]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/swap_state.c
netfilter: use skb_to_full_sk in ip_route_me_harder
[mirror_ubuntu-artful-kernel.git] / mm / swap_state.c
1 /*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
22
23 #include <asm/pgtable.h>
24
25 /*
26 * swapper_space is a fiction, retained to simplify the path through
27 * vmscan's shrink_page_list.
28 */
29 static const struct address_space_operations swap_aops = {
30 .writepage = swap_writepage,
31 .set_page_dirty = swap_set_page_dirty,
32 #ifdef CONFIG_MIGRATION
33 .migratepage = migrate_page,
34 #endif
35 };
36
37 struct address_space *swapper_spaces[MAX_SWAPFILES];
38 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
39
40 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
41
42 static struct {
43 unsigned long add_total;
44 unsigned long del_total;
45 unsigned long find_success;
46 unsigned long find_total;
47 } swap_cache_info;
48
49 unsigned long total_swapcache_pages(void)
50 {
51 unsigned int i, j, nr;
52 unsigned long ret = 0;
53 struct address_space *spaces;
54
55 rcu_read_lock();
56 for (i = 0; i < MAX_SWAPFILES; i++) {
57 /*
58 * The corresponding entries in nr_swapper_spaces and
59 * swapper_spaces will be reused only after at least
60 * one grace period. So it is impossible for them
61 * belongs to different usage.
62 */
63 nr = nr_swapper_spaces[i];
64 spaces = rcu_dereference(swapper_spaces[i]);
65 if (!nr || !spaces)
66 continue;
67 for (j = 0; j < nr; j++)
68 ret += spaces[j].nrpages;
69 }
70 rcu_read_unlock();
71 return ret;
72 }
73
74 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
75
76 void show_swap_cache_info(void)
77 {
78 printk("%lu pages in swap cache\n", total_swapcache_pages());
79 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
80 swap_cache_info.add_total, swap_cache_info.del_total,
81 swap_cache_info.find_success, swap_cache_info.find_total);
82 printk("Free swap = %ldkB\n",
83 get_nr_swap_pages() << (PAGE_SHIFT - 10));
84 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
85 }
86
87 /*
88 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
89 * but sets SwapCache flag and private instead of mapping and index.
90 */
91 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
92 {
93 int error;
94 struct address_space *address_space;
95
96 VM_BUG_ON_PAGE(!PageLocked(page), page);
97 VM_BUG_ON_PAGE(PageSwapCache(page), page);
98 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
99
100 get_page(page);
101 SetPageSwapCache(page);
102 set_page_private(page, entry.val);
103
104 address_space = swap_address_space(entry);
105 spin_lock_irq(&address_space->tree_lock);
106 error = radix_tree_insert(&address_space->page_tree,
107 swp_offset(entry), page);
108 if (likely(!error)) {
109 address_space->nrpages++;
110 __inc_node_page_state(page, NR_FILE_PAGES);
111 INC_CACHE_INFO(add_total);
112 }
113 spin_unlock_irq(&address_space->tree_lock);
114
115 if (unlikely(error)) {
116 /*
117 * Only the context which have set SWAP_HAS_CACHE flag
118 * would call add_to_swap_cache().
119 * So add_to_swap_cache() doesn't returns -EEXIST.
120 */
121 VM_BUG_ON(error == -EEXIST);
122 set_page_private(page, 0UL);
123 ClearPageSwapCache(page);
124 put_page(page);
125 }
126
127 return error;
128 }
129
130
131 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
132 {
133 int error;
134
135 error = radix_tree_maybe_preload(gfp_mask);
136 if (!error) {
137 error = __add_to_swap_cache(page, entry);
138 radix_tree_preload_end();
139 }
140 return error;
141 }
142
143 /*
144 * This must be called only on pages that have
145 * been verified to be in the swap cache.
