]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - mm/swap_state.c
UBUNTU: [Config] enable signing for ppc64el
[mirror_ubuntu-impish-kernel.git] / mm / swap_state.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/swap_state.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 *
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
25 #include "internal.h"
26
27 /*
28 * swapper_space is a fiction, retained to simplify the path through
29 * vmscan's shrink_page_list.
30 */
31 static const struct address_space_operations swap_aops = {
32 .writepage = swap_writepage,
33 .set_page_dirty = swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 .migratepage = migrate_page,
36 #endif
37 };
38
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = false;
42
43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51
52 #define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
56
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60
61 #define INC_CACHE_INFO(x) data_race(swap_cache_info.x++)
62 #define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr))
63
64 static struct {
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
69 } swap_cache_info;
70
71 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
72
73 void show_swap_cache_info(void)
74 {
75 printk("%lu pages in swap cache\n", total_swapcache_pages());
76 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
77 swap_cache_info.add_total, swap_cache_info.del_total,
78 swap_cache_info.find_success, swap_cache_info.find_total);
79 printk("Free swap = %ldkB\n",
80 get_nr_swap_pages() << (PAGE_SHIFT - 10));
81 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
82 }
83
84 void *get_shadow_from_swap_cache(swp_entry_t entry)
85 {
86 struct address_space *address_space = swap_address_space(entry);
87 pgoff_t idx = swp_offset(entry);
88 struct page *page;
89
90 page = xa_load(&address_space->i_pages, idx);
91 if (xa_is_value(page))
92 return page;
93 return NULL;
94 }
95
96 /*
97 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
98 * but sets SwapCache flag and private instead of mapping and index.
99 */
100 int add_to_swap_cache(struct page *page, swp_entry_t entry,
101 gfp_t gfp, void **shadowp)
102 {
103 struct address_space *address_space = swap_address_space(entry);
104 pgoff_t idx = swp_offset(entry);
105 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
106 unsigned long i, nr = thp_nr_pages(page);
107 void *old;
108
109 VM_BUG_ON_PAGE(!PageLocked(page), page);
110 VM_BUG_ON_PAGE(PageSwapCache(page), page);
111 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
112
113 page_ref_add(page, nr);
114 SetPageSwapCache(page);
115
116 do {
117 unsigned long nr_shadows = 0;
118
119 xas_lock_irq(&xas);
120 xas_create_range(&xas);
121 if (xas_error(&xas))
122 goto unlock;
123 for (i = 0; i < nr; i++) {
124 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
125 old = xas_load(&xas);
126 if (xa_is_value(old)) {
127 nr_shadows++;
128 if (shadowp)
129 *shadowp = old;
130 }
131 set_page_private(page + i, entry.val + i);
132 xas_store(&xas, page);
133 xas_next(&xas);
134 }
135 address_space->nrpages += nr;
136 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
137 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
138 ADD_CACHE_INFO(add_total, nr);
139 unlock:
140 xas_unlock_irq(&xas);
141 } while (xas_nomem(&xas, gfp));
142
143 if (!xas_error(&xas))
144 return 0;
145
146 ClearPageSwapCache(page);
147 page_ref_sub(page, nr);
148 return xas_error(&xas);
149 }
150
151 /*
152 * This must be called only on pages that have
153 * been verified to be in the swap cache.
154 */
155 void __delete_from_swap_cache(struct page *page,
156 swp_entry_t entry, void *shadow)
157 {
158 struct address_space *address_space = swap_address_space(entry);
159 int i, nr = thp_nr_pages(page);
160 pgoff_t idx = swp_offset(entry);
161 XA_STATE(xas, &address_space->i_pages, idx);
162
163 VM_BUG_ON_PAGE(!PageLocked(page), page);
164 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
165 VM_BUG_ON_PAGE(PageWriteback(page), page);
166
167 for (i = 0; i < nr; i++) {
168 void *entry = xas_store(&xas, shadow);
169 VM_BUG_ON_PAGE(entry != page, entry);
170 set_page_private(page + i, 0);
171 xas_next(&xas);
172 }
173 ClearPageSwapCache(page);
174 address_space->nrpages -= nr;
175 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
176 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
177 ADD_CACHE_INFO(del_total, nr);
178 }
179
180 /**
181 * add_to_swap - allocate swap space for a page
182 * @page: page we want to move to swap
183 *
184 * Allocate swap space for the page and add the page to the
185 * swap cache. Caller needs to hold the page lock.
