]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/swap.c
Merge branch 'pm-opp'
[mirror_ubuntu-hirsute-kernel.git] / mm / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
15 */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39
40 #include "internal.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
44
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
47
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
52 };
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
55 };
56
57 /*
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
60 */
61 struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68 struct pagevec activate_page;
69 #endif
70 };
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
73 };
74
75 /*
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
78 */
79 static void __page_cache_release(struct page *page)
80 {
81 if (PageLRU(page)) {
82 pg_data_t *pgdat = page_pgdat(page);
83 struct lruvec *lruvec;
84 unsigned long flags;
85
86 spin_lock_irqsave(&pgdat->lru_lock, flags);
87 lruvec = mem_cgroup_page_lruvec(page, pgdat);
88 VM_BUG_ON_PAGE(!PageLRU(page), page);
89 __ClearPageLRU(page);
90 del_page_from_lru_list(page, lruvec, page_off_lru(page));
91 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
92 }
93 __ClearPageWaiters(page);
94 }
95
96 static void __put_single_page(struct page *page)
97 {
98 __page_cache_release(page);
99 mem_cgroup_uncharge(page);
100 free_unref_page(page);
101 }
102
103 static void __put_compound_page(struct page *page)
104 {
105 compound_page_dtor *dtor;
106
107 /*
108 * __page_cache_release() is supposed to be called for thp, not for
109 * hugetlb. This is because hugetlb page does never have PageLRU set
110 * (it's never listed to any LRU lists) and no memcg routines should
111 * be called for hugetlb (it has a separate hugetlb_cgroup.)
112 */
113 if (!PageHuge(page))
114 __page_cache_release(page);
115 dtor = get_compound_page_dtor(page);
116 (*dtor)(page);
117 }
118
119 void __put_page(struct page *page)
120 {
121 if (is_zone_device_page(page)) {
122 put_dev_pagemap(page->pgmap);
123
124 /*
125 * The page belongs to the device that created pgmap. Do
126 * not return it to page allocator.
127 */
128 return;
129 }
130
131 if (unlikely(PageCompound(page)))
132 __put_compound_page(page);
133 else
134 __put_single_page(page);
135 }
136 EXPORT_SYMBOL(__put_page);
137
138 /**
139 * put_pages_list() - release a list of pages
140 * @pages: list of pages threaded on page->lru
141 *
142 * Release a list of pages which are strung together on page.lru. Currently
143 * used by read_cache_pages() and related error recovery code.
144 */
145 void put_pages_list(struct list_head *pages)
146 {
147 while (!list_empty(pages)) {
148 struct page *victim;
149
150 victim = lru_to_page(pages);
151 list_del(&victim->lru);
152 put_page(victim);
153 }
154 }
155 EXPORT_SYMBOL(put_pages_list);
156
157 /*
158 * get_kernel_pages() - pin kernel pages in memory
159 * @kiov: An array of struct kvec structures
160 * @nr_segs: number of segments to pin
161 * @write: pinning for read/write, currently ignored
162 * @pages: array that receives pointers to the pages pinned.
163 * Should be at least nr_segs long.
164 *
165 * Returns number of pages pinned. This may be fewer than the number
166 * requested. If nr_pages is 0 or negative, returns 0. If no pages
167 * were pinned, returns -errno. Each page returned must be released
168 * with a put_page() call when it is finished with.
169 */
170 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
171 struct page **pages)
172 {
173 int seg;
174
175 for (seg = 0; seg < nr_segs; seg++) {
176 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
177 return seg;
178
179 pages[seg] = kmap_to_page(kiov[seg].iov_base);
180 get_page(pages[seg]);
181 }
182
183 return seg;
184 }
185 EXPORT_SYMBOL_GPL(get_kernel_pages);
186
187 /*
188 * get_kernel_page() - pin a kernel page in memory
189 * @start: starting kernel address
190 * @write: pinning for read/write, currently ignored
191 * @pages: array that receives pointer to the page pinned.
192 * Must be at least nr_segs long.
193 *
194 * Returns 1 if page is pinned. If the page was not pinned, returns
195 * -errno. The page returned must be released with a put_page() call
196 * when it is finished with.
