]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/swapfile.c
afs: Fix VNOVOL handling in address rotation
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88 struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
104 }
105
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109 {
110 swp_entry_t entry = swp_entry(si->type, offset);
111 struct page *page;
112 int ret = 0;
113
114 page = find_get_page(swap_address_space(entry), swp_offset(entry));
115 if (!page)
116 return 0;
117 /*
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
123 */
124 if (trylock_page(page)) {
125 ret = try_to_free_swap(page);
126 unlock_page(page);
127 }
128 put_page(page);
129 return ret;
130 }
131
132 /*
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
135 */
136 static int discard_swap(struct swap_info_struct *si)
137 {
138 struct swap_extent *se;
139 sector_t start_block;
140 sector_t nr_blocks;
141 int err = 0;
142
143 /* Do not discard the swap header page! */
144 se = &si->first_swap_extent;
145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 if (nr_blocks) {
148 err = blkdev_issue_discard(si->bdev, start_block,
149 nr_blocks, GFP_KERNEL, 0);
150 if (err)
151 return err;
152 cond_resched();
153 }
154
155 list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 start_block = se->start_block << (PAGE_SHIFT - 9);
157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
158
159 err = blkdev_issue_discard(si->bdev, start_block,
160 nr_blocks, GFP_KERNEL, 0);
161 if (err)
162 break;
163
164 cond_resched();
165 }
166 return err; /* That will often be -EOPNOTSUPP */
167 }
168
169 /*
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
172 */
173 static void discard_swap_cluster(struct swap_info_struct *si,
174 pgoff_t start_page, pgoff_t nr_pages)
175 {
176 struct swap_extent *se = si->curr_swap_extent;
177 int found_extent = 0;
178
179 while (nr_pages) {
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
184 sector_t nr_blocks = se->nr_pages - offset;
185
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
190
191 if (!found_extent++)
192 si->curr_swap_extent = se;
193
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
197 nr_blocks, GFP_NOIO, 0))
198 break;
199 }
200
201 se = list_next_entry(se, list);
202 }
203 }
204
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
207 #else
208 #define SWAPFILE_CLUSTER 256
209 #endif
210 #define LATENCY_LIMIT 256
211
212 static inline void cluster_set_flag(struct swap_cluster_info *info,
213 unsigned int flag)
214 {
215 info->flags = flag;
216 }
217
218 static inline unsigned int cluster_count(struct swap_cluster_info *info)
219 {
220 return info->data;
221 }
222
223 static inline void cluster_set_count(struct swap_cluster_info *info,
224 unsigned int c)
225 {
226 info->data = c;
227 }
228
229 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230 unsigned int c, unsigned int f)
231 {
232 info->flags = f;
233 info->data = c;
234 }
235
236 static inline unsigned int cluster_next(struct swap_cluster_info *info)
237 {
238 return info->data;
239 }
240
241 static inline void cluster_set_next(struct swap_cluster_info *info,
242 unsigned int n)
243 {
244 info->data = n;
245 }
246
247 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248 unsigned int n, unsigned int f)
249 {
250 info->flags = f;
251 info->data = n;
252 }
253
254 static inline bool cluster_is_free(struct swap_cluster_info *info)
255 {
256 return info->flags & CLUSTER_FLAG_FREE;
257 }
258
259 static inline bool cluster_is_null(struct swap_cluster_info *info)
260 {
261 return info->flags & CLUSTER_FLAG_NEXT_NULL;
262 }
263
264 static inline void cluster_set_null(struct swap_cluster_info *info)
265 {
266 info->flags = CLUSTER_FLAG_NEXT_NULL;
267 info->data = 0;
268 }
269
270 static inline bool cluster_is_huge(struct swap_cluster_info *info)
271 {
272 return info->flags & CLUSTER_FLAG_HUGE;
273 }
274
275 static inline void cluster_clear_huge(struct swap_cluster_info *info)
276 {
277 info->flags &= ~CLUSTER_FLAG_HUGE;
278 }
279
280 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281 unsigned long offset)
282 {
283 struct swap_cluster_info *ci;
284
285 ci = si->cluster_info;
286 if (ci) {
287 ci += offset / SWAPFILE_CLUSTER;
288 spin_lock(&ci->lock);
289 }
290 return ci;
291 }
292
293 static inline void unlock_cluster(struct swap_cluster_info *ci)
294 {
295 if (ci)
296 spin_unlock(&ci->lock);
297 }
298
299 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
300 struct swap_info_struct *si,
301 unsigned long offset)
302 {
303 struct swap_cluster_info *ci;
304
305 ci = lock_cluster(si, offset);
306 if (!ci)
307 spin_lock(&si->lock);
308
309 return ci;
310 }
311
312 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
313 struct swap_cluster_info *ci)
314 {
315 if (ci)
316 unlock_cluster(ci);
317 else
318 spin_unlock(&si->lock);
319 }
320
321 static inline bool cluster_list_empty(struct swap_cluster_list *list)
322 {
323 return cluster_is_null(&list->head);
324 }
325
326 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
327 {
328 return cluster_next(&list->head);
329 }
330
331 static void cluster_list_init(struct swap_cluster_list *list)
332 {
333 cluster_set_null(&list->head);
334 cluster_set_null(&list->tail);
335 }
336
337 static void cluster_list_add_tail(struct swap_cluster_list *list,
338 struct swap_cluster_info *ci,
339 unsigned int idx)
340 {
341 if (cluster_list_empty(list)) {
342 cluster_set_next_flag(&list->head, idx, 0);
343 cluster_set_next_flag(&list->tail, idx, 0);
344 } else {
345 struct swap_cluster_info *ci_tail;
346 unsigned int tail = cluster_next(&list->tail);
347
348 /*
349 * Nested cluster lock, but both cluster locks are
350 * only acquired when we held swap_info_struct->lock
351 */
352 ci_tail = ci + tail;
353 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
354 cluster_set_next(ci_tail, idx);
355 spin_unlock(&ci_tail->lock);
356 cluster_set_next_flag(&list->tail, idx, 0);
357 }
358 }
359
360 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
361 struct swap_cluster_info *ci)
362 {
363 unsigned int idx;
364
365 idx = cluster_next(&list->head);
366 if (cluster_next(&list->tail) == idx) {
367 cluster_set_null(&list->head);
368 cluster_set_null(&list->tail);
369 } else
370 cluster_set_next_flag(&list->head,
371 cluster_next(&ci[idx]), 0);
372
373 return idx;
374 }
375
376 /* Add a cluster to discard list and schedule it to do discard */
377 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
378 unsigned int idx)
379 {
380 /*
381 * If scan_swap_map() can't find a free cluster, it will check
382 * si->swap_map directly. To make sure the discarding cluster isn't
383 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
384 * will be cleared after discard
385 */
386 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
387 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
388
389 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
390
391 schedule_work(&si->discard_work);
392 }
393
394 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
395 {
396 struct swap_cluster_info *ci = si->cluster_info;
397
398 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
399 cluster_list_add_tail(&si->free_clusters, ci, idx);
400 }
401
402 /*
403 * Doing discard actually. After a cluster discard is finished, the cluster
404 * will be added to free cluster list. caller should hold si->lock.
405 */
406 static void swap_do_scheduled_discard(struct swap_info_struct *si)
407 {
408 struct swap_cluster_info *info, *ci;
409 unsigned int idx;
410
411 info = si->cluster_info;
412
413 while (!cluster_list_empty(&si->discard_clusters)) {
414 idx = cluster_list_del_first(&si->discard_clusters, info);
415 spin_unlock(&si->lock);
416
417 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
418 SWAPFILE_CLUSTER);
419
420 spin_lock(&si->lock);
421 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
422 __free_cluster(si, idx);
423 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
424 0, SWAPFILE_CLUSTER);
425 unlock_cluster(ci);
426 }
427 }
428
429 static void swap_discard_work(struct work_struct *work)
430 {
431 struct swap_info_struct *si;
432
433 si = container_of(work, struct swap_info_struct, discard_work);
434
435 spin_lock(&si->lock);
436 swap_do_scheduled_discard(si);
437 spin_unlock(&si->lock);
438 }
439
440 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
441 {
442 struct swap_cluster_info *ci = si->cluster_info;
443
444 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
445 cluster_list_del_first(&si->free_clusters, ci);
446 cluster_set_count_flag(ci + idx, 0, 0);
447 }
448
449 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
450 {
451 struct swap_cluster_info *ci = si->cluster_info + idx;
452
453 VM_BUG_ON(cluster_count(ci) != 0);
454 /*
455 * If the swap is discardable, prepare discard the cluster
456 * instead of free it immediately. The cluster will be freed
457 * after discard.
458 */
459 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
460 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
461 swap_cluster_schedule_discard(si, idx);
462 return;
463 }
464
465 __free_cluster(si, idx);
466 }
467
468 /*
469 * The cluster corresponding to page_nr will be used. The cluster will be
470 * removed from free cluster list and its usage counter will be increased.
471 */
472 static void inc_cluster_info_page(struct swap_info_struct *p,
473 struct swap_cluster_info *cluster_info, unsigned long page_nr)
474 {
475 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
476
477 if (!cluster_info)
478 return;
479 if (cluster_is_free(&cluster_info[idx]))
480 alloc_cluster(p, idx);
481
482 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
483 cluster_set_count(&cluster_info[idx],
484 cluster_count(&cluster_info[idx]) + 1);
485 }
486
487 /*
488 * The cluster corresponding to page_nr decreases one usage. If the usage
489 * counter becomes 0, which means no page in the cluster is in using, we can
490 * optionally discard the cluster and add it to free cluster list.
491 */
492 static void dec_cluster_info_page(struct swap_info_struct *p,
493 struct swap_cluster_info *cluster_info, unsigned long page_nr)
494 {
495 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
496
497 if (!cluster_info)
498 return;
499
500 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
501 cluster_set_count(&cluster_info[idx],
502 cluster_count(&cluster_info[idx]) - 1);
503
504 if (cluster_count(&cluster_info[idx]) == 0)
505 free_cluster(p, idx);
506 }
507
508 /*
509 * It's possible scan_swap_map() uses a free cluster in the middle of free
510 * cluster list. Avoiding such abuse to avoid list corruption.
511 */
512 static bool
513 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
514 unsigned long offset)
515 {
516 struct percpu_cluster *percpu_cluster;
517 bool conflict;
518
519 offset /= SWAPFILE_CLUSTER;
520 conflict = !cluster_list_empty(&si->free_clusters) &&
521 offset != cluster_list_first(&si->free_clusters) &&
522 cluster_is_free(&si->cluster_info[offset]);
523
524 if (!conflict)
525 return false;
526
527 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
528 cluster_set_null(&percpu_cluster->index);
529 return true;
530 }
531
532 /*
533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
534 * might involve allocating a new cluster for current CPU too.
535 */
536 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
537 unsigned long *offset, unsigned long *scan_base)
538 {
539 struct percpu_cluster *cluster;
540 struct swap_cluster_info *ci;
541 bool found_free;
542 unsigned long tmp, max;
543
544 new_cluster:
545 cluster = this_cpu_ptr(si->percpu_cluster);
546 if (cluster_is_null(&cluster->index)) {
547 if (!cluster_list_empty(&si->free_clusters)) {
548 cluster->index = si->free_clusters.head;
549 cluster->next = cluster_next(&cluster->index) *
550 SWAPFILE_CLUSTER;
551 } else if (!cluster_list_empty(&si->discard_clusters)) {
552 /*
553 * we don't have free cluster but have some clusters in
554 * discarding, do discard now and reclaim them
555 */
556 swap_do_scheduled_discard(si);
557 *scan_base = *offset = si->cluster_next;
558 goto new_cluster;
559 } else
560 return false;
561 }
562
563 found_free = false;
564
565 /*
566 * Other CPUs can use our cluster if they can't find a free cluster,
567 * check if there is still free entry in the cluster
568 */
569 tmp = cluster->next;
570 max = min_t(unsigned long, si->max,
571 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
572 if (tmp >= max) {
573 cluster_set_null(&cluster->index);
574 goto new_cluster;
575 }
576 ci = lock_cluster(si, tmp);
577 while (tmp < max) {
578 if (!si->swap_map[tmp]) {
579 found_free = true;
580 break;
581 }
582 tmp++;
583 }
584 unlock_cluster(ci);
585 if (!found_free) {
586 cluster_set_null(&cluster->index);
587 goto new_cluster;
588 }
589 cluster->next = tmp + 1;
590 *offset = tmp;
591 *scan_base = tmp;
592 return found_free;
593 }
594
595 static void __del_from_avail_list(struct swap_info_struct *p)
596 {
597 int nid;
598
599 for_each_node(nid)
600 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
601 }
602
603 static void del_from_avail_list(struct swap_info_struct *p)
604 {
605 spin_lock(&swap_avail_lock);
606 __del_from_avail_list(p);
607 spin_unlock(&swap_avail_lock);
608 }
609
610 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
611 unsigned int nr_entries)
612 {
613 unsigned int end = offset + nr_entries - 1;
614
615 if (offset == si->lowest_bit)
616 si->lowest_bit += nr_entries;
617 if (end == si->highest_bit)
618 si->highest_bit -= nr_entries;
619 si->inuse_pages += nr_entries;
620 if (si->inuse_pages == si->pages) {
621 si->lowest_bit = si->max;
622 si->highest_bit = 0;
623 del_from_avail_list(si);
624 }
625 }
626
627 static void add_to_avail_list(struct swap_info_struct *p)
628 {
629 int nid;
630
631 spin_lock(&swap_avail_lock);
632 for_each_node(nid) {
633 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
634 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
635 }
636 spin_unlock(&swap_avail_lock);
637 }
638
639 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
640 unsigned int nr_entries)
641 {
642 unsigned long end = offset + nr_entries - 1;
643 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
644
645 if (offset < si->lowest_bit)
646 si->lowest_bit = offset;
647 if (end > si->highest_bit) {
648 bool was_full = !si->highest_bit;
649
650 si->highest_bit = end;
651 if (was_full && (si->flags & SWP_WRITEOK))
652 add_to_avail_list(si);
653 }
654 atomic_long_add(nr_entries, &nr_swap_pages);
655 si->inuse_pages -= nr_entries;
656 if (si->flags & SWP_BLKDEV)
657 swap_slot_free_notify =
658 si->bdev->bd_disk->fops->swap_slot_free_notify;
659 else
660 swap_slot_free_notify = NULL;
661 while (offset <= end) {
662 frontswap_invalidate_page(si->type, offset);
663 if (swap_slot_free_notify)
664 swap_slot_free_notify(si->bdev, offset);
665 offset++;
666 }
667 }
668
669 static int scan_swap_map_slots(struct swap_info_struct *si,
670 unsigned char usage, int nr,
671 swp_entry_t slots[])
672 {
673 struct swap_cluster_info *ci;
674 unsigned long offset;
675 unsigned long scan_base;
676 unsigned long last_in_cluster = 0;
677 int latency_ration = LATENCY_LIMIT;
678 int n_ret = 0;
679
680 if (nr > SWAP_BATCH)
681 nr = SWAP_BATCH;
682
683 /*
684 * We try to cluster swap pages by allocating them sequentially
685 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
686 * way, however, we resort to first-free allocation, starting
687 * a new cluster. This prevents us from scattering swap pages
688 * all over the entire swap partition, so that we reduce
689 * overall disk seek times between swap pages. -- sct
690 * But we do now try to find an empty cluster. -Andrea
691 * And we let swap pages go all over an SSD partition. Hugh
692 */
693
694 si->flags += SWP_SCANNING;
695 scan_base = offset = si->cluster_next;
696
697 /* SSD algorithm */
698 if (si->cluster_info) {
699 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
700 goto checks;
701 else
702 goto scan;
703 }
704
705 if (unlikely(!si->cluster_nr--)) {
706 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
707 si->cluster_nr = SWAPFILE_CLUSTER - 1;
708 goto checks;
709 }
710
711 spin_unlock(&si->lock);
712
713 /*
714 * If seek is expensive, start searching for new cluster from
715 * start of partition, to minimize the span of allocated swap.
