]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/swap.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / swap.c
1 /*
2 * linux/mm/swap.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
14 */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/memremap.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34 #include <linux/uio.h>
35 #include <linux/hugetlb.h>
36 #include <linux/page_idle.h>
37
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/pagemap.h>
42
43 /* How many pages do we try to swap or page in/out together? */
44 int page_cluster;
45
46 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
47 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
48 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_file_pvecs);
49 static DEFINE_PER_CPU(struct pagevec, lru_lazyfree_pvecs);
50 #ifdef CONFIG_SMP
51 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
52 #endif
53
54 /*
55 * This path almost never happens for VM activity - pages are normally
56 * freed via pagevecs. But it gets used by networking.
57 */
58 static void __page_cache_release(struct page *page)
59 {
60 if (PageLRU(page)) {
61 struct zone *zone = page_zone(page);
62 struct lruvec *lruvec;
63 unsigned long flags;
64
65 spin_lock_irqsave(zone_lru_lock(zone), flags);
66 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
67 VM_BUG_ON_PAGE(!PageLRU(page), page);
68 __ClearPageLRU(page);
69 del_page_from_lru_list(page, lruvec, page_off_lru(page));
70 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
71 }
72 __ClearPageWaiters(page);
73 mem_cgroup_uncharge(page);
74 }
75
76 static void __put_single_page(struct page *page)
77 {
78 __page_cache_release(page);
79 free_unref_page(page);
80 }
81
82 static void __put_compound_page(struct page *page)
83 {
84 compound_page_dtor *dtor;
85
86 /*
87 * __page_cache_release() is supposed to be called for thp, not for
88 * hugetlb. This is because hugetlb page does never have PageLRU set
89 * (it's never listed to any LRU lists) and no memcg routines should
90 * be called for hugetlb (it has a separate hugetlb_cgroup.)
91 */
92 if (!PageHuge(page))
93 __page_cache_release(page);
94 dtor = get_compound_page_dtor(page);
95 (*dtor)(page);
96 }
97
98 void __put_page(struct page *page)
99 {
100 if (is_zone_device_page(page)) {
101 put_dev_pagemap(page->pgmap);
102
103 /*
104 * The page belongs to the device that created pgmap. Do
105 * not return it to page allocator.
106 */
107 return;
108 }
109
110 if (unlikely(PageCompound(page)))
111 __put_compound_page(page);
112 else
113 __put_single_page(page);
114 }
115 EXPORT_SYMBOL(__put_page);
116
117 /**
118 * put_pages_list() - release a list of pages
119 * @pages: list of pages threaded on page->lru
120 *
121 * Release a list of pages which are strung together on page.lru. Currently
122 * used by read_cache_pages() and related error recovery code.
123 */
124 void put_pages_list(struct list_head *pages)
125 {
126 while (!list_empty(pages)) {
127 struct page *victim;
128
129 victim = list_entry(pages->prev, struct page, lru);
130 list_del(&victim->lru);
131 put_page(victim);
132 }
133 }
134 EXPORT_SYMBOL(put_pages_list);
135
136 /*
137 * get_kernel_pages() - pin kernel pages in memory
138 * @kiov: An array of struct kvec structures
139 * @nr_segs: number of segments to pin
140 * @write: pinning for read/write, currently ignored
141 * @pages: array that receives pointers to the pages pinned.
142 * Should be at least nr_segs long.
143 *
144 * Returns number of pages pinned. This may be fewer than the number
145 * requested. If nr_pages is 0 or negative, returns 0. If no pages
146 * were pinned, returns -errno. Each page returned must be released
147 * with a put_page() call when it is finished with.
