]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/swap.c
perf evsel: Fix attr.exclude_kernel setting for default cycles:p
[mirror_ubuntu-artful-kernel.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53
54 /*
55 * This path almost never happens for VM activity - pages are normally
56 * freed via pagevecs. But it gets used by networking.
57 */
58 static void __page_cache_release(struct page *page)
59 {
60 if (PageLRU(page)) {
61 struct zone *zone = page_zone(page);
62 struct lruvec *lruvec;
63 unsigned long flags;
64
65 spin_lock_irqsave(zone_lru_lock(zone), flags);
66 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
67 VM_BUG_ON_PAGE(!PageLRU(page), page);
68 __ClearPageLRU(page);
69 del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
71 }
72 __ClearPageWaiters(page);
73 mem_cgroup_uncharge(page);
74 }
75
76 static void __put_single_page(struct page *page)
77 {
78 __page_cache_release(page);
79 free_hot_cold_page(page, false);
80 }
81
82 static void __put_compound_page(struct page *page)
83 {
84 compound_page_dtor *dtor;
85
86 /*
87 * __page_cache_release() is supposed to be called for thp, not for
88 * hugetlb. This is because hugetlb page does never have PageLRU set
89 * (it's never listed to any LRU lists) and no memcg routines should
90 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 */
92 if (!PageHuge(page))
93 __page_cache_release(page);
94 dtor = get_compound_page_dtor(page);
95 (*dtor)(page);
96 }
97
98 void __put_page(struct page *page)
99 {
100 if (is_zone_device_page(page)) {
101 put_dev_pagemap(page->pgmap);
102
103 /*
104 * The page belongs to the device that created pgmap. Do
105 * not return it to page allocator.
106 */
107 return;
108 }
109
110 if (unlikely(PageCompound(page)))
111 __put_compound_page(page);
112 else
113 __put_single_page(page);
114 }
115 EXPORT_SYMBOL(__put_page);
116
117 /**
118 * put_pages_list() - release a list of pages
119 * @pages: list of pages threaded on page->lru
120 *
121 * Release a list of pages which are strung together on page.lru. Currently
122 * used by read_cache_pages() and related error recovery code.
123 */
124 void put_pages_list(struct list_head *pages)
125 {
126 while (!list_empty(pages)) {
127 struct page *victim;
128
129 victim = list_entry(pages->prev, struct page, lru);
130 list_del(&victim->lru);
131 put_page(victim);
132 }
133 }
134 EXPORT_SYMBOL(put_pages_list);
135
136 /*
137 * get_kernel_pages() - pin kernel pages in memory
138 * @kiov: An array of struct kvec structures
139 * @nr_segs: number of segments to pin
140 * @write: pinning for read/write, currently ignored
141 * @pages: array that receives pointers to the pages pinned.
142 * Should be at least nr_segs long.
143 *
144 * Returns number of pages pinned. This may be fewer than the number
145 * requested. If nr_pages is 0 or negative, returns 0. If no pages
146 * were pinned, returns -errno. Each page returned must be released
147 * with a put_page() call when it is finished with.
148 */
149 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
150 struct page **pages)
151 {
152 int seg;
153
154 for (seg = 0; seg < nr_segs; seg++) {
155 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
156 return seg;
157
158 pages[seg] = kmap_to_page(kiov[seg].iov_base);
159 get_page(pages[seg]);
160 }
161
162 return seg;
163 }
164 EXPORT_SYMBOL_GPL(get_kernel_pages);
165
166 /*
167 * get_kernel_page() - pin a kernel page in memory
168 * @start: starting kernel address
169 * @write: pinning for read/write, currently ignored
170 * @pages: array that receives pointer to the page pinned.
171 * Must be at least nr_segs long.
172 *
173 * Returns 1 if page is pinned. If the page was not pinned, returns
174 * -errno. The page returned must be released with a put_page() call
175 * when it is finished with.