716 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
717 * case, just handled by scan_swap_map_try_ssd_cluster() above.
718 */
719 scan_base = offset = si->lowest_bit;
720 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
721
722 /* Locate the first empty (unaligned) cluster */
723 for (; last_in_cluster <= si->highest_bit; offset++) {
724 if (si->swap_map[offset])
725 last_in_cluster = offset + SWAPFILE_CLUSTER;
726 else if (offset == last_in_cluster) {
727 spin_lock(&si->lock);
728 offset -= SWAPFILE_CLUSTER - 1;
729 si->cluster_next = offset;
730 si->cluster_nr = SWAPFILE_CLUSTER - 1;
731 goto checks;
732 }
733 if (unlikely(--latency_ration < 0)) {
734 cond_resched();
735 latency_ration = LATENCY_LIMIT;
736 }
737 }
738
739 offset = scan_base;
740 spin_lock(&si->lock);
741 si->cluster_nr = SWAPFILE_CLUSTER - 1;
742 }
743
744 checks:
745 if (si->cluster_info) {
746 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
747 /* take a break if we already got some slots */
748 if (n_ret)
749 goto done;
750 if (!scan_swap_map_try_ssd_cluster(si, &offset,
751 &scan_base))
752 goto scan;
753 }
754 }
755 if (!(si->flags & SWP_WRITEOK))
756 goto no_page;
757 if (!si->highest_bit)
758 goto no_page;
759 if (offset > si->highest_bit)
760 scan_base = offset = si->lowest_bit;
761
762 ci = lock_cluster(si, offset);
763 /* reuse swap entry of cache-only swap if not busy. */
764 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
765 int swap_was_freed;
766 unlock_cluster(ci);
767 spin_unlock(&si->lock);
768 swap_was_freed = __try_to_reclaim_swap(si, offset);
769 spin_lock(&si->lock);
770 /* entry was freed successfully, try to use this again */
771 if (swap_was_freed)
772 goto checks;
773 goto scan; /* check next one */
774 }
775
776 if (si->swap_map[offset]) {
777 unlock_cluster(ci);
778 if (!n_ret)
779 goto scan;
780 else
781 goto done;
782 }
783 si->swap_map[offset] = usage;
784 inc_cluster_info_page(si, si->cluster_info, offset);
785 unlock_cluster(ci);
786
787 swap_range_alloc(si, offset, 1);
788 si->cluster_next = offset + 1;
789 slots[n_ret++] = swp_entry(si->type, offset);
790
791 /* got enough slots or reach max slots? */
792 if ((n_ret == nr) || (offset >= si->highest_bit))
793 goto done;
794
795 /* search for next available slot */
796
797 /* time to take a break? */
798 if (unlikely(--latency_ration < 0)) {
799 if (n_ret)
800 goto done;
801 spin_unlock(&si->lock);
802 cond_resched();
803 spin_lock(&si->lock);
804 latency_ration = LATENCY_LIMIT;
805 }
806
807 /* try to get more slots in cluster */
808 if (si->cluster_info) {
809 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
810 goto checks;
811 else
812 goto done;
813 }
814 /* non-ssd case */
815 ++offset;
816
817 /* non-ssd case, still more slots in cluster? */
818 if (si->cluster_nr && !si->swap_map[offset]) {
819 --si->cluster_nr;
820 goto checks;
821 }
822
823 done:
824 si->flags -= SWP_SCANNING;
825 return n_ret;
826
827 scan:
828 spin_unlock(&si->lock);
829 while (++offset <= si->highest_bit) {
830 if (!si->swap_map[offset]) {
831 spin_lock(&si->lock);
832 goto checks;
833 }
834 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
835 spin_lock(&si->lock);
836 goto checks;
837 }
838 if (unlikely(--latency_ration < 0)) {
839 cond_resched();
840 latency_ration = LATENCY_LIMIT;
841 }
842 }
843 offset = si->lowest_bit;
844 while (offset < scan_base) {
845 if (!si->swap_map[offset]) {
846 spin_lock(&si->lock);
847 goto checks;
848 }
849 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
850 spin_lock(&si->lock);
851 goto checks;
852 }
853 if (unlikely(--latency_ration < 0)) {
854 cond_resched();
855 latency_ration = LATENCY_LIMIT;
856 }
857 offset++;
858 }
859 spin_lock(&si->lock);
860
861 no_page:
862 si->flags -= SWP_SCANNING;
863 return n_ret;
864 }
865
866 #ifdef CONFIG_THP_SWAP
867 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
868 {
869 unsigned long idx;
870 struct swap_cluster_info *ci;
871 unsigned long offset, i;
872 unsigned char *map;
873
874 if (cluster_list_empty(&si->free_clusters))
875 return 0;
876
877 idx = cluster_list_first(&si->free_clusters);
878 offset = idx * SWAPFILE_CLUSTER;
879 ci = lock_cluster(si, offset);
880 alloc_cluster(si, idx);
881 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
882
883 map = si->swap_map + offset;
884 for (i = 0; i < SWAPFILE_CLUSTER; i++)
885 map[i] = SWAP_HAS_CACHE;
886 unlock_cluster(ci);
887 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
888 *slot = swp_entry(si->type, offset);
889
890 return 1;
891 }
892
893 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
894 {
895 unsigned long offset = idx * SWAPFILE_CLUSTER;
896 struct swap_cluster_info *ci;
897
898 ci = lock_cluster(si, offset);
899 cluster_set_count_flag(ci, 0, 0);
900 free_cluster(si, idx);
901 unlock_cluster(ci);
902 swap_range_free(si, offset, SWAPFILE_CLUSTER);
903 }
904 #else
905 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
906 {
907 VM_WARN_ON_ONCE(1);
908 return 0;
909 }
910 #endif /* CONFIG_THP_SWAP */
911
912 static unsigned long scan_swap_map(struct swap_info_struct *si,
913 unsigned char usage)
914 {
915 swp_entry_t entry;
916 int n_ret;
917
918 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
919
920 if (n_ret)
921 return swp_offset(entry);
922 else
923 return 0;
924
925 }
926
927 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
928 {
929 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
930 struct swap_info_struct *si, *next;
931 long avail_pgs;
932 int n_ret = 0;
933 int node;
934
935 /* Only single cluster request supported */
936 WARN_ON_ONCE(n_goal > 1 && cluster);
937
938 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
939 if (avail_pgs <= 0)
940 goto noswap;
941
942 if (n_goal > SWAP_BATCH)
943 n_goal = SWAP_BATCH;
944
945 if (n_goal > avail_pgs)
946 n_goal = avail_pgs;
947
948 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
949
950 spin_lock(&swap_avail_lock);
951
952 start_over:
953 node = numa_node_id();
954 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
955 /* requeue si to after same-priority siblings */
956 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
957 spin_unlock(&swap_avail_lock);
958 spin_lock(&si->lock);
959 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
960 spin_lock(&swap_avail_lock);
961 if (plist_node_empty(&si->avail_lists[node])) {
962 spin_unlock(&si->lock);
963 goto nextsi;
964 }
965 WARN(!si->highest_bit,
966 "swap_info %d in list but !highest_bit\n",
967 si->type);
968 WARN(!(si->flags & SWP_WRITEOK),
969 "swap_info %d in list but !SWP_WRITEOK\n",
970 si->type);
971 __del_from_avail_list(si);
972 spin_unlock(&si->lock);
973 goto nextsi;
974 }
975 if (cluster) {
976 if (!(si->flags & SWP_FILE))
977 n_ret = swap_alloc_cluster(si, swp_entries);
978 } else
979 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
980 n_goal, swp_entries);
981 spin_unlock(&si->lock);
982 if (n_ret || cluster)
983 goto check_out;
984 pr_debug("scan_swap_map of si %d failed to find offset\n",
985 si->type);
986
987 spin_lock(&swap_avail_lock);
988 nextsi:
989 /*
990 * if we got here, it's likely that si was almost full before,
991 * and since scan_swap_map() can drop the si->lock, multiple
992 * callers probably all tried to get a page from the same si
993 * and it filled up before we could get one; or, the si filled
994 * up between us dropping swap_avail_lock and taking si->lock.
995 * Since we dropped the swap_avail_lock, the swap_avail_head
996 * list may have been modified; so if next is still in the
997 * swap_avail_head list then try it, otherwise start over
998 * if we have not gotten any slots.
999 */
1000 if (plist_node_empty(&next->avail_lists[node]))
1001 goto start_over;
1002 }
1003
1004 spin_unlock(&swap_avail_lock);
1005
1006 check_out:
1007 if (n_ret < n_goal)
1008 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1009 &nr_swap_pages);
1010 noswap:
1011 return n_ret;
1012 }
1013
1014 /* The only caller of this function is now suspend routine */
1015 swp_entry_t get_swap_page_of_type(int type)
1016 {
1017 struct swap_info_struct *si;
1018 pgoff_t offset;
1019
1020 si = swap_info[type];
1021 spin_lock(&si->lock);
1022 if (si && (si->flags & SWP_WRITEOK)) {
1023 atomic_long_dec(&nr_swap_pages);
1024 /* This is called for allocating swap entry, not cache */
1025 offset = scan_swap_map(si, 1);
1026 if (offset) {
1027 spin_unlock(&si->lock);
1028 return swp_entry(type, offset);
1029 }
1030 atomic_long_inc(&nr_swap_pages);
1031 }
1032 spin_unlock(&si->lock);
1033 return (swp_entry_t) {0};
1034 }
1035
1036 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1037 {
1038 struct swap_info_struct *p;
1039 unsigned long offset, type;
1040
1041 if (!entry.val)
1042 goto out;
1043 type = swp_type(entry);
1044 if (type >= nr_swapfiles)
1045 goto bad_nofile;
1046 p = swap_info[type];
1047 if (!(p->flags & SWP_USED))
1048 goto bad_device;
1049 offset = swp_offset(entry);
1050 if (offset >= p->max)
1051 goto bad_offset;
1052 return p;
1053
1054 bad_offset:
1055 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1056 goto out;
1057 bad_device:
1058 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1059 goto out;
1060 bad_nofile:
1061 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1062 out:
1063 return NULL;
1064 }
1065
1066 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1067 {
1068 struct swap_info_struct *p;
1069
1070 p = __swap_info_get(entry);
1071 if (!p)
1072 goto out;
1073 if (!p->swap_map[swp_offset(entry)])
1074 goto bad_free;
1075 return p;
1076
1077 bad_free:
1078 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1079 goto out;
1080 out:
1081 return NULL;
1082 }
1083
1084 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1085 {
1086 struct swap_info_struct *p;
1087
1088 p = _swap_info_get(entry);
1089 if (p)
1090 spin_lock(&p->lock);
1091 return p;
1092 }
1093
1094 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1095 struct swap_info_struct *q)
1096 {
1097 struct swap_info_struct *p;
1098
1099 p = _swap_info_get(entry);
1100
1101 if (p != q) {
1102 if (q != NULL)
1103 spin_unlock(&q->lock);
1104 if (p != NULL)
1105 spin_lock(&p->lock);
1106 }
1107 return p;
1108 }
1109
1110 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1111 swp_entry_t entry, unsigned char usage)
1112 {
1113 struct swap_cluster_info *ci;
1114 unsigned long offset = swp_offset(entry);
1115 unsigned char count;
1116 unsigned char has_cache;
1117
1118 ci = lock_cluster_or_swap_info(p, offset);
1119
1120 count = p->swap_map[offset];
1121
1122 has_cache = count & SWAP_HAS_CACHE;
1123 count &= ~SWAP_HAS_CACHE;
1124
1125 if (usage == SWAP_HAS_CACHE) {
1126 VM_BUG_ON(!has_cache);
1127 has_cache = 0;
1128 } else if (count == SWAP_MAP_SHMEM) {
1129 /*
1130 * Or we could insist on shmem.c using a special
1131 * swap_shmem_free() and free_shmem_swap_and_cache()...
