]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/swap_state.c
sh: Prevent leaking of CONFIG_SUPERH32 to userspace in asm/unistd.h.
[mirror_ubuntu-zesty-kernel.git] / mm / swap_state.c
1 /*
2 * linux/mm/swap_state.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 *
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/buffer_head.h>
17 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20
21 #include <asm/pgtable.h>
22
23 /*
24 * swapper_space is a fiction, retained to simplify the path through
25 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
26 * future use of radix_tree tags in the swap cache.
27 */
28 static const struct address_space_operations swap_aops = {
29 .writepage = swap_writepage,
30 .sync_page = block_sync_page,
31 .set_page_dirty = __set_page_dirty_nobuffers,
32 .migratepage = migrate_page,
33 };
34
35 static struct backing_dev_info swap_backing_dev_info = {
36 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
37 .unplug_io_fn = swap_unplug_io_fn,
38 };
39
40 struct address_space swapper_space = {
41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 .tree_lock = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
43 .a_ops = &swap_aops,
44 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
45 .backing_dev_info = &swap_backing_dev_info,
46 };
47
48 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
49
50 static struct {
51 unsigned long add_total;
52 unsigned long del_total;
53 unsigned long find_success;
54 unsigned long find_total;
55 } swap_cache_info;
56
57 void show_swap_cache_info(void)
58 {
59 printk("%lu pages in swap cache\n", total_swapcache_pages);
60 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
61 swap_cache_info.add_total, swap_cache_info.del_total,
62 swap_cache_info.find_success, swap_cache_info.find_total);
63 printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10));
64 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
65 }
66
67 /*
68 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
69 * but sets SwapCache flag and private instead of mapping and index.
70 */
71 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
72 {
73 int error;
74
75 BUG_ON(!PageLocked(page));
76 BUG_ON(PageSwapCache(page));
77 BUG_ON(PagePrivate(page));
78 error = radix_tree_preload(gfp_mask);
79 if (!error) {
80 page_cache_get(page);
81 SetPageSwapCache(page);
82 set_page_private(page, entry.val);
83
84 spin_lock_irq(&swapper_space.tree_lock);
85 error = radix_tree_insert(&swapper_space.page_tree,
86 entry.val, page);
87 if (likely(!error)) {
88 total_swapcache_pages++;
89 __inc_zone_page_state(page, NR_FILE_PAGES);
90 INC_CACHE_INFO(add_total);
91 }
92 spin_unlock_irq(&swapper_space.tree_lock);
93 radix_tree_preload_end();
94
95 if (unlikely(error)) {
96 set_page_private(page, 0UL);
97 ClearPageSwapCache(page);
98 page_cache_release(page);
99 }
100 }
101 return error;
102 }
103
104 /*
105 * This must be called only on pages that have
106 * been verified to be in the swap cache.
107 */
108 void __delete_from_swap_cache(struct page *page)
109 {
110 BUG_ON(!PageLocked(page));
111 BUG_ON(!PageSwapCache(page));
112 BUG_ON(PageWriteback(page));
113 BUG_ON(PagePrivate(page));
114
115 radix_tree_delete(&swapper_space.page_tree, page_private(page));
116 set_page_private(page, 0);
117 ClearPageSwapCache(page);
118 total_swapcache_pages--;
119 __dec_zone_page_state(page, NR_FILE_PAGES);
120 INC_CACHE_INFO(del_total);
121 }
122
123 /**
124 * add_to_swap - allocate swap space for a page
125 * @page: page we want to move to swap
126 * @gfp_mask: memory allocation flags
127 *
128 * Allocate swap space for the page and add the page to the
129 * swap cache. Caller needs to hold the page lock.
130 */
131 int add_to_swap(struct page * page, gfp_t gfp_mask)
132 {
133 swp_entry_t entry;
134 int err;
135
136 BUG_ON(!PageLocked(page));
137 BUG_ON(!PageUptodate(page));
138
139 for (;;) {
140 entry = get_swap_page();
141 if (!entry.val)
142 return 0;
143
144 /*
145 * Radix-tree node allocations from PF_MEMALLOC contexts could
146 * completely exhaust the page allocator. __GFP_NOMEMALLOC
147 * stops emergency reserves from being allocated.
148 *
149 * TODO: this could cause a theoretical memory reclaim
150 * deadlock in the swap out path.
151 */
152 /*
153 * Add it to the swap cache and mark it dirty
154 */
155 err = add_to_swap_cache(page, entry,
156 gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);
157
158 switch (err) {
159 case 0: /* Success */
160 SetPageDirty(page);
161 return 1;
162 case -EEXIST:
163 /* Raced with "speculative" read_swap_cache_async */
164 swap_free(entry);
165 continue;
166 default:
167 /* -ENOMEM radix-tree allocation failure */
168 swap_free(entry);
169 return 0;
170 }
171 }
172 }
173
174 /*
175 * This must be called only on pages that have
176 * been verified to be in the swap cache and locked.
177 * It will never put the page into the free list,
178 * the caller has a reference on the page.
179 */
180 void delete_from_swap_cache(struct page *page)
181 {
182 swp_entry_t entry;
183
184 entry.val = page_private(page);
185
186 spin_lock_irq(&swapper_space.tree_lock);
187 __delete_from_swap_cache(page);
188 spin_unlock_irq(&swapper_space.tree_lock);
189
190 swap_free(entry);
191 page_cache_release(page);
192 }
193
194 /*
195 * If we are the only user, then try to free up the swap cache.