197 */
198 int get_kernel_page(unsigned long start, int write, struct page **pages)
199 {
200 const struct kvec kiov = {
201 .iov_base = (void *)start,
202 .iov_len = PAGE_SIZE
203 };
204
205 return get_kernel_pages(&kiov, 1, write, pages);
206 }
207 EXPORT_SYMBOL_GPL(get_kernel_page);
208
209 static void pagevec_lru_move_fn(struct pagevec *pvec,
210 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
211 void *arg)
212 {
213 int i;
214 struct pglist_data *pgdat = NULL;
215 struct lruvec *lruvec;
216 unsigned long flags = 0;
217
218 for (i = 0; i < pagevec_count(pvec); i++) {
219 struct page *page = pvec->pages[i];
220 struct pglist_data *pagepgdat = page_pgdat(page);
221
222 if (pagepgdat != pgdat) {
223 if (pgdat)
224 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
225 pgdat = pagepgdat;
226 spin_lock_irqsave(&pgdat->lru_lock, flags);
227 }
228
229 lruvec = mem_cgroup_page_lruvec(page, pgdat);
230 (*move_fn)(page, lruvec, arg);
231 }
232 if (pgdat)
233 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
234 release_pages(pvec->pages, pvec->nr);
235 pagevec_reinit(pvec);
236 }
237
238 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
239 void *arg)
240 {
241 int *pgmoved = arg;
242
243 if (PageLRU(page) && !PageUnevictable(page)) {
244 del_page_from_lru_list(page, lruvec, page_lru(page));
245 ClearPageActive(page);
246 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
247 (*pgmoved)++;
248 }
249 }
250
251 /*
252 * pagevec_move_tail() must be called with IRQ disabled.
253 * Otherwise this may cause nasty races.
254 */
255 static void pagevec_move_tail(struct pagevec *pvec)
256 {
257 int pgmoved = 0;
258
259 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
260 __count_vm_events(PGROTATED, pgmoved);
261 }
262
263 /*
264 * Writeback is about to end against a page which has been marked for immediate
265 * reclaim. If it still appears to be reclaimable, move it to the tail of the
266 * inactive list.
267 */
268 void rotate_reclaimable_page(struct page *page)
269 {
270 if (!PageLocked(page) && !PageDirty(page) &&
271 !PageUnevictable(page) && PageLRU(page)) {
272 struct pagevec *pvec;
273 unsigned long flags;
274
275 get_page(page);
276 local_lock_irqsave(&lru_rotate.lock, flags);
277 pvec = this_cpu_ptr(&lru_rotate.pvec);
278 if (!pagevec_add(pvec, page) || PageCompound(page))
279 pagevec_move_tail(pvec);
280 local_unlock_irqrestore(&lru_rotate.lock, flags);
281 }
282 }
283
284 static void update_page_reclaim_stat(struct lruvec *lruvec,
285 int file, int rotated)
286 {
287 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
288
289 reclaim_stat->recent_scanned[file]++;
290 if (rotated)
291 reclaim_stat->recent_rotated[file]++;
292 }
293
294 static void __activate_page(struct page *page, struct lruvec *lruvec,
295 void *arg)
296 {
297 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
298 int file = page_is_file_lru(page);
299 int lru = page_lru_base_type(page);
300
301 del_page_from_lru_list(page, lruvec, lru);
302 SetPageActive(page);
303 lru += LRU_ACTIVE;
304 add_page_to_lru_list(page, lruvec, lru);
305 trace_mm_lru_activate(page);
306
307 __count_vm_event(PGACTIVATE);
308 update_page_reclaim_stat(lruvec, file, 1);
309 }
310 }
311
312 #ifdef CONFIG_SMP
313 static void activate_page_drain(int cpu)
314 {
315 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
316
317 if (pagevec_count(pvec))
318 pagevec_lru_move_fn(pvec, __activate_page, NULL);
319 }
320
321 static bool need_activate_page_drain(int cpu)
322 {
323 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
324 }
325
326 void activate_page(struct page *page)
327 {
328 page = compound_head(page);
329 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
330 struct pagevec *pvec;
331
332 local_lock(&lru_pvecs.lock);
333 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
334 get_page(page);
335 if (!pagevec_add(pvec, page) || PageCompound(page))
336 pagevec_lru_move_fn(pvec, __activate_page, NULL);
337 local_unlock(&lru_pvecs.lock);
338 }
339 }
340
341 #else
342 static inline void activate_page_drain(int cpu)
343 {
344 }
345
346 void activate_page(struct page *page)
347 {
348 pg_data_t *pgdat = page_pgdat(page);
349
350 page = compound_head(page);
351 spin_lock_irq(&pgdat->lru_lock);
352 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
353 spin_unlock_irq(&pgdat->lru_lock);
354 }
355 #endif
356
357 static void __lru_cache_activate_page(struct page *page)
358 {
359 struct pagevec *pvec;
360 int i;
361
362 local_lock(&lru_pvecs.lock);
363 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
364
365 /*
366 * Search backwards on the optimistic assumption that the page being
367 * activated has just been added to this pagevec. Note that only
368 * the local pagevec is examined as a !PageLRU page could be in the
369 * process of being released, reclaimed, migrated or on a remote
370 * pagevec that is currently being drained. Furthermore, marking
371 * a remote pagevec's page PageActive potentially hits a race where
372 * a page is marked PageActive just after it is added to the inactive
373 * list causing accounting errors and BUG_ON checks to trigger.
