due to the page being dirty
567 * or under writeback.
568 */
569 void deactivate_page(struct page *page)
570 {
571 /*
572 * In a workload with many unevictable page such as mprotect, unevictable
573 * page deactivation for accelerating reclaim is pointless.
574 */
575 if (PageUnevictable(page))
576 return;
577
578 if (likely(get_page_unless_zero(page))) {
579 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
580
581 if (!pagevec_add(pvec, page))
582 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
583 put_cpu_var(lru_deactivate_pvecs);
584 }
585 }
586
587 void lru_add_drain(void)
588 {
589 lru_add_drain_cpu(get_cpu());
590 put_cpu();
591 }
592
593 static void lru_add_drain_per_cpu(struct work_struct *dummy)
594 {
595 lru_add_drain();
596 }
597
598 /*
599 * Returns 0 for success
600 */
601 int lru_add_drain_all(void)
602 {
603 return schedule_on_each_cpu(lru_add_drain_per_cpu);
604 }
605
606 /*
607 * Batched page_cache_release(). Decrement the reference count on all the
608 * passed pages. If it fell to zero then remove the page from the LRU and
609 * free it.
610 *
611 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
612 * for the remainder of the operation.
613 *
614 * The locking in this function is against shrink_inactive_list(): we recheck
615 * the page count inside the lock to see whether shrink_inactive_list()
616 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
617 * will free it.
618 */
619 void release_pages(struct page **pages, int nr, int cold)
620 {
621 int i;
622 LIST_HEAD(pages_to_free);
623 struct zone *zone = NULL;
624 unsigned long uninitialized_var(flags);
625
626 for (i = 0; i < nr; i++) {
627 struct page *page = pages[i];
628
629 if (unlikely(PageCompound(page))) {
630 if (zone) {
631 spin_unlock_irqrestore(&zone->lru_lock, flags);
632 zone = NULL;
633 }
634 put_compound_page(page);
635 continue;
636 }
637
638 if (!put_page_testzero(page))
639 continue;
640
641 if (PageLRU(page)) {
642 struct zone *pagezone = page_zone(page);
643
644 if (pagezone != zone) {
645 if (zone)
646 spin_unlock_irqrestore(&zone->lru_lock,
647 flags);
648 zone = pagezone;
649 spin_lock_irqsave(&zone->lru_lock, flags);
650 }
651 VM_BUG_ON(!PageLRU(page));
652 __ClearPageLRU(page);
653 del_page_from_lru_list(zone, page, page_off_lru(page));
654 }
655
656 list_add(&page->lru, &pages_to_free);
657 }
658 if (zone)
659 spin_unlock_irqrestore(&zone->lru_lock, flags);
660
661 free_hot_cold_page_list(&pages_to_free, cold);
662 }
663 EXPORT_SYMBOL(release_pages);
664
665 /*
666 * The pages which we're about to release may be in the deferred lru-addition
667 * queues. That would prevent them from really being freed right now. That's
668 * OK from a correctness point of view but is inefficient - those pages may be
669 * cache-warm and we want to give them back to the page allocator ASAP.
670 *
671 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
672 * and __pagevec_lru_add_active() call release_pages() directly to avoid
673 * mutual recursion.
674 */
675 void __pagevec_release(struct pagevec *pvec)
676 {
677 lru_add_drain();
678 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
679 pagevec_reinit(pvec);
680 }
681 EXPORT_SYMBOL(__pagevec_release);
682
683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
684 /* used by __split_huge_page_refcount() */
685 void lru_add_page_tail(struct zone* zone,
686 struct page *page, struct page *page_tail)
687 {
688 int uninitialized_var(active);
689 enum lru_list lru;
690 const int file = 0;
691
692 VM_BUG_ON(!PageHead(page));
693 VM_BUG_ON(PageCompound(page_tail));
694 VM_BUG_ON(PageLRU(page_tail));
695 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&zone->lru_lock));
696
697 SetPageLRU(page_tail);
698
699 if (page_evictable(page_tail, NULL)) {
700 if (PageActive(page)) {
701 SetPageActive(page_tail);
702 active = 1;
703 lru = LRU_ACTIVE_ANON;
704 } else {
705 active = 0;
706 lru = LRU_INACTIVE_ANON;
707 }
708 } else {
709 SetPageUnevictable(page_tail);
710 lru = LRU_UNEVICTABLE;
711 }
712
713 if (likely(PageLRU(page)))
714 list_add_tail(&page_tail->lru, &page->lru);
715 else {
716 struct list_head *list_head;
717 /*
718 * Head page has not yet been counted, as an hpage,
719 * so we must account for each subpage individually.
720 *
721 * Use the standard add function to put page_tail on the list,
722 * but then correct its position so they all end up in order.
723 */
724 add_page_to_lru_list(zone, page_tail, lru);
725 list_head = page_tail->lru.prev;
726 list_move_tail(&page_tail->lru, list_head);
727 }
728
729 if (!PageUnevictable(page))
730 update_page_reclaim_stat(zone, page_tail, file, active);
731 }
732 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
733
734 static void __pagevec_lru_add_fn(struct page *page, void *arg)
735 {
736 enum lru_list lru = (enum lru_list)arg;
737 struct zone *zone = page_zone(page);
738 int file = is_file_lru(lru);
739 int active = is_active_lru(lru);
740
741 VM_BUG_ON(PageActive(page));
742 VM_BUG_ON(PageUnevictable(page));
743 VM_BUG_ON(PageLRU(page));
744
745 SetPageLRU(page);
746 if (active)
747 SetPageActive(page);
748 add_page_to_lru_list(zone, page, lru);
749 update_page_reclaim_stat(zone, page, file, active);
750 }
751
752 /*
753 * Add the passed pages to the LRU, then drop the caller's refcount
754 * on them. Reinitialises the caller's pagevec.
755 */
756 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
757 {
758 VM_BUG_ON(is_unevictable_lru(lru));
759
760 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
761 }
762 EXPORT_SYMBOL(__pagevec_lru_add);
763
764 /**
765 * pagevec_lookup - gang pagecache lookup
766 * @pvec: Where the resulting pages are placed
767 * @mapping: The address_space to search
768 * @start: The starting page index
769 * @nr_pages: The maximum number of pages
770 *
771 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
772 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
773 * reference against the pages in @pvec.
774 *
775 * The search returns a group of mapping-contiguous pages with ascending
776 * indexes. There may be holes in the indices due to not-present pages.
777 *
778 * pagevec_lookup() returns the number of pages which were found.
779 */
780 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
781 pgoff_t start, unsigned nr_pages)
782 {
783 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
784 return pagevec_count(pvec);
785 }
786 EXPORT_SYMBOL(pagevec_lookup);
787
788 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
789 pgoff_t *index, int tag, unsigned nr_pages)
790 {
791 pvec->nr = find_get_pages_tag(mapping, index, tag,
792 nr_pages, pvec->pages);
793 return pagevec_count(pvec);
794 }
795 EXPORT_SYMBOL(pagevec_lookup_tag);
796
797 /*
798 * Perform any setup for the swap system
799 */
800 void __init swap_setup(void)
801 {
802 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
803
804 #ifdef CONFIG_SWAP
805 bdi_init(swapper_space.backing_dev_info);
806 #endif
807
808 /* Use a smaller cluster for small-memory machines */
809 if (megs < 16)
810 page_cluster = 2;
811 else
812 page_cluster = 3;
813 /*
814 * Right now other parts of the system means that we
815 * _really_ don't want to cluster much more
816 */
817 }