196 *
197 * Its ok to check for PageSwapCache without the page lock
198 * here because we are going to recheck again inside
199 * exclusive_swap_page() _with_ the lock.
200 * - Marcelo
201 */
202 static inline void free_swap_cache(struct page *page)
203 {
204 if (PageSwapCache(page) && !TestSetPageLocked(page)) {
205 remove_exclusive_swap_page(page);
206 unlock_page(page);
207 }
208 }
209
210 /*
211 * Perform a free_page(), also freeing any swap cache associated with
212 * this page if it is the last user of the page.
213 */
214 void free_page_and_swap_cache(struct page *page)
215 {
216 free_swap_cache(page);
217 page_cache_release(page);
218 }
219
220 /*
221 * Passed an array of pages, drop them all from swapcache and then release
222 * them. They are removed from the LRU and freed if this is their last use.
223 */
224 void free_pages_and_swap_cache(struct page **pages, int nr)
225 {
226 struct page **pagep = pages;
227
228 lru_add_drain();
229 while (nr) {
230 int todo = min(nr, PAGEVEC_SIZE);
231 int i;
232
233 for (i = 0; i < todo; i++)
234 free_swap_cache(pagep[i]);
235 release_pages(pagep, todo, 0);
236 pagep += todo;
237 nr -= todo;
238 }
239 }
240
241 /*
242 * Lookup a swap entry in the swap cache. A found page will be returned
243 * unlocked and with its refcount incremented - we rely on the kernel
244 * lock getting page table operations atomic even if we drop the page
245 * lock before returning.
246 */
247 struct page * lookup_swap_cache(swp_entry_t entry)
248 {
249 struct page *page;
250
251 page = find_get_page(&swapper_space, entry.val);
252
253 if (page)
254 INC_CACHE_INFO(find_success);
255
256 INC_CACHE_INFO(find_total);
257 return page;
258 }
259
260 /*
261 * Locate a page of swap in physical memory, reserving swap cache space
262 * and reading the disk if it is not already cached.
263 * A failure return means that either the page allocation failed or that
264 * the swap entry is no longer in use.
265 */
266 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
267 struct vm_area_struct *vma, unsigned long addr)
268 {
269 struct page *found_page, *new_page = NULL;
270 int err;
271
272 do {
273 /*
274 * First check the swap cache. Since this is normally
275 * called after lookup_swap_cache() failed, re-calling
276 * that would confuse statistics.
277 */
278 found_page = find_get_page(&swapper_space, entry.val);
279 if (found_page)
280 break;
281
282 /*
283 * Get a new page to read into from swap.
284 */
285 if (!new_page) {
286 new_page = alloc_page_vma(gfp_mask, vma, addr);
287 if (!new_page)
288 break; /* Out of memory */
289 }
290
291 /*
292 * Swap entry may have been freed since our caller observed it.
293 */
294 if (!swap_duplicate(entry))
295 break;
296
297 /*
298 * Associate the page with swap entry in the swap cache.
299 * May fail (-EEXIST) if there is already a page associated
300 * with this entry in the swap cache: added by a racing
301 * read_swap_cache_async, or add_to_swap or shmem_writepage
302 * re-using the just freed swap entry for an existing page.
303 * May fail (-ENOMEM) if radix-tree node allocation failed.
304 */
305 SetPageLocked(new_page);
306 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
307 if (!err) {
308 /*
309 * Initiate read into locked page and return.
310 */
311 lru_cache_add_active(new_page);
312 swap_readpage(NULL, new_page);
313 return new_page;
314 }
315 ClearPageLocked(new_page);
316 swap_free(entry);
317 } while (err != -ENOMEM);
318
319 if (new_page)
320 page_cache_release(new_page);
321 return found_page;
322 }
323
324 /**
325 * swapin_readahead - swap in pages in hope we need them soon
326 * @entry: swap entry of this memory
327 * @gfp_mask: memory allocation flags
328 * @vma: user vma this address belongs to
329 * @addr: target address for mempolicy
330 *
331 * Returns the struct page for entry and addr, after queueing swapin.
332 *
333 * Primitive swap readahead code. We simply read an aligned block of
334 * (1 << page_cluster) entries in the swap area. This method is chosen
335 * because it doesn't cost us any seek time. We also make sure to queue
336 * the 'original' request together with the readahead ones...
337 *
338 * This has been extended to use the NUMA policies from the mm triggering
339 * the readahead.
340 *
341 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
342 */
343 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
344 struct vm_area_struct *vma, unsigned long addr)
345 {
346 int nr_pages;
347 struct page *page;
348 unsigned long offset;
349 unsigned long end_offset;
350
351 /*
352 * Get starting offset for readaround, and number of pages to read.
353 * Adjust starting address by readbehind (for NUMA interleave case)?
354 * No, it's very unlikely that swap layout would follow vma layout,
355 * more likely that neighbouring swap pages came from the same node:
356 * so use the same "addr" to choose the same node for each swap read.
357 */
358 nr_pages = valid_swaphandles(entry, &offset);
359 for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
360 /* Ok, do the async read-ahead now */
361 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
362 gfp_mask, vma, addr);
363 if (!page)
364 break;
365 page_cache_release(page);
366 }
367 lru_add_drain(); /* Push any new pages onto the LRU now */
368 return read_swap_cache_async(entry, gfp_mask, vma, addr);
369 }