186 */
187 int add_to_swap(struct page *page)
188 {
189 swp_entry_t entry;
190 int err;
191
192 VM_BUG_ON_PAGE(!PageLocked(page), page);
193 VM_BUG_ON_PAGE(!PageUptodate(page), page);
194
195 entry = get_swap_page(page);
196 if (!entry.val)
197 return 0;
198
199 /*
200 * XArray node allocations from PF_MEMALLOC contexts could
201 * completely exhaust the page allocator. __GFP_NOMEMALLOC
202 * stops emergency reserves from being allocated.
203 *
204 * TODO: this could cause a theoretical memory reclaim
205 * deadlock in the swap out path.
206 */
207 /*
208 * Add it to the swap cache.
209 */
210 err = add_to_swap_cache(page, entry,
211 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
212 if (err)
213 /*
214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 * clear SWAP_HAS_CACHE flag.
216 */
217 goto fail;
218 /*
219 * Normally the page will be dirtied in unmap because its pte should be
220 * dirty. A special case is MADV_FREE page. The page's pte could have
221 * dirty bit cleared but the page's SwapBacked bit is still set because
222 * clearing the dirty bit and SwapBacked bit has no lock protected. For
223 * such page, unmap will not set dirty bit for it, so page reclaim will
224 * not write the page out. This can cause data corruption when the page
225 * is swap in later. Always setting the dirty bit for the page solves
226 * the problem.
227 */
228 set_page_dirty(page);
229
230 return 1;
231
232 fail:
233 put_swap_page(page, entry);
234 return 0;
235 }
236
237 /*
238 * This must be called only on pages that have
239 * been verified to be in the swap cache and locked.
240 * It will never put the page into the free list,
241 * the caller has a reference on the page.
242 */
243 void delete_from_swap_cache(struct page *page)
244 {
245 swp_entry_t entry = { .val = page_private(page) };
246 struct address_space *address_space = swap_address_space(entry);
247
248 xa_lock_irq(&address_space->i_pages);
249 __delete_from_swap_cache(page, entry, NULL);
250 xa_unlock_irq(&address_space->i_pages);
251
252 put_swap_page(page, entry);
253 page_ref_sub(page, thp_nr_pages(page));
254 }
255
256 void clear_shadow_from_swap_cache(int type, unsigned long begin,
257 unsigned long end)
258 {
259 unsigned long curr = begin;
260 void *old;
261
262 for (;;) {
263 unsigned long nr_shadows = 0;
264 swp_entry_t entry = swp_entry(type, curr);
265 struct address_space *address_space = swap_address_space(entry);
266 XA_STATE(xas, &address_space->i_pages, curr);
267
268 xa_lock_irq(&address_space->i_pages);
269 xas_for_each(&xas, old, end) {
270 if (!xa_is_value(old))
271 continue;
272 xas_store(&xas, NULL);
273 nr_shadows++;
274 }
275 xa_unlock_irq(&address_space->i_pages);
276
277 /* search the next swapcache until we meet end */
278 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
279 curr++;
280 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
281 if (curr > end)
282 break;
283 }
284 }
285
286 /*
287 * If we are the only user, then try to free up the swap cache.
288 *
289 * Its ok to check for PageSwapCache without the page lock
290 * here because we are going to recheck again inside
291 * try_to_free_swap() _with_ the lock.
292 * - Marcelo
293 */
294 static inline void free_swap_cache(struct page *page)
295 {
296 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
297 try_to_free_swap(page);
298 unlock_page(page);
299 }
300 }
301
302 /*
303 * Perform a free_page(), also freeing any swap cache associated with
304 * this page if it is the last user of the page.
305 */
306 void free_page_and_swap_cache(struct page *page)
307 {
308 free_swap_cache(page);
309 if (!is_huge_zero_page(page))
310 put_page(page);
311 }
312
313 /*
314 * Passed an array of pages, drop them all from swapcache and then release
315 * them. They are removed from the LRU and freed if this is their last use.
316 */
317 void free_pages_and_swap_cache(struct page **pages, int nr)
318 {
319 struct page **pagep = pages;
320 int i;
321
322 lru_add_drain();
323 for (i = 0; i < nr; i++)
324 free_swap_cache(pagep[i]);
325 release_pages(pagep, nr);
326 }
327
328 static inline bool swap_use_vma_readahead(void)
329 {
330 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
331 }
332
333 /*
334 * Lookup a swap entry in the swap cache. A found page will be returned
335 * unlocked and with its refcount incremented - we rely on the kernel
336 * lock getting page table operations atomic even if we drop the page
337 * lock before returning.
