]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/swapfile.c
Merge tag 'cgroup-for-6.0-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-kernels.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
48 #include "swap.h"
49
50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
51 unsigned char);
52 static void free_swap_count_continuations(struct swap_info_struct *);
53
54 static DEFINE_SPINLOCK(swap_lock);
55 static unsigned int nr_swapfiles;
56 atomic_long_t nr_swap_pages;
57 /*
58 * Some modules use swappable objects and may try to swap them out under
59 * memory pressure (via the shrinker). Before doing so, they may wish to
60 * check to see if any swap space is available.
61 */
62 EXPORT_SYMBOL_GPL(nr_swap_pages);
63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
64 long total_swap_pages;
65 static int least_priority = -1;
66
67 static const char Bad_file[] = "Bad swap file entry ";
68 static const char Unused_file[] = "Unused swap file entry ";
69 static const char Bad_offset[] = "Bad swap offset entry ";
70 static const char Unused_offset[] = "Unused swap offset entry ";
71
72 /*
73 * all active swap_info_structs
74 * protected with swap_lock, and ordered by priority.
75 */
76 static PLIST_HEAD(swap_active_head);
77
78 /*
79 * all available (active, not full) swap_info_structs
80 * protected with swap_avail_lock, ordered by priority.
81 * This is used by folio_alloc_swap() instead of swap_active_head
82 * because swap_active_head includes all swap_info_structs,
83 * but folio_alloc_swap() doesn't need to look at full ones.
84 * This uses its own lock instead of swap_lock because when a
85 * swap_info_struct changes between not-full/full, it needs to
86 * add/remove itself to/from this list, but the swap_info_struct->lock
87 * is held and the locking order requires swap_lock to be taken
88 * before any swap_info_struct->lock.
89 */
90 static struct plist_head *swap_avail_heads;
91 static DEFINE_SPINLOCK(swap_avail_lock);
92
93 struct swap_info_struct *swap_info[MAX_SWAPFILES];
94
95 static DEFINE_MUTEX(swapon_mutex);
96
97 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
98 /* Activity counter to indicate that a swapon or swapoff has occurred */
99 static atomic_t proc_poll_event = ATOMIC_INIT(0);
100
101 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
102
103 static struct swap_info_struct *swap_type_to_swap_info(int type)
104 {
105 if (type >= MAX_SWAPFILES)
106 return NULL;
107
108 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173 struct swap_extent *se;
174 sector_t start_block;
175 sector_t nr_blocks;
176 int err = 0;
177
178 /* Do not discard the swap header page! */
179 se = first_se(si);
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL);
185 if (err)
186 return err;
187 cond_resched();
188 }
189
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL);
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222 }
223
224 sector_t swap_page_sector(struct page *page)
225 {
226 struct swap_info_struct *sis = page_swap_info(page);
227 struct swap_extent *se;
228 sector_t sector;
229 pgoff_t offset;
230
231 offset = __page_file_index(page);
232 se = offset_to_swap_extent(sis, offset);
233 sector = se->start_block + (offset - se->start_page);
234 return sector << (PAGE_SHIFT - 9);
235 }
236
237 /*
238 * swap allocation tell device that a cluster of swap can now be discarded,
239 * to allow the swap device to optimize its wear-levelling.
