]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/swap.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34
35 #include "internal.h"
36
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42
43 /*
44 * This path almost never happens for VM activity - pages are normally
45 * freed via pagevecs. But it gets used by networking.
46 */
47 static void __page_cache_release(struct page *page)
48 {
49 if (PageLRU(page)) {
50 unsigned long flags;
51 struct zone *zone = page_zone(page);
52
53 spin_lock_irqsave(&zone->lru_lock, flags);
54 VM_BUG_ON(!PageLRU(page));
55 __ClearPageLRU(page);
56 del_page_from_lru(zone, page);
57 spin_unlock_irqrestore(&zone->lru_lock, flags);
58 }
59 free_hot_cold_page(page, 0);
60 }
61
62 static void put_compound_page(struct page *page)
63 {
64 page = compound_head(page);
65 if (put_page_testzero(page)) {
66 compound_page_dtor *dtor;
67
68 dtor = get_compound_page_dtor(page);
69 (*dtor)(page);
70 }
71 }
72
73 void put_page(struct page *page)
74 {
75 if (unlikely(PageCompound(page)))
76 put_compound_page(page);
77 else if (put_page_testzero(page))
78 __page_cache_release(page);
79 }
80 EXPORT_SYMBOL(put_page);
81
82 /**
83 * put_pages_list() - release a list of pages
84 * @pages: list of pages threaded on page->lru
85 *
86 * Release a list of pages which are strung together on page.lru. Currently
87 * used by read_cache_pages() and related error recovery code.
88 */
89 void put_pages_list(struct list_head *pages)
90 {
91 while (!list_empty(pages)) {
92 struct page *victim;
93
94 victim = list_entry(pages->prev, struct page, lru);
95 list_del(&victim->lru);
96 page_cache_release(victim);
97 }
98 }
99 EXPORT_SYMBOL(put_pages_list);
100
101 /*
102 * pagevec_move_tail() must be called with IRQ disabled.
103 * Otherwise this may cause nasty races.
104 */
105 static void pagevec_move_tail(struct pagevec *pvec)
106 {
107 int i;
108 int pgmoved = 0;
109 struct zone *zone = NULL;
110
111 for (i = 0; i < pagevec_count(pvec); i++) {
112 struct page *page = pvec->pages[i];
113 struct zone *pagezone = page_zone(page);
114
115 if (pagezone != zone) {
116 if (zone)
117 spin_unlock(&zone->lru_lock);
118 zone = pagezone;
119 spin_lock(&zone->lru_lock);
120 }
121 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
122 int lru = page_lru_base_type(page);
123 list_move_tail(&page->lru, &zone->lru[lru].list);
124 pgmoved++;
125 }
126 }
127 if (zone)
128 spin_unlock(&zone->lru_lock);
129 __count_vm_events(PGROTATED, pgmoved);
130 release_pages(pvec->pages, pvec->nr, pvec->cold);
131 pagevec_reinit(pvec);
132 }
133
134 /*
135 * Writeback is about to end against a page which has been marked for immediate
136 * reclaim. If it still appears to be reclaimable, move it to the tail of the
137 * inactive list.
138 */
139 void rotate_reclaimable_page(struct page *page)
140 {
141 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
142 !PageUnevictable(page) && PageLRU(page)) {
143 struct pagevec *pvec;
144 unsigned long flags;
145
146 page_cache_get(page);
147 local_irq_save(flags);
148 pvec = &__get_cpu_var(lru_rotate_pvecs);
149 if (!pagevec_add(pvec, page))
150 pagevec_move_tail(pvec);
151 local_irq_restore(flags);
152 }
153 }
154
155 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
156 int file, int rotated)
157 {
158 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
159 struct zone_reclaim_stat *memcg_reclaim_stat;
160
161 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
162
163 reclaim_stat->recent_scanned[file]++;
164 if (rotated)
165 reclaim_stat->recent_rotated[file]++;
166
167 if (!memcg_reclaim_stat)
168 return;
169
170 memcg_reclaim_stat->recent_scanned[file]++;
171 if (rotated)
172 memcg_reclaim_stat->recent_rotated[file]++;
173 }
174
175 /*
176 * FIXME: speed this up?
177 */
178 void activate_page(struct page *page)
179 {
180 struct zone *zone = page_zone(page);
181
182 spin_lock_irq(&zone->lru_lock);
183 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
184 int file = page_is_file_cache(page);
185 int lru = page_lru_base_type(page);
186 del_page_from_lru_list(zone, page, lru);
187
188 SetPageActive(page);
189 lru += LRU_ACTIVE;
190 add_page_to_lru_list(zone, page, lru);
191 __count_vm_event(PGACTIVATE);
192
193 update_page_reclaim_stat(zone, page, file, 1);
194 }
195 spin_unlock_irq(&zone->lru_lock);
196 }
197
198 /*
199 * Mark a page as having seen activity.
