]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/swap.c
Merge tag 'sound-6.0-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-kernels.git] / mm / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40
41 #include "internal.h"
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48
49 /* Protecting only lru_rotate.fbatch which requires disabling interrupts */
50 struct lru_rotate {
51 local_lock_t lock;
52 struct folio_batch fbatch;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 .lock = INIT_LOCAL_LOCK(lock),
56 };
57
58 /*
59 * The following folio batches are grouped together because they are protected
60 * by disabling preemption (and interrupts remain enabled).
61 */
62 struct cpu_fbatches {
63 local_lock_t lock;
64 struct folio_batch lru_add;
65 struct folio_batch lru_deactivate_file;
66 struct folio_batch lru_deactivate;
67 struct folio_batch lru_lazyfree;
68 #ifdef CONFIG_SMP
69 struct folio_batch activate;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
73 .lock = INIT_LOCAL_LOCK(lock),
74 };
75
76 /*
77 * This path almost never happens for VM activity - pages are normally freed
78 * via pagevecs. But it gets used by networking - and for compound pages.
79 */
80 static void __page_cache_release(struct folio *folio)
81 {
82 if (folio_test_lru(folio)) {
83 struct lruvec *lruvec;
84 unsigned long flags;
85
86 lruvec = folio_lruvec_lock_irqsave(folio, &flags);
87 lruvec_del_folio(lruvec, folio);
88 __folio_clear_lru_flags(folio);
89 unlock_page_lruvec_irqrestore(lruvec, flags);
90 }
91 /* See comment on folio_test_mlocked in release_pages() */
92 if (unlikely(folio_test_mlocked(folio))) {
93 long nr_pages = folio_nr_pages(folio);
94
95 __folio_clear_mlocked(folio);
96 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
97 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
98 }
99 }
100
101 static void __folio_put_small(struct folio *folio)
102 {
103 __page_cache_release(folio);
104 mem_cgroup_uncharge(folio);
105 free_unref_page(&folio->page, 0);
106 }
107
108 static void __folio_put_large(struct folio *folio)
109 {
110 /*
111 * __page_cache_release() is supposed to be called for thp, not for
112 * hugetlb. This is because hugetlb page does never have PageLRU set
113 * (it's never listed to any LRU lists) and no memcg routines should
114 * be called for hugetlb (it has a separate hugetlb_cgroup.)
115 */
116 if (!folio_test_hugetlb(folio))
117 __page_cache_release(folio);
118 destroy_large_folio(folio);
119 }
120
121 void __folio_put(struct folio *folio)
122 {
123 if (unlikely(folio_is_zone_device(folio)))
124 free_zone_device_page(&folio->page);
125 else if (unlikely(folio_test_large(folio)))
126 __folio_put_large(folio);
127 else
128 __folio_put_small(folio);
129 }
130 EXPORT_SYMBOL(__folio_put);
131
132 /**
133 * put_pages_list() - release a list of pages
134 * @pages: list of pages threaded on page->lru
135 *
136 * Release a list of pages which are strung together on page.lru.
137 */
138 void put_pages_list(struct list_head *pages)
139 {
140 struct folio *folio, *next;
141
142 list_for_each_entry_safe(folio, next, pages, lru) {
143 if (!folio_put_testzero(folio)) {
144 list_del(&folio->lru);
145 continue;
146 }
147 if (folio_test_large(folio)) {
148 list_del(&folio->lru);
149 __folio_put_large(folio);
150 continue;
151 }
152 /* LRU flag must be clear because it's passed using the lru */
153 }
154
155 free_unref_page_list(pages);
156 INIT_LIST_HEAD(pages);
157 }
158 EXPORT_SYMBOL(put_pages_list);
159
160 /*
161 * get_kernel_pages() - pin kernel pages in memory
162 * @kiov: An array of struct kvec structures
163 * @nr_segs: number of segments to pin
164 * @write: pinning for read/write, currently ignored
165 * @pages: array that receives pointers to the pages pinned.
166 * Should be at least nr_segs long.
167 *
168 * Returns number of pages pinned. This may be fewer than the number requested.
169 * If nr_segs is 0 or negative, returns 0. If no pages were pinned, returns 0.