240 */
241 static void discard_swap_cluster(struct swap_info_struct *si,
242 pgoff_t start_page, pgoff_t nr_pages)
243 {
244 struct swap_extent *se = offset_to_swap_extent(si, start_page);
245
246 while (nr_pages) {
247 pgoff_t offset = start_page - se->start_page;
248 sector_t start_block = se->start_block + offset;
249 sector_t nr_blocks = se->nr_pages - offset;
250
251 if (nr_blocks > nr_pages)
252 nr_blocks = nr_pages;
253 start_page += nr_blocks;
254 nr_pages -= nr_blocks;
255
256 start_block <<= PAGE_SHIFT - 9;
257 nr_blocks <<= PAGE_SHIFT - 9;
258 if (blkdev_issue_discard(si->bdev, start_block,
259 nr_blocks, GFP_NOIO))
260 break;
261
262 se = next_se(se);
263 }
264 }
265
266 #ifdef CONFIG_THP_SWAP
267 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
268
269 #define swap_entry_size(size) (size)
270 #else
271 #define SWAPFILE_CLUSTER 256
272
273 /*
274 * Define swap_entry_size() as constant to let compiler to optimize
275 * out some code if !CONFIG_THP_SWAP
276 */
277 #define swap_entry_size(size) 1
278 #endif
279 #define LATENCY_LIMIT 256
280
281 static inline void cluster_set_flag(struct swap_cluster_info *info,
282 unsigned int flag)
283 {
284 info->flags = flag;
285 }
286
287 static inline unsigned int cluster_count(struct swap_cluster_info *info)
288 {
289 return info->data;
290 }
291
292 static inline void cluster_set_count(struct swap_cluster_info *info,
293 unsigned int c)
294 {
295 info->data = c;
296 }
297
298 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
299 unsigned int c, unsigned int f)
300 {
301 info->flags = f;
302 info->data = c;
303 }
304
305 static inline unsigned int cluster_next(struct swap_cluster_info *info)
306 {
307 return info->data;
308 }
309
310 static inline void cluster_set_next(struct swap_cluster_info *info,
311 unsigned int n)
312 {
313 info->data = n;
314 }
315
316 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
317 unsigned int n, unsigned int f)
318 {
319 info->flags = f;
320 info->data = n;
321 }
322
323 static inline bool cluster_is_free(struct swap_cluster_info *info)
324 {
325 return info->flags & CLUSTER_FLAG_FREE;
326 }
327
328 static inline bool cluster_is_null(struct swap_cluster_info *info)
329 {
330 return info->flags & CLUSTER_FLAG_NEXT_NULL;
331 }
332
333 static inline void cluster_set_null(struct swap_cluster_info *info)
334 {
335 info->flags = CLUSTER_FLAG_NEXT_NULL;
336 info->data = 0;
337 }
338
339 static inline bool cluster_is_huge(struct swap_cluster_info *info)
340 {
341 if (IS_ENABLED(CONFIG_THP_SWAP))
342 return info->flags & CLUSTER_FLAG_HUGE;
343 return false;
344 }
345
346 static inline void cluster_clear_huge(struct swap_cluster_info *info)
347 {
348 info->flags &= ~CLUSTER_FLAG_HUGE;
349 }
350
351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352 unsigned long offset)
353 {
354 struct swap_cluster_info *ci;
355
356 ci = si->cluster_info;
357 if (ci) {
358 ci += offset / SWAPFILE_CLUSTER;
359 spin_lock(&ci->lock);
360 }
361 return ci;
362 }
363
364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366 if (ci)
367 spin_unlock(&ci->lock);
368 }
369
370 /*
371 * Determine the locking method in use for this device. Return
372 * swap_cluster_info if SSD-style cluster-based locking is in place.