146 */
147 void __delete_from_swap_cache(struct page *page)
148 {
149 swp_entry_t entry;
150 struct address_space *address_space;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
154 VM_BUG_ON_PAGE(PageWriteback(page), page);
155
156 entry.val = page_private(page);
157 address_space = swap_address_space(entry);
158 radix_tree_delete(&address_space->page_tree, swp_offset(entry));
159 set_page_private(page, 0);
160 ClearPageSwapCache(page);
161 address_space->nrpages--;
162 __dec_node_page_state(page, NR_FILE_PAGES);
163 INC_CACHE_INFO(del_total);
164 }
165
166 /**
167 * add_to_swap - allocate swap space for a page
168 * @page: page we want to move to swap
169 *
170 * Allocate swap space for the page and add the page to the
171 * swap cache. Caller needs to hold the page lock.
172 */
173 int add_to_swap(struct page *page, struct list_head *list)
174 {
175 swp_entry_t entry;
176 int err;
177
178 VM_BUG_ON_PAGE(!PageLocked(page), page);
179 VM_BUG_ON_PAGE(!PageUptodate(page), page);
180
181 entry = get_swap_page();
182 if (!entry.val)
183 return 0;
184
185 if (mem_cgroup_try_charge_swap(page, entry)) {
186 swapcache_free(entry);
187 return 0;
188 }
189
190 if (unlikely(PageTransHuge(page)))
191 if (unlikely(split_huge_page_to_list(page, list))) {
192 swapcache_free(entry);
193 return 0;
194 }
195
196 /*
197 * Radix-tree node allocations from PF_MEMALLOC contexts could
198 * completely exhaust the page allocator. __GFP_NOMEMALLOC
199 * stops emergency reserves from being allocated.
200 *
201 * TODO: this could cause a theoretical memory reclaim
202 * deadlock in the swap out path.
203 */
204 /*
205 * Add it to the swap cache.
206 */
207 err = add_to_swap_cache(page, entry,
208 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
209
210 if (!err) {
211 return 1;
212 } else { /* -ENOMEM radix-tree allocation failure */
213 /*
214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 * clear SWAP_HAS_CACHE flag.
216 */
217 swapcache_free(entry);
218 return 0;
219 }
220 }
221
222 /*
223 * This must be called only on pages that have
224 * been verified to be in the swap cache and locked.
225 * It will never put the page into the free list,
226 * the caller has a reference on the page.
227 */
228 void delete_from_swap_cache(struct page *page)
229 {
230 swp_entry_t entry;
231 struct address_space *address_space;
232
233 entry.val = page_private(page);
234
235 address_space = swap_address_space(entry);
236 spin_lock_irq(&address_space->tree_lock);
237 __delete_from_swap_cache(page);
238 spin_unlock_irq(&address_space->tree_lock);
239
240 swapcache_free(entry);
241 put_page(page);
242 }
243
244 /*
245 * If we are the only user, then try to free up the swap cache.
246 *
247 * Its ok to check for PageSwapCache without the page lock
248 * here because we are going to recheck again inside
249 * try_to_free_swap() _with_ the lock.
250 * - Marcelo
251 */
252 static inline void free_swap_cache(struct page *page)
253 {
254 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
255 try_to_free_swap(page);
256 unlock_page(page);
257 }
258 }
259
260 /*
261 * Perform a free_page(), also freeing any swap cache associated with
262 * this page if it is the last user of the page.
263 */
264 void free_page_and_swap_cache(struct page *page)
265 {
266 free_swap_cache(page);
267 if (!is_huge_zero_page(page))
268 put_page(page);
269 }
270
271 /*
272 * Passed an array of pages, drop them all from swapcache and then release
273 * them. They are removed from the LRU and freed if this is their last use.
274 */
275 void free_pages_and_swap_cache(struct page **pages, int nr)
276 {
277 struct page **pagep = pages;
278 int i;
279
280 lru_add_drain();
281 for (i = 0; i < nr; i++)
282 free_swap_cache(pagep[i]);
283 release_pages(pagep, nr, false);
284 }
285
286 /*
287 * Lookup a swap entry in the swap cache. A found page will be returned
288 * unlocked and with its refcount incremented - we rely on the kernel
289 * lock getting page table operations atomic even if we drop the page
290 * lock before returning.