176 */
177 int get_kernel_page(unsigned long start, int write, struct page **pages)
178 {
179 const struct kvec kiov = {
180 .iov_base = (void *)start,
181 .iov_len = PAGE_SIZE
182 };
183
184 return get_kernel_pages(&kiov, 1, write, pages);
185 }
186 EXPORT_SYMBOL_GPL(get_kernel_page);
187
188 static void pagevec_lru_move_fn(struct pagevec *pvec,
189 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
190 void *arg)
191 {
192 int i;
193 struct pglist_data *pgdat = NULL;
194 struct lruvec *lruvec;
195 unsigned long flags = 0;
196
197 for (i = 0; i < pagevec_count(pvec); i++) {
198 struct page *page = pvec->pages[i];
199 struct pglist_data *pagepgdat = page_pgdat(page);
200
201 if (pagepgdat != pgdat) {
202 if (pgdat)
203 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
204 pgdat = pagepgdat;
205 spin_lock_irqsave(&pgdat->lru_lock, flags);
206 }
207
208 lruvec = mem_cgroup_page_lruvec(page, pgdat);
209 (*move_fn)(page, lruvec, arg);
210 }
211 if (pgdat)
212 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
213 release_pages(pvec->pages, pvec->nr, pvec->cold);
214 pagevec_reinit(pvec);
215 }
216
217 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
218 void *arg)
219 {
220 int *pgmoved = arg;
221
222 if (PageLRU(page) && !PageUnevictable(page)) {
223 del_page_from_lru_list(page, lruvec, page_lru(page));
224 ClearPageActive(page);
225 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
226 (*pgmoved)++;
227 }
228 }
229
230 /*
231 * pagevec_move_tail() must be called with IRQ disabled.
232 * Otherwise this may cause nasty races.
233 */
234 static void pagevec_move_tail(struct pagevec *pvec)
235 {
236 int pgmoved = 0;
237
238 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
239 __count_vm_events(PGROTATED, pgmoved);
240 }
241
242 /*
243 * Writeback is about to end against a page which has been marked for immediate
244 * reclaim. If it still appears to be reclaimable, move it to the tail of the
245 * inactive list.
246 */
247 void rotate_reclaimable_page(struct page *page)
248 {
249 if (!PageLocked(page) && !PageDirty(page) &&
250 !PageUnevictable(page) && PageLRU(page)) {
251 struct pagevec *pvec;
252 unsigned long flags;
253
254 get_page(page);
255 local_irq_save(flags);
256 pvec = this_cpu_ptr(&lru_rotate_pvecs);
257 if (!pagevec_add(pvec, page) || PageCompound(page))
258 pagevec_move_tail(pvec);
259 local_irq_restore(flags);
260 }
261 }
262
263 static void update_page_reclaim_stat(struct lruvec *lruvec,
264 int file, int rotated)
265 {
266 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
267
268 reclaim_stat->recent_scanned[file]++;
269 if (rotated)
270 reclaim_stat->recent_rotated[file]++;
271 }
272
273 static void __activate_page(struct page *page, struct lruvec *lruvec,
274 void *arg)
275 {
276 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
277 int file = page_is_file_cache(page);
278 int lru = page_lru_base_type(page);
279
280 del_page_from_lru_list(page, lruvec, lru);
281 SetPageActive(page);
282 lru += LRU_ACTIVE;
283 add_page_to_lru_list(page, lruvec, lru);
284 trace_mm_lru_activate(page);
285
286 __count_vm_event(PGACTIVATE);
287 update_page_reclaim_stat(lruvec, file, 1);
288 }
289 }
290
291 #ifdef CONFIG_SMP
292 static void activate_page_drain(int cpu)
293 {
294 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
295
296 if (pagevec_count(pvec))
297 pagevec_lru_move_fn(pvec, __activate_page, NULL);
298 }
299
300 static bool need_activate_page_drain(int cpu)
301 {
302 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
303 }
304
305 void activate_page(struct page *page)
306 {
307 page = compound_head(page);
308 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
309 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
310
311 get_page(page);
312 if (!pagevec_add(pvec, page) || PageCompound(page))
313 pagevec_lru_move_fn(pvec, __activate_page, NULL);
314 put_cpu_var(activate_page_pvecs);
315 }
316 }
317
318 #else
319 static inline void activate_page_drain(int cpu)
320 {
321 }
322
323 static bool need_activate_page_drain(int cpu)
324 {
325 return false;
326 }
327
328 void activate_page(struct page *page)
329 {
330 struct zone *zone = page_zone(page);
331
332 page = compound_head(page);
333 spin_lock_irq(zone_lru_lock(zone));
334 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
335 spin_unlock_irq(zone_lru_lock(zone));
336 }
337 #endif
338
339 static void __lru_cache_activate_page(struct page *page)
340 {
341 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
342 int i;
343
344 /*
345 * Search backwards on the optimistic assumption that the page being
346 * activated has just been added to this pagevec. Note that only
347 * the local pagevec is examined as a !PageLRU page could be in the
348 * process of being released, reclaimed, migrated or on a remote
349 * pagevec that is currently being drained. Furthermore, marking
350 * a remote pagevec's page PageActive potentially hits a race where
351 * a page is marked PageActive just after it is added to the inactive
352 * list causing accounting errors and BUG_ON checks to trigger.