373 */
374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375 struct swap_info_struct *si, unsigned long offset)
376 {
377 struct swap_cluster_info *ci;
378
379 /* Try to use fine-grained SSD-style locking if available: */
380 ci = lock_cluster(si, offset);
381 /* Otherwise, fall back to traditional, coarse locking: */
382 if (!ci)
383 spin_lock(&si->lock);
384
385 return ci;
386 }
387
388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389 struct swap_cluster_info *ci)
390 {
391 if (ci)
392 unlock_cluster(ci);
393 else
394 spin_unlock(&si->lock);
395 }
396
397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399 return cluster_is_null(&list->head);
400 }
401
402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404 return cluster_next(&list->head);
405 }
406
407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409 cluster_set_null(&list->head);
410 cluster_set_null(&list->tail);
411 }
412
413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414 struct swap_cluster_info *ci,
415 unsigned int idx)
416 {
417 if (cluster_list_empty(list)) {
418 cluster_set_next_flag(&list->head, idx, 0);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 } else {
421 struct swap_cluster_info *ci_tail;
422 unsigned int tail = cluster_next(&list->tail);
423
424 /*
425 * Nested cluster lock, but both cluster locks are
426 * only acquired when we held swap_info_struct->lock
427 */
428 ci_tail = ci + tail;
429 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430 cluster_set_next(ci_tail, idx);
431 spin_unlock(&ci_tail->lock);
432 cluster_set_next_flag(&list->tail, idx, 0);
433 }
434 }
435
436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437 struct swap_cluster_info *ci)
438 {
439 unsigned int idx;
440
441 idx = cluster_next(&list->head);
442 if (cluster_next(&list->tail) == idx) {
443 cluster_set_null(&list->head);
444 cluster_set_null(&list->tail);
445 } else
446 cluster_set_next_flag(&list->head,
447 cluster_next(&ci[idx]), 0);
448
449 return idx;
450 }
451
452 /* Add a cluster to discard list and schedule it to do discard */
453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454 unsigned int idx)
455 {
456 /*
457 * If scan_swap_map_slots() can't find a free cluster, it will check
458 * si->swap_map directly. To make sure the discarding cluster isn't
459 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
460 * It will be cleared after discard
461 */
462 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464
465 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466
467 schedule_work(&si->discard_work);
468 }
469
470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472 struct swap_cluster_info *ci = si->cluster_info;
473
474 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475 cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477
478 /*
479 * Doing discard actually. After a cluster discard is finished, the cluster
480 * will be added to free cluster list. caller should hold si->lock.
481 */
482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484 struct swap_cluster_info *info, *ci;
485 unsigned int idx;
486
487 info = si->cluster_info;
488
489 while (!cluster_list_empty(&si->discard_clusters)) {
490 idx = cluster_list_del_first(&si->discard_clusters, info);
491 spin_unlock(&si->lock);
492
493 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494 SWAPFILE_CLUSTER);
495
496 spin_lock(&si->lock);
497 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498 __free_cluster(si, idx);
499 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500 0, SWAPFILE_CLUSTER);
501 unlock_cluster(ci);
502 }
503 }
504
505 static void swap_discard_work(struct work_struct *work)
506 {
507 struct swap_info_struct *si;
508
509 si = container_of(work, struct swap_info_struct, discard_work);
510
511 spin_lock(&si->lock);
512 swap_do_scheduled_discard(si);
513 spin_unlock(&si->lock);
514 }
515
516 static void swap_users_ref_free(struct percpu_ref *ref)
517 {
518 struct swap_info_struct *si;
519
520 si = container_of(ref, struct swap_info_struct, users);
521 complete(&si->comp);
522 }
523
524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
525 {
526 struct swap_cluster_info *ci = si->cluster_info;
527
528 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
529 cluster_list_del_first(&si->free_clusters, ci);
530 cluster_set_count_flag(ci + idx, 0, 0);
531 }
532
533 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
534 {
535 struct swap_cluster_info *ci = si->cluster_info + idx;
536
537 VM_BUG_ON(cluster_count(ci) != 0);
538 /*
539 * If the swap is discardable, prepare discard the cluster
540 * instead of free it immediately. The cluster will be freed
541 * after discard.
542 */
543 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
544 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
545 swap_cluster_schedule_discard(si, idx);
546 return;
547 }
548
549 __free_cluster(si, idx);
550 }
551
552 /*
553 * The cluster corresponding to page_nr will be used. The cluster will be
554 * removed from free cluster list and its usage counter will be increased.
555 */
556 static void inc_cluster_info_page(struct swap_info_struct *p,
557 struct swap_cluster_info *cluster_info, unsigned long page_nr)
558 {
559 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
560
561 if (!cluster_info)
562 return;
563 if (cluster_is_free(&cluster_info[idx]))
564 alloc_cluster(p, idx);
565
566 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
567 cluster_set_count(&cluster_info[idx],
568 cluster_count(&cluster_info[idx]) + 1);
569 }
570
571 /*
572 * The cluster corresponding to page_nr decreases one usage. If the usage
573 * counter becomes 0, which means no page in the cluster is in using, we can
574 * optionally discard the cluster and add it to free cluster list.