148 */
149 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
150 struct page **pages)
151 {
152 int seg;
153
154 for (seg = 0; seg < nr_segs; seg++) {
155 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
156 return seg;
157
158 pages[seg] = kmap_to_page(kiov[seg].iov_base);
159 get_page(pages[seg]);
160 }
161
162 return seg;
163 }
164 EXPORT_SYMBOL_GPL(get_kernel_pages);
165
166 /*
167 * get_kernel_page() - pin a kernel page in memory
168 * @start: starting kernel address
169 * @write: pinning for read/write, currently ignored
170 * @pages: array that receives pointer to the page pinned.
171 * Must be at least nr_segs long.
172 *
173 * Returns 1 if page is pinned. If the page was not pinned, returns
174 * -errno. The page returned must be released with a put_page() call
175 * when it is finished with.
176 */
177 int get_kernel_page(unsigned long start, int write, struct page **pages)
178 {
179 const struct kvec kiov = {
180 .iov_base = (void *)start,
181 .iov_len = PAGE_SIZE
182 };
183
184 return get_kernel_pages(&kiov, 1, write, pages);
185 }
186 EXPORT_SYMBOL_GPL(get_kernel_page);
187
188 static void pagevec_lru_move_fn(struct pagevec *pvec,
189 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
190 void *arg)
191 {
192 int i;
193 struct pglist_data *pgdat = NULL;
194 struct lruvec *lruvec;
195 unsigned long flags = 0;
196
197 for (i = 0; i < pagevec_count(pvec); i++) {
198 struct page *page = pvec->pages[i];
199 struct pglist_data *pagepgdat = page_pgdat(page);
200
201 if (pagepgdat != pgdat) {
202 if (pgdat)
203 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
204 pgdat = pagepgdat;
205 spin_lock_irqsave(&pgdat->lru_lock, flags);
206 }
207
208 lruvec = mem_cgroup_page_lruvec(page, pgdat);
209 (*move_fn)(page, lruvec, arg);
210 }
211 if (pgdat)
212 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
213 release_pages(pvec->pages, pvec->nr);
214 pagevec_reinit(pvec);
215 }
216
217 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
218 void *arg)
219 {
220 int *pgmoved = arg;
221
222 if (PageLRU(page) && !PageUnevictable(page)) {
223 del_page_from_lru_list(page, lruvec, page_lru(page));
224 ClearPageActive(page);
225 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
226 (*pgmoved)++;
227 }
228 }
229
230 /*
231 * pagevec_move_tail() must be called with IRQ disabled.
232 * Otherwise this may cause nasty races.
233 */
234 static void pagevec_move_tail(struct pagevec *pvec)
235 {
236 int pgmoved = 0;
237
238 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
239 __count_vm_events(PGROTATED, pgmoved);
240 }
241
242 /*
243 * Writeback is about to end against a page which has been marked for immediate
244 * reclaim. If it still appears to be reclaimable, move it to the tail of the
245 * inactive list.
246 */
247 void rotate_reclaimable_page(struct page *page)
248 {
249 if (!PageLocked(page) && !PageDirty(page) &&
250 !PageUnevictable(page) && PageLRU(page)) {
251 struct pagevec *pvec;
252 unsigned long flags;
253
254 get_page(page);
255 local_irq_save(flags);
256 pvec = this_cpu_ptr(&lru_rotate_pvecs);
257 if (!pagevec_add(pvec, page) || PageCompound(page))
258 pagevec_move_tail(pvec);
259 local_irq_restore(flags);
260 }
261 }
262
263 static void update_page_reclaim_stat(struct lruvec *lruvec,
264 int file, int rotated)
265 {
266 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
267
268 reclaim_stat->recent_scanned[file]++;
269 if (rotated)
270 reclaim_stat->recent_rotated[file]++;
271 }
272
273 static void __activate_page(struct page *page, struct lruvec *lruvec,
274 void *arg)
275 {
276 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
277 int file = page_is_file_cache(page);
278 int lru = page_lru_base_type(page);
279
280 del_page_from_lru_list(page, lruvec, lru);
281 SetPageActive(page);
282 lru += LRU_ACTIVE;
283 add_page_to_lru_list(page, lruvec, lru);
284 trace_mm_lru_activate(page);
285
286 __count_vm_event(PGACTIVATE);
287 update_page_reclaim_stat(lruvec, file, 1);