353 */
354 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
355 struct page *pagevec_page = pvec->pages[i];
356
357 if (pagevec_page == page) {
358 SetPageActive(page);
359 break;
360 }
361 }
362
363 put_cpu_var(lru_add_pvec);
364 }
365
366 /*
367 * Mark a page as having seen activity.
368 *
369 * inactive,unreferenced -> inactive,referenced
370 * inactive,referenced -> active,unreferenced
371 * active,unreferenced -> active,referenced
372 *
373 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
374 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
375 */
376 void mark_page_accessed(struct page *page)
377 {
378 page = compound_head(page);
379 if (!PageActive(page) && !PageUnevictable(page) &&
380 PageReferenced(page)) {
381
382 /*
383 * If the page is on the LRU, queue it for activation via
384 * activate_page_pvecs. Otherwise, assume the page is on a
385 * pagevec, mark it active and it'll be moved to the active
386 * LRU on the next drain.
387 */
388 if (PageLRU(page))
389 activate_page(page);
390 else
391 __lru_cache_activate_page(page);
392 ClearPageReferenced(page);
393 if (page_is_file_cache(page))
394 workingset_activation(page);
395 } else if (!PageReferenced(page)) {
396 SetPageReferenced(page);
397 }
398 if (page_is_idle(page))
399 clear_page_idle(page);
400 }
401 EXPORT_SYMBOL(mark_page_accessed);
402
403 static void __lru_cache_add(struct page *page)
404 {
405 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
406
407 get_page(page);
408 if (!pagevec_add(pvec, page) || PageCompound(page))
409 __pagevec_lru_add(pvec);
410 put_cpu_var(lru_add_pvec);
411 }
412
413 /**
414 * lru_cache_add: add a page to the page lists
415 * @page: the page to add
416 */
417 void lru_cache_add_anon(struct page *page)
418 {
419 if (PageActive(page))
420 ClearPageActive(page);
421 __lru_cache_add(page);
422 }
423
424 void lru_cache_add_file(struct page *page)
425 {
426 if (PageActive(page))
427 ClearPageActive(page);
428 __lru_cache_add(page);
429 }
430 EXPORT_SYMBOL(lru_cache_add_file);
431
432 /**
433 * lru_cache_add - add a page to a page list
434 * @page: the page to be added to the LRU.
435 *
436 * Queue the page for addition to the LRU via pagevec. The decision on whether
437 * to add the page to the [in]active [file|anon] list is deferred until the
438 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
439 * have the page added to the active list using mark_page_accessed().
440 */
441 void lru_cache_add(struct page *page)
442 {
443 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
444 VM_BUG_ON_PAGE(PageLRU(page), page);
445 __lru_cache_add(page);
446 }
447
448 /**
449 * add_page_to_unevictable_list - add a page to the unevictable list
450 * @page: the page to be added to the unevictable list
451 *
452 * Add page directly to its zone's unevictable list. To avoid races with
453 * tasks that might be making the page evictable, through eg. munlock,
454 * munmap or exit, while it's not on the lru, we want to add the page
455 * while it's locked or otherwise "invisible" to other tasks. This is
456 * difficult to do when using the pagevec cache, so bypass that.