374 */
375 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
376 struct page *pagevec_page = pvec->pages[i];
377
378 if (pagevec_page == page) {
379 SetPageActive(page);
380 break;
381 }
382 }
383
384 local_unlock(&lru_pvecs.lock);
385 }
386
387 /*
388 * Mark a page as having seen activity.
389 *
390 * inactive,unreferenced -> inactive,referenced
391 * inactive,referenced -> active,unreferenced
392 * active,unreferenced -> active,referenced
393 *
394 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
395 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
396 */
397 void mark_page_accessed(struct page *page)
398 {
399 page = compound_head(page);
400
401 if (!PageReferenced(page)) {
402 SetPageReferenced(page);
403 } else if (PageUnevictable(page)) {
404 /*
405 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
406 * this list is never rotated or maintained, so marking an
407 * evictable page accessed has no effect.
408 */
409 } else if (!PageActive(page)) {
410 /*
411 * If the page is on the LRU, queue it for activation via
412 * lru_pvecs.activate_page. Otherwise, assume the page is on a
413 * pagevec, mark it active and it'll be moved to the active
414 * LRU on the next drain.
415 */
416 if (PageLRU(page))
417 activate_page(page);
418 else
419 __lru_cache_activate_page(page);
420 ClearPageReferenced(page);
421 if (page_is_file_lru(page))
422 workingset_activation(page);
423 }
424 if (page_is_idle(page))
425 clear_page_idle(page);
426 }
427 EXPORT_SYMBOL(mark_page_accessed);
428
429 static void __lru_cache_add(struct page *page)
430 {
431 struct pagevec *pvec;
432
433 local_lock(&lru_pvecs.lock);
434 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
435 get_page(page);
436 if (!pagevec_add(pvec, page) || PageCompound(page))
437 __pagevec_lru_add(pvec);
438 local_unlock(&lru_pvecs.lock);
439 }
440
441 /**
442 * lru_cache_add_anon - add a page to the page lists
443 * @page: the page to add
444 */
445 void lru_cache_add_anon(struct page *page)
446 {
447 if (PageActive(page))
448 ClearPageActive(page);
449 __lru_cache_add(page);
450 }
451
452 void lru_cache_add_file(struct page *page)
453 {
454 if (PageActive(page))
455 ClearPageActive(page);
456 __lru_cache_add(page);
457 }
458 EXPORT_SYMBOL(lru_cache_add_file);
459
460 /**
461 * lru_cache_add - add a page to a page list
462 * @page: the page to be added to the LRU.
463 *
464 * Queue the page for addition to the LRU via pagevec. The decision on whether
465 * to add the page to the [in]active [file|anon] list is deferred until the
466 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
467 * have the page added to the active list using mark_page_accessed().
468 */
469 void lru_cache_add(struct page *page)
470 {
471 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
472 VM_BUG_ON_PAGE(PageLRU(page), page);
473 __lru_cache_add(page);
474 }
475
476 /**
477 * lru_cache_add_active_or_unevictable
478 * @page: the page to be added to LRU
479 * @vma: vma in which page is mapped for determining reclaimability
480 *
481 * Place @page on the active or unevictable LRU list, depending on its
482 * evictability. Note that if the page is not evictable, it goes
483 * directly back onto it's zone's unevictable list, it does NOT use a
484 * per cpu pagevec.