200 *
201 * inactive,unreferenced -> inactive,referenced
202 * inactive,referenced -> active,unreferenced
203 * active,unreferenced -> active,referenced
204 */
205 void mark_page_accessed(struct page *page)
206 {
207 if (!PageActive(page) && !PageUnevictable(page) &&
208 PageReferenced(page) && PageLRU(page)) {
209 activate_page(page);
210 ClearPageReferenced(page);
211 } else if (!PageReferenced(page)) {
212 SetPageReferenced(page);
213 }
214 }
215
216 EXPORT_SYMBOL(mark_page_accessed);
217
218 void __lru_cache_add(struct page *page, enum lru_list lru)
219 {
220 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
221
222 page_cache_get(page);
223 if (!pagevec_add(pvec, page))
224 ____pagevec_lru_add(pvec, lru);
225 put_cpu_var(lru_add_pvecs);
226 }
227
228 /**
229 * lru_cache_add_lru - add a page to a page list
230 * @page: the page to be added to the LRU.
231 * @lru: the LRU list to which the page is added.
232 */
233 void lru_cache_add_lru(struct page *page, enum lru_list lru)
234 {
235 if (PageActive(page)) {
236 VM_BUG_ON(PageUnevictable(page));
237 ClearPageActive(page);
238 } else if (PageUnevictable(page)) {
239 VM_BUG_ON(PageActive(page));
240 ClearPageUnevictable(page);
241 }
242
243 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
244 __lru_cache_add(page, lru);
245 }
246
247 /**
248 * add_page_to_unevictable_list - add a page to the unevictable list
249 * @page: the page to be added to the unevictable list
250 *
251 * Add page directly to its zone's unevictable list. To avoid races with
252 * tasks that might be making the page evictable, through eg. munlock,
253 * munmap or exit, while it's not on the lru, we want to add the page
254 * while it's locked or otherwise "invisible" to other tasks. This is
255 * difficult to do when using the pagevec cache, so bypass that.
256 */
257 void add_page_to_unevictable_list(struct page *page)
258 {
259 struct zone *zone = page_zone(page);
260
261 spin_lock_irq(&zone->lru_lock);
262 SetPageUnevictable(page);
263 SetPageLRU(page);
264 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
265 spin_unlock_irq(&zone->lru_lock);
266 }
267
268 /*
269 * Drain pages out of the cpu's pagevecs.
270 * Either "cpu" is the current CPU, and preemption has already been
271 * disabled; or "cpu" is being hot-unplugged, and is already dead.
272 */
273 static void drain_cpu_pagevecs(int cpu)
274 {
275 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
276 struct pagevec *pvec;
277 int lru;
278
279 for_each_lru(lru) {
280 pvec = &pvecs[lru - LRU_BASE];
281 if (pagevec_count(pvec))
282 ____pagevec_lru_add(pvec, lru);
283 }
284
285 pvec = &per_cpu(lru_rotate_pvecs, cpu);
286 if (pagevec_count(pvec)) {
287 unsigned long flags;
288
289 /* No harm done if a racing interrupt already did this */
290 local_irq_save(flags);
291 pagevec_move_tail(pvec);
292 local_irq_restore(flags);
293 }
294 }
295
296 void lru_add_drain(void)
297 {
298 drain_cpu_pagevecs(get_cpu());
299 put_cpu();
300 }
301
302 static void lru_add_drain_per_cpu(struct work_struct *dummy)
303 {
304 lru_add_drain();
305 }
306
307 /*
308 * Returns 0 for success
309 */
310 int lru_add_drain_all(void)
311 {
312 return schedule_on_each_cpu(lru_add_drain_per_cpu);
313 }
314
315 /*
316 * Batched page_cache_release(). Decrement the reference count on all the
317 * passed pages. If it fell to zero then remove the page from the LRU and
318 * free it.
319 *
320 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
321 * for the remainder of the operation.
322 *
323 * The locking in this function is against shrink_inactive_list(): we recheck
324 * the page count inside the lock to see whether shrink_inactive_list()
325 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
326 * will free it.