457 */
458 void add_page_to_unevictable_list(struct page *page)
459 {
460 struct pglist_data *pgdat = page_pgdat(page);
461 struct lruvec *lruvec;
462
463 spin_lock_irq(&pgdat->lru_lock);
464 lruvec = mem_cgroup_page_lruvec(page, pgdat);
465 ClearPageActive(page);
466 SetPageUnevictable(page);
467 SetPageLRU(page);
468 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
469 spin_unlock_irq(&pgdat->lru_lock);
470 }
471
472 /**
473 * lru_cache_add_active_or_unevictable
474 * @page: the page to be added to LRU
475 * @vma: vma in which page is mapped for determining reclaimability
476 *
477 * Place @page on the active or unevictable LRU list, depending on its
478 * evictability. Note that if the page is not evictable, it goes
479 * directly back onto it's zone's unevictable list, it does NOT use a
480 * per cpu pagevec.
481 */
482 void lru_cache_add_active_or_unevictable(struct page *page,
483 struct vm_area_struct *vma)
484 {
485 VM_BUG_ON_PAGE(PageLRU(page), page);
486
487 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
488 SetPageActive(page);
489 lru_cache_add(page);
490 return;
491 }
492
493 if (!TestSetPageMlocked(page)) {
494 /*
495 * We use the irq-unsafe __mod_zone_page_stat because this
496 * counter is not modified from interrupt context, and the pte
497 * lock is held(spinlock), which implies preemption disabled.
498 */
499 __mod_zone_page_state(page_zone(page), NR_MLOCK,
500 hpage_nr_pages(page));
501 count_vm_event(UNEVICTABLE_PGMLOCKED);
502 }
503 add_page_to_unevictable_list(page);
504 }
505
506 /*
507 * If the page can not be invalidated, it is moved to the
508 * inactive list to speed up its reclaim. It is moved to the
509 * head of the list, rather than the tail, to give the flusher
510 * threads some time to write it out, as this is much more
511 * effective than the single-page writeout from reclaim.
512 *
513 * If the page isn't page_mapped and dirty/writeback, the page
514 * could reclaim asap using PG_reclaim.
515 *
516 * 1. active, mapped page -> none
517 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
518 * 3. inactive, mapped page -> none
519 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
520 * 5. inactive, clean -> inactive, tail
521 * 6. Others -> none
522 *
523 * In 4, why it moves inactive's head, the VM expects the page would
524 * be write it out by flusher threads as this is much more effective
525 * than the single-page writeout from reclaim.
526 */
527 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
528 void *arg)
529 {
530 int lru, file;
531 bool active;
532
533 if (!PageLRU(page))
534 return;
535
536 if (PageUnevictable(page))
537 return;
538
539 /* Some processes are using the page */
540 if (page_mapped(page))
541 return;
542
543 active = PageActive(page);
544 file = page_is_file_cache(page);
545 lru = page_lru_base_type(page);
546
547 del_page_from_lru_list(page, lruvec, lru + active);
548 ClearPageActive(page);
549 ClearPageReferenced(page);
550 add_page_to_lru_list(page, lruvec, lru);
551
552 if (PageWriteback(page) || PageDirty(page)) {
553 /*
554 * PG_reclaim could be raced with end_page_writeback
555 * It can make readahead confusing. But race window
556 * is _really_ small and it's non-critical problem.
557 */
558 SetPageReclaim(page);
559 } else {
560 /*
561 * The page's writeback ends up during pagevec
562 * We moves tha page into tail of inactive.