288 }
289 }
290
291 #ifdef CONFIG_SMP
292 static void activate_page_drain(int cpu)
293 {
294 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
295
296 if (pagevec_count(pvec))
297 pagevec_lru_move_fn(pvec, __activate_page, NULL);
298 }
299
300 static bool need_activate_page_drain(int cpu)
301 {
302 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
303 }
304
305 void activate_page(struct page *page)
306 {
307 page = compound_head(page);
308 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
309 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
310
311 get_page(page);
312 if (!pagevec_add(pvec, page) || PageCompound(page))
313 pagevec_lru_move_fn(pvec, __activate_page, NULL);
314 put_cpu_var(activate_page_pvecs);
315 }
316 }
317
318 #else
319 static inline void activate_page_drain(int cpu)
320 {
321 }
322
323 void activate_page(struct page *page)
324 {
325 struct zone *zone = page_zone(page);
326
327 page = compound_head(page);
328 spin_lock_irq(zone_lru_lock(zone));
329 __activate_page(page, mem_cgroup_page_lruvec(page, zone->zone_pgdat), NULL);
330 spin_unlock_irq(zone_lru_lock(zone));
331 }
332 #endif
333
334 static void __lru_cache_activate_page(struct page *page)
335 {
336 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
337 int i;
338
339 /*
340 * Search backwards on the optimistic assumption that the page being
341 * activated has just been added to this pagevec. Note that only
342 * the local pagevec is examined as a !PageLRU page could be in the
343 * process of being released, reclaimed, migrated or on a remote
344 * pagevec that is currently being drained. Furthermore, marking
345 * a remote pagevec's page PageActive potentially hits a race where
346 * a page is marked PageActive just after it is added to the inactive
347 * list causing accounting errors and BUG_ON checks to trigger.
348 */
349 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
350 struct page *pagevec_page = pvec->pages[i];
351
352 if (pagevec_page == page) {
353 SetPageActive(page);
354 break;
355 }
356 }
357
358 put_cpu_var(lru_add_pvec);
359 }
360
361 /*
362 * Mark a page as having seen activity.
363 *
364 * inactive,unreferenced -> inactive,referenced
365 * inactive,referenced -> active,unreferenced
366 * active,unreferenced -> active,referenced
367 *
368 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
369 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
370 */
371 void mark_page_accessed(struct page *page)
372 {
373 page = compound_head(page);
374 if (!PageActive(page) && !PageUnevictable(page) &&
375 PageReferenced(page)) {
376
377 /*
378 * If the page is on the LRU, queue it for activation via
379 * activate_page_pvecs. Otherwise, assume the page is on a
380 * pagevec, mark it active and it'll be moved to the active
381 * LRU on the next drain.
382 */
383 if (PageLRU(page))
384 activate_page(page);
385 else
386 __lru_cache_activate_page(page);
387 ClearPageReferenced(page);
388 if (page_is_file_cache(page))
389 workingset_activation(page);
390 } else if (!PageReferenced(page)) {
391 SetPageReferenced(page);
392 }
393 if (page_is_idle(page))
394 clear_page_idle(page);
395 }
396 EXPORT_SYMBOL(mark_page_accessed);
397
398 static void __lru_cache_add(struct page *page)
399 {
400 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
401
402 get_page(page);
403 if (!pagevec_add(pvec, page) || PageCompound(page))
404 __pagevec_lru_add(pvec);
405 put_cpu_var(lru_add_pvec);
406 }
407
408 /**
409 * lru_cache_add: add a page to the page lists
410 * @page: the page to add
411 */
412 void lru_cache_add_anon(struct page *page)
413 {
414 if (PageActive(page))
415 ClearPageActive(page);
416 __lru_cache_add(page);
417 }
418
419 void lru_cache_add_file(struct page *page)
420 {
421 if (PageActive(page))
422 ClearPageActive(page);
423 __lru_cache_add(page);
424 }
425 EXPORT_SYMBOL(lru_cache_add_file);
426
427 /**
428 * lru_cache_add - add a page to a page list
429 * @page: the page to be added to the LRU.