485 */
486 void lru_cache_add_active_or_unevictable(struct page *page,
487 struct vm_area_struct *vma)
488 {
489 VM_BUG_ON_PAGE(PageLRU(page), page);
490
491 if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
492 SetPageActive(page);
493 else if (!TestSetPageMlocked(page)) {
494 /*
495 * We use the irq-unsafe __mod_zone_page_stat because this
496 * counter is not modified from interrupt context, and the pte
497 * lock is held(spinlock), which implies preemption disabled.
498 */
499 __mod_zone_page_state(page_zone(page), NR_MLOCK,
500 hpage_nr_pages(page));
501 count_vm_event(UNEVICTABLE_PGMLOCKED);
502 }
503 lru_cache_add(page);
504 }
505
506 /*
507 * If the page can not be invalidated, it is moved to the
508 * inactive list to speed up its reclaim. It is moved to the
509 * head of the list, rather than the tail, to give the flusher
510 * threads some time to write it out, as this is much more
511 * effective than the single-page writeout from reclaim.
512 *
513 * If the page isn't page_mapped and dirty/writeback, the page
514 * could reclaim asap using PG_reclaim.
515 *
516 * 1. active, mapped page -> none
517 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
518 * 3. inactive, mapped page -> none
519 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
520 * 5. inactive, clean -> inactive, tail
521 * 6. Others -> none
522 *
523 * In 4, why it moves inactive's head, the VM expects the page would
524 * be write it out by flusher threads as this is much more effective
525 * than the single-page writeout from reclaim.
526 */
527 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
528 void *arg)
529 {
530 int lru, file;
531 bool active;
532
533 if (!PageLRU(page))
534 return;
535
536 if (PageUnevictable(page))
537 return;
538
539 /* Some processes are using the page */
540 if (page_mapped(page))
541 return;
542
543 active = PageActive(page);
544 file = page_is_file_lru(page);
545 lru = page_lru_base_type(page);
546
547 del_page_from_lru_list(page, lruvec, lru + active);
548 ClearPageActive(page);
549 ClearPageReferenced(page);
550
551 if (PageWriteback(page) || PageDirty(page)) {
552 /*
553 * PG_reclaim could be raced with end_page_writeback
554 * It can make readahead confusing. But race window
555 * is _really_ small and it's non-critical problem.
556 */
557 add_page_to_lru_list(page, lruvec, lru);
558 SetPageReclaim(page);
559 } else {
560 /*
561 * The page's writeback ends up during pagevec
562 * We moves tha page into tail of inactive.
563 */
564 add_page_to_lru_list_tail(page, lruvec, lru);
565 __count_vm_event(PGROTATED);
566 }
567
568 if (active)
569 __count_vm_event(PGDEACTIVATE);
570 update_page_reclaim_stat(lruvec, file, 0);
571 }
572
573 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
574 void *arg)
575 {
576 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
577 int file = page_is_file_lru(page);
578 int lru = page_lru_base_type(page);
579
580 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
581 ClearPageActive(page);
582 ClearPageReferenced(page);
583 add_page_to_lru_list(page, lruvec, lru);
584
585 __count_vm_events(PGDEACTIVATE, hpage_nr_pages(page));
586 update_page_reclaim_stat(lruvec, file, 0);
587 }
588 }
589
590 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
591 void *arg)
592 {
593 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
594 !PageSwapCache(page) && !PageUnevictable(page)) {
595 bool active = PageActive(page);
596
597 del_page_from_lru_list(page, lruvec,
598 LRU_INACTIVE_ANON + active);
599 ClearPageActive(page);
600 ClearPageReferenced(page);
601 /*
602 * Lazyfree pages are clean anonymous pages. They have
603 * PG_swapbacked flag cleared, to distinguish them from normal
604 * anonymous pages
605 */
606 ClearPageSwapBacked(page);
607 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
608
609 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
610 count_memcg_page_event(page, PGLAZYFREE);
611 update_page_reclaim_stat(lruvec, 1, 0);
612 }
613 }
614
615 /*
616 * Drain pages out of the cpu's pagevecs.