338 */
339 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
340 unsigned long addr)
341 {
342 struct page *page;
343 struct swap_info_struct *si;
344
345 si = get_swap_device(entry);
346 if (!si)
347 return NULL;
348 page = find_get_page(swap_address_space(entry), swp_offset(entry));
349 put_swap_device(si);
350
351 INC_CACHE_INFO(find_total);
352 if (page) {
353 bool vma_ra = swap_use_vma_readahead();
354 bool readahead;
355
356 INC_CACHE_INFO(find_success);
357 /*
358 * At the moment, we don't support PG_readahead for anon THP
359 * so let's bail out rather than confusing the readahead stat.
360 */
361 if (unlikely(PageTransCompound(page)))
362 return page;
363
364 readahead = TestClearPageReadahead(page);
365 if (vma && vma_ra) {
366 unsigned long ra_val;
367 int win, hits;
368
369 ra_val = GET_SWAP_RA_VAL(vma);
370 win = SWAP_RA_WIN(ra_val);
371 hits = SWAP_RA_HITS(ra_val);
372 if (readahead)
373 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
374 atomic_long_set(&vma->swap_readahead_info,
375 SWAP_RA_VAL(addr, win, hits));
376 }
377
378 if (readahead) {
379 count_vm_event(SWAP_RA_HIT);
380 if (!vma || !vma_ra)
381 atomic_inc(&swapin_readahead_hits);
382 }
383 }
384
385 return page;
386 }
387
388 /**
389 * find_get_incore_page - Find and get a page from the page or swap caches.
390 * @mapping: The address_space to search.
391 * @index: The page cache index.
392 *
393 * This differs from find_get_page() in that it will also look for the
394 * page in the swap cache.
395 *
396 * Return: The found page or %NULL.
397 */
398 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
399 {
400 swp_entry_t swp;
401 struct swap_info_struct *si;
402 struct page *page = pagecache_get_page(mapping, index,
403 FGP_ENTRY | FGP_HEAD, 0);
404
405 if (!page)
406 return page;
407 if (!xa_is_value(page))
408 return find_subpage(page, index);
409 if (!shmem_mapping(mapping))
410 return NULL;
411
412 swp = radix_to_swp_entry(page);
413 /* Prevent swapoff from happening to us */
414 si = get_swap_device(swp);
415 if (!si)
416 return NULL;
417 page = find_get_page(swap_address_space(swp), swp_offset(swp));
418 put_swap_device(si);
419 return page;
420 }
421
422 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
423 struct vm_area_struct *vma, unsigned long addr,
424 bool *new_page_allocated)
425 {
426 struct swap_info_struct *si;
427 struct page *page;
428 void *shadow = NULL;
429
430 *new_page_allocated = false;
431
432 for (;;) {
433 int err;
434 /*
435 * First check the swap cache. Since this is normally
436 * called after lookup_swap_cache() failed, re-calling
437 * that would confuse statistics.
438 */
439 si = get_swap_device(entry);
440 if (!si)
441 return NULL;
442 page = find_get_page(swap_address_space(entry),
443 swp_offset(entry));
444 put_swap_device(si);
445 if (page)
446 return page;
447
448 /*
449 * Just skip read ahead for unused swap slot.
450 * During swap_off when swap_slot_cache is disabled,
451 * we have to handle the race between putting
452 * swap entry in swap cache and marking swap slot
453 * as SWAP_HAS_CACHE. That's done in later part of code or
454 * else swap_off will be aborted if we return NULL.
455 */
456 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
457 return NULL;
458
459 /*
460 * Get a new page to read into from swap. Allocate it now,
461 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
462 * cause any racers to loop around until we add it to cache.
463 */
464 page = alloc_page_vma(gfp_mask, vma, addr);
465 if (!page)
466 return NULL;
467
468 /*
469 * Swap entry may have been freed since our caller observed it.
470 */
471 err = swapcache_prepare(entry);
472 if (!err)
473 break;
474
475 put_page(page);
476 if (err != -EEXIST)
477 return NULL;
478
479 /*
480 * We might race against __delete_from_swap_cache(), and
481 * stumble across a swap_map entry whose SWAP_HAS_CACHE
482 * has not yet been cleared. Or race against another
483 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
484 * in swap_map, but not yet added its page to swap cache.