430 *
431 * Queue the page for addition to the LRU via pagevec. The decision on whether
432 * to add the page to the [in]active [file|anon] list is deferred until the
433 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
434 * have the page added to the active list using mark_page_accessed().
435 */
436 void lru_cache_add(struct page *page)
437 {
438 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
439 VM_BUG_ON_PAGE(PageLRU(page), page);
440 __lru_cache_add(page);
441 }
442
443 /**
444 * add_page_to_unevictable_list - add a page to the unevictable list
445 * @page: the page to be added to the unevictable list
446 *
447 * Add page directly to its zone's unevictable list. To avoid races with
448 * tasks that might be making the page evictable, through eg. munlock,
449 * munmap or exit, while it's not on the lru, we want to add the page
450 * while it's locked or otherwise "invisible" to other tasks. This is
451 * difficult to do when using the pagevec cache, so bypass that.
452 */
453 void add_page_to_unevictable_list(struct page *page)
454 {
455 struct pglist_data *pgdat = page_pgdat(page);
456 struct lruvec *lruvec;
457
458 spin_lock_irq(&pgdat->lru_lock);
459 lruvec = mem_cgroup_page_lruvec(page, pgdat);
460 ClearPageActive(page);
461 SetPageUnevictable(page);
462 SetPageLRU(page);
463 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
464 spin_unlock_irq(&pgdat->lru_lock);
465 }
466
467 /**
468 * lru_cache_add_active_or_unevictable
469 * @page: the page to be added to LRU
470 * @vma: vma in which page is mapped for determining reclaimability
471 *
472 * Place @page on the active or unevictable LRU list, depending on its
473 * evictability. Note that if the page is not evictable, it goes
474 * directly back onto it's zone's unevictable list, it does NOT use a
475 * per cpu pagevec.
476 */
477 void lru_cache_add_active_or_unevictable(struct page *page,
478 struct vm_area_struct *vma)
479 {
480 VM_BUG_ON_PAGE(PageLRU(page), page);
481
482 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
483 SetPageActive(page);
484 lru_cache_add(page);
485 return;
486 }
487
488 if (!TestSetPageMlocked(page)) {
489 /*
490 * We use the irq-unsafe __mod_zone_page_stat because this
491 * counter is not modified from interrupt context, and the pte
492 * lock is held(spinlock), which implies preemption disabled.
493 */
494 __mod_zone_page_state(page_zone(page), NR_MLOCK,
495 hpage_nr_pages(page));
496 count_vm_event(UNEVICTABLE_PGMLOCKED);
497 }
498 add_page_to_unevictable_list(page);
499 }
500
501 /*
502 * If the page can not be invalidated, it is moved to the
503 * inactive list to speed up its reclaim. It is moved to the
504 * head of the list, rather than the tail, to give the flusher
505 * threads some time to write it out, as this is much more
506 * effective than the single-page writeout from reclaim.
507 *
508 * If the page isn't page_mapped and dirty/writeback, the page
509 * could reclaim asap using PG_reclaim.
510 *
511 * 1. active, mapped page -> none
512 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
513 * 3. inactive, mapped page -> none
514 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
515 * 5. inactive, clean -> inactive, tail
516 * 6. Others -> none
517 *
518 * In 4, why it moves inactive's head, the VM expects the page would
519 * be write it out by flusher threads as this is much more effective
520 * than the single-page writeout from reclaim.