1132 */
1133 count = 0;
1134 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1135 if (count == COUNT_CONTINUED) {
1136 if (swap_count_continued(p, offset, count))
1137 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1138 else
1139 count = SWAP_MAP_MAX;
1140 } else
1141 count--;
1142 }
1143
1144 usage = count | has_cache;
1145 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1146
1147 unlock_cluster_or_swap_info(p, ci);
1148
1149 return usage;
1150 }
1151
1152 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1153 {
1154 struct swap_cluster_info *ci;
1155 unsigned long offset = swp_offset(entry);
1156 unsigned char count;
1157
1158 ci = lock_cluster(p, offset);
1159 count = p->swap_map[offset];
1160 VM_BUG_ON(count != SWAP_HAS_CACHE);
1161 p->swap_map[offset] = 0;
1162 dec_cluster_info_page(p, p->cluster_info, offset);
1163 unlock_cluster(ci);
1164
1165 mem_cgroup_uncharge_swap(entry, 1);
1166 swap_range_free(p, offset, 1);
1167 }
1168
1169 /*
1170 * Caller has made sure that the swap device corresponding to entry
1171 * is still around or has not been recycled.
1172 */
1173 void swap_free(swp_entry_t entry)
1174 {
1175 struct swap_info_struct *p;
1176
1177 p = _swap_info_get(entry);
1178 if (p) {
1179 if (!__swap_entry_free(p, entry, 1))
1180 free_swap_slot(entry);
1181 }
1182 }
1183
1184 /*
1185 * Called after dropping swapcache to decrease refcnt to swap entries.
1186 */
1187 static void swapcache_free(swp_entry_t entry)
1188 {
1189 struct swap_info_struct *p;
1190
1191 p = _swap_info_get(entry);
1192 if (p) {
1193 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1194 free_swap_slot(entry);
1195 }
1196 }
1197
1198 #ifdef CONFIG_THP_SWAP
1199 static void swapcache_free_cluster(swp_entry_t entry)
1200 {
1201 unsigned long offset = swp_offset(entry);
1202 unsigned long idx = offset / SWAPFILE_CLUSTER;
1203 struct swap_cluster_info *ci;
1204 struct swap_info_struct *si;
1205 unsigned char *map;
1206 unsigned int i, free_entries = 0;
1207 unsigned char val;
1208
1209 si = _swap_info_get(entry);
1210 if (!si)
1211 return;
1212
1213 ci = lock_cluster(si, offset);
1214 VM_BUG_ON(!cluster_is_huge(ci));
1215 map = si->swap_map + offset;
1216 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1217 val = map[i];
1218 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1219 if (val == SWAP_HAS_CACHE)
1220 free_entries++;
1221 }
1222 if (!free_entries) {
1223 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1224 map[i] &= ~SWAP_HAS_CACHE;
1225 }
1226 cluster_clear_huge(ci);
1227 unlock_cluster(ci);
1228 if (free_entries == SWAPFILE_CLUSTER) {
1229 spin_lock(&si->lock);
1230 ci = lock_cluster(si, offset);
1231 memset(map, 0, SWAPFILE_CLUSTER);
1232 unlock_cluster(ci);
1233 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1234 swap_free_cluster(si, idx);
1235 spin_unlock(&si->lock);
1236 } else if (free_entries) {
1237 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1238 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1239 free_swap_slot(entry);
1240 }
1241 }
1242 }
1243
1244 int split_swap_cluster(swp_entry_t entry)
1245 {
1246 struct swap_info_struct *si;
1247 struct swap_cluster_info *ci;
1248 unsigned long offset = swp_offset(entry);
1249
1250 si = _swap_info_get(entry);
1251 if (!si)
1252 return -EBUSY;
1253 ci = lock_cluster(si, offset);
1254 cluster_clear_huge(ci);
1255 unlock_cluster(ci);
1256 return 0;
1257 }
1258 #else
1259 static inline void swapcache_free_cluster(swp_entry_t entry)
1260 {
1261 }
1262 #endif /* CONFIG_THP_SWAP */
1263
1264 void put_swap_page(struct page *page, swp_entry_t entry)
1265 {
1266 if (!PageTransHuge(page))
1267 swapcache_free(entry);
1268 else
1269 swapcache_free_cluster(entry);
1270 }
1271
1272 static int swp_entry_cmp(const void *ent1, const void *ent2)
1273 {
1274 const swp_entry_t *e1 = ent1, *e2 = ent2;
1275
1276 return (int)swp_type(*e1) - (int)swp_type(*e2);
1277 }
1278
1279 void swapcache_free_entries(swp_entry_t *entries, int n)
1280 {
1281 struct swap_info_struct *p, *prev;
1282 int i;
1283
1284 if (n <= 0)
1285 return;
1286
1287 prev = NULL;
1288 p = NULL;
1289
1290 /*
1291 * Sort swap entries by swap device, so each lock is only taken once.
1292 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1293 * so low that it isn't necessary to optimize further.
1294 */
1295 if (nr_swapfiles > 1)
1296 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1297 for (i = 0; i < n; ++i) {
1298 p = swap_info_get_cont(entries[i], prev);
1299 if (p)
1300 swap_entry_free(p, entries[i]);
1301 prev = p;
1302 }
1303 if (p)
1304 spin_unlock(&p->lock);
1305 }
1306
1307 /*
1308 * How many references to page are currently swapped out?
1309 * This does not give an exact answer when swap count is continued,
1310 * but does include the high COUNT_CONTINUED flag to allow for that.
1311 */
1312 int page_swapcount(struct page *page)
1313 {
1314 int count = 0;
1315 struct swap_info_struct *p;
1316 struct swap_cluster_info *ci;
1317 swp_entry_t entry;
1318 unsigned long offset;
1319
1320 entry.val = page_private(page);
1321 p = _swap_info_get(entry);
1322 if (p) {
1323 offset = swp_offset(entry);
1324 ci = lock_cluster_or_swap_info(p, offset);
1325 count = swap_count(p->swap_map[offset]);
1326 unlock_cluster_or_swap_info(p, ci);
1327 }
1328 return count;
1329 }
1330
1331 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1332 {
1333 pgoff_t offset = swp_offset(entry);
1334
1335 return swap_count(si->swap_map[offset]);
1336 }
1337
1338 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1339 {
1340 int count = 0;
1341 pgoff_t offset = swp_offset(entry);
1342 struct swap_cluster_info *ci;
1343
1344 ci = lock_cluster_or_swap_info(si, offset);
1345 count = swap_count(si->swap_map[offset]);
1346 unlock_cluster_or_swap_info(si, ci);
1347 return count;
1348 }
1349
1350 /*
1351 * How many references to @entry are currently swapped out?
1352 * This does not give an exact answer when swap count is continued,
1353 * but does include the high COUNT_CONTINUED flag to allow for that.
1354 */
1355 int __swp_swapcount(swp_entry_t entry)
1356 {
1357 int count = 0;
1358 struct swap_info_struct *si;
1359
1360 si = __swap_info_get(entry);
1361 if (si)
1362 count = swap_swapcount(si, entry);
1363 return count;
1364 }
1365
1366 /*
1367 * How many references to @entry are currently swapped out?
1368 * This considers COUNT_CONTINUED so it returns exact answer.
1369 */
1370 int swp_swapcount(swp_entry_t entry)
1371 {
1372 int count, tmp_count, n;
1373 struct swap_info_struct *p;
1374 struct swap_cluster_info *ci;
1375 struct page *page;
1376 pgoff_t offset;
1377 unsigned char *map;
1378
1379 p = _swap_info_get(entry);
1380 if (!p)
1381 return 0;
1382
1383 offset = swp_offset(entry);
1384
1385 ci = lock_cluster_or_swap_info(p, offset);
1386
1387 count = swap_count(p->swap_map[offset]);
1388 if (!(count & COUNT_CONTINUED))
1389 goto out;
1390
1391 count &= ~COUNT_CONTINUED;
1392 n = SWAP_MAP_MAX + 1;
1393
1394 page = vmalloc_to_page(p->swap_map + offset);
1395 offset &= ~PAGE_MASK;
1396 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1397
1398 do {
1399 page = list_next_entry(page, lru);
1400 map = kmap_atomic(page);
1401 tmp_count = map[offset];
1402 kunmap_atomic(map);
1403
1404 count += (tmp_count & ~COUNT_CONTINUED) * n;
1405 n *= (SWAP_CONT_MAX + 1);
1406 } while (tmp_count & COUNT_CONTINUED);
1407 out:
1408 unlock_cluster_or_swap_info(p, ci);
1409 return count;
1410 }
1411
1412 #ifdef CONFIG_THP_SWAP
1413 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1414 swp_entry_t entry)
1415 {
1416 struct swap_cluster_info *ci;
1417 unsigned char *map = si->swap_map;
1418 unsigned long roffset = swp_offset(entry);
1419 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1420 int i;
1421 bool ret = false;
1422
1423 ci = lock_cluster_or_swap_info(si, offset);
1424 if (!ci || !cluster_is_huge(ci)) {
1425 if (map[roffset] != SWAP_HAS_CACHE)
1426 ret = true;
1427 goto unlock_out;
1428 }
1429 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1430 if (map[offset + i] != SWAP_HAS_CACHE) {
1431 ret = true;
1432 break;
1433 }
1434 }
1435 unlock_out:
1436 unlock_cluster_or_swap_info(si, ci);
1437 return ret;
1438 }
1439
1440 static bool page_swapped(struct page *page)
1441 {
1442 swp_entry_t entry;
1443 struct swap_info_struct *si;
1444
1445 if (likely(!PageTransCompound(page)))
1446 return page_swapcount(page) != 0;
1447
1448 page = compound_head(page);
1449 entry.val = page_private(page);
1450 si = _swap_info_get(entry);
1451 if (si)
1452 return swap_page_trans_huge_swapped(si, entry);
1453 return false;
1454 }
1455
1456 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1457 int *total_swapcount)
1458 {
1459 int i, map_swapcount, _total_mapcount, _total_swapcount;
1460 unsigned long offset = 0;
1461 struct swap_info_struct *si;
1462 struct swap_cluster_info *ci = NULL;
1463 unsigned char *map = NULL;
1464 int mapcount, swapcount = 0;
1465
1466 /* hugetlbfs shouldn't call it */
1467 VM_BUG_ON_PAGE(PageHuge(page), page);
1468
1469 if (likely(!PageTransCompound(page))) {
1470 mapcount = atomic_read(&page->_mapcount) + 1;
1471 if (total_mapcount)
1472 *total_mapcount = mapcount;
1473 if (PageSwapCache(page))
1474 swapcount = page_swapcount(page);
1475 if (total_swapcount)
1476 *total_swapcount = swapcount;
1477 return mapcount + swapcount;
1478 }
1479
1480 page = compound_head(page);
1481
1482 _total_mapcount = _total_swapcount = map_swapcount = 0;
1483 if (PageSwapCache(page)) {
1484 swp_entry_t entry;
1485
1486 entry.val = page_private(page);
1487 si = _swap_info_get(entry);
1488 if (si) {
1489 map = si->swap_map;
1490 offset = swp_offset(entry);
1491 }
1492 }
1493 if (map)
1494 ci = lock_cluster(si, offset);
1495 for (i = 0; i < HPAGE_PMD_NR; i++) {
1496 mapcount = atomic_read(&page[i]._mapcount) + 1;
1497 _total_mapcount += mapcount;
1498 if (map) {
1499 swapcount = swap_count(map[offset + i]);
1500 _total_swapcount += swapcount;
1501 }
1502 map_swapcount = max(map_swapcount, mapcount + swapcount);
1503 }
1504 unlock_cluster(ci);
1505 if (PageDoubleMap(page)) {
1506 map_swapcount -= 1;
1507 _total_mapcount -= HPAGE_PMD_NR;
1508 }
1509 mapcount = compound_mapcount(page);
1510 map_swapcount += mapcount;
1511 _total_mapcount += mapcount;
1512 if (total_mapcount)
1513 *total_mapcount = _total_mapcount;
1514 if (total_swapcount)
1515 *total_swapcount = _total_swapcount;
1516
1517 return map_swapcount;
1518 }
1519 #else
1520 #define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1521 #define page_swapped(page) (page_swapcount(page) != 0)
1522
1523 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1524 int *total_swapcount)
1525 {
1526 int mapcount, swapcount = 0;
1527
1528 /* hugetlbfs shouldn't call it */
1529 VM_BUG_ON_PAGE(PageHuge(page), page);
1530
1531 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1532 if (PageSwapCache(page))
1533 swapcount = page_swapcount(page);
1534 if (total_swapcount)
1535 *total_swapcount = swapcount;
1536 return mapcount + swapcount;
1537 }
1538 #endif
1539
1540 /*
1541 * We can write to an anon page without COW if there are no other references
1542 * to it. And as a side-effect, free up its swap: because the old content
1543 * on disk will never be read, and seeking back there to write new content
1544 * later would only waste time away from clustering.