563 */
564 list_move_tail(&page->lru, &lruvec->lists[lru]);
565 __count_vm_event(PGROTATED);
566 }
567
568 if (active)
569 __count_vm_event(PGDEACTIVATE);
570 update_page_reclaim_stat(lruvec, file, 0);
571 }
572
573
574 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
575 void *arg)
576 {
577 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
578 !PageUnevictable(page)) {
579 bool active = PageActive(page);
580
581 del_page_from_lru_list(page, lruvec,
582 LRU_INACTIVE_ANON + active);
583 ClearPageActive(page);
584 ClearPageReferenced(page);
585 /*
586 * lazyfree pages are clean anonymous pages. They have
587 * SwapBacked flag cleared to distinguish normal anonymous
588 * pages
589 */
590 ClearPageSwapBacked(page);
591 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
592
593 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
594 update_page_reclaim_stat(lruvec, 1, 0);
595 }
596 }
597
598 /*
599 * Drain pages out of the cpu's pagevecs.
600 * Either "cpu" is the current CPU, and preemption has already been
601 * disabled; or "cpu" is being hot-unplugged, and is already dead.
602 */
603 void lru_add_drain_cpu(int cpu)
604 {
605 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
606
607 if (pagevec_count(pvec))
608 __pagevec_lru_add(pvec);
609
610 pvec = &per_cpu(lru_rotate_pvecs, cpu);
611 if (pagevec_count(pvec)) {
612 unsigned long flags;
613
614 /* No harm done if a racing interrupt already did this */
615 local_irq_save(flags);
616 pagevec_move_tail(pvec);
617 local_irq_restore(flags);
618 }
619
620 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
621 if (pagevec_count(pvec))
622 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
623
624 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
625 if (pagevec_count(pvec))
626 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
627
628 activate_page_drain(cpu);
629 }
630
631 /**
632 * deactivate_file_page - forcefully deactivate a file page
633 * @page: page to deactivate
634 *
635 * This function hints the VM that @page is a good reclaim candidate,
636 * for example if its invalidation fails due to the page being dirty
637 * or under writeback.
638 */
639 void deactivate_file_page(struct page *page)
640 {
641 /*
642 * In a workload with many unevictable page such as mprotect,
643 * unevictable page deactivation for accelerating reclaim is pointless.
644 */
645 if (PageUnevictable(page))
646 return;
647
648 if (likely(get_page_unless_zero(page))) {
649 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
650
651 if (!pagevec_add(pvec, page) || PageCompound(page))
652 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
653 put_cpu_var(lru_deactivate_file_pvecs);
654 }
655 }
656
657 /**
658 * mark_page_lazyfree - make an anon page lazyfree
659 * @page: page to deactivate
660 *
661 * mark_page_lazyfree() moves @page to the inactive file list.
662 * This is done to accelerate the reclaim of @page.
663 */
664 void mark_page_lazyfree(struct page *page)
665 {
666 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
667 !PageUnevictable(page)) {
668 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
669
670 get_page(page);
671 if (!pagevec_add(pvec, page) || PageCompound(page))
672 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
673 put_cpu_var(lru_lazyfree_pvecs);
674 }
675 }
676
677 void lru_add_drain(void)
678 {
679 lru_add_drain_cpu(get_cpu());
680 put_cpu();
681 }
682
683 static void lru_add_drain_per_cpu(struct work_struct *dummy)
684 {
685 lru_add_drain();
686 }
687
688 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
689
690 void lru_add_drain_all(void)
691 {
692 static DEFINE_MUTEX(lock);
693 static struct cpumask has_work;
694 int cpu;
695
696 /*
697 * Make sure nobody triggers this path before mm_percpu_wq is fully
698 * initialized.
699 */
700 if (WARN_ON(!mm_percpu_wq))
701 return;
702
703 mutex_lock(&lock);
704 get_online_cpus();
705 cpumask_clear(&has_work);
706
707 for_each_online_cpu(cpu) {
708 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
709
710 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
711 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
712 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
713 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
714 need_activate_page_drain(cpu)) {
715 INIT_WORK(work, lru_add_drain_per_cpu);
716 queue_work_on(cpu, mm_percpu_wq, work);
717 cpumask_set_cpu(cpu, &has_work);
718 }
719 }
720
721 for_each_cpu(cpu, &has_work)
722 flush_work(&per_cpu(lru_add_drain_work, cpu));
723
724 put_online_cpus();
725 mutex_unlock(&lock);
726 }
727
728 /**
729 * release_pages - batched put_page()
730 * @pages: array of pages to release
731 * @nr: number of pages
732 * @cold: whether the pages are cache cold
733 *
734 * Decrement the reference count on all the pages in @pages. If it
735 * fell to zero, remove the page from the LRU and free it.