170 * Each page returned must be released with a put_page() call when it is
171 * finished with.
172 */
173 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
174 struct page **pages)
175 {
176 int seg;
177
178 for (seg = 0; seg < nr_segs; seg++) {
179 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
180 return seg;
181
182 pages[seg] = kmap_to_page(kiov[seg].iov_base);
183 get_page(pages[seg]);
184 }
185
186 return seg;
187 }
188 EXPORT_SYMBOL_GPL(get_kernel_pages);
189
190 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
191
192 static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
193 {
194 int was_unevictable = folio_test_clear_unevictable(folio);
195 long nr_pages = folio_nr_pages(folio);
196
197 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
198
199 /*
200 * Is an smp_mb__after_atomic() still required here, before
201 * folio_evictable() tests the mlocked flag, to rule out the possibility
202 * of stranding an evictable folio on an unevictable LRU? I think
203 * not, because __munlock_page() only clears the mlocked flag
204 * while the LRU lock is held.
205 *
206 * (That is not true of __page_cache_release(), and not necessarily
207 * true of release_pages(): but those only clear the mlocked flag after
208 * folio_put_testzero() has excluded any other users of the folio.)
209 */
210 if (folio_evictable(folio)) {
211 if (was_unevictable)
212 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
213 } else {
214 folio_clear_active(folio);
215 folio_set_unevictable(folio);
216 /*
217 * folio->mlock_count = !!folio_test_mlocked(folio)?
218 * But that leaves __mlock_page() in doubt whether another
219 * actor has already counted the mlock or not. Err on the
220 * safe side, underestimate, let page reclaim fix it, rather
221 * than leaving a page on the unevictable LRU indefinitely.
222 */
223 folio->mlock_count = 0;
224 if (!was_unevictable)
225 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
226 }
227
228 lruvec_add_folio(lruvec, folio);
229 trace_mm_lru_insertion(folio);
230 }
231
232 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
233 {
234 int i;
235 struct lruvec *lruvec = NULL;
236 unsigned long flags = 0;
237
238 for (i = 0; i < folio_batch_count(fbatch); i++) {
239 struct folio *folio = fbatch->folios[i];
240
241 /* block memcg migration while the folio moves between lru */
242 if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
243 continue;
244
245 lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
246 move_fn(lruvec, folio);
247
248 folio_set_lru(folio);
249 }
250
251 if (lruvec)
252 unlock_page_lruvec_irqrestore(lruvec, flags);
253 folios_put(fbatch->folios, folio_batch_count(fbatch));
254 folio_batch_init(fbatch);
255 }
256
257 static void folio_batch_add_and_move(struct folio_batch *fbatch,
258 struct folio *folio, move_fn_t move_fn)
259 {
260 if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
261 !lru_cache_disabled())
262 return;
263 folio_batch_move_lru(fbatch, move_fn);
264 }
265
266 static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
267 {
268 if (!folio_test_unevictable(folio)) {
269 lruvec_del_folio(lruvec, folio);
270 folio_clear_active(folio);
271 lruvec_add_folio_tail(lruvec, folio);
272 __count_vm_events(PGROTATED, folio_nr_pages(folio));
273 }
274 }
275
276 /*
277 * Writeback is about to end against a folio which has been marked for
278 * immediate reclaim. If it still appears to be reclaimable, move it
279 * to the tail of the inactive list.
280 *
281 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
282 */
283 void folio_rotate_reclaimable(struct folio *folio)
284 {
285 if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
286 !folio_test_unevictable(folio) && folio_test_lru(folio)) {
287 struct folio_batch *fbatch;
288 unsigned long flags;
289
290 folio_get(folio);
291 local_lock_irqsave(&lru_rotate.lock, flags);
292 fbatch = this_cpu_ptr(&lru_rotate.fbatch);
293 folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
294 local_unlock_irqrestore(&lru_rotate.lock, flags);
295 }
296 }
297
298 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
299 {
300 do {
301 unsigned long lrusize;
302
303 /*
304 * Hold lruvec->lru_lock is safe here, since
305 * 1) The pinned lruvec in reclaim, or
306 * 2) From a pre-LRU page during refault (which also holds the
307 * rcu lock, so would be safe even if the page was on the LRU
308 * and could move simultaneously to a new lruvec).