1545 *
1546 * NOTE: total_map_swapcount should not be relied upon by the caller if
1547 * reuse_swap_page() returns false, but it may be always overwritten
1548 * (see the other implementation for CONFIG_SWAP=n).
1549 */
1550 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1551 {
1552 int count, total_mapcount, total_swapcount;
1553
1554 VM_BUG_ON_PAGE(!PageLocked(page), page);
1555 if (unlikely(PageKsm(page)))
1556 return false;
1557 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1558 &total_swapcount);
1559 if (total_map_swapcount)
1560 *total_map_swapcount = total_mapcount + total_swapcount;
1561 if (count == 1 && PageSwapCache(page) &&
1562 (likely(!PageTransCompound(page)) ||
1563 /* The remaining swap count will be freed soon */
1564 total_swapcount == page_swapcount(page))) {
1565 if (!PageWriteback(page)) {
1566 page = compound_head(page);
1567 delete_from_swap_cache(page);
1568 SetPageDirty(page);
1569 } else {
1570 swp_entry_t entry;
1571 struct swap_info_struct *p;
1572
1573 entry.val = page_private(page);
1574 p = swap_info_get(entry);
1575 if (p->flags & SWP_STABLE_WRITES) {
1576 spin_unlock(&p->lock);
1577 return false;
1578 }
1579 spin_unlock(&p->lock);
1580 }
1581 }
1582
1583 return count <= 1;
1584 }
1585
1586 /*
1587 * If swap is getting full, or if there are no more mappings of this page,
1588 * then try_to_free_swap is called to free its swap space.
1589 */
1590 int try_to_free_swap(struct page *page)
1591 {
1592 VM_BUG_ON_PAGE(!PageLocked(page), page);
1593
1594 if (!PageSwapCache(page))
1595 return 0;
1596 if (PageWriteback(page))
1597 return 0;
1598 if (page_swapped(page))
1599 return 0;
1600
1601 /*
1602 * Once hibernation has begun to create its image of memory,
1603 * there's a danger that one of the calls to try_to_free_swap()
1604 * - most probably a call from __try_to_reclaim_swap() while
1605 * hibernation is allocating its own swap pages for the image,
1606 * but conceivably even a call from memory reclaim - will free
1607 * the swap from a page which has already been recorded in the
1608 * image as a clean swapcache page, and then reuse its swap for
1609 * another page of the image. On waking from hibernation, the
1610 * original page might be freed under memory pressure, then
1611 * later read back in from swap, now with the wrong data.
1612 *
1613 * Hibernation suspends storage while it is writing the image
1614 * to disk so check that here.
1615 */
1616 if (pm_suspended_storage())
1617 return 0;
1618
1619 page = compound_head(page);
1620 delete_from_swap_cache(page);
1621 SetPageDirty(page);
1622 return 1;
1623 }
1624
1625 /*
1626 * Free the swap entry like above, but also try to
1627 * free the page cache entry if it is the last user.
1628 */
1629 int free_swap_and_cache(swp_entry_t entry)
1630 {
1631 struct swap_info_struct *p;
1632 struct page *page = NULL;
1633 unsigned char count;
1634
1635 if (non_swap_entry(entry))
1636 return 1;
1637
1638 p = _swap_info_get(entry);
1639 if (p) {
1640 count = __swap_entry_free(p, entry, 1);
1641 if (count == SWAP_HAS_CACHE &&
1642 !swap_page_trans_huge_swapped(p, entry)) {
1643 page = find_get_page(swap_address_space(entry),
1644 swp_offset(entry));
1645 if (page && !trylock_page(page)) {
1646 put_page(page);
1647 page = NULL;
1648 }
1649 } else if (!count)
1650 free_swap_slot(entry);
1651 }
1652 if (page) {
1653 /*
1654 * Not mapped elsewhere, or swap space full? Free it!
1655 * Also recheck PageSwapCache now page is locked (above).
1656 */
1657 if (PageSwapCache(page) && !PageWriteback(page) &&
1658 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1659 !swap_page_trans_huge_swapped(p, entry)) {
1660 page = compound_head(page);
1661 delete_from_swap_cache(page);
1662 SetPageDirty(page);
1663 }
1664 unlock_page(page);
1665 put_page(page);
1666 }
1667 return p != NULL;
1668 }
1669
1670 #ifdef CONFIG_HIBERNATION
1671 /*
1672 * Find the swap type that corresponds to given device (if any).
1673 *
1674 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1675 * from 0, in which the swap header is expected to be located.
1676 *
1677 * This is needed for the suspend to disk (aka swsusp).
1678 */
1679 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1680 {
1681 struct block_device *bdev = NULL;
1682 int type;
1683
1684 if (device)
1685 bdev = bdget(device);
1686
1687 spin_lock(&swap_lock);
1688 for (type = 0; type < nr_swapfiles; type++) {
1689 struct swap_info_struct *sis = swap_info[type];
1690
1691 if (!(sis->flags & SWP_WRITEOK))
1692 continue;
1693
1694 if (!bdev) {
1695 if (bdev_p)
1696 *bdev_p = bdgrab(sis->bdev);
1697
1698 spin_unlock(&swap_lock);
1699 return type;
1700 }
1701 if (bdev == sis->bdev) {
1702 struct swap_extent *se = &sis->first_swap_extent;
1703
1704 if (se->start_block == offset) {
1705 if (bdev_p)
1706 *bdev_p = bdgrab(sis->bdev);
1707
1708 spin_unlock(&swap_lock);
1709 bdput(bdev);
1710 return type;
1711 }
1712 }
1713 }
1714 spin_unlock(&swap_lock);
1715 if (bdev)
1716 bdput(bdev);
1717
1718 return -ENODEV;
1719 }
1720
1721 /*
1722 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1723 * corresponding to given index in swap_info (swap type).
1724 */
1725 sector_t swapdev_block(int type, pgoff_t offset)
1726 {
1727 struct block_device *bdev;
1728
1729 if ((unsigned int)type >= nr_swapfiles)
1730 return 0;
1731 if (!(swap_info[type]->flags & SWP_WRITEOK))
1732 return 0;
1733 return map_swap_entry(swp_entry(type, offset), &bdev);
1734 }
1735
1736 /*
1737 * Return either the total number of swap pages of given type, or the number
1738 * of free pages of that type (depending on @free)
1739 *
1740 * This is needed for software suspend
1741 */
1742 unsigned int count_swap_pages(int type, int free)
1743 {
1744 unsigned int n = 0;
1745
1746 spin_lock(&swap_lock);
1747 if ((unsigned int)type < nr_swapfiles) {
1748 struct swap_info_struct *sis = swap_info[type];
1749
1750 spin_lock(&sis->lock);
1751 if (sis->flags & SWP_WRITEOK) {
1752 n = sis->pages;
1753 if (free)
1754 n -= sis->inuse_pages;
1755 }
1756 spin_unlock(&sis->lock);
1757 }
1758 spin_unlock(&swap_lock);
1759 return n;
1760 }
1761 #endif /* CONFIG_HIBERNATION */
1762
1763 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1764 {
1765 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1766 }
1767
1768 /*
1769 * No need to decide whether this PTE shares the swap entry with others,
1770 * just let do_wp_page work it out if a write is requested later - to
1771 * force COW, vm_page_prot omits write permission from any private vma.
1772 */
1773 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1774 unsigned long addr, swp_entry_t entry, struct page *page)
1775 {
1776 struct page *swapcache;
1777 struct mem_cgroup *memcg;
1778 spinlock_t *ptl;
1779 pte_t *pte;
1780 int ret = 1;
1781
1782 swapcache = page;
1783 page = ksm_might_need_to_copy(page, vma, addr);
1784 if (unlikely(!page))
1785 return -ENOMEM;
1786
1787 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1788 &memcg, false)) {
1789 ret = -ENOMEM;
1790 goto out_nolock;
1791 }
1792
1793 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1794 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1795 mem_cgroup_cancel_charge(page, memcg, false);
1796 ret = 0;
1797 goto out;
1798 }
1799
1800 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1801 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1802 get_page(page);
1803 set_pte_at(vma->vm_mm, addr, pte,
1804 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1805 if (page == swapcache) {
1806 page_add_anon_rmap(page, vma, addr, false);
1807 mem_cgroup_commit_charge(page, memcg, true, false);
1808 } else { /* ksm created a completely new copy */
1809 page_add_new_anon_rmap(page, vma, addr, false);
1810 mem_cgroup_commit_charge(page, memcg, false, false);
1811 lru_cache_add_active_or_unevictable(page, vma);
1812 }
1813 swap_free(entry);
1814 /*
1815 * Move the page to the active list so it is not
1816 * immediately swapped out again after swapon.
1817 */
1818 activate_page(page);
1819 out:
1820 pte_unmap_unlock(pte, ptl);
1821 out_nolock:
1822 if (page != swapcache) {
1823 unlock_page(page);
1824 put_page(page);
1825 }
1826 return ret;
1827 }
1828
1829 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1830 unsigned long addr, unsigned long end,
1831 swp_entry_t entry, struct page *page)
1832 {
1833 pte_t swp_pte = swp_entry_to_pte(entry);
1834 pte_t *pte;
1835 int ret = 0;
1836
1837 /*
1838 * We don't actually need pte lock while scanning for swp_pte: since
1839 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1840 * page table while we're scanning; though it could get zapped, and on
1841 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1842 * of unmatched parts which look like swp_pte, so unuse_pte must
1843 * recheck under pte lock. Scanning without pte lock lets it be
1844 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1845 */
1846 pte = pte_offset_map(pmd, addr);
1847 do {
1848 /*
1849 * swapoff spends a _lot_ of time in this loop!
1850 * Test inline before going to call unuse_pte.
1851 */
1852 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1853 pte_unmap(pte);
1854 ret = unuse_pte(vma, pmd, addr, entry, page);
1855 if (ret)
1856 goto out;
1857 pte = pte_offset_map(pmd, addr);
1858 }
1859 } while (pte++, addr += PAGE_SIZE, addr != end);
1860 pte_unmap(pte - 1);
1861 out:
1862 return ret;
1863 }
1864
1865 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1866 unsigned long addr, unsigned long end,
1867 swp_entry_t entry, struct page *page)
1868 {
1869 pmd_t *pmd;
1870 unsigned long next;
1871 int ret;
1872
1873 pmd = pmd_offset(pud, addr);
1874 do {
1875 cond_resched();
1876 next = pmd_addr_end(addr, end);
1877 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1878 continue;
1879 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1880 if (ret)
1881 return ret;
1882 } while (pmd++, addr = next, addr != end);
1883 return 0;
1884 }
1885
1886 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1887 unsigned long addr, unsigned long end,
1888 swp_entry_t entry, struct page *page)
1889 {
1890 pud_t *pud;
1891 unsigned long next;
1892 int ret;
1893
1894 pud = pud_offset(p4d, addr);
1895 do {
1896 next = pud_addr_end(addr, end);
1897 if (pud_none_or_clear_bad(pud))
1898 continue;
1899 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1900 if (ret)
1901 return ret;
1902 } while (pud++, addr = next, addr != end);
1903 return 0;
1904 }
1905
1906 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1907 unsigned long addr, unsigned long end,
1908 swp_entry_t entry, struct page *page)
1909 {
1910 p4d_t *p4d;
1911 unsigned long next;
1912 int ret;
1913
1914 p4d = p4d_offset(pgd, addr);
1915 do {
1916 next = p4d_addr_end(addr, end);
1917 if (p4d_none_or_clear_bad(p4d))
1918 continue;
1919 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1920 if (ret)
1921 return ret;
1922 } while (p4d++, addr = next, addr != end);
1923 return 0;
1924 }
1925
1926 static int unuse_vma(struct vm_area_struct *vma,
1927 swp_entry_t entry, struct page *page)
1928 {
1929 pgd_t *pgd;
1930 unsigned long addr, end, next;
1931 int ret;
1932
1933 if (page_anon_vma(page)) {
1934 addr = page_address_in_vma(page, vma);
1935 if (addr == -EFAULT)
1936 return 0;
1937 else
1938 end = addr + PAGE_SIZE;
1939 } else {
1940 addr = vma->vm_start;
1941 end = vma->vm_end;
1942 }
1943
1944 pgd = pgd_offset(vma->vm_mm, addr);
1945 do {
1946 next = pgd_addr_end(addr, end);
1947 if (pgd_none_or_clear_bad(pgd))
1948 continue;
1949 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1950 if (ret)
1951 return ret;
1952 } while (pgd++, addr = next, addr != end);
1953 return 0;
1954 }
1955
1956 static int unuse_mm(struct mm_struct *mm,
1957 swp_entry_t entry, struct page *page)
1958 {
1959 struct vm_area_struct *vma;
1960 int ret = 0;
1961
1962 if (!down_read_trylock(&mm->mmap_sem)) {
1963 /*
1964 * Activate page so shrink_inactive_list is unlikely to unmap
1965 * its ptes while lock is dropped, so swapoff can make progress.
1966 */
1967 activate_page(page);
1968 unlock_page(page);
1969 down_read(&mm->mmap_sem);
1970 lock_page(page);
1971 }
1972 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1973 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1974 break;
1975 cond_resched();
1976 }
1977 up_read(&mm->mmap_sem);
1978 return (ret < 0)? ret: 0;
1979 }
1980
1981 /*
1982 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1983 * from current position to next entry still in use.
1984 * Recycle to start on reaching the end, returning 0 when empty.
1985 */
1986 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1987 unsigned int prev, bool frontswap)
1988 {
1989 unsigned int max = si->max;
1990 unsigned int i = prev;
1991 unsigned char count;
1992
1993 /*
1994 * No need for swap_lock here: we're just looking
1995 * for whether an entry is in use, not modifying it; false
1996 * hits are okay, and sys_swapoff() has already prevented new
1997 * allocations from this area (while holding swap_lock).