327 */
328 void release_pages(struct page **pages, int nr, int cold)
329 {
330 int i;
331 struct pagevec pages_to_free;
332 struct zone *zone = NULL;
333 unsigned long uninitialized_var(flags);
334
335 pagevec_init(&pages_to_free, cold);
336 for (i = 0; i < nr; i++) {
337 struct page *page = pages[i];
338
339 if (unlikely(PageCompound(page))) {
340 if (zone) {
341 spin_unlock_irqrestore(&zone->lru_lock, flags);
342 zone = NULL;
343 }
344 put_compound_page(page);
345 continue;
346 }
347
348 if (!put_page_testzero(page))
349 continue;
350
351 if (PageLRU(page)) {
352 struct zone *pagezone = page_zone(page);
353
354 if (pagezone != zone) {
355 if (zone)
356 spin_unlock_irqrestore(&zone->lru_lock,
357 flags);
358 zone = pagezone;
359 spin_lock_irqsave(&zone->lru_lock, flags);
360 }
361 VM_BUG_ON(!PageLRU(page));
362 __ClearPageLRU(page);
363 del_page_from_lru(zone, page);
364 }
365
366 if (!pagevec_add(&pages_to_free, page)) {
367 if (zone) {
368 spin_unlock_irqrestore(&zone->lru_lock, flags);
369 zone = NULL;
370 }
371 __pagevec_free(&pages_to_free);
372 pagevec_reinit(&pages_to_free);
373 }
374 }
375 if (zone)
376 spin_unlock_irqrestore(&zone->lru_lock, flags);
377
378 pagevec_free(&pages_to_free);
379 }
380
381 /*
382 * The pages which we're about to release may be in the deferred lru-addition
383 * queues. That would prevent them from really being freed right now. That's
384 * OK from a correctness point of view but is inefficient - those pages may be
385 * cache-warm and we want to give them back to the page allocator ASAP.
386 *
387 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
388 * and __pagevec_lru_add_active() call release_pages() directly to avoid
389 * mutual recursion.
390 */
391 void __pagevec_release(struct pagevec *pvec)
392 {
393 lru_add_drain();
394 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
395 pagevec_reinit(pvec);
396 }
397
398 EXPORT_SYMBOL(__pagevec_release);
399
400 /*
401 * Add the passed pages to the LRU, then drop the caller's refcount
402 * on them. Reinitialises the caller's pagevec.
403 */
404 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
405 {
406 int i;
407 struct zone *zone = NULL;
408
409 VM_BUG_ON(is_unevictable_lru(lru));
410
411 for (i = 0; i < pagevec_count(pvec); i++) {
412 struct page *page = pvec->pages[i];
413 struct zone *pagezone = page_zone(page);
414 int file;
415 int active;
416
417 if (pagezone != zone) {
418 if (zone)
419 spin_unlock_irq(&zone->lru_lock);
420 zone = pagezone;
421 spin_lock_irq(&zone->lru_lock);
422 }
423 VM_BUG_ON(PageActive(page));
424 VM_BUG_ON(PageUnevictable(page));
425 VM_BUG_ON(PageLRU(page));
426 SetPageLRU(page);
427 active = is_active_lru(lru);
428 file = is_file_lru(lru);
429 if (active)
430 SetPageActive(page);
431 update_page_reclaim_stat(zone, page, file, active);
432 add_page_to_lru_list(zone, page, lru);
433 }
434 if (zone)
435 spin_unlock_irq(&zone->lru_lock);
436 release_pages(pvec->pages, pvec->nr, pvec->cold);
437 pagevec_reinit(pvec);
438 }
439
440 EXPORT_SYMBOL(____pagevec_lru_add);
441
442 /*
443 * Try to drop buffers from the pages in a pagevec
444 */
445 void pagevec_strip(struct pagevec *pvec)
446 {
447 int i;
448
449 for (i = 0; i < pagevec_count(pvec); i++) {
450 struct page *page = pvec->pages[i];
451
452 if (page_has_private(page) && trylock_page(page)) {
453 if (page_has_private(page))
454 try_to_release_page(page, 0);
455 unlock_page(page);
456 }
457 }
458 }
459
460 /**
461 * pagevec_lookup - gang pagecache lookup
462 * @pvec: Where the resulting pages are placed
463 * @mapping: The address_space to search
464 * @start: The starting page index
465 * @nr_pages: The maximum number of pages
466 *
467 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
468 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
469 * reference against the pages in @pvec.
470 *
471 * The search returns a group of mapping-contiguous pages with ascending
472 * indexes. There may be holes in the indices due to not-present pages.
473 *
474 * pagevec_lookup() returns the number of pages which were found.
475 */
476 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
477 pgoff_t start, unsigned nr_pages)
478 {
479 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
480 return pagevec_count(pvec);
481 }
482
483 EXPORT_SYMBOL(pagevec_lookup);
484
485 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
486 pgoff_t *index, int tag, unsigned nr_pages)
487 {
488 pvec->nr = find_get_pages_tag(mapping, index, tag,
489 nr_pages, pvec->pages);
490 return pagevec_count(pvec);
491 }
492
493 EXPORT_SYMBOL(pagevec_lookup_tag);
494
495 /*
496 * Perform any setup for the swap system
497 */
498 void __init swap_setup(void)
499 {
500 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
501
502 #ifdef CONFIG_SWAP
503 bdi_init(swapper_space.backing_dev_info);
504 #endif
505
506 /* Use a smaller cluster for small-memory machines */
507 if (megs < 16)
508 page_cluster = 2;
509 else
510 page_cluster = 3;
511 /*
512 * Right now other parts of the system means that we
513 * _really_ don't want to cluster much more
514 */
515 }