309 */
310 spin_lock_irq(&lruvec->lru_lock);
311 /* Record cost event */
312 if (file)
313 lruvec->file_cost += nr_pages;
314 else
315 lruvec->anon_cost += nr_pages;
316
317 /*
318 * Decay previous events
319 *
320 * Because workloads change over time (and to avoid
321 * overflow) we keep these statistics as a floating
322 * average, which ends up weighing recent refaults
323 * more than old ones.
324 */
325 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
326 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
327 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
328 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
329
330 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
331 lruvec->file_cost /= 2;
332 lruvec->anon_cost /= 2;
333 }
334 spin_unlock_irq(&lruvec->lru_lock);
335 } while ((lruvec = parent_lruvec(lruvec)));
336 }
337
338 void lru_note_cost_folio(struct folio *folio)
339 {
340 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
341 folio_nr_pages(folio));
342 }
343
344 static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
345 {
346 if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
347 long nr_pages = folio_nr_pages(folio);
348
349 lruvec_del_folio(lruvec, folio);
350 folio_set_active(folio);
351 lruvec_add_folio(lruvec, folio);
352 trace_mm_lru_activate(folio);
353
354 __count_vm_events(PGACTIVATE, nr_pages);
355 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
356 nr_pages);
357 }
358 }
359
360 #ifdef CONFIG_SMP
361 static void folio_activate_drain(int cpu)
362 {
363 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
364
365 if (folio_batch_count(fbatch))
366 folio_batch_move_lru(fbatch, folio_activate_fn);
367 }
368
369 static void folio_activate(struct folio *folio)
370 {
371 if (folio_test_lru(folio) && !folio_test_active(folio) &&
372 !folio_test_unevictable(folio)) {
373 struct folio_batch *fbatch;
374
375 folio_get(folio);
376 local_lock(&cpu_fbatches.lock);
377 fbatch = this_cpu_ptr(&cpu_fbatches.activate);
378 folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
379 local_unlock(&cpu_fbatches.lock);
380 }
381 }
382
383 #else
384 static inline void folio_activate_drain(int cpu)
385 {
386 }
387
388 static void folio_activate(struct folio *folio)
389 {
390 struct lruvec *lruvec;
391
392 if (folio_test_clear_lru(folio)) {
393 lruvec = folio_lruvec_lock_irq(folio);
394 folio_activate_fn(lruvec, folio);
395 unlock_page_lruvec_irq(lruvec);
396 folio_set_lru(folio);
397 }
398 }
399 #endif
400
401 static void __lru_cache_activate_folio(struct folio *folio)
402 {
403 struct folio_batch *fbatch;
404 int i;
405
406 local_lock(&cpu_fbatches.lock);
407 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
408
409 /*
410 * Search backwards on the optimistic assumption that the folio being
411 * activated has just been added to this batch. Note that only
412 * the local batch is examined as a !LRU folio could be in the
413 * process of being released, reclaimed, migrated or on a remote
414 * batch that is currently being drained. Furthermore, marking
415 * a remote batch's folio active potentially hits a race where
416 * a folio is marked active just after it is added to the inactive
417 * list causing accounting errors and BUG_ON checks to trigger.
418 */
419 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
420 struct folio *batch_folio = fbatch->folios[i];
421
422 if (batch_folio == folio) {
423 folio_set_active(folio);
424 break;
425 }
426 }
427
428 local_unlock(&cpu_fbatches.lock);
429 }
430
431 /*
432 * Mark a page as having seen activity.
433 *
434 * inactive,unreferenced -> inactive,referenced
435 * inactive,referenced -> active,unreferenced
436 * active,unreferenced -> active,referenced
437 *
438 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
439 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
440 */
441 void folio_mark_accessed(struct folio *folio)
442 {
443 if (!folio_test_referenced(folio)) {
444 folio_set_referenced(folio);
445 } else if (folio_test_unevictable(folio)) {
446 /*
447 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
448 * this list is never rotated or maintained, so marking an
449 * unevictable page accessed has no effect.