485 */
486 cond_resched();
487 }
488
489 /*
490 * The swap entry is ours to swap in. Prepare the new page.
491 */
492
493 __SetPageLocked(page);
494 __SetPageSwapBacked(page);
495
496 if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
497 goto fail_unlock;
498
499 /* May fail (-ENOMEM) if XArray node allocation failed. */
500 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
501 goto fail_unlock;
502
503 mem_cgroup_swapin_uncharge_swap(entry);
504
505 if (shadow)
506 workingset_refault(page, shadow);
507
508 /* Caller will initiate read into locked page */
509 lru_cache_add(page);
510 *new_page_allocated = true;
511 return page;
512
513 fail_unlock:
514 put_swap_page(page, entry);
515 unlock_page(page);
516 put_page(page);
517 return NULL;
518 }
519
520 /*
521 * Locate a page of swap in physical memory, reserving swap cache space
522 * and reading the disk if it is not already cached.
523 * A failure return means that either the page allocation failed or that
524 * the swap entry is no longer in use.
525 */
526 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
527 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
528 {
529 bool page_was_allocated;
530 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
531 vma, addr, &page_was_allocated);
532
533 if (page_was_allocated)
534 swap_readpage(retpage, do_poll);
535
536 return retpage;
537 }
538
539 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
540 unsigned long offset,
541 int hits,
542 int max_pages,
543 int prev_win)
544 {
545 unsigned int pages, last_ra;
546
547 /*
548 * This heuristic has been found to work well on both sequential and
549 * random loads, swapping to hard disk or to SSD: please don't ask
550 * what the "+ 2" means, it just happens to work well, that's all.
551 */
552 pages = hits + 2;
553 if (pages == 2) {
554 /*
555 * We can have no readahead hits to judge by: but must not get
556 * stuck here forever, so check for an adjacent offset instead
557 * (and don't even bother to check whether swap type is same).
558 */
559 if (offset != prev_offset + 1 && offset != prev_offset - 1)
560 pages = 1;
561 } else {
562 unsigned int roundup = 4;
563 while (roundup < pages)
564 roundup <<= 1;
565 pages = roundup;
566 }
567
568 if (pages > max_pages)
569 pages = max_pages;
570
571 /* Don't shrink readahead too fast */
572 last_ra = prev_win / 2;
573 if (pages < last_ra)
574 pages = last_ra;
575
576 return pages;
577 }
578
579 static unsigned long swapin_nr_pages(unsigned long offset)
580 {
581 static unsigned long prev_offset;
582 unsigned int hits, pages, max_pages;
583 static atomic_t last_readahead_pages;
584
585 max_pages = 1 << READ_ONCE(page_cluster);
586 if (max_pages <= 1)
587 return 1;
588
589 hits = atomic_xchg(&swapin_readahead_hits, 0);
590 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
591 max_pages,
592 atomic_read(&last_readahead_pages));
593 if (!hits)
594 WRITE_ONCE(prev_offset, offset);
595 atomic_set(&last_readahead_pages, pages);
596
597 return pages;
598 }
599
600 /**
601 * swap_cluster_readahead - swap in pages in hope we need them soon
602 * @entry: swap entry of this memory
603 * @gfp_mask: memory allocation flags
604 * @vmf: fault information
605 *
606 * Returns the struct page for entry and addr, after queueing swapin.
607 *
608 * Primitive swap readahead code. We simply read an aligned block of
609 * (1 << page_cluster) entries in the swap area. This method is chosen
610 * because it doesn't cost us any seek time. We also make sure to queue
611 * the 'original' request together with the readahead ones...
612 *
613 * This has been extended to use the NUMA policies from the mm triggering
614 * the readahead.
615 *
616 * Caller must hold read mmap_lock if vmf->vma is not NULL.
