4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
43 /* How many pages do we try to swap or page in/out together? */
46 static DEFINE_PER_CPU(struct pagevec
, lru_add_pvec
);
47 static DEFINE_PER_CPU(struct pagevec
, lru_rotate_pvecs
);
48 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_file_pvecs
);
49 static DEFINE_PER_CPU(struct pagevec
, lru_deactivate_pvecs
);
51 static DEFINE_PER_CPU(struct pagevec
, activate_page_pvecs
);
55 * This path almost never happens for VM activity - pages are normally
56 * freed via pagevecs. But it gets used by networking.
58 static void __page_cache_release(struct page
*page
)
61 struct zone
*zone
= page_zone(page
);
62 struct lruvec
*lruvec
;
65 spin_lock_irqsave(&zone
->lru_lock
, flags
);
66 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
67 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
69 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
70 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
72 mem_cgroup_uncharge(page
);
75 static void __put_single_page(struct page
*page
)
77 __page_cache_release(page
);
78 free_hot_cold_page(page
, false);
81 static void __put_compound_page(struct page
*page
)
83 compound_page_dtor
*dtor
;
86 * __page_cache_release() is supposed to be called for thp, not for
87 * hugetlb. This is because hugetlb page does never have PageLRU set
88 * (it's never listed to any LRU lists) and no memcg routines should
89 * be called for hugetlb (it has a separate hugetlb_cgroup.)
92 __page_cache_release(page
);
93 dtor
= get_compound_page_dtor(page
);
97 void __put_page(struct page
*page
)
99 if (unlikely(PageCompound(page
)))
100 __put_compound_page(page
);
102 __put_single_page(page
);
104 EXPORT_SYMBOL(__put_page
);
107 * put_pages_list() - release a list of pages
108 * @pages: list of pages threaded on page->lru
110 * Release a list of pages which are strung together on page.lru. Currently
111 * used by read_cache_pages() and related error recovery code.
113 void put_pages_list(struct list_head
*pages
)
115 while (!list_empty(pages
)) {
118 victim
= list_entry(pages
->prev
, struct page
, lru
);
119 list_del(&victim
->lru
);
123 EXPORT_SYMBOL(put_pages_list
);
126 * get_kernel_pages() - pin kernel pages in memory
127 * @kiov: An array of struct kvec structures
128 * @nr_segs: number of segments to pin
129 * @write: pinning for read/write, currently ignored
130 * @pages: array that receives pointers to the pages pinned.
131 * Should be at least nr_segs long.
133 * Returns number of pages pinned. This may be fewer than the number
134 * requested. If nr_pages is 0 or negative, returns 0. If no pages
135 * were pinned, returns -errno. Each page returned must be released
136 * with a put_page() call when it is finished with.
138 int get_kernel_pages(const struct kvec
*kiov
, int nr_segs
, int write
,
143 for (seg
= 0; seg
< nr_segs
; seg
++) {
144 if (WARN_ON(kiov
[seg
].iov_len
!= PAGE_SIZE
))
147 pages
[seg
] = kmap_to_page(kiov
[seg
].iov_base
);
148 get_page(pages
[seg
]);
153 EXPORT_SYMBOL_GPL(get_kernel_pages
);
156 * get_kernel_page() - pin a kernel page in memory
157 * @start: starting kernel address
158 * @write: pinning for read/write, currently ignored
159 * @pages: array that receives pointer to the page pinned.
160 * Must be at least nr_segs long.
162 * Returns 1 if page is pinned. If the page was not pinned, returns
163 * -errno. The page returned must be released with a put_page() call
164 * when it is finished with.