575 */
576 static void dec_cluster_info_page(struct swap_info_struct *p,
577 struct swap_cluster_info *cluster_info, unsigned long page_nr)
578 {
579 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
580
581 if (!cluster_info)
582 return;
583
584 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
585 cluster_set_count(&cluster_info[idx],
586 cluster_count(&cluster_info[idx]) - 1);
587
588 if (cluster_count(&cluster_info[idx]) == 0)
589 free_cluster(p, idx);
590 }
591
592 /*
593 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
594 * cluster list. Avoiding such abuse to avoid list corruption.
595 */
596 static bool
597 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
598 unsigned long offset)
599 {
600 struct percpu_cluster *percpu_cluster;
601 bool conflict;
602
603 offset /= SWAPFILE_CLUSTER;
604 conflict = !cluster_list_empty(&si->free_clusters) &&
605 offset != cluster_list_first(&si->free_clusters) &&
606 cluster_is_free(&si->cluster_info[offset]);
607
608 if (!conflict)
609 return false;
610
611 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
612 cluster_set_null(&percpu_cluster->index);
613 return true;
614 }
615
616 /*
617 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
618 * might involve allocating a new cluster for current CPU too.
619 */
620 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
621 unsigned long *offset, unsigned long *scan_base)
622 {
623 struct percpu_cluster *cluster;
624 struct swap_cluster_info *ci;
625 unsigned long tmp, max;
626
627 new_cluster:
628 cluster = this_cpu_ptr(si->percpu_cluster);
629 if (cluster_is_null(&cluster->index)) {
630 if (!cluster_list_empty(&si->free_clusters)) {
631 cluster->index = si->free_clusters.head;
632 cluster->next = cluster_next(&cluster->index) *
633 SWAPFILE_CLUSTER;
634 } else if (!cluster_list_empty(&si->discard_clusters)) {
635 /*
636 * we don't have free cluster but have some clusters in
637 * discarding, do discard now and reclaim them, then
638 * reread cluster_next_cpu since we dropped si->lock
639 */
640 swap_do_scheduled_discard(si);
641 *scan_base = this_cpu_read(*si->cluster_next_cpu);
642 *offset = *scan_base;
643 goto new_cluster;
644 } else
645 return false;
646 }
647
648 /*
649 * Other CPUs can use our cluster if they can't find a free cluster,
650 * check if there is still free entry in the cluster
651 */
652 tmp = cluster->next;
653 max = min_t(unsigned long, si->max,
654 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
655 if (tmp < max) {
656 ci = lock_cluster(si, tmp);
657 while (tmp < max) {
658 if (!si->swap_map[tmp])
659 break;
660 tmp++;
661 }
662 unlock_cluster(ci);
663 }
664 if (tmp >= max) {
665 cluster_set_null(&cluster->index);
666 goto new_cluster;
667 }
668 cluster->next = tmp + 1;
669 *offset = tmp;
670 *scan_base = tmp;
671 return true;
672 }
673
674 static void __del_from_avail_list(struct swap_info_struct *p)
675 {
676 int nid;
677
678 for_each_node(nid)
679 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
680 }
681
682 static void del_from_avail_list(struct swap_info_struct *p)
683 {
684 spin_lock(&swap_avail_lock);
685 __del_from_avail_list(p);
686 spin_unlock(&swap_avail_lock);
687 }
688
689 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
690 unsigned int nr_entries)
691 {
692 unsigned int end = offset + nr_entries - 1;
693
694 if (offset == si->lowest_bit)
695 si->lowest_bit += nr_entries;
696 if (end == si->highest_bit)
697 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
698 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
699 if (si->inuse_pages == si->pages) {
700 si->lowest_bit = si->max;
701 si->highest_bit = 0;
702 del_from_avail_list(si);
703 }
704 }
705
706 static void add_to_avail_list(struct swap_info_struct *p)
707 {
708 int nid;
709
710 spin_lock(&swap_avail_lock);
711 for_each_node(nid) {
712 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
713 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
714 }