617 */
618 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
619 struct vm_fault *vmf)
620 {
621 struct page *page;
622 unsigned long entry_offset = swp_offset(entry);
623 unsigned long offset = entry_offset;
624 unsigned long start_offset, end_offset;
625 unsigned long mask;
626 struct swap_info_struct *si = swp_swap_info(entry);
627 struct blk_plug plug;
628 bool do_poll = true, page_allocated;
629 struct vm_area_struct *vma = vmf->vma;
630 unsigned long addr = vmf->address;
631
632 mask = swapin_nr_pages(offset) - 1;
633 if (!mask)
634 goto skip;
635
636 /* Test swap type to make sure the dereference is safe */
637 if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) {
638 struct inode *inode = si->swap_file->f_mapping->host;
639 if (inode_read_congested(inode))
640 goto skip;
641 }
642
643 do_poll = false;
644 /* Read a page_cluster sized and aligned cluster around offset. */
645 start_offset = offset & ~mask;
646 end_offset = offset | mask;
647 if (!start_offset) /* First page is swap header. */
648 start_offset++;
649 if (end_offset >= si->max)
650 end_offset = si->max - 1;
651
652 blk_start_plug(&plug);
653 for (offset = start_offset; offset <= end_offset ; offset++) {
654 /* Ok, do the async read-ahead now */
655 page = __read_swap_cache_async(
656 swp_entry(swp_type(entry), offset),
657 gfp_mask, vma, addr, &page_allocated);
658 if (!page)
659 continue;
660 if (page_allocated) {
661 swap_readpage(page, false);
662 if (offset != entry_offset) {
663 SetPageReadahead(page);
664 count_vm_event(SWAP_RA);
665 }
666 }
667 put_page(page);
668 }
669 blk_finish_plug(&plug);
670
671 lru_add_drain(); /* Push any new pages onto the LRU now */
672 skip:
673 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
674 }
675
676 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
677 {
678 struct address_space *spaces, *space;
679 unsigned int i, nr;
680
681 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
682 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
683 if (!spaces)
684 return -ENOMEM;
685 for (i = 0; i < nr; i++) {
686 space = spaces + i;
687 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
688 atomic_set(&space->i_mmap_writable, 0);
689 space->a_ops = &swap_aops;
690 /* swap cache doesn't use writeback related tags */
691 mapping_set_no_writeback_tags(space);
692 }
693 nr_swapper_spaces[type] = nr;
694 swapper_spaces[type] = spaces;
695
696 return 0;
697 }
698
699 void exit_swap_address_space(unsigned int type)
700 {
701 kvfree(swapper_spaces[type]);
702 nr_swapper_spaces[type] = 0;
703 swapper_spaces[type] = NULL;
704 }
705
706 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
707 unsigned long faddr,
708 unsigned long lpfn,
709 unsigned long rpfn,
710 unsigned long *start,
711 unsigned long *end)
712 {
713 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
714 PFN_DOWN(faddr & PMD_MASK));
715 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
716 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
717 }
718
719 static void swap_ra_info(struct vm_fault *vmf,
720 struct vma_swap_readahead *ra_info)
721 {
722 struct vm_area_struct *vma = vmf->vma;
723 unsigned long ra_val;
724 swp_entry_t entry;
725 unsigned long faddr, pfn, fpfn;
726 unsigned long start, end;
727 pte_t *pte, *orig_pte;
728 unsigned int max_win, hits, prev_win, win, left;
729 #ifndef CONFIG_64BIT
730 pte_t *tpte;
731 #endif
732
733 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
734 SWAP_RA_ORDER_CEILING);
735 if (max_win == 1) {
736 ra_info->win = 1;
737 return;
738 }
739
740 faddr = vmf->address;
741 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
742 entry = pte_to_swp_entry(*pte);
743 if ((unlikely(non_swap_entry(entry)))) {
744 pte_unmap(orig_pte);
745 return;
746 }
747
748 fpfn = PFN_DOWN(faddr);
749 ra_val = GET_SWAP_RA_VAL(vma);
750 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
751 prev_win = SWAP_RA_WIN(ra_val);
752 hits = SWAP_RA_HITS(ra_val);
753 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
754 max_win, prev_win);
755 atomic_long_set(&vma->swap_readahead_info,
756 SWAP_RA_VAL(faddr, win, 0));
757
758 if (win == 1) {
759 pte_unmap(orig_pte);
760 return;
761 }
762
763 /* Copy the PTEs because the page table may be unmapped */
764 if (fpfn == pfn + 1)
765 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
766 else if (pfn == fpfn + 1)
767 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
768 &start, &end);
769 else {
770 left = (win - 1) / 2;
771 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
772 &start, &end);
773 }
774 ra_info->nr_pte = end - start;
775 ra_info->offset = fpfn - start;
776 pte -= ra_info->offset;
777 #ifdef CONFIG_64BIT
778 ra_info->ptes = pte;
779 #else
780 tpte = ra_info->ptes;
781 for (pfn = start; pfn != end; pfn++)
782 *tpte++ = *pte++;
783 #endif
784 pte_unmap(orig_pte);
785 }
786
787 /**
788 * swap_vma_readahead - swap in pages in hope we need them soon
789 * @fentry: swap entry of this memory
790 * @gfp_mask: memory allocation flags
791 * @vmf: fault information
792 *
793 * Returns the struct page for entry and addr, after queueing swapin.