166 int get_kernel_page(unsigned long start
, int write
, struct page
**pages
)
168 const struct kvec kiov
= {
169 .iov_base
= (void *)start
,
173 return get_kernel_pages(&kiov
, 1, write
, pages
);
175 EXPORT_SYMBOL_GPL(get_kernel_page
);
177 static void pagevec_lru_move_fn(struct pagevec
*pvec
,
178 void (*move_fn
)(struct page
*page
, struct lruvec
*lruvec
, void *arg
),
182 struct zone
*zone
= NULL
;
183 struct lruvec
*lruvec
;
184 unsigned long flags
= 0;
186 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
187 struct page
*page
= pvec
->pages
[i
];
188 struct zone
*pagezone
= page_zone(page
);
190 if (pagezone
!= zone
) {
192 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
194 spin_lock_irqsave(&zone
->lru_lock
, flags
);
197 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
198 (*move_fn
)(page
, lruvec
, arg
);
201 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
202 release_pages(pvec
->pages
, pvec
->nr
, pvec
->cold
);
203 pagevec_reinit(pvec
);
206 static void pagevec_move_tail_fn(struct page
*page
, struct lruvec
*lruvec
,
211 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
212 enum lru_list lru
= page_lru_base_type(page
);
213 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
219 * pagevec_move_tail() must be called with IRQ disabled.
220 * Otherwise this may cause nasty races.
222 static void pagevec_move_tail(struct pagevec
*pvec
)
226 pagevec_lru_move_fn(pvec
, pagevec_move_tail_fn
, &pgmoved
);
227 __count_vm_events(PGROTATED
, pgmoved
);
231 * Writeback is about to end against a page which has been marked for immediate
232 * reclaim. If it still appears to be reclaimable, move it to the tail of the
235 void rotate_reclaimable_page(struct page
*page
)
237 if (!PageLocked(page
) && !PageDirty(page
) && !PageActive(page
) &&
238 !PageUnevictable(page
) && PageLRU(page
)) {
239 struct pagevec
*pvec
;
243 local_irq_save(flags
);
244 pvec
= this_cpu_ptr(&lru_rotate_pvecs
);
245 if (!pagevec_add(pvec
, page
))
246 pagevec_move_tail(pvec
);
247 local_irq_restore(flags
);
251 static void update_page_reclaim_stat(struct lruvec
*lruvec
,
252 int file
, int rotated
)
254 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
256 reclaim_stat
->recent_scanned
[file
]++;
258 reclaim_stat
->recent_rotated
[file
]++;
261 static void __activate_page(struct page
*page
, struct lruvec
*lruvec
,
264 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
265 int file
= page_is_file_cache(page
);
266 int lru
= page_lru_base_type(page
);
268 del_page_from_lru_list(page
, lruvec
, lru
);
271 add_page_to_lru_list(page
, lruvec
, lru
);
272 trace_mm_lru_activate(page
);
274 __count_vm_event(PGACTIVATE
);
275 update_page_reclaim_stat(lruvec
, file
, 1);
280 static void activate_page_drain(int cpu
)
282 struct pagevec
*pvec
= &per_cpu(activate_page_pvecs
, cpu
);
284 if (pagevec_count(pvec
))
285 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
288 static bool need_activate_page_drain(int cpu
)
290 return pagevec_count(&per_cpu(activate_page_pvecs
, cpu
)) != 0;
293 void activate_page(struct page
*page
)
295 if (PageLRU(page
) && !PageActive(page
) && !PageUnevictable(page
)) {
296 struct pagevec
*pvec
= &get_cpu_var(activate_page_pvecs
);
299 if (!pagevec_add(pvec
, page
))
300 pagevec_lru_move_fn(pvec
, __activate_page
, NULL
);
301 put_cpu_var(activate_page_pvecs
);
306 static inline void activate_page_drain(int cpu
)
310 static bool need_activate_page_drain(int cpu
)
315 void activate_page(struct page
*page
)
317 struct zone
*zone
= page_zone(page
);
319 spin_lock_irq(&zone
->lru_lock
);
320 __activate_page(page
, mem_cgroup_page_lruvec(page
, zone
), NULL
);
321 spin_unlock_irq(&zone
->lru_lock
);
325 static void __lru_cache_activate_page(struct page
*page
)
327 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
331 * Search backwards on the optimistic assumption that the page being
332 * activated has just been added to this pagevec. Note that only
333 * the local pagevec is examined as a !PageLRU page could be in the
334 * process of being released, reclaimed, migrated or on a remote
335 * pagevec that is currently being drained. Furthermore, marking
336 * a remote pagevec's page PageActive potentially hits a race where
337 * a page is marked PageActive just after it is added to the inactive
338 * list causing accounting errors and BUG_ON checks to trigger.