521 */
522 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
523 void *arg)
524 {
525 int lru, file;
526 bool active;
527
528 if (!PageLRU(page))
529 return;
530
531 if (PageUnevictable(page))
532 return;
533
534 /* Some processes are using the page */
535 if (page_mapped(page))
536 return;
537
538 active = PageActive(page);
539 file = page_is_file_cache(page);
540 lru = page_lru_base_type(page);
541
542 del_page_from_lru_list(page, lruvec, lru + active);
543 ClearPageActive(page);
544 ClearPageReferenced(page);
545 add_page_to_lru_list(page, lruvec, lru);
546
547 if (PageWriteback(page) || PageDirty(page)) {
548 /*
549 * PG_reclaim could be raced with end_page_writeback
550 * It can make readahead confusing. But race window
551 * is _really_ small and it's non-critical problem.
552 */
553 SetPageReclaim(page);
554 } else {
555 /*
556 * The page's writeback ends up during pagevec
557 * We moves tha page into tail of inactive.
558 */
559 list_move_tail(&page->lru, &lruvec->lists[lru]);
560 __count_vm_event(PGROTATED);
561 }
562
563 if (active)
564 __count_vm_event(PGDEACTIVATE);
565 update_page_reclaim_stat(lruvec, file, 0);
566 }
567
568
569 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
570 void *arg)
571 {
572 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
573 !PageSwapCache(page) && !PageUnevictable(page)) {
574 bool active = PageActive(page);
575
576 del_page_from_lru_list(page, lruvec,
577 LRU_INACTIVE_ANON + active);
578 ClearPageActive(page);
579 ClearPageReferenced(page);
580 /*
581 * lazyfree pages are clean anonymous pages. They have
582 * SwapBacked flag cleared to distinguish normal anonymous
583 * pages
584 */
585 ClearPageSwapBacked(page);
586 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
587
588 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
589 count_memcg_page_event(page, PGLAZYFREE);
590 update_page_reclaim_stat(lruvec, 1, 0);
591 }
592 }
593
594 /*
595 * Drain pages out of the cpu's pagevecs.
596 * Either "cpu" is the current CPU, and preemption has already been
597 * disabled; or "cpu" is being hot-unplugged, and is already dead.
598 */
599 void lru_add_drain_cpu(int cpu)
600 {
601 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
602
603 if (pagevec_count(pvec))
604 __pagevec_lru_add(pvec);
605
606 pvec = &per_cpu(lru_rotate_pvecs, cpu);
607 if (pagevec_count(pvec)) {
608 unsigned long flags;
609
610 /* No harm done if a racing interrupt already did this */
611 local_irq_save(flags);
612 pagevec_move_tail(pvec);
613 local_irq_restore(flags);
614 }
615
616 pvec = &per_cpu(lru_deactivate_file_pvecs, cpu);
617 if (pagevec_count(pvec))
618 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
619
620 pvec = &per_cpu(lru_lazyfree_pvecs, cpu);
621 if (pagevec_count(pvec))
622 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
623
624 activate_page_drain(cpu);
625 }
626
627 /**
628 * deactivate_file_page - forcefully deactivate a file page
629 * @page: page to deactivate
630 *
631 * This function hints the VM that @page is a good reclaim candidate,
632 * for example if its invalidation fails due to the page being dirty
633 * or under writeback.
634 */
635 void deactivate_file_page(struct page *page)
636 {
637 /*
638 * In a workload with many unevictable page such as mprotect,
639 * unevictable page deactivation for accelerating reclaim is pointless.
640 */
641 if (PageUnevictable(page))
642 return;
643
644 if (likely(get_page_unless_zero(page))) {
645 struct pagevec *pvec = &get_cpu_var(lru_deactivate_file_pvecs);
646
647 if (!pagevec_add(pvec, page) || PageCompound(page))
648 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
649 put_cpu_var(lru_deactivate_file_pvecs);
650 }
651 }
652
653 /**
654 * mark_page_lazyfree - make an anon page lazyfree
655 * @page: page to deactivate
656 *
657 * mark_page_lazyfree() moves @page to the inactive file list.