794 *
795 * Primitive swap readahead code. We simply read in a few pages whose
796 * virtual addresses are around the fault address in the same vma.
797 *
798 * Caller must hold read mmap_lock if vmf->vma is not NULL.
799 *
800 */
801 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
802 struct vm_fault *vmf)
803 {
804 struct blk_plug plug;
805 struct vm_area_struct *vma = vmf->vma;
806 struct page *page;
807 pte_t *pte, pentry;
808 swp_entry_t entry;
809 unsigned int i;
810 bool page_allocated;
811 struct vma_swap_readahead ra_info = {
812 .win = 1,
813 };
814
815 swap_ra_info(vmf, &ra_info);
816 if (ra_info.win == 1)
817 goto skip;
818
819 blk_start_plug(&plug);
820 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
821 i++, pte++) {
822 pentry = *pte;
823 if (pte_none(pentry))
824 continue;
825 if (pte_present(pentry))
826 continue;
827 entry = pte_to_swp_entry(pentry);
828 if (unlikely(non_swap_entry(entry)))
829 continue;
830 page = __read_swap_cache_async(entry, gfp_mask, vma,
831 vmf->address, &page_allocated);
832 if (!page)
833 continue;
834 if (page_allocated) {
835 swap_readpage(page, false);
836 if (i != ra_info.offset) {
837 SetPageReadahead(page);
838 count_vm_event(SWAP_RA);
839 }
840 }
841 put_page(page);
842 }
843 blk_finish_plug(&plug);
844 lru_add_drain();
845 skip:
846 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
847 ra_info.win == 1);
848 }
849
850 /**
851 * swapin_readahead - swap in pages in hope we need them soon
852 * @entry: swap entry of this memory
853 * @gfp_mask: memory allocation flags
854 * @vmf: fault information
855 *
856 * Returns the struct page for entry and addr, after queueing swapin.
857 *
858 * It's a main entry function for swap readahead. By the configuration,
859 * it will read ahead blocks by cluster-based(ie, physical disk based)
860 * or vma-based(ie, virtual address based on faulty address) readahead.
861 */
862 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
863 struct vm_fault *vmf)
864 {
865 return swap_use_vma_readahead() ?
866 swap_vma_readahead(entry, gfp_mask, vmf) :
867 swap_cluster_readahead(entry, gfp_mask, vmf);
868 }
869
870 #ifdef CONFIG_SYSFS
871 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
872 struct kobj_attribute *attr, char *buf)
873 {
874 return sysfs_emit(buf, "%s\n",
875 enable_vma_readahead ? "true" : "false");
876 }
877 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
878 struct kobj_attribute *attr,
879 const char *buf, size_t count)
880 {
881 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
882 enable_vma_readahead = true;
883 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
884 enable_vma_readahead = false;
885 else
886 return -EINVAL;
887
888 return count;
889 }
890 static struct kobj_attribute vma_ra_enabled_attr =
891 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
892 vma_ra_enabled_store);
893
894 static struct attribute *swap_attrs[] = {
895 &vma_ra_enabled_attr.attr,
896 NULL,
897 };
898
899 static const struct attribute_group swap_attr_group = {
900 .attrs = swap_attrs,
901 };
902
903 static int __init swap_init_sysfs(void)
904 {
905 int err;
906 struct kobject *swap_kobj;
907
908 swap_kobj = kobject_create_and_add("swap", mm_kobj);
909 if (!swap_kobj) {
910 pr_err("failed to create swap kobject\n");
911 return -ENOMEM;
912 }
913 err = sysfs_create_group(swap_kobj, &swap_attr_group);
914 if (err) {
915 pr_err("failed to register swap group\n");
916 goto delete_obj;
917 }
918 return 0;
919
920 delete_obj:
921 kobject_put(swap_kobj);
922 return err;
923 }
924 subsys_initcall(swap_init_sysfs);
925 #endif