340 for (i
= pagevec_count(pvec
) - 1; i
>= 0; i
--) {
341 struct page
*pagevec_page
= pvec
->pages
[i
];
343 if (pagevec_page
== page
) {
349 put_cpu_var(lru_add_pvec
);
353 * Mark a page as having seen activity.
355 * inactive,unreferenced -> inactive,referenced
356 * inactive,referenced -> active,unreferenced
357 * active,unreferenced -> active,referenced
359 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
360 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
362 void mark_page_accessed(struct page
*page
)
364 page
= compound_head(page
);
365 if (!PageActive(page
) && !PageUnevictable(page
) &&
366 PageReferenced(page
)) {
369 * If the page is on the LRU, queue it for activation via
370 * activate_page_pvecs. Otherwise, assume the page is on a
371 * pagevec, mark it active and it'll be moved to the active
372 * LRU on the next drain.
377 __lru_cache_activate_page(page
);
378 ClearPageReferenced(page
);
379 if (page_is_file_cache(page
))
380 workingset_activation(page
);
381 } else if (!PageReferenced(page
)) {
382 SetPageReferenced(page
);
384 if (page_is_idle(page
))
385 clear_page_idle(page
);
387 EXPORT_SYMBOL(mark_page_accessed
);
389 static void __lru_cache_add(struct page
*page
)
391 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvec
);
394 if (!pagevec_space(pvec
))
395 __pagevec_lru_add(pvec
);
396 pagevec_add(pvec
, page
);
397 put_cpu_var(lru_add_pvec
);
401 * lru_cache_add: add a page to the page lists
402 * @page: the page to add
404 void lru_cache_add_anon(struct page
*page
)
406 if (PageActive(page
))
407 ClearPageActive(page
);
408 __lru_cache_add(page
);
411 void lru_cache_add_file(struct page
*page
)
413 if (PageActive(page
))
414 ClearPageActive(page
);
415 __lru_cache_add(page
);
417 EXPORT_SYMBOL(lru_cache_add_file
);
420 * lru_cache_add - add a page to a page list
421 * @page: the page to be added to the LRU.
423 * Queue the page for addition to the LRU via pagevec. The decision on whether
424 * to add the page to the [in]active [file|anon] list is deferred until the
425 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
426 * have the page added to the active list using mark_page_accessed().
428 void lru_cache_add(struct page
*page
)
430 VM_BUG_ON_PAGE(PageActive(page
) && PageUnevictable(page
), page
);
431 VM_BUG_ON_PAGE(PageLRU(page
), page
);
432 __lru_cache_add(page
);
436 * add_page_to_unevictable_list - add a page to the unevictable list
437 * @page: the page to be added to the unevictable list
439 * Add page directly to its zone's unevictable list. To avoid races with
440 * tasks that might be making the page evictable, through eg. munlock,
441 * munmap or exit, while it's not on the lru, we want to add the page
442 * while it's locked or otherwise "invisible" to other tasks. This is
443 * difficult to do when using the pagevec cache, so bypass that.