658 * This is done to accelerate the reclaim of @page.
659 */
660 void mark_page_lazyfree(struct page *page)
661 {
662 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
663 !PageSwapCache(page) && !PageUnevictable(page)) {
664 struct pagevec *pvec = &get_cpu_var(lru_lazyfree_pvecs);
665
666 get_page(page);
667 if (!pagevec_add(pvec, page) || PageCompound(page))
668 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
669 put_cpu_var(lru_lazyfree_pvecs);
670 }
671 }
672
673 void lru_add_drain(void)
674 {
675 lru_add_drain_cpu(get_cpu());
676 put_cpu();
677 }
678
679 #ifdef CONFIG_SMP
680
681 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
682
683 static void lru_add_drain_per_cpu(struct work_struct *dummy)
684 {
685 lru_add_drain();
686 }
687 #else
688 void lru_add_drain_all(void)
689 {
690 lru_add_drain();
691 }
692 #endif
693
694 void lru_add_drain_all_cpuslocked(void)
695 {
696 static DEFINE_MUTEX(lock);
697 static struct cpumask has_work;
698 int cpu;
699
700 /*
701 * Make sure nobody triggers this path before mm_percpu_wq is fully
702 * initialized.
703 */
704 if (WARN_ON(!mm_percpu_wq))
705 return;
706
707 mutex_lock(&lock);
708 cpumask_clear(&has_work);
709
710 for_each_online_cpu(cpu) {
711 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
712
713 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
714 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
715 pagevec_count(&per_cpu(lru_deactivate_file_pvecs, cpu)) ||
716 pagevec_count(&per_cpu(lru_lazyfree_pvecs, cpu)) ||
717 need_activate_page_drain(cpu)) {
718 INIT_WORK(work, lru_add_drain_per_cpu);
719 queue_work_on(cpu, mm_percpu_wq, work);
720 cpumask_set_cpu(cpu, &has_work);
721 }
722 }
723
724 for_each_cpu(cpu, &has_work)
725 flush_work(&per_cpu(lru_add_drain_work, cpu));
726
727 mutex_unlock(&lock);
728 }
729
730 void lru_add_drain_all(void)
731 {
732 get_online_cpus();
733 lru_add_drain_all_cpuslocked();
734 put_online_cpus();
735 }
736
737 /**
738 * release_pages - batched put_page()
739 * @pages: array of pages to release
740 * @nr: number of pages
741 * @cold: whether the pages are cache cold
742 *
743 * Decrement the reference count on all the pages in @pages. If it
744 * fell to zero, remove the page from the LRU and free it.
745 */
746 void release_pages(struct page **pages, int nr)
747 {
748 int i;
749 LIST_HEAD(pages_to_free);
750 struct pglist_data *locked_pgdat = NULL;
751 struct lruvec *lruvec;
752 unsigned long uninitialized_var(flags);
753 unsigned int uninitialized_var(lock_batch);
754
755 for (i = 0; i < nr; i++) {
756 struct page *page = pages[i];
757
758 /*
759 * Make sure the IRQ-safe lock-holding time does not get
760 * excessive with a continuous string of pages from the
761 * same pgdat. The lock is held only if pgdat != NULL.