1998 */
1999 for (;;) {
2000 if (++i >= max) {
2001 if (!prev) {
2002 i = 0;
2003 break;
2004 }
2005 /*
2006 * No entries in use at top of swap_map,
2007 * loop back to start and recheck there.
2008 */
2009 max = prev + 1;
2010 prev = 0;
2011 i = 1;
2012 }
2013 count = READ_ONCE(si->swap_map[i]);
2014 if (count && swap_count(count) != SWAP_MAP_BAD)
2015 if (!frontswap || frontswap_test(si, i))
2016 break;
2017 if ((i % LATENCY_LIMIT) == 0)
2018 cond_resched();
2019 }
2020 return i;
2021 }
2022
2023 /*
2024 * We completely avoid races by reading each swap page in advance,
2025 * and then search for the process using it. All the necessary
2026 * page table adjustments can then be made atomically.
2027 *
2028 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2029 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2030 */
2031 int try_to_unuse(unsigned int type, bool frontswap,
2032 unsigned long pages_to_unuse)
2033 {
2034 struct swap_info_struct *si = swap_info[type];
2035 struct mm_struct *start_mm;
2036 volatile unsigned char *swap_map; /* swap_map is accessed without
2037 * locking. Mark it as volatile
2038 * to prevent compiler doing
2039 * something odd.
2040 */
2041 unsigned char swcount;
2042 struct page *page;
2043 swp_entry_t entry;
2044 unsigned int i = 0;
2045 int retval = 0;
2046
2047 /*
2048 * When searching mms for an entry, a good strategy is to
2049 * start at the first mm we freed the previous entry from
2050 * (though actually we don't notice whether we or coincidence
2051 * freed the entry). Initialize this start_mm with a hold.
2052 *
2053 * A simpler strategy would be to start at the last mm we
2054 * freed the previous entry from; but that would take less
2055 * advantage of mmlist ordering, which clusters forked mms
2056 * together, child after parent. If we race with dup_mmap(), we
2057 * prefer to resolve parent before child, lest we miss entries
2058 * duplicated after we scanned child: using last mm would invert
2059 * that.
2060 */
2061 start_mm = &init_mm;
2062 mmget(&init_mm);
2063
2064 /*
2065 * Keep on scanning until all entries have gone. Usually,
2066 * one pass through swap_map is enough, but not necessarily:
2067 * there are races when an instance of an entry might be missed.
2068 */
2069 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2070 if (signal_pending(current)) {
2071 retval = -EINTR;
2072 break;
2073 }
2074
2075 /*
2076 * Get a page for the entry, using the existing swap
2077 * cache page if there is one. Otherwise, get a clean
2078 * page and read the swap into it.
2079 */
2080 swap_map = &si->swap_map[i];
2081 entry = swp_entry(type, i);
2082 page = read_swap_cache_async(entry,
2083 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2084 if (!page) {
2085 /*
2086 * Either swap_duplicate() failed because entry
2087 * has been freed independently, and will not be
2088 * reused since sys_swapoff() already disabled
2089 * allocation from here, or alloc_page() failed.
2090 */
2091 swcount = *swap_map;
2092 /*
2093 * We don't hold lock here, so the swap entry could be
2094 * SWAP_MAP_BAD (when the cluster is discarding).
2095 * Instead of fail out, We can just skip the swap
2096 * entry because swapoff will wait for discarding
2097 * finish anyway.
2098 */
2099 if (!swcount || swcount == SWAP_MAP_BAD)
2100 continue;
2101 retval = -ENOMEM;
2102 break;
2103 }
2104
2105 /*
2106 * Don't hold on to start_mm if it looks like exiting.
2107 */
2108 if (atomic_read(&start_mm->mm_users) == 1) {
2109 mmput(start_mm);
2110 start_mm = &init_mm;
2111 mmget(&init_mm);
2112 }
2113
2114 /*
2115 * Wait for and lock page. When do_swap_page races with
2116 * try_to_unuse, do_swap_page can handle the fault much
2117 * faster than try_to_unuse can locate the entry. This
2118 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2119 * defer to do_swap_page in such a case - in some tests,
2120 * do_swap_page and try_to_unuse repeatedly compete.
2121 */
2122 wait_on_page_locked(page);
2123 wait_on_page_writeback(page);
2124 lock_page(page);
2125 wait_on_page_writeback(page);
2126
2127 /*
2128 * Remove all references to entry.
2129 */
2130 swcount = *swap_map;
2131 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2132 retval = shmem_unuse(entry, page);
2133 /* page has already been unlocked and released */
2134 if (retval < 0)
2135 break;
2136 continue;
2137 }
2138 if (swap_count(swcount) && start_mm != &init_mm)
2139 retval = unuse_mm(start_mm, entry, page);
2140
2141 if (swap_count(*swap_map)) {
2142 int set_start_mm = (*swap_map >= swcount);
2143 struct list_head *p = &start_mm->mmlist;
2144 struct mm_struct *new_start_mm = start_mm;
2145 struct mm_struct *prev_mm = start_mm;
2146 struct mm_struct *mm;
2147
2148 mmget(new_start_mm);
2149 mmget(prev_mm);
2150 spin_lock(&mmlist_lock);
2151 while (swap_count(*swap_map) && !retval &&
2152 (p = p->next) != &start_mm->mmlist) {
2153 mm = list_entry(p, struct mm_struct, mmlist);
2154 if (!mmget_not_zero(mm))
2155 continue;
2156 spin_unlock(&mmlist_lock);
2157 mmput(prev_mm);
2158 prev_mm = mm;
2159
2160 cond_resched();
2161
2162 swcount = *swap_map;
2163 if (!swap_count(swcount)) /* any usage ? */
2164 ;
2165 else if (mm == &init_mm)
2166 set_start_mm = 1;
2167 else
2168 retval = unuse_mm(mm, entry, page);
2169
2170 if (set_start_mm && *swap_map < swcount) {
2171 mmput(new_start_mm);
2172 mmget(mm);
2173 new_start_mm = mm;
2174 set_start_mm = 0;
2175 }
2176 spin_lock(&mmlist_lock);
2177 }
2178 spin_unlock(&mmlist_lock);
2179 mmput(prev_mm);
2180 mmput(start_mm);
2181 start_mm = new_start_mm;
2182 }
2183 if (retval) {
2184 unlock_page(page);
2185 put_page(page);
2186 break;
2187 }
2188
2189 /*
2190 * If a reference remains (rare), we would like to leave
2191 * the page in the swap cache; but try_to_unmap could
2192 * then re-duplicate the entry once we drop page lock,
2193 * so we might loop indefinitely; also, that page could
2194 * not be swapped out to other storage meanwhile. So:
2195 * delete from cache even if there's another reference,
2196 * after ensuring that the data has been saved to disk -
2197 * since if the reference remains (rarer), it will be
2198 * read from disk into another page. Splitting into two
2199 * pages would be incorrect if swap supported "shared
2200 * private" pages, but they are handled by tmpfs files.
2201 *
2202 * Given how unuse_vma() targets one particular offset
2203 * in an anon_vma, once the anon_vma has been determined,
2204 * this splitting happens to be just what is needed to
2205 * handle where KSM pages have been swapped out: re-reading
2206 * is unnecessarily slow, but we can fix that later on.
2207 */
2208 if (swap_count(*swap_map) &&
2209 PageDirty(page) && PageSwapCache(page)) {
2210 struct writeback_control wbc = {
2211 .sync_mode = WB_SYNC_NONE,
2212 };
2213
2214 swap_writepage(compound_head(page), &wbc);
2215 lock_page(page);
2216 wait_on_page_writeback(page);
2217 }
2218
2219 /*
2220 * It is conceivable that a racing task removed this page from
2221 * swap cache just before we acquired the page lock at the top,
2222 * or while we dropped it in unuse_mm(). The page might even
2223 * be back in swap cache on another swap area: that we must not
2224 * delete, since it may not have been written out to swap yet.
2225 */
2226 if (PageSwapCache(page) &&
2227 likely(page_private(page) == entry.val) &&
2228 !page_swapped(page))
2229 delete_from_swap_cache(compound_head(page));
2230
2231 /*
2232 * So we could skip searching mms once swap count went
2233 * to 1, we did not mark any present ptes as dirty: must
2234 * mark page dirty so shrink_page_list will preserve it.
2235 */
2236 SetPageDirty(page);
2237 unlock_page(page);
2238 put_page(page);
2239
2240 /*
2241 * Make sure that we aren't completely killing
2242 * interactive performance.
2243 */
2244 cond_resched();
2245 if (frontswap && pages_to_unuse > 0) {
2246 if (!--pages_to_unuse)
2247 break;
2248 }
2249 }
2250
2251 mmput(start_mm);
2252 return retval;
2253 }
2254
2255 /*
2256 * After a successful try_to_unuse, if no swap is now in use, we know
2257 * we can empty the mmlist. swap_lock must be held on entry and exit.
2258 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2259 * added to the mmlist just after page_duplicate - before would be racy.
2260 */
2261 static void drain_mmlist(void)
2262 {
2263 struct list_head *p, *next;
2264 unsigned int type;
2265
2266 for (type = 0; type < nr_swapfiles; type++)
2267 if (swap_info[type]->inuse_pages)
2268 return;
2269 spin_lock(&mmlist_lock);
2270 list_for_each_safe(p, next, &init_mm.mmlist)
2271 list_del_init(p);
2272 spin_unlock(&mmlist_lock);
2273 }
2274
2275 /*
2276 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2277 * corresponds to page offset for the specified swap entry.
2278 * Note that the type of this function is sector_t, but it returns page offset
2279 * into the bdev, not sector offset.
2280 */
2281 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2282 {
2283 struct swap_info_struct *sis;
2284 struct swap_extent *start_se;
2285 struct swap_extent *se;
2286 pgoff_t offset;
2287
2288 sis = swap_info[swp_type(entry)];
2289 *bdev = sis->bdev;
2290
2291 offset = swp_offset(entry);
2292 start_se = sis->curr_swap_extent;
2293 se = start_se;
2294
2295 for ( ; ; ) {
2296 if (se->start_page <= offset &&
2297 offset < (se->start_page + se->nr_pages)) {
2298 return se->start_block + (offset - se->start_page);
2299 }
2300 se = list_next_entry(se, list);
2301 sis->curr_swap_extent = se;
2302 BUG_ON(se == start_se); /* It *must* be present */
2303 }
2304 }
2305
2306 /*
2307 * Returns the page offset into bdev for the specified page's swap entry.
2308 */
2309 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2310 {
2311 swp_entry_t entry;
2312 entry.val = page_private(page);
2313 return map_swap_entry(entry, bdev);
2314 }
2315
2316 /*
2317 * Free all of a swapdev's extent information
2318 */
2319 static void destroy_swap_extents(struct swap_info_struct *sis)
2320 {
2321 while (!list_empty(&sis->first_swap_extent.list)) {
2322 struct swap_extent *se;
2323
2324 se = list_first_entry(&sis->first_swap_extent.list,
2325 struct swap_extent, list);
2326 list_del(&se->list);
2327 kfree(se);
2328 }
2329
2330 if (sis->flags & SWP_FILE) {
2331 struct file *swap_file = sis->swap_file;
2332 struct address_space *mapping = swap_file->f_mapping;
2333
2334 sis->flags &= ~SWP_FILE;
2335 mapping->a_ops->swap_deactivate(swap_file);
2336 }
2337 }
2338
2339 /*
2340 * Add a block range (and the corresponding page range) into this swapdev's
2341 * extent list. The extent list is kept sorted in page order.
2342 *
2343 * This function rather assumes that it is called in ascending page order.
2344 */
2345 int
2346 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2347 unsigned long nr_pages, sector_t start_block)
2348 {
2349 struct swap_extent *se;
2350 struct swap_extent *new_se;
2351 struct list_head *lh;
2352
2353 if (start_page == 0) {
2354 se = &sis->first_swap_extent;
2355 sis->curr_swap_extent = se;
2356 se->start_page = 0;
2357 se->nr_pages = nr_pages;
2358 se->start_block = start_block;
2359 return 1;
2360 } else {
2361 lh = sis->first_swap_extent.list.prev; /* Highest extent */
2362 se = list_entry(lh, struct swap_extent, list);
2363 BUG_ON(se->start_page + se->nr_pages != start_page);
2364 if (se->start_block + se->nr_pages == start_block) {
2365 /* Merge it */
2366 se->nr_pages += nr_pages;
2367 return 0;
2368 }
2369 }
2370
2371 /*
2372 * No merge. Insert a new extent, preserving ordering.
2373 */
2374 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2375 if (new_se == NULL)
2376 return -ENOMEM;
2377 new_se->start_page = start_page;
2378 new_se->nr_pages = nr_pages;
2379 new_se->start_block = start_block;
2380
2381 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2382 return 1;
2383 }
2384
2385 /*
2386 * A `swap extent' is a simple thing which maps a contiguous range of pages
2387 * onto a contiguous range of disk blocks. An ordered list of swap extents
2388 * is built at swapon time and is then used at swap_writepage/swap_readpage
2389 * time for locating where on disk a page belongs.
2390 *
2391 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2392 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2393 * swap files identically.
2394 *
2395 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2396 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2397 * swapfiles are handled *identically* after swapon time.
2398 *
2399 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2400 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2401 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2402 * requirements, they are simply tossed out - we will never use those blocks
2403 * for swapping.
2404 *
2405 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2406 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2407 * which will scribble on the fs.
2408 *
2409 * The amount of disk space which a single swap extent represents varies.