450 */
451 } else if (!folio_test_active(folio)) {
452 /*
453 * If the folio is on the LRU, queue it for activation via
454 * cpu_fbatches.activate. Otherwise, assume the folio is in a
455 * folio_batch, mark it active and it'll be moved to the active
456 * LRU on the next drain.
457 */
458 if (folio_test_lru(folio))
459 folio_activate(folio);
460 else
461 __lru_cache_activate_folio(folio);
462 folio_clear_referenced(folio);
463 workingset_activation(folio);
464 }
465 if (folio_test_idle(folio))
466 folio_clear_idle(folio);
467 }
468 EXPORT_SYMBOL(folio_mark_accessed);
469
470 /**
471 * folio_add_lru - Add a folio to an LRU list.
472 * @folio: The folio to be added to the LRU.
473 *
474 * Queue the folio for addition to the LRU. The decision on whether
475 * to add the page to the [in]active [file|anon] list is deferred until the
476 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
477 * have the folio added to the active list using folio_mark_accessed().
478 */
479 void folio_add_lru(struct folio *folio)
480 {
481 struct folio_batch *fbatch;
482
483 VM_BUG_ON_FOLIO(folio_test_active(folio) &&
484 folio_test_unevictable(folio), folio);
485 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
486
487 folio_get(folio);
488 local_lock(&cpu_fbatches.lock);
489 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
490 folio_batch_add_and_move(fbatch, folio, lru_add_fn);
491 local_unlock(&cpu_fbatches.lock);
492 }
493 EXPORT_SYMBOL(folio_add_lru);
494
495 /**
496 * lru_cache_add_inactive_or_unevictable
497 * @page: the page to be added to LRU
498 * @vma: vma in which page is mapped for determining reclaimability
499 *
500 * Place @page on the inactive or unevictable LRU list, depending on its
501 * evictability.
502 */
503 void lru_cache_add_inactive_or_unevictable(struct page *page,
504 struct vm_area_struct *vma)
505 {
506 VM_BUG_ON_PAGE(PageLRU(page), page);
507
508 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
509 mlock_new_page(page);
510 else
511 lru_cache_add(page);
512 }
513
514 /*
515 * If the folio cannot be invalidated, it is moved to the
516 * inactive list to speed up its reclaim. It is moved to the
517 * head of the list, rather than the tail, to give the flusher
518 * threads some time to write it out, as this is much more
519 * effective than the single-page writeout from reclaim.
520 *
521 * If the folio isn't mapped and dirty/writeback, the folio
522 * could be reclaimed asap using the reclaim flag.
523 *
524 * 1. active, mapped folio -> none
525 * 2. active, dirty/writeback folio -> inactive, head, reclaim
526 * 3. inactive, mapped folio -> none
527 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
528 * 5. inactive, clean -> inactive, tail
529 * 6. Others -> none
530 *
531 * In 4, it moves to the head of the inactive list so the folio is
532 * written out by flusher threads as this is much more efficient
533 * than the single-page writeout from reclaim.
534 */
535 static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
536 {
537 bool active = folio_test_active(folio);
538 long nr_pages = folio_nr_pages(folio);
539
540 if (folio_test_unevictable(folio))
541 return;
542
543 /* Some processes are using the folio */
544 if (folio_mapped(folio))
545 return;
546
547 lruvec_del_folio(lruvec, folio);
548 folio_clear_active(folio);
549 folio_clear_referenced(folio);
550
551 if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
552 /*
553 * Setting the reclaim flag could race with
554 * folio_end_writeback() and confuse readahead. But the
555 * race window is _really_ small and it's not a critical
556 * problem.
557 */
558 lruvec_add_folio(lruvec, folio);
559 folio_set_reclaim(folio);
560 } else {
561 /*
562 * The folio's writeback ended while it was in the batch.
563 * We move that folio to the tail of the inactive list.