445 void add_page_to_unevictable_list(struct page
*page
)
447 struct zone
*zone
= page_zone(page
);
448 struct lruvec
*lruvec
;
450 spin_lock_irq(&zone
->lru_lock
);
451 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
452 ClearPageActive(page
);
453 SetPageUnevictable(page
);
455 add_page_to_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
456 spin_unlock_irq(&zone
->lru_lock
);
460 * lru_cache_add_active_or_unevictable
461 * @page: the page to be added to LRU
462 * @vma: vma in which page is mapped for determining reclaimability
464 * Place @page on the active or unevictable LRU list, depending on its
465 * evictability. Note that if the page is not evictable, it goes
466 * directly back onto it's zone's unevictable list, it does NOT use a
469 void lru_cache_add_active_or_unevictable(struct page
*page
,
470 struct vm_area_struct
*vma
)
472 VM_BUG_ON_PAGE(PageLRU(page
), page
);
474 if (likely((vma
->vm_flags
& (VM_LOCKED
| VM_SPECIAL
)) != VM_LOCKED
)) {
480 if (!TestSetPageMlocked(page
)) {
482 * We use the irq-unsafe __mod_zone_page_stat because this
483 * counter is not modified from interrupt context, and the pte
484 * lock is held(spinlock), which implies preemption disabled.
486 __mod_zone_page_state(page_zone(page
), NR_MLOCK
,
487 hpage_nr_pages(page
));
488 count_vm_event(UNEVICTABLE_PGMLOCKED
);
490 add_page_to_unevictable_list(page
);
494 * If the page can not be invalidated, it is moved to the
495 * inactive list to speed up its reclaim. It is moved to the
496 * head of the list, rather than the tail, to give the flusher
497 * threads some time to write it out, as this is much more
498 * effective than the single-page writeout from reclaim.
500 * If the page isn't page_mapped and dirty/writeback, the page
501 * could reclaim asap using PG_reclaim.
503 * 1. active, mapped page -> none
504 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
505 * 3. inactive, mapped page -> none
506 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
507 * 5. inactive, clean -> inactive, tail
510 * In 4, why it moves inactive's head, the VM expects the page would
511 * be write it out by flusher threads as this is much more effective
512 * than the single-page writeout from reclaim.
514 static void lru_deactivate_file_fn(struct page
*page
, struct lruvec
*lruvec
,
523 if (PageUnevictable(page
))
526 /* Some processes are using the page */
527 if (page_mapped(page
))
530 active
= PageActive(page
);
531 file
= page_is_file_cache(page
);
532 lru
= page_lru_base_type(page
);
534 del_page_from_lru_list(page
, lruvec
, lru
+ active
);
535 ClearPageActive(page
);
536 ClearPageReferenced(page
);
537 add_page_to_lru_list(page
, lruvec
, lru
);
539 if (PageWriteback(page
) || PageDirty(page
)) {
541 * PG_reclaim could be raced with end_page_writeback
542 * It can make readahead confusing. But race window
543 * is _really_ small and it's non-critical problem.
545 SetPageReclaim(page
);
548 * The page's writeback ends up during pagevec
549 * We moves tha page into tail of inactive.
551 list_move_tail(&page
->lru
, &lruvec
->lists
[lru
]);
552 __count_vm_event(PGROTATED
);
556 __count_vm_event(PGDEACTIVATE
);
557 update_page_reclaim_stat(lruvec
, file
, 0);
561 static void lru_deactivate_fn(struct page
*page
, struct lruvec
*lruvec
,
564 if (PageLRU(page
) && PageActive(page
) && !PageUnevictable(page
)) {
565 int file
= page_is_file_cache(page
);
566 int lru
= page_lru_base_type(page
);
568 del_page_from_lru_list(page
, lruvec
, lru
+ LRU_ACTIVE
);
569 ClearPageActive(page
);
570 ClearPageReferenced(page
);
571 add_page_to_lru_list(page
, lruvec
, lru
);
573 __count_vm_event(PGDEACTIVATE
);
574 update_page_reclaim_stat(lruvec
, file
, 0);
579 * Drain pages out of the cpu's pagevecs.
580 * Either "cpu" is the current CPU, and preemption has already been
581 * disabled; or "cpu" is being hot-unplugged, and is already dead.