2410 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2411 * extents in the list. To avoid much list walking, we cache the previous
2412 * search location in `curr_swap_extent', and start new searches from there.
2413 * This is extremely effective. The average number of iterations in
2414 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2415 */
2416 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2417 {
2418 struct file *swap_file = sis->swap_file;
2419 struct address_space *mapping = swap_file->f_mapping;
2420 struct inode *inode = mapping->host;
2421 int ret;
2422
2423 if (S_ISBLK(inode->i_mode)) {
2424 ret = add_swap_extent(sis, 0, sis->max, 0);
2425 *span = sis->pages;
2426 return ret;
2427 }
2428
2429 if (mapping->a_ops->swap_activate) {
2430 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2431 if (!ret) {
2432 sis->flags |= SWP_FILE;
2433 ret = add_swap_extent(sis, 0, sis->max, 0);
2434 *span = sis->pages;
2435 }
2436 return ret;
2437 }
2438
2439 return generic_swapfile_activate(sis, swap_file, span);
2440 }
2441
2442 static int swap_node(struct swap_info_struct *p)
2443 {
2444 struct block_device *bdev;
2445
2446 if (p->bdev)
2447 bdev = p->bdev;
2448 else
2449 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2450
2451 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2452 }
2453
2454 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2455 unsigned char *swap_map,
2456 struct swap_cluster_info *cluster_info)
2457 {
2458 int i;
2459
2460 if (prio >= 0)
2461 p->prio = prio;
2462 else
2463 p->prio = --least_priority;
2464 /*
2465 * the plist prio is negated because plist ordering is
2466 * low-to-high, while swap ordering is high-to-low
2467 */
2468 p->list.prio = -p->prio;
2469 for_each_node(i) {
2470 if (p->prio >= 0)
2471 p->avail_lists[i].prio = -p->prio;
2472 else {
2473 if (swap_node(p) == i)
2474 p->avail_lists[i].prio = 1;
2475 else
2476 p->avail_lists[i].prio = -p->prio;
2477 }
2478 }
2479 p->swap_map = swap_map;
2480 p->cluster_info = cluster_info;
2481 p->flags |= SWP_WRITEOK;
2482 atomic_long_add(p->pages, &nr_swap_pages);
2483 total_swap_pages += p->pages;
2484
2485 assert_spin_locked(&swap_lock);
2486 /*
2487 * both lists are plists, and thus priority ordered.
2488 * swap_active_head needs to be priority ordered for swapoff(),
2489 * which on removal of any swap_info_struct with an auto-assigned
2490 * (i.e. negative) priority increments the auto-assigned priority
2491 * of any lower-priority swap_info_structs.
2492 * swap_avail_head needs to be priority ordered for get_swap_page(),
2493 * which allocates swap pages from the highest available priority
2494 * swap_info_struct.
2495 */
2496 plist_add(&p->list, &swap_active_head);
2497 add_to_avail_list(p);
2498 }
2499
2500 static void enable_swap_info(struct swap_info_struct *p, int prio,
2501 unsigned char *swap_map,
2502 struct swap_cluster_info *cluster_info,
2503 unsigned long *frontswap_map)
2504 {
2505 frontswap_init(p->type, frontswap_map);
2506 spin_lock(&swap_lock);
2507 spin_lock(&p->lock);
2508 _enable_swap_info(p, prio, swap_map, cluster_info);
2509 spin_unlock(&p->lock);
2510 spin_unlock(&swap_lock);
2511 }
2512
2513 static void reinsert_swap_info(struct swap_info_struct *p)
2514 {
2515 spin_lock(&swap_lock);
2516 spin_lock(&p->lock);
2517 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2518 spin_unlock(&p->lock);
2519 spin_unlock(&swap_lock);
2520 }
2521
2522 bool has_usable_swap(void)
2523 {
2524 bool ret = true;
2525
2526 spin_lock(&swap_lock);
2527 if (plist_head_empty(&swap_active_head))
2528 ret = false;
2529 spin_unlock(&swap_lock);
2530 return ret;
2531 }
2532
2533 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2534 {
2535 struct swap_info_struct *p = NULL;
2536 unsigned char *swap_map;
2537 struct swap_cluster_info *cluster_info;
2538 unsigned long *frontswap_map;
2539 struct file *swap_file, *victim;
2540 struct address_space *mapping;
2541 struct inode *inode;
2542 struct filename *pathname;
2543 int err, found = 0;
2544 unsigned int old_block_size;
2545
2546 if (!capable(CAP_SYS_ADMIN))
2547 return -EPERM;
2548
2549 BUG_ON(!current->mm);
2550
2551 pathname = getname(specialfile);
2552 if (IS_ERR(pathname))
2553 return PTR_ERR(pathname);
2554
2555 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2556 err = PTR_ERR(victim);
2557 if (IS_ERR(victim))
2558 goto out;
2559
2560 mapping = victim->f_mapping;
2561 spin_lock(&swap_lock);
2562 plist_for_each_entry(p, &swap_active_head, list) {
2563 if (p->flags & SWP_WRITEOK) {
2564 if (p->swap_file->f_mapping == mapping) {
2565 found = 1;
2566 break;
2567 }
2568 }
2569 }
2570 if (!found) {
2571 err = -EINVAL;
2572 spin_unlock(&swap_lock);
2573 goto out_dput;
2574 }
2575 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2576 vm_unacct_memory(p->pages);
2577 else {
2578 err = -ENOMEM;
2579 spin_unlock(&swap_lock);
2580 goto out_dput;
2581 }
2582 del_from_avail_list(p);
2583 spin_lock(&p->lock);
2584 if (p->prio < 0) {
2585 struct swap_info_struct *si = p;
2586 int nid;
2587
2588 plist_for_each_entry_continue(si, &swap_active_head, list) {
2589 si->prio++;
2590 si->list.prio--;
2591 for_each_node(nid) {
2592 if (si->avail_lists[nid].prio != 1)
2593 si->avail_lists[nid].prio--;
2594 }
2595 }
2596 least_priority++;
2597 }
2598 plist_del(&p->list, &swap_active_head);
2599 atomic_long_sub(p->pages, &nr_swap_pages);
2600 total_swap_pages -= p->pages;
2601 p->flags &= ~SWP_WRITEOK;
2602 spin_unlock(&p->lock);
2603 spin_unlock(&swap_lock);
2604
2605 disable_swap_slots_cache_lock();
2606
2607 set_current_oom_origin();
2608 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2609 clear_current_oom_origin();
2610
2611 if (err) {
2612 /* re-insert swap space back into swap_list */
2613 reinsert_swap_info(p);
2614 reenable_swap_slots_cache_unlock();
2615 goto out_dput;
2616 }
2617
2618 reenable_swap_slots_cache_unlock();
2619
2620 flush_work(&p->discard_work);
2621
2622 destroy_swap_extents(p);
2623 if (p->flags & SWP_CONTINUED)
2624 free_swap_count_continuations(p);
2625
2626 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2627 atomic_dec(&nr_rotate_swap);
2628
2629 mutex_lock(&swapon_mutex);
2630 spin_lock(&swap_lock);
2631 spin_lock(&p->lock);
2632 drain_mmlist();
2633
2634 /* wait for anyone still in scan_swap_map */
2635 p->highest_bit = 0; /* cuts scans short */
2636 while (p->flags >= SWP_SCANNING) {
2637 spin_unlock(&p->lock);
2638 spin_unlock(&swap_lock);
2639 schedule_timeout_uninterruptible(1);
2640 spin_lock(&swap_lock);
2641 spin_lock(&p->lock);
2642 }
2643
2644 swap_file = p->swap_file;
2645 old_block_size = p->old_block_size;
2646 p->swap_file = NULL;
2647 p->max = 0;
2648 swap_map = p->swap_map;
2649 p->swap_map = NULL;
2650 cluster_info = p->cluster_info;
2651 p->cluster_info = NULL;
2652 frontswap_map = frontswap_map_get(p);
2653 spin_unlock(&p->lock);
2654 spin_unlock(&swap_lock);
2655 frontswap_invalidate_area(p->type);
2656 frontswap_map_set(p, NULL);
2657 mutex_unlock(&swapon_mutex);
2658 free_percpu(p->percpu_cluster);
2659 p->percpu_cluster = NULL;
2660 vfree(swap_map);
2661 kvfree(cluster_info);
2662 kvfree(frontswap_map);
2663 /* Destroy swap account information */
2664 swap_cgroup_swapoff(p->type);
2665 exit_swap_address_space(p->type);
2666
2667 inode = mapping->host;
2668 if (S_ISBLK(inode->i_mode)) {
2669 struct block_device *bdev = I_BDEV(inode);
2670 set_blocksize(bdev, old_block_size);
2671 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2672 } else {
2673 inode_lock(inode);
2674 inode->i_flags &= ~S_SWAPFILE;
2675 inode_unlock(inode);
2676 }
2677 filp_close(swap_file, NULL);
2678
2679 /*
2680 * Clear the SWP_USED flag after all resources are freed so that swapon
2681 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2682 * not hold p->lock after we cleared its SWP_WRITEOK.
2683 */
2684 spin_lock(&swap_lock);
2685 p->flags = 0;
2686 spin_unlock(&swap_lock);
2687
2688 err = 0;
2689 atomic_inc(&proc_poll_event);
2690 wake_up_interruptible(&proc_poll_wait);
2691
2692 out_dput:
2693 filp_close(victim, NULL);
2694 out:
2695 putname(pathname);
2696 return err;
2697 }
2698
2699 #ifdef CONFIG_PROC_FS
2700 static unsigned swaps_poll(struct file *file, poll_table *wait)
2701 {
2702 struct seq_file *seq = file->private_data;
2703
2704 poll_wait(file, &proc_poll_wait, wait);
2705
2706 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2707 seq->poll_event = atomic_read(&proc_poll_event);
2708 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2709 }
2710
2711 return POLLIN | POLLRDNORM;
2712 }
2713
2714 /* iterator */
2715 static void *swap_start(struct seq_file *swap, loff_t *pos)
2716 {
2717 struct swap_info_struct *si;
2718 int type;
2719 loff_t l = *pos;
2720
2721 mutex_lock(&swapon_mutex);
2722
2723 if (!l)
2724 return SEQ_START_TOKEN;
2725
2726 for (type = 0; type < nr_swapfiles; type++) {
2727 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2728 si = swap_info[type];
2729 if (!(si->flags & SWP_USED) || !si->swap_map)
2730 continue;
2731 if (!--l)
2732 return si;
2733 }
2734
2735 return NULL;
2736 }
2737
2738 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2739 {
2740 struct swap_info_struct *si = v;
2741 int type;
2742
2743 if (v == SEQ_START_TOKEN)
2744 type = 0;
2745 else
2746 type = si->type + 1;
2747
2748 for (; type < nr_swapfiles; type++) {
2749 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2750 si = swap_info[type];
2751 if (!(si->flags & SWP_USED) || !si->swap_map)
2752 continue;
2753 ++*pos;
2754 return si;
2755 }
2756
2757 return NULL;
2758 }
2759
2760 static void swap_stop(struct seq_file *swap, void *v)
2761 {
2762 mutex_unlock(&swapon_mutex);
2763 }
2764
2765 static int swap_show(struct seq_file *swap, void *v)
2766 {
2767 struct swap_info_struct *si = v;
2768 struct file *file;
2769 int len;
2770
2771 if (si == SEQ_START_TOKEN) {
2772 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2773 return 0;
2774 }
2775
2776 file = si->swap_file;
2777 len = seq_file_path(swap, file, " \t\n\\");
2778 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2779 len < 40 ? 40 - len : 1, " ",
2780 S_ISBLK(file_inode(file)->i_mode) ?
2781 "partition" : "file\t",
2782 si->pages << (PAGE_SHIFT - 10),
2783 si->inuse_pages << (PAGE_SHIFT - 10),
2784 si->prio);
2785 return 0;
2786 }
2787
2788 static const struct seq_operations swaps_op = {
2789 .start = swap_start,
2790 .next = swap_next,
2791 .stop = swap_stop,
2792 .show = swap_show
2793 };
2794
2795 static int swaps_open(struct inode *inode, struct file *file)
2796 {
2797 struct seq_file *seq;
2798 int ret;
2799
2800 ret = seq_open(file, &swaps_op);
2801 if (ret)
2802 return ret;
2803
2804 seq = file->private_data;
2805 seq->poll_event = atomic_read(&proc_poll_event);
2806 return 0;
2807 }
2808
2809 static const struct file_operations proc_swaps_operations = {
2810 .open = swaps_open,
2811 .read = seq_read,
2812 .llseek = seq_lseek,
2813 .release = seq_release,
2814 .poll = swaps_poll,
2815 };
2816
2817 static int __init procswaps_init(void)
2818 {
2819 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2820 return 0;
2821 }
2822 __initcall(procswaps_init);
2823 #endif /* CONFIG_PROC_FS */
2824
2825 #ifdef MAX_SWAPFILES_CHECK
2826 static int __init max_swapfiles_check(void)
2827 {
2828 MAX_SWAPFILES_CHECK();
2829 return 0;
2830 }
2831 late_initcall(max_swapfiles_check);
2832 #endif
2833
2834 static struct swap_info_struct *alloc_swap_info(void)
2835 {
2836 struct swap_info_struct *p;
2837 unsigned int type;
2838 int i;
2839
2840 p = kzalloc(sizeof(*p), GFP_KERNEL);
2841 if (!p)
2842 return ERR_PTR(-ENOMEM);
2843
2844 spin_lock(&swap_lock);
2845 for (type = 0; type < nr_swapfiles; type++) {
2846 if (!(swap_info[type]->flags & SWP_USED))
2847 break;
2848 }
2849 if (type >= MAX_SWAPFILES) {
2850 spin_unlock(&swap_lock);
2851 kfree(p);
2852 return ERR_PTR(-EPERM);
2853 }
2854 if (type >= nr_swapfiles) {
2855 p->type = type;
2856 swap_info[type] = p;
2857 /*
2858 * Write swap_info[type] before nr_swapfiles, in case a
2859 * racing procfs swap_start() or swap_next() is reading them.