564 */
565 lruvec_add_folio_tail(lruvec, folio);
566 __count_vm_events(PGROTATED, nr_pages);
567 }
568
569 if (active) {
570 __count_vm_events(PGDEACTIVATE, nr_pages);
571 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
572 nr_pages);
573 }
574 }
575
576 static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
577 {
578 if (folio_test_active(folio) && !folio_test_unevictable(folio)) {
579 long nr_pages = folio_nr_pages(folio);
580
581 lruvec_del_folio(lruvec, folio);
582 folio_clear_active(folio);
583 folio_clear_referenced(folio);
584 lruvec_add_folio(lruvec, folio);
585
586 __count_vm_events(PGDEACTIVATE, nr_pages);
587 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
588 nr_pages);
589 }
590 }
591
592 static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
593 {
594 if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
595 !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
596 long nr_pages = folio_nr_pages(folio);
597
598 lruvec_del_folio(lruvec, folio);
599 folio_clear_active(folio);
600 folio_clear_referenced(folio);
601 /*
602 * Lazyfree folios are clean anonymous folios. They have
603 * the swapbacked flag cleared, to distinguish them from normal
604 * anonymous folios
605 */
606 folio_clear_swapbacked(folio);
607 lruvec_add_folio(lruvec, folio);
608
609 __count_vm_events(PGLAZYFREE, nr_pages);
610 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
611 nr_pages);
612 }
613 }
614
615 /*
616 * Drain pages out of the cpu's folio_batch.
617 * Either "cpu" is the current CPU, and preemption has already been
618 * disabled; or "cpu" is being hot-unplugged, and is already dead.
619 */
620 void lru_add_drain_cpu(int cpu)
621 {
622 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
623 struct folio_batch *fbatch = &fbatches->lru_add;
624
625 if (folio_batch_count(fbatch))
626 folio_batch_move_lru(fbatch, lru_add_fn);
627
628 fbatch = &per_cpu(lru_rotate.fbatch, cpu);
629 /* Disabling interrupts below acts as a compiler barrier. */
630 if (data_race(folio_batch_count(fbatch))) {
631 unsigned long flags;
632
633 /* No harm done if a racing interrupt already did this */
634 local_lock_irqsave(&lru_rotate.lock, flags);
635 folio_batch_move_lru(fbatch, lru_move_tail_fn);
636 local_unlock_irqrestore(&lru_rotate.lock, flags);
637 }
638
639 fbatch = &fbatches->lru_deactivate_file;
640 if (folio_batch_count(fbatch))
641 folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
642
643 fbatch = &fbatches->lru_deactivate;
644 if (folio_batch_count(fbatch))
645 folio_batch_move_lru(fbatch, lru_deactivate_fn);
646
647 fbatch = &fbatches->lru_lazyfree;
648 if (folio_batch_count(fbatch))
649 folio_batch_move_lru(fbatch, lru_lazyfree_fn);
650
651 folio_activate_drain(cpu);
652 }
653
654 /**
655 * deactivate_file_folio() - Deactivate a file folio.
656 * @folio: Folio to deactivate.
657 *
658 * This function hints to the VM that @folio is a good reclaim candidate,
659 * for example if its invalidation fails due to the folio being dirty
660 * or under writeback.
661 *
662 * Context: Caller holds a reference on the folio.
663 */
664 void deactivate_file_folio(struct folio *folio)
665 {
666 struct folio_batch *fbatch;
667
668 /* Deactivating an unevictable folio will not accelerate reclaim */
669 if (folio_test_unevictable(folio))
670 return;
671
672 folio_get(folio);
673 local_lock(&cpu_fbatches.lock);
674 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
675 folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
676 local_unlock(&cpu_fbatches.lock);
677 }
678
679 /*
680 * deactivate_page - deactivate a page
681 * @page: page to deactivate
682 *
683 * deactivate_page() moves @page to the inactive list if @page was on the active
684 * list and was not an unevictable page. This is done to accelerate the reclaim
685 * of @page.
686 */
687 void deactivate_page(struct page *page)
688 {
689 struct folio *folio = page_folio(page);
690
691 if (folio_test_lru(folio) && folio_test_active(folio) &&
692 !folio_test_unevictable(folio)) {
693 struct folio_batch *fbatch;
694
695 folio_get(folio);
696 local_lock(&cpu_fbatches.lock);
697 fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
698 folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
699 local_unlock(&cpu_fbatches.lock);
700 }
701 }
702
703 /**
704 * mark_page_lazyfree - make an anon page lazyfree
705 * @page: page to deactivate
706 *
707 * mark_page_lazyfree() moves @page to the inactive file list.