291 */
292 struct page * lookup_swap_cache(swp_entry_t entry)
293 {
294 struct page *page;
295
296 page = find_get_page(swap_address_space(entry), swp_offset(entry));
297
298 if (page) {
299 INC_CACHE_INFO(find_success);
300 if (TestClearPageReadahead(page))
301 atomic_inc(&swapin_readahead_hits);
302 }
303
304 INC_CACHE_INFO(find_total);
305 return page;
306 }
307
308 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
309 struct vm_area_struct *vma, unsigned long addr,
310 bool *new_page_allocated)
311 {
312 struct page *found_page, *new_page = NULL;
313 struct address_space *swapper_space = swap_address_space(entry);
314 int err;
315 *new_page_allocated = false;
316
317 do {
318 /*
319 * First check the swap cache. Since this is normally
320 * called after lookup_swap_cache() failed, re-calling
321 * that would confuse statistics.
322 */
323 found_page = find_get_page(swapper_space, swp_offset(entry));
324 if (found_page)
325 break;
326
327 /*
328 * Just skip read ahead for unused swap slot.
329 * During swap_off when swap_slot_cache is disabled,
330 * we have to handle the race between putting
331 * swap entry in swap cache and marking swap slot
332 * as SWAP_HAS_CACHE. That's done in later part of code or
333 * else swap_off will be aborted if we return NULL.
334 */
335 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
336 break;
337
338 /*
339 * Get a new page to read into from swap.
340 */
341 if (!new_page) {
342 new_page = alloc_page_vma(gfp_mask, vma, addr);
343 if (!new_page)
344 break; /* Out of memory */
345 }
346
347 /*
348 * call radix_tree_preload() while we can wait.
349 */
350 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
351 if (err)
352 break;
353
354 /*
355 * Swap entry may have been freed since our caller observed it.
356 */
357 err = swapcache_prepare(entry);
358 if (err == -EEXIST) {
359 radix_tree_preload_end();
360 /*
361 * We might race against get_swap_page() and stumble
362 * across a SWAP_HAS_CACHE swap_map entry whose page
363 * has not been brought into the swapcache yet, while
364 * the other end is scheduled away waiting on discard
365 * I/O completion at scan_swap_map().
366 *
367 * In order to avoid turning this transitory state
368 * into a permanent loop around this -EEXIST case
369 * if !CONFIG_PREEMPT and the I/O completion happens
370 * to be waiting on the CPU waitqueue where we are now
371 * busy looping, we just conditionally invoke the
372 * scheduler here, if there are some more important
373 * tasks to run.
374 */
375 cond_resched();
376 continue;
377 }
378 if (err) { /* swp entry is obsolete ? */
379 radix_tree_preload_end();
380 break;
381 }
382
383 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
384 __SetPageLocked(new_page);
385 __SetPageSwapBacked(new_page);
386 err = __add_to_swap_cache(new_page, entry);
387 if (likely(!err)) {
388 radix_tree_preload_end();
389 /*
390 * Initiate read into locked page and return.
391 */
392 lru_cache_add_anon(new_page);
393 *new_page_allocated = true;
394 return new_page;
395 }
396 radix_tree_preload_end();
397 __ClearPageLocked(new_page);
398 /*
399 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
400 * clear SWAP_HAS_CACHE flag.
401 */
402 swapcache_free(entry);
403 } while (err != -ENOMEM);
404
405 if (new_page)
406 put_page(new_page);
407 return found_page;
408 }
409
410 /*
411 * Locate a page of swap in physical memory, reserving swap cache space
412 * and reading the disk if it is not already cached.
413 * A failure return means that either the page allocation failed or that
414 * the swap entry is no longer in use.
415 */
416 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
417 struct vm_area_struct *vma, unsigned long addr)
418 {
419 bool page_was_allocated;
420 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
421 vma, addr, &page_was_allocated);
422
423 if (page_was_allocated)
424 swap_readpage(retpage);
425
426 return retpage;
427 }
428
429 static unsigned long swapin_nr_pages(unsigned long offset)
430 {
431 static unsigned long prev_offset;
432 unsigned int pages, max_pages, last_ra;
433 static atomic_t last_readahead_pages;
434
435 max_pages = 1 << READ_ONCE(page_cluster);
436 if (max_pages <= 1)
437 return 1;
438
439 /*
440 * This heuristic has been found to work well on both sequential and
441 * random loads, swapping to hard disk or to SSD: please don't ask
442 * what the "+ 2" means, it just happens to work well, that's all.