617 * Either "cpu" is the current CPU, and preemption has already been
618 * disabled; or "cpu" is being hot-unplugged, and is already dead.
619 */
620 void lru_add_drain_cpu(int cpu)
621 {
622 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
623
624 if (pagevec_count(pvec))
625 __pagevec_lru_add(pvec);
626
627 pvec = &per_cpu(lru_rotate.pvec, cpu);
628 if (pagevec_count(pvec)) {
629 unsigned long flags;
630
631 /* No harm done if a racing interrupt already did this */
632 local_lock_irqsave(&lru_rotate.lock, flags);
633 pagevec_move_tail(pvec);
634 local_unlock_irqrestore(&lru_rotate.lock, flags);
635 }
636
637 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
638 if (pagevec_count(pvec))
639 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
640
641 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
642 if (pagevec_count(pvec))
643 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
644
645 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
646 if (pagevec_count(pvec))
647 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
648
649 activate_page_drain(cpu);
650 }
651
652 /**
653 * deactivate_file_page - forcefully deactivate a file page
654 * @page: page to deactivate
655 *
656 * This function hints the VM that @page is a good reclaim candidate,
657 * for example if its invalidation fails due to the page being dirty
658 * or under writeback.
659 */
660 void deactivate_file_page(struct page *page)
661 {
662 /*
663 * In a workload with many unevictable page such as mprotect,
664 * unevictable page deactivation for accelerating reclaim is pointless.
665 */
666 if (PageUnevictable(page))
667 return;
668
669 if (likely(get_page_unless_zero(page))) {
670 struct pagevec *pvec;
671
672 local_lock(&lru_pvecs.lock);
673 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
674
675 if (!pagevec_add(pvec, page) || PageCompound(page))
676 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
677 local_unlock(&lru_pvecs.lock);
678 }
679 }
680
681 /*
682 * deactivate_page - deactivate a page
683 * @page: page to deactivate
684 *
685 * deactivate_page() moves @page to the inactive list if @page was on the active
686 * list and was not an unevictable page. This is done to accelerate the reclaim
687 * of @page.
688 */
689 void deactivate_page(struct page *page)
690 {
691 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
692 struct pagevec *pvec;
693
694 local_lock(&lru_pvecs.lock);
695 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
696 get_page(page);
697 if (!pagevec_add(pvec, page) || PageCompound(page))
698 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
699 local_unlock(&lru_pvecs.lock);
700 }
701 }
702
703 /**
704 * mark_page_lazyfree - make an anon page lazyfree
705 * @page: page to deactivate
706 *
707 * mark_page_lazyfree() moves @page to the inactive file list.
708 * This is done to accelerate the reclaim of @page.
709 */
710 void mark_page_lazyfree(struct page *page)
711 {
712 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
713 !PageSwapCache(page) && !PageUnevictable(page)) {
714 struct pagevec *pvec;
715
716 local_lock(&lru_pvecs.lock);
717 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
718 get_page(page);
719 if (!pagevec_add(pvec, page) || PageCompound(page))
720 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
721 local_unlock(&lru_pvecs.lock);
722 }
723 }
724
725 void lru_add_drain(void)
726 {
727 local_lock(&lru_pvecs.lock);
728 lru_add_drain_cpu(smp_processor_id());
729 local_unlock(&lru_pvecs.lock);
730 }
731
732 void lru_add_drain_cpu_zone(struct zone *zone)
733 {
734 local_lock(&lru_pvecs.lock);
735 lru_add_drain_cpu(smp_processor_id());
736 drain_local_pages(zone);
737 local_unlock(&lru_pvecs.lock);
738 }
739
740 #ifdef CONFIG_SMP
741
742 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
743
744 static void lru_add_drain_per_cpu(struct work_struct *dummy)
745 {
746 lru_add_drain();
747 }
748
749 /*
750 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
751 * kworkers being shut down before our page_alloc_cpu_dead callback is
752 * executed on the offlined cpu.
753 * Calling this function with cpu hotplug locks held can actually lead
754 * to obscure indirect dependencies via WQ context.