715 spin_unlock(&swap_avail_lock);
716 }
717
718 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
719 unsigned int nr_entries)
720 {
721 unsigned long begin = offset;
722 unsigned long end = offset + nr_entries - 1;
723 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
724
725 if (offset < si->lowest_bit)
726 si->lowest_bit = offset;
727 if (end > si->highest_bit) {
728 bool was_full = !si->highest_bit;
729
730 WRITE_ONCE(si->highest_bit, end);
731 if (was_full && (si->flags & SWP_WRITEOK))
732 add_to_avail_list(si);
733 }
734 atomic_long_add(nr_entries, &nr_swap_pages);
735 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
736 if (si->flags & SWP_BLKDEV)
737 swap_slot_free_notify =
738 si->bdev->bd_disk->fops->swap_slot_free_notify;
739 else
740 swap_slot_free_notify = NULL;
741 while (offset <= end) {
742 arch_swap_invalidate_page(si->type, offset);
743 frontswap_invalidate_page(si->type, offset);
744 if (swap_slot_free_notify)
745 swap_slot_free_notify(si->bdev, offset);
746 offset++;
747 }
748 clear_shadow_from_swap_cache(si->type, begin, end);
749 }
750
751 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
752 {
753 unsigned long prev;
754
755 if (!(si->flags & SWP_SOLIDSTATE)) {
756 si->cluster_next = next;
757 return;
758 }
759
760 prev = this_cpu_read(*si->cluster_next_cpu);
761 /*
762 * Cross the swap address space size aligned trunk, choose
763 * another trunk randomly to avoid lock contention on swap
764 * address space if possible.
765 */
766 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
767 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
768 /* No free swap slots available */
769 if (si->highest_bit <= si->lowest_bit)
770 return;
771 next = si->lowest_bit +
772 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
773 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
774 next = max_t(unsigned int, next, si->lowest_bit);
775 }
776 this_cpu_write(*si->cluster_next_cpu, next);
777 }
778
779 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
780 unsigned long offset)
781 {
782 if (data_race(!si->swap_map[offset])) {
783 spin_lock(&si->lock);
784 return true;
785 }
786
787 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
788 spin_lock(&si->lock);
789 return true;
790 }
791
792 return false;
793 }
794
795 static int scan_swap_map_slots(struct swap_info_struct *si,
796 unsigned char usage, int nr,
797 swp_entry_t slots[])
798 {
799 struct swap_cluster_info *ci;
800 unsigned long offset;
801 unsigned long scan_base;
802 unsigned long last_in_cluster = 0;
803 int latency_ration = LATENCY_LIMIT;
804 int n_ret = 0;
805 bool scanned_many = false;
806
807 /*
808 * We try to cluster swap pages by allocating them sequentially
809 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
810 * way, however, we resort to first-free allocation, starting
811 * a new cluster. This prevents us from scattering swap pages
812 * all over the entire swap partition, so that we reduce
813 * overall disk seek times between swap pages. -- sct
814 * But we do now try to find an empty cluster. -Andrea
815 * And we let swap pages go all over an SSD partition. Hugh
816 */
817
818 si->flags += SWP_SCANNING;
819 /*
820 * Use percpu scan base for SSD to reduce lock contention on
821 * cluster and swap cache. For HDD, sequential access is more
822 * important.
823 */
824 if (si->flags & SWP_SOLIDSTATE)
825 scan_base = this_cpu_read(*si->cluster_next_cpu);
826 else
827 scan_base = si->cluster_next;
828 offset = scan_base;
829
830 /* SSD algorithm */
831 if (si->cluster_info) {
832 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
833 goto scan;
834 } else if (unlikely(!si->cluster_nr--)) {
835 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
836 si->cluster_nr = SWAPFILE_CLUSTER - 1;
837 goto checks;
838 }
839
840 spin_unlock(&si->lock);
841
842 /*
843 * If seek is expensive, start searching for new cluster from
844 * start of partition, to minimize the span of allocated swap.