736 */
737 void release_pages(struct page **pages, int nr, bool cold)
738 {
739 int i;
740 LIST_HEAD(pages_to_free);
741 struct pglist_data *locked_pgdat = NULL;
742 struct lruvec *lruvec;
743 unsigned long uninitialized_var(flags);
744 unsigned int uninitialized_var(lock_batch);
745
746 for (i = 0; i < nr; i++) {
747 struct page *page = pages[i];
748
749 /*
750 * Make sure the IRQ-safe lock-holding time does not get
751 * excessive with a continuous string of pages from the
752 * same pgdat. The lock is held only if pgdat != NULL.
753 */
754 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
755 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
756 locked_pgdat = NULL;
757 }
758
759 if (is_huge_zero_page(page))
760 continue;
761
762 page = compound_head(page);
763 if (!put_page_testzero(page))
764 continue;
765
766 if (PageCompound(page)) {
767 if (locked_pgdat) {
768 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
769 locked_pgdat = NULL;
770 }
771 __put_compound_page(page);
772 continue;
773 }
774
775 if (PageLRU(page)) {
776 struct pglist_data *pgdat = page_pgdat(page);
777
778 if (pgdat != locked_pgdat) {
779 if (locked_pgdat)
780 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
781 flags);
782 lock_batch = 0;
783 locked_pgdat = pgdat;
784 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
785 }
786
787 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
788 VM_BUG_ON_PAGE(!PageLRU(page), page);
789 __ClearPageLRU(page);
790 del_page_from_lru_list(page, lruvec, page_off_lru(page));
791 }
792
793 /* Clear Active bit in case of parallel mark_page_accessed */
794 __ClearPageActive(page);
795 __ClearPageWaiters(page);
796
797 list_add(&page->lru, &pages_to_free);
798 }
799 if (locked_pgdat)
800 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
801
802 mem_cgroup_uncharge_list(&pages_to_free);
803 free_hot_cold_page_list(&pages_to_free, cold);
804 }
805 EXPORT_SYMBOL(release_pages);
806
807 /*
808 * The pages which we're about to release may be in the deferred lru-addition
809 * queues. That would prevent them from really being freed right now. That's
810 * OK from a correctness point of view but is inefficient - those pages may be
811 * cache-warm and we want to give them back to the page allocator ASAP.
812 *
813 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
814 * and __pagevec_lru_add_active() call release_pages() directly to avoid
815 * mutual recursion.
816 */
817 void __pagevec_release(struct pagevec *pvec)
818 {
819 lru_add_drain();
820 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
821 pagevec_reinit(pvec);
822 }
823 EXPORT_SYMBOL(__pagevec_release);
824
825 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
826 /* used by __split_huge_page_refcount() */
827 void lru_add_page_tail(struct page *page, struct page *page_tail,
828 struct lruvec *lruvec, struct list_head *list)
829 {
830 const int file = 0;
831
832 VM_BUG_ON_PAGE(!PageHead(page), page);
833 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
834 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
835 VM_BUG_ON(NR_CPUS != 1 &&
836 !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
837
838 if (!list)
839 SetPageLRU(page_tail);
840
841 if (likely(PageLRU(page)))
842 list_add_tail(&page_tail->lru, &page->lru);
843 else if (list) {
844 /* page reclaim is reclaiming a huge page */
845 get_page(page_tail);
846 list_add_tail(&page_tail->lru, list);
847 } else {
848 struct list_head *list_head;
849 /*
850 * Head page has not yet been counted, as an hpage,
851 * so we must account for each subpage individually.
852 *
853 * Use the standard add function to put page_tail on the list,
854 * but then correct its position so they all end up in order.