755 */
756 void lru_add_drain_all(void)
757 {
758 static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
759 static DEFINE_MUTEX(lock);
760 static struct cpumask has_work;
761 int cpu, seq;
762
763 /*
764 * Make sure nobody triggers this path before mm_percpu_wq is fully
765 * initialized.
766 */
767 if (WARN_ON(!mm_percpu_wq))
768 return;
769
770 seq = raw_read_seqcount_latch(&seqcount);
771
772 mutex_lock(&lock);
773
774 /*
775 * Piggyback on drain started and finished while we waited for lock:
776 * all pages pended at the time of our enter were drained from vectors.
777 */
778 if (__read_seqcount_retry(&seqcount, seq))
779 goto done;
780
781 raw_write_seqcount_latch(&seqcount);
782
783 cpumask_clear(&has_work);
784
785 for_each_online_cpu(cpu) {
786 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
787
788 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
789 pagevec_count(&per_cpu(lru_rotate.pvec, cpu)) ||
790 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
791 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
792 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
793 need_activate_page_drain(cpu)) {
794 INIT_WORK(work, lru_add_drain_per_cpu);
795 queue_work_on(cpu, mm_percpu_wq, work);
796 cpumask_set_cpu(cpu, &has_work);
797 }
798 }
799
800 for_each_cpu(cpu, &has_work)
801 flush_work(&per_cpu(lru_add_drain_work, cpu));
802
803 done:
804 mutex_unlock(&lock);
805 }
806 #else
807 void lru_add_drain_all(void)
808 {
809 lru_add_drain();
810 }
811 #endif
812
813 /**
814 * release_pages - batched put_page()
815 * @pages: array of pages to release
816 * @nr: number of pages
817 *
818 * Decrement the reference count on all the pages in @pages. If it
819 * fell to zero, remove the page from the LRU and free it.
820 */
821 void release_pages(struct page **pages, int nr)
822 {
823 int i;
824 LIST_HEAD(pages_to_free);
825 struct pglist_data *locked_pgdat = NULL;
826 struct lruvec *lruvec;
827 unsigned long uninitialized_var(flags);
828 unsigned int uninitialized_var(lock_batch);
829
830 for (i = 0; i < nr; i++) {
831 struct page *page = pages[i];
832
833 /*
834 * Make sure the IRQ-safe lock-holding time does not get
835 * excessive with a continuous string of pages from the
836 * same pgdat. The lock is held only if pgdat != NULL.
837 */
838 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
839 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
840 locked_pgdat = NULL;
841 }
842
843 if (is_huge_zero_page(page))
844 continue;
845
846 if (is_zone_device_page(page)) {
847 if (locked_pgdat) {
848 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
849 flags);
850 locked_pgdat = NULL;
851 }
852 /*
853 * ZONE_DEVICE pages that return 'false' from
854 * put_devmap_managed_page() do not require special
855 * processing, and instead, expect a call to
856 * put_page_testzero().
857 */
858 if (page_is_devmap_managed(page)) {
859 put_devmap_managed_page(page);
860 continue;
861 }
862 }
863
864 page = compound_head(page);
865 if (!put_page_testzero(page))
866 continue;
867
868 if (PageCompound(page)) {
869 if (locked_pgdat) {
870 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
871 locked_pgdat = NULL;
872 }
873 __put_compound_page(page);
874 continue;
875 }
876
877 if (PageLRU(page)) {
878 struct pglist_data *pgdat = page_pgdat(page);
879
880 if (pgdat != locked_pgdat) {
881 if (locked_pgdat)
882 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
883 flags);
884 lock_batch = 0;
885 locked_pgdat = pgdat;
886 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
887 }
888
889 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
890 VM_BUG_ON_PAGE(!PageLRU(page), page);
891 __ClearPageLRU(page);
892 del_page_from_lru_list(page, lruvec, page_off_lru(page));
893 }
894
895 /* Clear Active bit in case of parallel mark_page_accessed */
896 __ClearPageActive(page);
897 __ClearPageWaiters(page);
898
899 list_add(&page->lru, &pages_to_free);
900 }
901 if (locked_pgdat)
902 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
903
904 mem_cgroup_uncharge_list(&pages_to_free);
905 free_unref_page_list(&pages_to_free);
906 }
907 EXPORT_SYMBOL(release_pages);
908
909 /*
910 * The pages which we're about to release may be in the deferred lru-addition
911 * queues. That would prevent them from really being freed right now. That's
912 * OK from a correctness point of view but is inefficient - those pages may be
913 * cache-warm and we want to give them back to the page allocator ASAP.