583 void lru_add_drain_cpu(int cpu
)
585 struct pagevec
*pvec
= &per_cpu(lru_add_pvec
, cpu
);
587 if (pagevec_count(pvec
))
588 __pagevec_lru_add(pvec
);
590 pvec
= &per_cpu(lru_rotate_pvecs
, cpu
);
591 if (pagevec_count(pvec
)) {
594 /* No harm done if a racing interrupt already did this */
595 local_irq_save(flags
);
596 pagevec_move_tail(pvec
);
597 local_irq_restore(flags
);
600 pvec
= &per_cpu(lru_deactivate_file_pvecs
, cpu
);
601 if (pagevec_count(pvec
))
602 pagevec_lru_move_fn(pvec
, lru_deactivate_file_fn
, NULL
);
604 pvec
= &per_cpu(lru_deactivate_pvecs
, cpu
);
605 if (pagevec_count(pvec
))
606 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
608 activate_page_drain(cpu
);
612 * deactivate_file_page - forcefully deactivate a file page
613 * @page: page to deactivate
615 * This function hints the VM that @page is a good reclaim candidate,
616 * for example if its invalidation fails due to the page being dirty
617 * or under writeback.
619 void deactivate_file_page(struct page
*page
)
622 * In a workload with many unevictable page such as mprotect,
623 * unevictable page deactivation for accelerating reclaim is pointless.
625 if (PageUnevictable(page
))
628 if (likely(get_page_unless_zero(page
))) {
629 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_file_pvecs
);
631 if (!pagevec_add(pvec
, page
))
632 pagevec_lru_move_fn(pvec
, lru_deactivate_file_fn
, NULL
);
633 put_cpu_var(lru_deactivate_file_pvecs
);
638 * deactivate_page - deactivate a page
639 * @page: page to deactivate
641 * deactivate_page() moves @page to the inactive list if @page was on the active
642 * list and was not an unevictable page. This is done to accelerate the reclaim
645 void deactivate_page(struct page
*page
)
647 if (PageLRU(page
) && PageActive(page
) && !PageUnevictable(page
)) {
648 struct pagevec
*pvec
= &get_cpu_var(lru_deactivate_pvecs
);
651 if (!pagevec_add(pvec
, page
))
652 pagevec_lru_move_fn(pvec
, lru_deactivate_fn
, NULL
);
653 put_cpu_var(lru_deactivate_pvecs
);
657 void lru_add_drain(void)
659 lru_add_drain_cpu(get_cpu());
663 static void lru_add_drain_per_cpu(struct work_struct
*dummy
)
668 static DEFINE_PER_CPU(struct work_struct
, lru_add_drain_work
);
670 void lru_add_drain_all(void)
672 static DEFINE_MUTEX(lock
);
673 static struct cpumask has_work
;
678 cpumask_clear(&has_work
);
680 for_each_online_cpu(cpu
) {
681 struct work_struct
*work
= &per_cpu(lru_add_drain_work
, cpu
);
683 if (pagevec_count(&per_cpu(lru_add_pvec
, cpu
)) ||
684 pagevec_count(&per_cpu(lru_rotate_pvecs
, cpu
)) ||
685 pagevec_count(&per_cpu(lru_deactivate_file_pvecs
, cpu
)) ||
686 pagevec_count(&per_cpu(lru_deactivate_pvecs
, cpu
)) ||
687 need_activate_page_drain(cpu
)) {
688 INIT_WORK(work
, lru_add_drain_per_cpu
);
689 schedule_work_on(cpu
, work
);
690 cpumask_set_cpu(cpu
, &has_work
);
694 for_each_cpu(cpu
, &has_work
)
695 flush_work(&per_cpu(lru_add_drain_work
, cpu
));
702 * release_pages - batched put_page()
703 * @pages: array of pages to release
704 * @nr: number of pages
705 * @cold: whether the pages are cache cold
707 * Decrement the reference count on all the pages in @pages. If it
708 * fell to zero, remove the page from the LRU and free it.