2860 * (We never shrink nr_swapfiles, we never free this entry.)
2861 */
2862 smp_wmb();
2863 nr_swapfiles++;
2864 } else {
2865 kfree(p);
2866 p = swap_info[type];
2867 /*
2868 * Do not memset this entry: a racing procfs swap_next()
2869 * would be relying on p->type to remain valid.
2870 */
2871 }
2872 INIT_LIST_HEAD(&p->first_swap_extent.list);
2873 plist_node_init(&p->list, 0);
2874 for_each_node(i)
2875 plist_node_init(&p->avail_lists[i], 0);
2876 p->flags = SWP_USED;
2877 spin_unlock(&swap_lock);
2878 spin_lock_init(&p->lock);
2879 spin_lock_init(&p->cont_lock);
2880
2881 return p;
2882 }
2883
2884 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2885 {
2886 int error;
2887
2888 if (S_ISBLK(inode->i_mode)) {
2889 p->bdev = bdgrab(I_BDEV(inode));
2890 error = blkdev_get(p->bdev,
2891 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2892 if (error < 0) {
2893 p->bdev = NULL;
2894 return error;
2895 }
2896 p->old_block_size = block_size(p->bdev);
2897 error = set_blocksize(p->bdev, PAGE_SIZE);
2898 if (error < 0)
2899 return error;
2900 p->flags |= SWP_BLKDEV;
2901 } else if (S_ISREG(inode->i_mode)) {
2902 p->bdev = inode->i_sb->s_bdev;
2903 inode_lock(inode);
2904 if (IS_SWAPFILE(inode))
2905 return -EBUSY;
2906 } else
2907 return -EINVAL;
2908
2909 return 0;
2910 }
2911
2912
2913 /*
2914 * Find out how many pages are allowed for a single swap device. There
2915 * are two limiting factors:
2916 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2917 * 2) the number of bits in the swap pte, as defined by the different
2918 * architectures.
2919 *
2920 * In order to find the largest possible bit mask, a swap entry with
2921 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2922 * decoded to a swp_entry_t again, and finally the swap offset is
2923 * extracted.
2924 *
2925 * This will mask all the bits from the initial ~0UL mask that can't
2926 * be encoded in either the swp_entry_t or the architecture definition
2927 * of a swap pte.
2928 */
2929 unsigned long generic_max_swapfile_size(void)
2930 {
2931 return swp_offset(pte_to_swp_entry(
2932 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2933 }
2934
2935 /* Can be overridden by an architecture for additional checks. */
2936 __weak unsigned long max_swapfile_size(void)
2937 {
2938 return generic_max_swapfile_size();
2939 }
2940
2941 static unsigned long read_swap_header(struct swap_info_struct *p,
2942 union swap_header *swap_header,
2943 struct inode *inode)
2944 {
2945 int i;
2946 unsigned long maxpages;
2947 unsigned long swapfilepages;
2948 unsigned long last_page;
2949
2950 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2951 pr_err("Unable to find swap-space signature\n");
2952 return 0;
2953 }
2954
2955 /* swap partition endianess hack... */
2956 if (swab32(swap_header->info.version) == 1) {
2957 swab32s(&swap_header->info.version);
2958 swab32s(&swap_header->info.last_page);
2959 swab32s(&swap_header->info.nr_badpages);
2960 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2961 return 0;
2962 for (i = 0; i < swap_header->info.nr_badpages; i++)
2963 swab32s(&swap_header->info.badpages[i]);
2964 }
2965 /* Check the swap header's sub-version */
2966 if (swap_header->info.version != 1) {
2967 pr_warn("Unable to handle swap header version %d\n",
2968 swap_header->info.version);
2969 return 0;
2970 }
2971
2972 p->lowest_bit = 1;
2973 p->cluster_next = 1;
2974 p->cluster_nr = 0;
2975
2976 maxpages = max_swapfile_size();
2977 last_page = swap_header->info.last_page;
2978 if (!last_page) {
2979 pr_warn("Empty swap-file\n");
2980 return 0;
2981 }
2982 if (last_page > maxpages) {
2983 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2984 maxpages << (PAGE_SHIFT - 10),
2985 last_page << (PAGE_SHIFT - 10));
2986 }
2987 if (maxpages > last_page) {
2988 maxpages = last_page + 1;
2989 /* p->max is an unsigned int: don't overflow it */
2990 if ((unsigned int)maxpages == 0)
2991 maxpages = UINT_MAX;
2992 }
2993 p->highest_bit = maxpages - 1;
2994
2995 if (!maxpages)
2996 return 0;
2997 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2998 if (swapfilepages && maxpages > swapfilepages) {
2999 pr_warn("Swap area shorter than signature indicates\n");
3000 return 0;
3001 }
3002 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3003 return 0;
3004 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3005 return 0;
3006
3007 return maxpages;
3008 }
3009
3010 #define SWAP_CLUSTER_INFO_COLS \
3011 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3012 #define SWAP_CLUSTER_SPACE_COLS \
3013 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3014 #define SWAP_CLUSTER_COLS \
3015 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3016
3017 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3018 union swap_header *swap_header,
3019 unsigned char *swap_map,
3020 struct swap_cluster_info *cluster_info,
3021 unsigned long maxpages,
3022 sector_t *span)
3023 {
3024 unsigned int j, k;
3025 unsigned int nr_good_pages;
3026 int nr_extents;
3027 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3028 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3029 unsigned long i, idx;
3030
3031 nr_good_pages = maxpages - 1; /* omit header page */
3032
3033 cluster_list_init(&p->free_clusters);
3034 cluster_list_init(&p->discard_clusters);
3035
3036 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3037 unsigned int page_nr = swap_header->info.badpages[i];
3038 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3039 return -EINVAL;
3040 if (page_nr < maxpages) {
3041 swap_map[page_nr] = SWAP_MAP_BAD;
3042 nr_good_pages--;
3043 /*
3044 * Haven't marked the cluster free yet, no list
3045 * operation involved
3046 */
3047 inc_cluster_info_page(p, cluster_info, page_nr);
3048 }
3049 }
3050
3051 /* Haven't marked the cluster free yet, no list operation involved */
3052 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3053 inc_cluster_info_page(p, cluster_info, i);
3054
3055 if (nr_good_pages) {
3056 swap_map[0] = SWAP_MAP_BAD;
3057 /*
3058 * Not mark the cluster free yet, no list
3059 * operation involved
3060 */
3061 inc_cluster_info_page(p, cluster_info, 0);
3062 p->max = maxpages;
3063 p->pages = nr_good_pages;
3064 nr_extents = setup_swap_extents(p, span);
3065 if (nr_extents < 0)
3066 return nr_extents;
3067 nr_good_pages = p->pages;
3068 }
3069 if (!nr_good_pages) {
3070 pr_warn("Empty swap-file\n");
3071 return -EINVAL;
3072 }
3073
3074 if (!cluster_info)
3075 return nr_extents;
3076
3077
3078 /*
3079 * Reduce false cache line sharing between cluster_info and
3080 * sharing same address space.
3081 */
3082 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3083 j = (k + col) % SWAP_CLUSTER_COLS;
3084 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3085 idx = i * SWAP_CLUSTER_COLS + j;
3086 if (idx >= nr_clusters)
3087 continue;
3088 if (cluster_count(&cluster_info[idx]))
3089 continue;
3090 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3091 cluster_list_add_tail(&p->free_clusters, cluster_info,
3092 idx);
3093 }
3094 }
3095 return nr_extents;
3096 }
3097
3098 /*
3099 * Helper to sys_swapon determining if a given swap
3100 * backing device queue supports DISCARD operations.
3101 */
3102 static bool swap_discardable(struct swap_info_struct *si)
3103 {
3104 struct request_queue *q = bdev_get_queue(si->bdev);
3105
3106 if (!q || !blk_queue_discard(q))
3107 return false;
3108
3109 return true;
3110 }
3111
3112 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3113 {
3114 struct swap_info_struct *p;
3115 struct filename *name;
3116 struct file *swap_file = NULL;
3117 struct address_space *mapping;
3118 int prio;
3119 int error;
3120 union swap_header *swap_header;
3121 int nr_extents;
3122 sector_t span;
3123 unsigned long maxpages;
3124 unsigned char *swap_map = NULL;
3125 struct swap_cluster_info *cluster_info = NULL;
3126 unsigned long *frontswap_map = NULL;
3127 struct page *page = NULL;
3128 struct inode *inode = NULL;
3129
3130 if (swap_flags & ~SWAP_FLAGS_VALID)
3131 return -EINVAL;
3132
3133 if (!capable(CAP_SYS_ADMIN))
3134 return -EPERM;
3135
3136 if (!swap_avail_heads)
3137 return -ENOMEM;
3138
3139 p = alloc_swap_info();
3140 if (IS_ERR(p))
3141 return PTR_ERR(p);
3142
3143 INIT_WORK(&p->discard_work, swap_discard_work);
3144
3145 name = getname(specialfile);
3146 if (IS_ERR(name)) {
3147 error = PTR_ERR(name);
3148 name = NULL;
3149 goto bad_swap;
3150 }
3151 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3152 if (IS_ERR(swap_file)) {
3153 error = PTR_ERR(swap_file);
3154 swap_file = NULL;
3155 goto bad_swap;
3156 }
3157
3158 p->swap_file = swap_file;
3159 mapping = swap_file->f_mapping;
3160 inode = mapping->host;
3161
3162 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3163 error = claim_swapfile(p, inode);
3164 if (unlikely(error))
3165 goto bad_swap;
3166
3167 /*
3168 * Read the swap header.
3169 */
3170 if (!mapping->a_ops->readpage) {
3171 error = -EINVAL;
3172 goto bad_swap;
3173 }
3174 page = read_mapping_page(mapping, 0, swap_file);
3175 if (IS_ERR(page)) {
3176 error = PTR_ERR(page);
3177 goto bad_swap;
3178 }
3179 swap_header = kmap(page);
3180
3181 maxpages = read_swap_header(p, swap_header, inode);
3182 if (unlikely(!maxpages)) {
3183 error = -EINVAL;
3184 goto bad_swap;
3185 }
3186
3187 /* OK, set up the swap map and apply the bad block list */
3188 swap_map = vzalloc(maxpages);
3189 if (!swap_map) {
3190 error = -ENOMEM;
3191 goto bad_swap;
3192 }
3193
3194 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3195 p->flags |= SWP_STABLE_WRITES;
3196
3197 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3198 p->flags |= SWP_SYNCHRONOUS_IO;
3199
3200 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3201 int cpu;
3202 unsigned long ci, nr_cluster;
3203
3204 p->flags |= SWP_SOLIDSTATE;
3205 /*
3206 * select a random position to start with to help wear leveling
3207 * SSD
3208 */
3209 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3210 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3211
3212 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3213 GFP_KERNEL);
3214 if (!cluster_info) {
3215 error = -ENOMEM;
3216 goto bad_swap;
3217 }
3218
3219 for (ci = 0; ci < nr_cluster; ci++)
3220 spin_lock_init(&((cluster_info + ci)->lock));
3221
3222 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3223 if (!p->percpu_cluster) {
3224 error = -ENOMEM;
3225 goto bad_swap;
3226 }
3227 for_each_possible_cpu(cpu) {
3228 struct percpu_cluster *cluster;
3229 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3230 cluster_set_null(&cluster->index);
3231 }
3232 } else
3233 atomic_inc(&nr_rotate_swap);
3234
3235 error = swap_cgroup_swapon(p->type, maxpages);
3236 if (error)
3237 goto bad_swap;
3238
3239 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3240 cluster_info, maxpages, &span);
3241 if (unlikely(nr_extents < 0)) {
3242 error = nr_extents;
3243 goto bad_swap;
3244 }
3245 /* frontswap enabled? set up bit-per-page map for frontswap */
3246 if (IS_ENABLED(CONFIG_FRONTSWAP))
3247 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3248 GFP_KERNEL);
3249
3250 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3251 /*
3252 * When discard is enabled for swap with no particular
3253 * policy flagged, we set all swap discard flags here in
3254 * order to sustain backward compatibility with older
3255 * swapon(8) releases.
3256 */
3257 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3258 SWP_PAGE_DISCARD);
3259
3260 /*
3261 * By flagging sys_swapon, a sysadmin can tell us to
3262 * either do single-time area discards only, or to just
3263 * perform discards for released swap page-clusters.
3264 * Now it's time to adjust the p->flags accordingly.