708 * This is done to accelerate the reclaim of @page.
709 */
710 void mark_page_lazyfree(struct page *page)
711 {
712 struct folio *folio = page_folio(page);
713
714 if (folio_test_lru(folio) && folio_test_anon(folio) &&
715 folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
716 !folio_test_unevictable(folio)) {
717 struct folio_batch *fbatch;
718
719 folio_get(folio);
720 local_lock(&cpu_fbatches.lock);
721 fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
722 folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
723 local_unlock(&cpu_fbatches.lock);
724 }
725 }
726
727 void lru_add_drain(void)
728 {
729 local_lock(&cpu_fbatches.lock);
730 lru_add_drain_cpu(smp_processor_id());
731 local_unlock(&cpu_fbatches.lock);
732 mlock_page_drain_local();
733 }
734
735 /*
736 * It's called from per-cpu workqueue context in SMP case so
737 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
738 * the same cpu. It shouldn't be a problem in !SMP case since
739 * the core is only one and the locks will disable preemption.
740 */
741 static void lru_add_and_bh_lrus_drain(void)
742 {
743 local_lock(&cpu_fbatches.lock);
744 lru_add_drain_cpu(smp_processor_id());
745 local_unlock(&cpu_fbatches.lock);
746 invalidate_bh_lrus_cpu();
747 mlock_page_drain_local();
748 }
749
750 void lru_add_drain_cpu_zone(struct zone *zone)
751 {
752 local_lock(&cpu_fbatches.lock);
753 lru_add_drain_cpu(smp_processor_id());
754 drain_local_pages(zone);
755 local_unlock(&cpu_fbatches.lock);
756 mlock_page_drain_local();
757 }
758
759 #ifdef CONFIG_SMP
760
761 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
762
763 static void lru_add_drain_per_cpu(struct work_struct *dummy)
764 {
765 lru_add_and_bh_lrus_drain();
766 }
767
768 static bool cpu_needs_drain(unsigned int cpu)
769 {
770 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
771
772 /* Check these in order of likelihood that they're not zero */
773 return folio_batch_count(&fbatches->lru_add) ||
774 data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
775 folio_batch_count(&fbatches->lru_deactivate_file) ||
776 folio_batch_count(&fbatches->lru_deactivate) ||
777 folio_batch_count(&fbatches->lru_lazyfree) ||
778 folio_batch_count(&fbatches->activate) ||
779 need_mlock_page_drain(cpu) ||
780 has_bh_in_lru(cpu, NULL);
781 }
782
783 /*
784 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
785 * kworkers being shut down before our page_alloc_cpu_dead callback is
786 * executed on the offlined cpu.
787 * Calling this function with cpu hotplug locks held can actually lead
788 * to obscure indirect dependencies via WQ context.
789 */
790 static inline void __lru_add_drain_all(bool force_all_cpus)
791 {
792 /*
793 * lru_drain_gen - Global pages generation number
794 *
795 * (A) Definition: global lru_drain_gen = x implies that all generations
796 * 0 < n <= x are already *scheduled* for draining.
797 *
798 * This is an optimization for the highly-contended use case where a
799 * user space workload keeps constantly generating a flow of pages for
800 * each CPU.
801 */
802 static unsigned int lru_drain_gen;
803 static struct cpumask has_work;
804 static DEFINE_MUTEX(lock);
805 unsigned cpu, this_gen;
806
807 /*
808 * Make sure nobody triggers this path before mm_percpu_wq is fully
809 * initialized.
810 */
811 if (WARN_ON(!mm_percpu_wq))
812 return;
813
814 /*
815 * Guarantee folio_batch counter stores visible by this CPU
816 * are visible to other CPUs before loading the current drain
817 * generation.
818 */
819 smp_mb();
820
821 /*
822 * (B) Locally cache global LRU draining generation number
823 *
824 * The read barrier ensures that the counter is loaded before the mutex
825 * is taken. It pairs with smp_mb() inside the mutex critical section
826 * at (D).