855 */
856 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
857 list_head = page_tail->lru.prev;
858 list_move_tail(&page_tail->lru, list_head);
859 }
860
861 if (!PageUnevictable(page))
862 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
863 }
864 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
865
866 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
867 void *arg)
868 {
869 int file = page_is_file_cache(page);
870 int active = PageActive(page);
871 enum lru_list lru = page_lru(page);
872
873 VM_BUG_ON_PAGE(PageLRU(page), page);
874
875 SetPageLRU(page);
876 add_page_to_lru_list(page, lruvec, lru);
877 update_page_reclaim_stat(lruvec, file, active);
878 trace_mm_lru_insertion(page, lru);
879 }
880
881 /*
882 * Add the passed pages to the LRU, then drop the caller's refcount
883 * on them. Reinitialises the caller's pagevec.
884 */
885 void __pagevec_lru_add(struct pagevec *pvec)
886 {
887 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
888 }
889 EXPORT_SYMBOL(__pagevec_lru_add);
890
891 /**
892 * pagevec_lookup_entries - gang pagecache lookup
893 * @pvec: Where the resulting entries are placed
894 * @mapping: The address_space to search
895 * @start: The starting entry index
896 * @nr_entries: The maximum number of entries
897 * @indices: The cache indices corresponding to the entries in @pvec
898 *
899 * pagevec_lookup_entries() will search for and return a group of up
900 * to @nr_entries pages and shadow entries in the mapping. All
901 * entries are placed in @pvec. pagevec_lookup_entries() takes a
902 * reference against actual pages in @pvec.
903 *
904 * The search returns a group of mapping-contiguous entries with
905 * ascending indexes. There may be holes in the indices due to
906 * not-present entries.
907 *
908 * pagevec_lookup_entries() returns the number of entries which were
909 * found.
910 */
911 unsigned pagevec_lookup_entries(struct pagevec *pvec,
912 struct address_space *mapping,
913 pgoff_t start, unsigned nr_pages,
914 pgoff_t *indices)
915 {
916 pvec->nr = find_get_entries(mapping, start, nr_pages,
917 pvec->pages, indices);
918 return pagevec_count(pvec);
919 }
920
921 /**
922 * pagevec_remove_exceptionals - pagevec exceptionals pruning
923 * @pvec: The pagevec to prune
924 *
925 * pagevec_lookup_entries() fills both pages and exceptional radix
926 * tree entries into the pagevec. This function prunes all
927 * exceptionals from @pvec without leaving holes, so that it can be
928 * passed on to page-only pagevec operations.
929 */
930 void pagevec_remove_exceptionals(struct pagevec *pvec)
931 {
932 int i, j;
933
934 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
935 struct page *page = pvec->pages[i];
936 if (!radix_tree_exceptional_entry(page))
937 pvec->pages[j++] = page;
938 }
939 pvec->nr = j;
940 }
941
942 /**
943 * pagevec_lookup - gang pagecache lookup
944 * @pvec: Where the resulting pages are placed
945 * @mapping: The address_space to search
946 * @start: The starting page index
947 * @nr_pages: The maximum number of pages
948 *
949 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
950 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
951 * reference against the pages in @pvec.
952 *
953 * The search returns a group of mapping-contiguous pages with ascending
954 * indexes. There may be holes in the indices due to not-present pages.
955 *
956 * pagevec_lookup() returns the number of pages which were found.
957 */
958 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
959 pgoff_t start, unsigned nr_pages)
960 {
961 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
962 return pagevec_count(pvec);
963 }
964 EXPORT_SYMBOL(pagevec_lookup);
965
966 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
967 pgoff_t *index, int tag, unsigned nr_pages)
968 {
969 pvec->nr = find_get_pages_tag(mapping, index, tag,
970 nr_pages, pvec->pages);
971 return pagevec_count(pvec);
972 }
973 EXPORT_SYMBOL(pagevec_lookup_tag);
974
975 /*
976 * Perform any setup for the swap system
977 */
978 void __init swap_setup(void)
979 {
980 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
981
982 /* Use a smaller cluster for small-memory machines */
983 if (megs < 16)
984 page_cluster = 2;
985 else
986 page_cluster = 3;
987 /*
988 * Right now other parts of the system means that we
989 * _really_ don't want to cluster much more
990 */
991 }