845 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
846 * case, just handled by scan_swap_map_try_ssd_cluster() above.
847 */
848 scan_base = offset = si->lowest_bit;
849 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
850
851 /* Locate the first empty (unaligned) cluster */
852 for (; last_in_cluster <= si->highest_bit; offset++) {
853 if (si->swap_map[offset])
854 last_in_cluster = offset + SWAPFILE_CLUSTER;
855 else if (offset == last_in_cluster) {
856 spin_lock(&si->lock);
857 offset -= SWAPFILE_CLUSTER - 1;
858 si->cluster_next = offset;
859 si->cluster_nr = SWAPFILE_CLUSTER - 1;
860 goto checks;
861 }
862 if (unlikely(--latency_ration < 0)) {
863 cond_resched();
864 latency_ration = LATENCY_LIMIT;
865 }
866 }
867
868 offset = scan_base;
869 spin_lock(&si->lock);
870 si->cluster_nr = SWAPFILE_CLUSTER - 1;
871 }
872
873 checks:
874 if (si->cluster_info) {
875 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
876 /* take a break if we already got some slots */
877 if (n_ret)
878 goto done;
879 if (!scan_swap_map_try_ssd_cluster(si, &offset,
880 &scan_base))
881 goto scan;
882 }
883 }
884 if (!(si->flags & SWP_WRITEOK))
885 goto no_page;
886 if (!si->highest_bit)
887 goto no_page;
888 if (offset > si->highest_bit)
889 scan_base = offset = si->lowest_bit;
890
891 ci = lock_cluster(si, offset);
892 /* reuse swap entry of cache-only swap if not busy. */
893 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
894 int swap_was_freed;
895 unlock_cluster(ci);
896 spin_unlock(&si->lock);
897 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
898 spin_lock(&si->lock);
899 /* entry was freed successfully, try to use this again */
900 if (swap_was_freed)
901 goto checks;
902 goto scan; /* check next one */
903 }
904
905 if (si->swap_map[offset]) {
906 unlock_cluster(ci);
907 if (!n_ret)
908 goto scan;
909 else
910 goto done;
911 }
912 WRITE_ONCE(si->swap_map[offset], usage);
913 inc_cluster_info_page(si, si->cluster_info, offset);
914 unlock_cluster(ci);
915
916 swap_range_alloc(si, offset, 1);
917 slots[n_ret++] = swp_entry(si->type, offset);
918
919 /* got enough slots or reach max slots? */
920 if ((n_ret == nr) || (offset >= si->highest_bit))
921 goto done;
922
923 /* search for next available slot */
924
925 /* time to take a break? */
926 if (unlikely(--latency_ration < 0)) {
927 if (n_ret)
928 goto done;
929 spin_unlock(&si->lock);
930 cond_resched();
931 spin_lock(&si->lock);
932 latency_ration = LATENCY_LIMIT;
933 }
934
935 /* try to get more slots in cluster */
936 if (si->cluster_info) {
937 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
938 goto checks;
939 } else if (si->cluster_nr && !si->swap_map[++offset]) {
940 /* non-ssd case, still more slots in cluster? */
941 --si->cluster_nr;
942 goto checks;
943 }
944
945 /*
946 * Even if there's no free clusters available (fragmented),
947 * try to scan a little more quickly with lock held unless we
948 * have scanned too many slots already.