827 */
828 this_gen = smp_load_acquire(&lru_drain_gen);
829
830 mutex_lock(&lock);
831
832 /*
833 * (C) Exit the draining operation if a newer generation, from another
834 * lru_add_drain_all(), was already scheduled for draining. Check (A).
835 */
836 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
837 goto done;
838
839 /*
840 * (D) Increment global generation number
841 *
842 * Pairs with smp_load_acquire() at (B), outside of the critical
843 * section. Use a full memory barrier to guarantee that the
844 * new global drain generation number is stored before loading
845 * folio_batch counters.
846 *
847 * This pairing must be done here, before the for_each_online_cpu loop
848 * below which drains the page vectors.
849 *
850 * Let x, y, and z represent some system CPU numbers, where x < y < z.
851 * Assume CPU #z is in the middle of the for_each_online_cpu loop
852 * below and has already reached CPU #y's per-cpu data. CPU #x comes
853 * along, adds some pages to its per-cpu vectors, then calls
854 * lru_add_drain_all().
855 *
856 * If the paired barrier is done at any later step, e.g. after the
857 * loop, CPU #x will just exit at (C) and miss flushing out all of its
858 * added pages.
859 */
860 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
861 smp_mb();
862
863 cpumask_clear(&has_work);
864 for_each_online_cpu(cpu) {
865 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
866
867 if (cpu_needs_drain(cpu)) {
868 INIT_WORK(work, lru_add_drain_per_cpu);
869 queue_work_on(cpu, mm_percpu_wq, work);
870 __cpumask_set_cpu(cpu, &has_work);
871 }
872 }
873
874 for_each_cpu(cpu, &has_work)
875 flush_work(&per_cpu(lru_add_drain_work, cpu));
876
877 done:
878 mutex_unlock(&lock);
879 }
880
881 void lru_add_drain_all(void)
882 {
883 __lru_add_drain_all(false);
884 }
885 #else
886 void lru_add_drain_all(void)
887 {
888 lru_add_drain();
889 }
890 #endif /* CONFIG_SMP */
891
892 atomic_t lru_disable_count = ATOMIC_INIT(0);
893
894 /*
895 * lru_cache_disable() needs to be called before we start compiling
896 * a list of pages to be migrated using isolate_lru_page().
897 * It drains pages on LRU cache and then disable on all cpus until
898 * lru_cache_enable is called.
899 *
900 * Must be paired with a call to lru_cache_enable().
901 */
902 void lru_cache_disable(void)
903 {
904 atomic_inc(&lru_disable_count);
905 /*
906 * Readers of lru_disable_count are protected by either disabling
907 * preemption or rcu_read_lock:
908 *
909 * preempt_disable, local_irq_disable [bh_lru_lock()]
910 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
911 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
912 *
913 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
914 * preempt_disable() regions of code. So any CPU which sees
915 * lru_disable_count = 0 will have exited the critical
916 * section when synchronize_rcu() returns.
917 */
918 synchronize_rcu_expedited();
919 #ifdef CONFIG_SMP
920 __lru_add_drain_all(true);
921 #else
922 lru_add_and_bh_lrus_drain();
923 #endif
924 }
925
926 /**
927 * release_pages - batched put_page()
928 * @pages: array of pages to release
929 * @nr: number of pages
930 *
931 * Decrement the reference count on all the pages in @pages. If it
932 * fell to zero, remove the page from the LRU and free it.
933 */
934 void release_pages(struct page **pages, int nr)
935 {
936 int i;
937 LIST_HEAD(pages_to_free);
938 struct lruvec *lruvec = NULL;
939 unsigned long flags = 0;
940 unsigned int lock_batch;
941
942 for (i = 0; i < nr; i++) {
943 struct folio *folio = page_folio(pages[i]);
944
945 /*
946 * Make sure the IRQ-safe lock-holding time does not get
947 * excessive with a continuous string of pages from the
948 * same lruvec. The lock is held only if lruvec != NULL.