3265 */
3266 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3267 p->flags &= ~SWP_PAGE_DISCARD;
3268 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3269 p->flags &= ~SWP_AREA_DISCARD;
3270
3271 /* issue a swapon-time discard if it's still required */
3272 if (p->flags & SWP_AREA_DISCARD) {
3273 int err = discard_swap(p);
3274 if (unlikely(err))
3275 pr_err("swapon: discard_swap(%p): %d\n",
3276 p, err);
3277 }
3278 }
3279
3280 error = init_swap_address_space(p->type, maxpages);
3281 if (error)
3282 goto bad_swap;
3283
3284 mutex_lock(&swapon_mutex);
3285 prio = -1;
3286 if (swap_flags & SWAP_FLAG_PREFER)
3287 prio =
3288 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3289 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3290
3291 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3292 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3293 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3294 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3295 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3296 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3297 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3298 (frontswap_map) ? "FS" : "");
3299
3300 mutex_unlock(&swapon_mutex);
3301 atomic_inc(&proc_poll_event);
3302 wake_up_interruptible(&proc_poll_wait);
3303
3304 if (S_ISREG(inode->i_mode))
3305 inode->i_flags |= S_SWAPFILE;
3306 error = 0;
3307 goto out;
3308 bad_swap:
3309 free_percpu(p->percpu_cluster);
3310 p->percpu_cluster = NULL;
3311 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3312 set_blocksize(p->bdev, p->old_block_size);
3313 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3314 }
3315 destroy_swap_extents(p);
3316 swap_cgroup_swapoff(p->type);
3317 spin_lock(&swap_lock);
3318 p->swap_file = NULL;
3319 p->flags = 0;
3320 spin_unlock(&swap_lock);
3321 vfree(swap_map);
3322 kvfree(cluster_info);
3323 kvfree(frontswap_map);
3324 if (swap_file) {
3325 if (inode && S_ISREG(inode->i_mode)) {
3326 inode_unlock(inode);
3327 inode = NULL;
3328 }
3329 filp_close(swap_file, NULL);
3330 }
3331 out:
3332 if (page && !IS_ERR(page)) {
3333 kunmap(page);
3334 put_page(page);
3335 }
3336 if (name)
3337 putname(name);
3338 if (inode && S_ISREG(inode->i_mode))
3339 inode_unlock(inode);
3340 if (!error)
3341 enable_swap_slots_cache();
3342 return error;
3343 }
3344
3345 void si_swapinfo(struct sysinfo *val)
3346 {
3347 unsigned int type;
3348 unsigned long nr_to_be_unused = 0;
3349
3350 spin_lock(&swap_lock);
3351 for (type = 0; type < nr_swapfiles; type++) {
3352 struct swap_info_struct *si = swap_info[type];
3353
3354 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3355 nr_to_be_unused += si->inuse_pages;
3356 }
3357 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3358 val->totalswap = total_swap_pages + nr_to_be_unused;
3359 spin_unlock(&swap_lock);
3360 }
3361
3362 /*
3363 * Verify that a swap entry is valid and increment its swap map count.
3364 *
3365 * Returns error code in following case.
3366 * - success -> 0
3367 * - swp_entry is invalid -> EINVAL
3368 * - swp_entry is migration entry -> EINVAL
3369 * - swap-cache reference is requested but there is already one. -> EEXIST
3370 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3371 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3372 */
3373 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3374 {
3375 struct swap_info_struct *p;
3376 struct swap_cluster_info *ci;
3377 unsigned long offset, type;
3378 unsigned char count;
3379 unsigned char has_cache;
3380 int err = -EINVAL;
3381
3382 if (non_swap_entry(entry))
3383 goto out;
3384
3385 type = swp_type(entry);
3386 if (type >= nr_swapfiles)
3387 goto bad_file;
3388 p = swap_info[type];
3389 offset = swp_offset(entry);
3390 if (unlikely(offset >= p->max))
3391 goto out;
3392
3393 ci = lock_cluster_or_swap_info(p, offset);
3394
3395 count = p->swap_map[offset];
3396
3397 /*
3398 * swapin_readahead() doesn't check if a swap entry is valid, so the
3399 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3400 */
3401 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3402 err = -ENOENT;
3403 goto unlock_out;
3404 }
3405
3406 has_cache = count & SWAP_HAS_CACHE;
3407 count &= ~SWAP_HAS_CACHE;
3408 err = 0;
3409
3410 if (usage == SWAP_HAS_CACHE) {
3411
3412 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3413 if (!has_cache && count)
3414 has_cache = SWAP_HAS_CACHE;
3415 else if (has_cache) /* someone else added cache */
3416 err = -EEXIST;
3417 else /* no users remaining */
3418 err = -ENOENT;
3419
3420 } else if (count || has_cache) {
3421
3422 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3423 count += usage;
3424 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3425 err = -EINVAL;
3426 else if (swap_count_continued(p, offset, count))
3427 count = COUNT_CONTINUED;
3428 else
3429 err = -ENOMEM;
3430 } else
3431 err = -ENOENT; /* unused swap entry */
3432
3433 p->swap_map[offset] = count | has_cache;
3434
3435 unlock_out:
3436 unlock_cluster_or_swap_info(p, ci);
3437 out:
3438 return err;
3439
3440 bad_file:
3441 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3442 goto out;
3443 }
3444
3445 /*
3446 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3447 * (in which case its reference count is never incremented).
3448 */
3449 void swap_shmem_alloc(swp_entry_t entry)
3450 {
3451 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3452 }
3453
3454 /*
3455 * Increase reference count of swap entry by 1.
3456 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3457 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3458 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3459 * might occur if a page table entry has got corrupted.
3460 */
3461 int swap_duplicate(swp_entry_t entry)
3462 {
3463 int err = 0;
3464
3465 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3466 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3467 return err;
3468 }
3469
3470 /*
3471 * @entry: swap entry for which we allocate swap cache.
3472 *
3473 * Called when allocating swap cache for existing swap entry,
3474 * This can return error codes. Returns 0 at success.
3475 * -EBUSY means there is a swap cache.
3476 * Note: return code is different from swap_duplicate().
3477 */
3478 int swapcache_prepare(swp_entry_t entry)
3479 {
3480 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3481 }
3482
3483 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3484 {
3485 return swap_info[swp_type(entry)];
3486 }
3487
3488 struct swap_info_struct *page_swap_info(struct page *page)
3489 {
3490 swp_entry_t entry = { .val = page_private(page) };
3491 return swp_swap_info(entry);
3492 }
3493
3494 /*
3495 * out-of-line __page_file_ methods to avoid include hell.
3496 */
3497 struct address_space *__page_file_mapping(struct page *page)
3498 {
3499 return page_swap_info(page)->swap_file->f_mapping;
3500 }
3501 EXPORT_SYMBOL_GPL(__page_file_mapping);
3502
3503 pgoff_t __page_file_index(struct page *page)
3504 {
3505 swp_entry_t swap = { .val = page_private(page) };
3506 return swp_offset(swap);
3507 }
3508 EXPORT_SYMBOL_GPL(__page_file_index);
3509
3510 /*
3511 * add_swap_count_continuation - called when a swap count is duplicated
3512 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3513 * page of the original vmalloc'ed swap_map, to hold the continuation count
3514 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3515 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3516 *
3517 * These continuation pages are seldom referenced: the common paths all work
3518 * on the original swap_map, only referring to a continuation page when the
3519 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3520 *
3521 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3522 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3523 * can be called after dropping locks.
3524 */
3525 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3526 {
3527 struct swap_info_struct *si;
3528 struct swap_cluster_info *ci;
3529 struct page *head;
3530 struct page *page;
3531 struct page *list_page;
3532 pgoff_t offset;
3533 unsigned char count;
3534
3535 /*
3536 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3537 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3538 */
3539 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3540
3541 si = swap_info_get(entry);
3542 if (!si) {
3543 /*
3544 * An acceptable race has occurred since the failing
3545 * __swap_duplicate(): the swap entry has been freed,
3546 * perhaps even the whole swap_map cleared for swapoff.
3547 */
3548 goto outer;
3549 }
3550
3551 offset = swp_offset(entry);
3552
3553 ci = lock_cluster(si, offset);
3554
3555 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3556
3557 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3558 /*
3559 * The higher the swap count, the more likely it is that tasks
3560 * will race to add swap count continuation: we need to avoid
3561 * over-provisioning.
3562 */
3563 goto out;
3564 }
3565
3566 if (!page) {
3567 unlock_cluster(ci);
3568 spin_unlock(&si->lock);
3569 return -ENOMEM;
3570 }
3571
3572 /*
3573 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3574 * no architecture is using highmem pages for kernel page tables: so it
3575 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3576 */
3577 head = vmalloc_to_page(si->swap_map + offset);
3578 offset &= ~PAGE_MASK;
3579
3580 spin_lock(&si->cont_lock);
3581 /*
3582 * Page allocation does not initialize the page's lru field,
3583 * but it does always reset its private field.
3584 */
3585 if (!page_private(head)) {
3586 BUG_ON(count & COUNT_CONTINUED);
3587 INIT_LIST_HEAD(&head->lru);
3588 set_page_private(head, SWP_CONTINUED);
3589 si->flags |= SWP_CONTINUED;
3590 }
3591
3592 list_for_each_entry(list_page, &head->lru, lru) {
3593 unsigned char *map;
3594
3595 /*
3596 * If the previous map said no continuation, but we've found
3597 * a continuation page, free our allocation and use this one.
3598 */
3599 if (!(count & COUNT_CONTINUED))
3600 goto out_unlock_cont;
3601
3602 map = kmap_atomic(list_page) + offset;
3603 count = *map;
3604 kunmap_atomic(map);
3605
3606 /*
3607 * If this continuation count now has some space in it,
3608 * free our allocation and use this one.
3609 */
3610 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3611 goto out_unlock_cont;
3612 }
3613
3614 list_add_tail(&page->lru, &head->lru);
3615 page = NULL; /* now it's attached, don't free it */
3616 out_unlock_cont:
3617 spin_unlock(&si->cont_lock);
3618 out:
3619 unlock_cluster(ci);
3620 spin_unlock(&si->lock);
3621 outer:
3622 if (page)
3623 __free_page(page);
3624 return 0;
3625 }
3626
3627 /*
3628 * swap_count_continued - when the original swap_map count is incremented
3629 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3630 * into, carry if so, or else fail until a new continuation page is allocated;
3631 * when the original swap_map count is decremented from 0 with continuation,
3632 * borrow from the continuation and report whether it still holds more.
3633 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3634 * lock.
3635 */
3636 static bool swap_count_continued(struct swap_info_struct *si,
3637 pgoff_t offset, unsigned char count)
3638 {
3639 struct page *head;
3640 struct page *page;
3641 unsigned char *map;
3642 bool ret;
3643
3644 head = vmalloc_to_page(si->swap_map + offset);
3645 if (page_private(head) != SWP_CONTINUED) {
3646 BUG_ON(count & COUNT_CONTINUED);
3647 return false; /* need to add count continuation */
3648 }
3649
3650 spin_lock(&si->cont_lock);
3651 offset &= ~PAGE_MASK;
3652 page = list_entry(head->lru.next, struct page, lru);
3653 map = kmap_atomic(page) + offset;
3654
3655 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3656 goto init_map; /* jump over SWAP_CONT_MAX checks */
3657
3658 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3659 /*
3660 * Think of how you add 1 to 999
3661 */
3662 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3663 kunmap_atomic(map);
3664 page = list_entry(page->lru.next, struct page, lru);
3665 BUG_ON(page == head);
3666 map = kmap_atomic(page) + offset;
3667 }
3668 if (*map == SWAP_CONT_MAX) {
3669 kunmap_atomic(map);
3670 page = list_entry(page->lru.next, struct page, lru);
3671 if (page == head) {
3672 ret = false; /* add count continuation */
3673 goto out;
3674 }
3675 map = kmap_atomic(page) + offset;
3676 init_map: *map = 0; /* we didn't zero the page */
3677 }
3678 *map += 1;
3679 kunmap_atomic(map);
3680 page = list_entry(page->lru.prev, struct page, lru);
3681 while (page != head) {
3682 map = kmap_atomic(page) + offset;
3683 *map = COUNT_CONTINUED;
3684 kunmap_atomic(map);
3685 page = list_entry(page->lru.prev, struct page, lru);
3686 }
3687 ret = true; /* incremented */
3688
3689 } else { /* decrementing */
3690 /*
3691 * Think of how you subtract 1 from 1000
3692 */
3693 BUG_ON(count != COUNT_CONTINUED);
3694 while (*map == COUNT_CONTINUED) {
3695 kunmap_atomic(map);
3696 page = list_entry(page->lru.next, struct page, lru);
3697 BUG_ON(page == head);
3698 map = kmap_atomic(page) + offset;
3699 }
3700 BUG_ON(*map == 0);
3701 *map -= 1;
3702 if (*map == 0)
3703 count = 0;
3704 kunmap_atomic(map);
3705 page = list_entry(page->lru.prev, struct page, lru);
3706 while (page != head) {
3707 map = kmap_atomic(page) + offset;
3708 *map = SWAP_CONT_MAX | count;
3709 count = COUNT_CONTINUED;
3710 kunmap_atomic(map);
3711 page = list_entry(page->lru.prev, struct page, lru);
3712 }
3713 ret = count == COUNT_CONTINUED;
3714 }
3715 out:
3716 spin_unlock(&si->cont_lock);
3717 return ret;
3718 }
3719
3720 /*
3721 * free_swap_count_continuations - swapoff free all the continuation pages
3722 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3723 */
3724 static void free_swap_count_continuations(struct swap_info_struct *si)
3725 {
3726 pgoff_t offset;
3727
3728 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3729 struct page *head;
3730 head = vmalloc_to_page(si->swap_map + offset);
3731 if (page_private(head)) {
3732 struct page *page, *next;
3733
3734 list_for_each_entry_safe(page, next, &head->lru, lru) {
3735 list_del(&page->lru);
3736 __free_page(page);
3737 }
3738 }
3739 }
3740 }
3741
3742 static int __init swapfile_init(void)
3743 {
3744 int nid;
3745
3746 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3747 GFP_KERNEL);
3748 if (!swap_avail_heads) {
3749 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3750 return -ENOMEM;
3751 }
3752
3753 for_each_node(nid)
3754 plist_head_init(&swap_avail_heads[nid]);
3755
3756 return 0;
3757 }
3758 subsys_initcall(swapfile_init);