710 void release_pages(struct page
**pages
, int nr
, bool cold
)
713 LIST_HEAD(pages_to_free
);
714 struct zone
*zone
= NULL
;
715 struct lruvec
*lruvec
;
716 unsigned long uninitialized_var(flags
);
717 unsigned int uninitialized_var(lock_batch
);
719 for (i
= 0; i
< nr
; i
++) {
720 struct page
*page
= pages
[i
];
723 * Make sure the IRQ-safe lock-holding time does not get
724 * excessive with a continuous string of pages from the
725 * same zone. The lock is held only if zone != NULL.
727 if (zone
&& ++lock_batch
== SWAP_CLUSTER_MAX
) {
728 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
732 if (is_huge_zero_page(page
)) {
733 put_huge_zero_page();
737 page
= compound_head(page
);
738 if (!put_page_testzero(page
))
741 if (PageCompound(page
)) {
743 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
746 __put_compound_page(page
);
751 struct zone
*pagezone
= page_zone(page
);
753 if (pagezone
!= zone
) {
755 spin_unlock_irqrestore(&zone
->lru_lock
,
759 spin_lock_irqsave(&zone
->lru_lock
, flags
);
762 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
763 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
764 __ClearPageLRU(page
);
765 del_page_from_lru_list(page
, lruvec
, page_off_lru(page
));
768 /* Clear Active bit in case of parallel mark_page_accessed */
769 __ClearPageActive(page
);
771 list_add(&page
->lru
, &pages_to_free
);
774 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
776 mem_cgroup_uncharge_list(&pages_to_free
);
777 free_hot_cold_page_list(&pages_to_free
, cold
);
779 EXPORT_SYMBOL(release_pages
);
782 * The pages which we're about to release may be in the deferred lru-addition
783 * queues. That would prevent them from really being freed right now. That's
784 * OK from a correctness point of view but is inefficient - those pages may be
785 * cache-warm and we want to give them back to the page allocator ASAP.
787 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
788 * and __pagevec_lru_add_active() call release_pages() directly to avoid
791 void __pagevec_release(struct pagevec
*pvec
)
794 release_pages(pvec
->pages
, pagevec_count(pvec
), pvec
->cold
);
795 pagevec_reinit(pvec
);
797 EXPORT_SYMBOL(__pagevec_release
);
799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
800 /* used by __split_huge_page_refcount() */
801 void lru_add_page_tail(struct page
*page
, struct page
*page_tail
,
802 struct lruvec
*lruvec
, struct list_head
*list
)
806 VM_BUG_ON_PAGE(!PageHead(page
), page
);
807 VM_BUG_ON_PAGE(PageCompound(page_tail
), page
);
808 VM_BUG_ON_PAGE(PageLRU(page_tail
), page
);
809 VM_BUG_ON(NR_CPUS
!= 1 &&
810 !spin_is_locked(&lruvec_zone(lruvec
)->lru_lock
));
813 SetPageLRU(page_tail
);
815 if (likely(PageLRU(page
)))
816 list_add_tail(&page_tail
->lru
, &page
->lru
);
818 /* page reclaim is reclaiming a huge page */
820 list_add_tail(&page_tail
->lru
, list
);
822 struct list_head
*list_head
;
824 * Head page has not yet been counted, as an hpage,
825 * so we must account for each subpage individually.
827 * Use the standard add function to put page_tail on the list,
828 * but then correct its position so they all end up in order.
830 add_page_to_lru_list(page_tail
, lruvec
, page_lru(page_tail
));
831 list_head
= page_tail
->lru
.prev
;
832 list_move_tail(&page_tail
->lru
, list_head
);
835 if (!PageUnevictable(page
))
836 update_page_reclaim_stat(lruvec
, file
, PageActive(page_tail
));
838 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
840 static void __pagevec_lru_add_fn(struct page
*page
, struct lruvec
*lruvec
,
843 int file
= page_is_file_cache(page
);
844 int active
= PageActive(page
);
845 enum lru_list lru
= page_lru(page
);
847 VM_BUG_ON_PAGE(PageLRU(page
), page
);
850 add_page_to_lru_list(page
, lruvec
, lru
);
851 update_page_reclaim_stat(lruvec
, file
, active
);
852 trace_mm_lru_insertion(page
, lru
);
856 * Add the passed pages to the LRU, then drop the caller's refcount
857 * on them. Reinitialises the caller's pagevec.