949 */
950 if (!scanned_many) {
951 unsigned long scan_limit;
952
953 if (offset < scan_base)
954 scan_limit = scan_base;
955 else
956 scan_limit = si->highest_bit;
957 for (; offset <= scan_limit && --latency_ration > 0;
958 offset++) {
959 if (!si->swap_map[offset])
960 goto checks;
961 }
962 }
963
964 done:
965 set_cluster_next(si, offset + 1);
966 si->flags -= SWP_SCANNING;
967 return n_ret;
968
969 scan:
970 spin_unlock(&si->lock);
971 while (++offset <= READ_ONCE(si->highest_bit)) {
972 if (swap_offset_available_and_locked(si, offset))
973 goto checks;
974 if (unlikely(--latency_ration < 0)) {
975 cond_resched();
976 latency_ration = LATENCY_LIMIT;
977 scanned_many = true;
978 }
979 }
980 offset = si->lowest_bit;
981 while (offset < scan_base) {
982 if (swap_offset_available_and_locked(si, offset))
983 goto checks;
984 if (unlikely(--latency_ration < 0)) {
985 cond_resched();
986 latency_ration = LATENCY_LIMIT;
987 scanned_many = true;
988 }
989 offset++;
990 }
991 spin_lock(&si->lock);
992
993 no_page:
994 si->flags -= SWP_SCANNING;
995 return n_ret;
996 }
997
998 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
999 {
1000 unsigned long idx;
1001 struct swap_cluster_info *ci;
1002 unsigned long offset;
1003
1004 /*
1005 * Should not even be attempting cluster allocations when huge
1006 * page swap is disabled. Warn and fail the allocation.
1007 */
1008 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1009 VM_WARN_ON_ONCE(1);
1010 return 0;
1011 }
1012
1013 if (cluster_list_empty(&si->free_clusters))
1014 return 0;
1015
1016 idx = cluster_list_first(&si->free_clusters);
1017 offset = idx * SWAPFILE_CLUSTER;
1018 ci = lock_cluster(si, offset);
1019 alloc_cluster(si, idx);
1020 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1021
1022 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1023 unlock_cluster(ci);
1024 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1025 *slot = swp_entry(si->type, offset);
1026
1027 return 1;
1028 }
1029
1030 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1031 {
1032 unsigned long offset = idx * SWAPFILE_CLUSTER;
1033 struct swap_cluster_info *ci;
1034
1035 ci = lock_cluster(si, offset);
1036 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1037 cluster_set_count_flag(ci, 0, 0);
1038 free_cluster(si, idx);
1039 unlock_cluster(ci);
1040 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1041 }
1042
1043 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1044 {
1045 unsigned long size = swap_entry_size(entry_size);
1046 struct swap_info_struct *si, *next;
1047 long avail_pgs;
1048 int n_ret = 0;
1049 int node;
1050
1051 /* Only single cluster request supported */
1052 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1053
1054 spin_lock(&swap_avail_lock);
1055
1056 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1057 if (avail_pgs <= 0) {
1058 spin_unlock(&swap_avail_lock);
1059 goto noswap;
1060 }
1061
1062 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1063
1064 atomic_long_sub(n_goal * size, &nr_swap_pages);
1065
1066 start_over:
1067 node = numa_node_id();
1068 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1069 /* requeue si to after same-priority siblings */
1070 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1071 spin_unlock(&swap_avail_lock);
1072 spin_lock(&si->lock);
1073 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1074 spin_lock(&swap_avail_lock);
1075 if (plist_node_empty(&si->avail_lists[node])) {
1076 spin_unlock(&si->lock);
1077 goto nextsi;
1078 }
1079 WARN(!si->highest_bit,
1080 "swap_info %d in list but !highest_bit\n",
1081 si->type);
1082 WARN(!(si->flags & SWP_WRITEOK),
1083 "swap_info %d in list but !SWP_WRITEOK\n",
1084 si->type);
1085 __del_from_avail_list(si);
1086 spin_unlock(&si->lock);
1087 goto nextsi;
1088 }
1089 if (size == SWAPFILE_CLUSTER) {
1090 if (si->flags & SWP_BLKDEV)
1091 n_ret = swap_alloc_cluster(si, swp_entries);
1092 } else
1093 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1094 n_goal, swp_entries);
1095 spin_unlock(&si->lock);
1096 if (n_ret || size == SWAPFILE_CLUSTER)
1097 goto check_out;
1098 pr_debug("scan_swap_map of si %d failed to find offset\n",
1099 si->type);
1100
1101 spin_lock(&swap_avail_lock);
1102 nextsi:
1103 /*
1104 * if we got here, it's likely that si was almost full before,
1105 * and since scan_swap_map_slots() can drop the si->lock,
1106 * multiple callers probably all tried to get a page from the
1107 * same si and it filled up before we could get one; or, the si
1108 * filled up between us dropping swap_avail_lock and taking
1109 * si->lock. Since we dropped the swap_avail_lock, the
1110 * swap_avail_head list may have been modified; so if next is
1111 * still in the swap_avail_head list then try it, otherwise
1112 * start over if we have not gotten any slots.