762 */
763 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
764 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
765 locked_pgdat = NULL;
766 }
767
768 if (is_huge_zero_page(page))
769 continue;
770
771 /* Device public page can not be huge page */
772 if (is_device_public_page(page)) {
773 if (locked_pgdat) {
774 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
775 flags);
776 locked_pgdat = NULL;
777 }
778 put_zone_device_private_or_public_page(page);
779 continue;
780 }
781
782 page = compound_head(page);
783 if (!put_page_testzero(page))
784 continue;
785
786 if (PageCompound(page)) {
787 if (locked_pgdat) {
788 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
789 locked_pgdat = NULL;
790 }
791 __put_compound_page(page);
792 continue;
793 }
794
795 if (PageLRU(page)) {
796 struct pglist_data *pgdat = page_pgdat(page);
797
798 if (pgdat != locked_pgdat) {
799 if (locked_pgdat)
800 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
801 flags);
802 lock_batch = 0;
803 locked_pgdat = pgdat;
804 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
805 }
806
807 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
808 VM_BUG_ON_PAGE(!PageLRU(page), page);
809 __ClearPageLRU(page);
810 del_page_from_lru_list(page, lruvec, page_off_lru(page));
811 }
812
813 /* Clear Active bit in case of parallel mark_page_accessed */
814 __ClearPageActive(page);
815 __ClearPageWaiters(page);
816
817 list_add(&page->lru, &pages_to_free);
818 }
819 if (locked_pgdat)
820 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
821
822 mem_cgroup_uncharge_list(&pages_to_free);
823 free_unref_page_list(&pages_to_free);
824 }
825 EXPORT_SYMBOL(release_pages);
826
827 /*
828 * The pages which we're about to release may be in the deferred lru-addition
829 * queues. That would prevent them from really being freed right now. That's
830 * OK from a correctness point of view but is inefficient - those pages may be
831 * cache-warm and we want to give them back to the page allocator ASAP.
832 *
833 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
834 * and __pagevec_lru_add_active() call release_pages() directly to avoid
835 * mutual recursion.
836 */
837 void __pagevec_release(struct pagevec *pvec)
838 {
839 if (!pvec->percpu_pvec_drained) {
840 lru_add_drain();
841 pvec->percpu_pvec_drained = true;
842 }
843 release_pages(pvec->pages, pagevec_count(pvec));
844 pagevec_reinit(pvec);
845 }
846 EXPORT_SYMBOL(__pagevec_release);
847
848 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
849 /* used by __split_huge_page_refcount() */
850 void lru_add_page_tail(struct page *page, struct page *page_tail,
851 struct lruvec *lruvec, struct list_head *list)
852 {
853 const int file = 0;
854
855 VM_BUG_ON_PAGE(!PageHead(page), page);
856 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
857 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
858 VM_BUG_ON(NR_CPUS != 1 &&
859 !spin_is_locked(&lruvec_pgdat(lruvec)->lru_lock));
860
861 if (!list)
862 SetPageLRU(page_tail);
863
864 if (likely(PageLRU(page)))
865 list_add_tail(&page_tail->lru, &page->lru);
866 else if (list) {
867 /* page reclaim is reclaiming a huge page */
868 get_page(page_tail);
869 list_add_tail(&page_tail->lru, list);
870 } else {
871 struct list_head *list_head;
872 /*
873 * Head page has not yet been counted, as an hpage,
874 * so we must account for each subpage individually.
875 *
876 * Use the standard add function to put page_tail on the list,
877 * but then correct its position so they all end up in order.
878 */
879 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
880 list_head = page_tail->lru.prev;
881 list_move_tail(&page_tail->lru, list_head);
882 }
883
884 if (!PageUnevictable(page))
885 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
886 }
887 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
888
889 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
890 void *arg)
891 {
892 int file = page_is_file_cache(page);
893 int active = PageActive(page);
894 enum lru_list lru = page_lru(page);
895
896 VM_BUG_ON_PAGE(PageLRU(page), page);
897
898 SetPageLRU(page);
899 add_page_to_lru_list(page, lruvec, lru);
900 update_page_reclaim_stat(lruvec, file, active);
901 trace_mm_lru_insertion(page, lru);
902 }
903
904 /*
905 * Add the passed pages to the LRU, then drop the caller's refcount
906 * on them. Reinitialises the caller's pagevec.