859 void __pagevec_lru_add(struct pagevec
*pvec
)
861 pagevec_lru_move_fn(pvec
, __pagevec_lru_add_fn
, NULL
);
863 EXPORT_SYMBOL(__pagevec_lru_add
);
866 * pagevec_lookup_entries - gang pagecache lookup
867 * @pvec: Where the resulting entries are placed
868 * @mapping: The address_space to search
869 * @start: The starting entry index
870 * @nr_entries: The maximum number of entries
871 * @indices: The cache indices corresponding to the entries in @pvec
873 * pagevec_lookup_entries() will search for and return a group of up
874 * to @nr_entries pages and shadow entries in the mapping. All
875 * entries are placed in @pvec. pagevec_lookup_entries() takes a
876 * reference against actual pages in @pvec.
878 * The search returns a group of mapping-contiguous entries with
879 * ascending indexes. There may be holes in the indices due to
880 * not-present entries.
882 * pagevec_lookup_entries() returns the number of entries which were
885 unsigned pagevec_lookup_entries(struct pagevec
*pvec
,
886 struct address_space
*mapping
,
887 pgoff_t start
, unsigned nr_pages
,
890 pvec
->nr
= find_get_entries(mapping
, start
, nr_pages
,
891 pvec
->pages
, indices
);
892 return pagevec_count(pvec
);
896 * pagevec_remove_exceptionals - pagevec exceptionals pruning
897 * @pvec: The pagevec to prune
899 * pagevec_lookup_entries() fills both pages and exceptional radix
900 * tree entries into the pagevec. This function prunes all
901 * exceptionals from @pvec without leaving holes, so that it can be
902 * passed on to page-only pagevec operations.
904 void pagevec_remove_exceptionals(struct pagevec
*pvec
)
908 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
909 struct page
*page
= pvec
->pages
[i
];
910 if (!radix_tree_exceptional_entry(page
))
911 pvec
->pages
[j
++] = page
;
917 * pagevec_lookup - gang pagecache lookup
918 * @pvec: Where the resulting pages are placed
919 * @mapping: The address_space to search
920 * @start: The starting page index
921 * @nr_pages: The maximum number of pages
923 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
924 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
925 * reference against the pages in @pvec.
927 * The search returns a group of mapping-contiguous pages with ascending
928 * indexes. There may be holes in the indices due to not-present pages.
930 * pagevec_lookup() returns the number of pages which were found.
932 unsigned pagevec_lookup(struct pagevec
*pvec
, struct address_space
*mapping
,
933 pgoff_t start
, unsigned nr_pages
)
935 pvec
->nr
= find_get_pages(mapping
, start
, nr_pages
, pvec
->pages
);
936 return pagevec_count(pvec
);
938 EXPORT_SYMBOL(pagevec_lookup
);
940 unsigned pagevec_lookup_tag(struct pagevec
*pvec
, struct address_space
*mapping
,
941 pgoff_t
*index
, int tag
, unsigned nr_pages
)
943 pvec
->nr
= find_get_pages_tag(mapping
, index
, tag
,
944 nr_pages
, pvec
->pages
);
945 return pagevec_count(pvec
);
947 EXPORT_SYMBOL(pagevec_lookup_tag
);
950 * Perform any setup for the swap system
952 void __init
swap_setup(void)
954 unsigned long megs
= totalram_pages
>> (20 - PAGE_SHIFT
);
958 for (i
= 0; i
< MAX_SWAPFILES
; i
++)
959 spin_lock_init(&swapper_spaces
[i
].tree_lock
);
962 /* Use a smaller cluster for small-memory machines */
968 * Right now other parts of the system means that we
969 * _really_ don't want to cluster much more