443 */
444 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
445 if (pages == 2) {
446 /*
447 * We can have no readahead hits to judge by: but must not get
448 * stuck here forever, so check for an adjacent offset instead
449 * (and don't even bother to check whether swap type is same).
450 */
451 if (offset != prev_offset + 1 && offset != prev_offset - 1)
452 pages = 1;
453 prev_offset = offset;
454 } else {
455 unsigned int roundup = 4;
456 while (roundup < pages)
457 roundup <<= 1;
458 pages = roundup;
459 }
460
461 if (pages > max_pages)
462 pages = max_pages;
463
464 /* Don't shrink readahead too fast */
465 last_ra = atomic_read(&last_readahead_pages) / 2;
466 if (pages < last_ra)
467 pages = last_ra;
468 atomic_set(&last_readahead_pages, pages);
469
470 return pages;
471 }
472
473 /**
474 * swapin_readahead - swap in pages in hope we need them soon
475 * @entry: swap entry of this memory
476 * @gfp_mask: memory allocation flags
477 * @vma: user vma this address belongs to
478 * @addr: target address for mempolicy
479 *
480 * Returns the struct page for entry and addr, after queueing swapin.
481 *
482 * Primitive swap readahead code. We simply read an aligned block of
483 * (1 << page_cluster) entries in the swap area. This method is chosen
484 * because it doesn't cost us any seek time. We also make sure to queue
485 * the 'original' request together with the readahead ones...
486 *
487 * This has been extended to use the NUMA policies from the mm triggering
488 * the readahead.
489 *
490 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
491 */
492 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
493 struct vm_area_struct *vma, unsigned long addr)
494 {
495 struct page *page;
496 unsigned long entry_offset = swp_offset(entry);
497 unsigned long offset = entry_offset;
498 unsigned long start_offset, end_offset;
499 unsigned long mask;
500 struct blk_plug plug;
501
502 mask = swapin_nr_pages(offset) - 1;
503 if (!mask)
504 goto skip;
505
506 /* Read a page_cluster sized and aligned cluster around offset. */
507 start_offset = offset & ~mask;
508 end_offset = offset | mask;
509 if (!start_offset) /* First page is swap header. */
510 start_offset++;
511
512 blk_start_plug(&plug);
513 for (offset = start_offset; offset <= end_offset ; offset++) {
514 /* Ok, do the async read-ahead now */
515 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
516 gfp_mask, vma, addr);
517 if (!page)
518 continue;
519 if (offset != entry_offset)
520 SetPageReadahead(page);
521 put_page(page);
522 }
523 blk_finish_plug(&plug);
524
525 lru_add_drain(); /* Push any new pages onto the LRU now */
526 skip:
527 return read_swap_cache_async(entry, gfp_mask, vma, addr);
528 }
529
530 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
531 {
532 struct address_space *spaces, *space;
533 unsigned int i, nr;
534
535 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
536 spaces = vzalloc(sizeof(struct address_space) * nr);
537 if (!spaces)
538 return -ENOMEM;
539 for (i = 0; i < nr; i++) {
540 space = spaces + i;
541 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
542 atomic_set(&space->i_mmap_writable, 0);
543 space->a_ops = &swap_aops;
544 /* swap cache doesn't use writeback related tags */
545 mapping_set_no_writeback_tags(space);
546 spin_lock_init(&space->tree_lock);
547 }
548 nr_swapper_spaces[type] = nr;
549 rcu_assign_pointer(swapper_spaces[type], spaces);
550
551 return 0;
552 }
553
554 void exit_swap_address_space(unsigned int type)
555 {
556 struct address_space *spaces;
557
558 spaces = swapper_spaces[type];
559 nr_swapper_spaces[type] = 0;
560 rcu_assign_pointer(swapper_spaces[type], NULL);
561 synchronize_rcu();
562 kvfree(spaces);
563 }