907 */
908 void __pagevec_lru_add(struct pagevec *pvec)
909 {
910 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
911 }
912 EXPORT_SYMBOL(__pagevec_lru_add);
913
914 /**
915 * pagevec_lookup_entries - gang pagecache lookup
916 * @pvec: Where the resulting entries are placed
917 * @mapping: The address_space to search
918 * @start: The starting entry index
919 * @nr_entries: The maximum number of entries
920 * @indices: The cache indices corresponding to the entries in @pvec
921 *
922 * pagevec_lookup_entries() will search for and return a group of up
923 * to @nr_entries pages and shadow entries in the mapping. All
924 * entries are placed in @pvec. pagevec_lookup_entries() takes a
925 * reference against actual pages in @pvec.
926 *
927 * The search returns a group of mapping-contiguous entries with
928 * ascending indexes. There may be holes in the indices due to
929 * not-present entries.
930 *
931 * pagevec_lookup_entries() returns the number of entries which were
932 * found.
933 */
934 unsigned pagevec_lookup_entries(struct pagevec *pvec,
935 struct address_space *mapping,
936 pgoff_t start, unsigned nr_pages,
937 pgoff_t *indices)
938 {
939 pvec->nr = find_get_entries(mapping, start, nr_pages,
940 pvec->pages, indices);
941 return pagevec_count(pvec);
942 }
943
944 /**
945 * pagevec_remove_exceptionals - pagevec exceptionals pruning
946 * @pvec: The pagevec to prune
947 *
948 * pagevec_lookup_entries() fills both pages and exceptional radix
949 * tree entries into the pagevec. This function prunes all
950 * exceptionals from @pvec without leaving holes, so that it can be
951 * passed on to page-only pagevec operations.
952 */
953 void pagevec_remove_exceptionals(struct pagevec *pvec)
954 {
955 int i, j;
956
957 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
958 struct page *page = pvec->pages[i];
959 if (!radix_tree_exceptional_entry(page))
960 pvec->pages[j++] = page;
961 }
962 pvec->nr = j;
963 }
964
965 /**
966 * pagevec_lookup_range - gang pagecache lookup
967 * @pvec: Where the resulting pages are placed
968 * @mapping: The address_space to search
969 * @start: The starting page index
970 * @end: The final page index
971 * @nr_pages: The maximum number of pages
972 *
973 * pagevec_lookup_range() will search for and return a group of up to @nr_pages
974 * pages in the mapping starting from index @start and upto index @end
975 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
976 * reference against the pages in @pvec.
977 *
978 * The search returns a group of mapping-contiguous pages with ascending
979 * indexes. There may be holes in the indices due to not-present pages. We
980 * also update @start to index the next page for the traversal.
981 *
982 * pagevec_lookup_range() returns the number of pages which were found. If this
983 * number is smaller than @nr_pages, the end of specified range has been
984 * reached.
985 */
986 unsigned pagevec_lookup_range(struct pagevec *pvec,
987 struct address_space *mapping, pgoff_t *start, pgoff_t end)
988 {
989 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
990 pvec->pages);
991 return pagevec_count(pvec);
992 }
993 EXPORT_SYMBOL(pagevec_lookup_range);
994
995 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
996 struct address_space *mapping, pgoff_t *index, pgoff_t end,
997 int tag)
998 {
999 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1000 PAGEVEC_SIZE, pvec->pages);
1001 return pagevec_count(pvec);
1002 }
1003 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1004
1005 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1006 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1007 int tag, unsigned max_pages)
1008 {
1009 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1010 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1011 return pagevec_count(pvec);
1012 }
1013 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1014 /*
1015 * Perform any setup for the swap system
1016 */
1017 void __init swap_setup(void)
1018 {
1019 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
1020
1021 /* Use a smaller cluster for small-memory machines */
1022 if (megs < 16)
1023 page_cluster = 2;
1024 else
1025 page_cluster = 3;
1026 /*
1027 * Right now other parts of the system means that we
1028 * _really_ don't want to cluster much more
1029 */
1030 }