914 *
915 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
916 * and __pagevec_lru_add_active() call release_pages() directly to avoid
917 * mutual recursion.
918 */
919 void __pagevec_release(struct pagevec *pvec)
920 {
921 if (!pvec->percpu_pvec_drained) {
922 lru_add_drain();
923 pvec->percpu_pvec_drained = true;
924 }
925 release_pages(pvec->pages, pagevec_count(pvec));
926 pagevec_reinit(pvec);
927 }
928 EXPORT_SYMBOL(__pagevec_release);
929
930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
931 /* used by __split_huge_page_refcount() */
932 void lru_add_page_tail(struct page *page, struct page *page_tail,
933 struct lruvec *lruvec, struct list_head *list)
934 {
935 const int file = 0;
936
937 VM_BUG_ON_PAGE(!PageHead(page), page);
938 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
939 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
940 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
941
942 if (!list)
943 SetPageLRU(page_tail);
944
945 if (likely(PageLRU(page)))
946 list_add_tail(&page_tail->lru, &page->lru);
947 else if (list) {
948 /* page reclaim is reclaiming a huge page */
949 get_page(page_tail);
950 list_add_tail(&page_tail->lru, list);
951 } else {
952 /*
953 * Head page has not yet been counted, as an hpage,
954 * so we must account for each subpage individually.
955 *
956 * Put page_tail on the list at the correct position
957 * so they all end up in order.
958 */
959 add_page_to_lru_list_tail(page_tail, lruvec,
960 page_lru(page_tail));
961 }
962
963 if (!PageUnevictable(page))
964 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
965 }
966 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
967
968 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
969 void *arg)
970 {
971 enum lru_list lru;
972 int was_unevictable = TestClearPageUnevictable(page);
973
974 VM_BUG_ON_PAGE(PageLRU(page), page);
975
976 /*
977 * Page becomes evictable in two ways:
978 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
979 * 2) Before acquiring LRU lock to put the page to correct LRU and then
980 * a) do PageLRU check with lock [check_move_unevictable_pages]
981 * b) do PageLRU check before lock [clear_page_mlock]
982 *
983 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
984 * following strict ordering:
985 *
986 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
987 *
988 * SetPageLRU() TestClearPageMlocked()
989 * smp_mb() // explicit ordering // above provides strict
990 * // ordering
991 * PageMlocked() PageLRU()
992 *
993 *
994 * if '#1' does not observe setting of PG_lru by '#0' and fails
995 * isolation, the explicit barrier will make sure that page_evictable
996 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
997 * can be reordered after PageMlocked check and can make '#1' to fail
998 * the isolation of the page whose Mlocked bit is cleared (#0 is also
999 * looking at the same page) and the evictable page will be stranded
1000 * in an unevictable LRU.
1001 */
1002 SetPageLRU(page);
1003 smp_mb__after_atomic();
1004
1005 if (page_evictable(page)) {
1006 lru = page_lru(page);
1007 update_page_reclaim_stat(lruvec, page_is_file_lru(page),
1008 PageActive(page));
1009 if (was_unevictable)
1010 count_vm_event(UNEVICTABLE_PGRESCUED);
1011 } else {
1012 lru = LRU_UNEVICTABLE;
1013 ClearPageActive(page);
1014 SetPageUnevictable(page);
1015 if (!was_unevictable)
1016 count_vm_event(UNEVICTABLE_PGCULLED);
1017 }
1018
1019 add_page_to_lru_list(page, lruvec, lru);
1020 trace_mm_lru_insertion(page, lru);
1021 }
1022
1023 /*
1024 * Add the passed pages to the LRU, then drop the caller's refcount
1025 * on them. Reinitialises the caller's pagevec.
1026 */
1027 void __pagevec_lru_add(struct pagevec *pvec)
1028 {
1029 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1030 }
1031
1032 /**
1033 * pagevec_lookup_entries - gang pagecache lookup
1034 * @pvec: Where the resulting entries are placed
1035 * @mapping: The address_space to search
1036 * @start: The starting entry index
1037 * @nr_entries: The maximum number of pages
1038 * @indices: The cache indices corresponding to the entries in @pvec
1039 *
1040 * pagevec_lookup_entries() will search for and return a group of up
1041 * to @nr_pages pages and shadow entries in the mapping. All
1042 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1043 * reference against actual pages in @pvec.