949 */
950 if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
951 unlock_page_lruvec_irqrestore(lruvec, flags);
952 lruvec = NULL;
953 }
954
955 if (is_huge_zero_page(&folio->page))
956 continue;
957
958 if (folio_is_zone_device(folio)) {
959 if (lruvec) {
960 unlock_page_lruvec_irqrestore(lruvec, flags);
961 lruvec = NULL;
962 }
963 if (put_devmap_managed_page(&folio->page))
964 continue;
965 if (folio_put_testzero(folio))
966 free_zone_device_page(&folio->page);
967 continue;
968 }
969
970 if (!folio_put_testzero(folio))
971 continue;
972
973 if (folio_test_large(folio)) {
974 if (lruvec) {
975 unlock_page_lruvec_irqrestore(lruvec, flags);
976 lruvec = NULL;
977 }
978 __folio_put_large(folio);
979 continue;
980 }
981
982 if (folio_test_lru(folio)) {
983 struct lruvec *prev_lruvec = lruvec;
984
985 lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
986 &flags);
987 if (prev_lruvec != lruvec)
988 lock_batch = 0;
989
990 lruvec_del_folio(lruvec, folio);
991 __folio_clear_lru_flags(folio);
992 }
993
994 /*
995 * In rare cases, when truncation or holepunching raced with
996 * munlock after VM_LOCKED was cleared, Mlocked may still be
997 * found set here. This does not indicate a problem, unless
998 * "unevictable_pgs_cleared" appears worryingly large.
999 */
1000 if (unlikely(folio_test_mlocked(folio))) {
1001 __folio_clear_mlocked(folio);
1002 zone_stat_sub_folio(folio, NR_MLOCK);
1003 count_vm_event(UNEVICTABLE_PGCLEARED);
1004 }
1005
1006 list_add(&folio->lru, &pages_to_free);
1007 }
1008 if (lruvec)
1009 unlock_page_lruvec_irqrestore(lruvec, flags);
1010
1011 mem_cgroup_uncharge_list(&pages_to_free);
1012 free_unref_page_list(&pages_to_free);
1013 }
1014 EXPORT_SYMBOL(release_pages);
1015
1016 /*
1017 * The pages which we're about to release may be in the deferred lru-addition
1018 * queues. That would prevent them from really being freed right now. That's
1019 * OK from a correctness point of view but is inefficient - those pages may be
1020 * cache-warm and we want to give them back to the page allocator ASAP.
1021 *
1022 * So __pagevec_release() will drain those queues here.
1023 * folio_batch_move_lru() calls folios_put() directly to avoid
1024 * mutual recursion.
1025 */
1026 void __pagevec_release(struct pagevec *pvec)
1027 {
1028 if (!pvec->percpu_pvec_drained) {
1029 lru_add_drain();
1030 pvec->percpu_pvec_drained = true;
1031 }
1032 release_pages(pvec->pages, pagevec_count(pvec));
1033 pagevec_reinit(pvec);
1034 }
1035 EXPORT_SYMBOL(__pagevec_release);
1036
1037 /**
1038 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1039 * @fbatch: The batch to prune
1040 *
1041 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1042 * entries. This function prunes all the non-folio entries from @fbatch
1043 * without leaving holes, so that it can be passed on to folio-only batch
1044 * operations.
1045 */
1046 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1047 {
1048 unsigned int i, j;
1049
1050 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1051 struct folio *folio = fbatch->folios[i];
1052 if (!xa_is_value(folio))
1053 fbatch->folios[j++] = folio;
1054 }
1055 fbatch->nr = j;
1056 }
1057
1058 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1059 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1060 xa_mark_t tag)
1061 {
1062 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1063 PAGEVEC_SIZE, pvec->pages);
1064 return pagevec_count(pvec);
1065 }
1066 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1067
1068 /*
1069 * Perform any setup for the swap system
1070 */
1071 void __init swap_setup(void)
1072 {
1073 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1074
1075 /* Use a smaller cluster for small-memory machines */
1076 if (megs < 16)
1077 page_cluster = 2;
1078 else
1079 page_cluster = 3;
1080 /*
1081 * Right now other parts of the system means that we
1082 * _really_ don't want to cluster much more
1083 */
1084 }