1044 *
1045 * The search returns a group of mapping-contiguous entries with
1046 * ascending indexes. There may be holes in the indices due to
1047 * not-present entries.
1048 *
1049 * Only one subpage of a Transparent Huge Page is returned in one call:
1050 * allowing truncate_inode_pages_range() to evict the whole THP without
1051 * cycling through a pagevec of extra references.
1052 *
1053 * pagevec_lookup_entries() returns the number of entries which were
1054 * found.
1055 */
1056 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1057 struct address_space *mapping,
1058 pgoff_t start, unsigned nr_entries,
1059 pgoff_t *indices)
1060 {
1061 pvec->nr = find_get_entries(mapping, start, nr_entries,
1062 pvec->pages, indices);
1063 return pagevec_count(pvec);
1064 }
1065
1066 /**
1067 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1068 * @pvec: The pagevec to prune
1069 *
1070 * pagevec_lookup_entries() fills both pages and exceptional radix
1071 * tree entries into the pagevec. This function prunes all
1072 * exceptionals from @pvec without leaving holes, so that it can be
1073 * passed on to page-only pagevec operations.
1074 */
1075 void pagevec_remove_exceptionals(struct pagevec *pvec)
1076 {
1077 int i, j;
1078
1079 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1080 struct page *page = pvec->pages[i];
1081 if (!xa_is_value(page))
1082 pvec->pages[j++] = page;
1083 }
1084 pvec->nr = j;
1085 }
1086
1087 /**
1088 * pagevec_lookup_range - gang pagecache lookup
1089 * @pvec: Where the resulting pages are placed
1090 * @mapping: The address_space to search
1091 * @start: The starting page index
1092 * @end: The final page index
1093 *
1094 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1095 * pages in the mapping starting from index @start and upto index @end
1096 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1097 * reference against the pages in @pvec.
1098 *
1099 * The search returns a group of mapping-contiguous pages with ascending
1100 * indexes. There may be holes in the indices due to not-present pages. We
1101 * also update @start to index the next page for the traversal.
1102 *
1103 * pagevec_lookup_range() returns the number of pages which were found. If this
1104 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1105 * reached.
1106 */
1107 unsigned pagevec_lookup_range(struct pagevec *pvec,
1108 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1109 {
1110 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1111 pvec->pages);
1112 return pagevec_count(pvec);
1113 }
1114 EXPORT_SYMBOL(pagevec_lookup_range);
1115
1116 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1117 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1118 xa_mark_t tag)
1119 {
1120 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1121 PAGEVEC_SIZE, pvec->pages);
1122 return pagevec_count(pvec);
1123 }
1124 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1125
1126 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1127 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1128 xa_mark_t tag, unsigned max_pages)
1129 {
1130 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1131 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1132 return pagevec_count(pvec);
1133 }
1134 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1135 /*
1136 * Perform any setup for the swap system
1137 */
1138 void __init swap_setup(void)
1139 {
1140 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1141
1142 /* Use a smaller cluster for small-memory machines */
1143 if (megs < 16)
1144 page_cluster = 2;
1145 else
1146 page_cluster = 3;
1147 /*
1148 * Right now other parts of the system means that we
1149 * _really_ don't want to cluster much more
1150 */
1151 }
1152
1153 #ifdef CONFIG_DEV_PAGEMAP_OPS
1154 void put_devmap_managed_page(struct page *page)
1155 {
1156 int count;
1157
1158 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1159 return;
1160
1161 count = page_ref_dec_return(page);
1162
1163 /*
1164 * devmap page refcounts are 1-based, rather than 0-based: if
1165 * refcount is 1, then the page is free and the refcount is
1166 * stable because nobody holds a reference on the page.
1167 */
1168 if (count == 1)
1169 free_devmap_managed_page(page);
1170 else if (!count)
1171 __put_page(page);
1172 }
1173 EXPORT_SYMBOL(put_devmap_managed_page);
1174 #endif