1113 */
1114 if (plist_node_empty(&next->avail_lists[node]))
1115 goto start_over;
1116 }
1117
1118 spin_unlock(&swap_avail_lock);
1119
1120 check_out:
1121 if (n_ret < n_goal)
1122 atomic_long_add((long)(n_goal - n_ret) * size,
1123 &nr_swap_pages);
1124 noswap:
1125 return n_ret;
1126 }
1127
1128 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1129 {
1130 struct swap_info_struct *p;
1131 unsigned long offset;
1132
1133 if (!entry.val)
1134 goto out;
1135 p = swp_swap_info(entry);
1136 if (!p)
1137 goto bad_nofile;
1138 if (data_race(!(p->flags & SWP_USED)))
1139 goto bad_device;
1140 offset = swp_offset(entry);
1141 if (offset >= p->max)
1142 goto bad_offset;
1143 if (data_race(!p->swap_map[swp_offset(entry)]))
1144 goto bad_free;
1145 return p;
1146
1147 bad_free:
1148 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1149 goto out;
1150 bad_offset:
1151 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1152 goto out;
1153 bad_device:
1154 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1155 goto out;
1156 bad_nofile:
1157 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1158 out:
1159 return NULL;
1160 }
1161
1162 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1163 struct swap_info_struct *q)
1164 {
1165 struct swap_info_struct *p;
1166
1167 p = _swap_info_get(entry);
1168
1169 if (p != q) {
1170 if (q != NULL)
1171 spin_unlock(&q->lock);
1172 if (p != NULL)
1173 spin_lock(&p->lock);
1174 }
1175 return p;
1176 }
1177
1178 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1179 unsigned long offset,
1180 unsigned char usage)
1181 {
1182 unsigned char count;
1183 unsigned char has_cache;
1184
1185 count = p->swap_map[offset];
1186
1187 has_cache = count & SWAP_HAS_CACHE;
1188 count &= ~SWAP_HAS_CACHE;
1189
1190 if (usage == SWAP_HAS_CACHE) {
1191 VM_BUG_ON(!has_cache);
1192 has_cache = 0;
1193 } else if (count == SWAP_MAP_SHMEM) {
1194 /*
1195 * Or we could insist on shmem.c using a special
1196 * swap_shmem_free() and free_shmem_swap_and_cache()...
1197 */
1198 count = 0;
1199 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1200 if (count == COUNT_CONTINUED) {
1201 if (swap_count_continued(p, offset, count))
1202 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1203 else
1204 count = SWAP_MAP_MAX;
1205 } else
1206 count--;
1207 }
1208
1209 usage = count | has_cache;
1210 if (usage)
1211 WRITE_ONCE(p->swap_map[offset], usage);
1212 else
1213 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1214
1215 return usage;
1216 }
1217
1218 /*
1219 * Check whether swap entry is valid in the swap device. If so,
1220 * return pointer to swap_info_struct, and keep the swap entry valid
1221 * via preventing the swap device from being swapoff, until
1222 * put_swap_device() is called. Otherwise return NULL.
1223 *
1224 * Notice that swapoff or swapoff+swapon can still happen before the
1225 * percpu_ref_tryget_live() in get_swap_device() or after the
1226 * percpu_ref_put() in put_swap_device() if there isn't any other way
1227 * to prevent swapoff, such as page lock, page table lock, etc. The
1228 * caller must be prepared for that. For example, the following
1229 * situation is possible.
1230 *
1231 * CPU1 CPU2
1232 * do_swap_page()
1233 * ... swapoff+swapon
1234 * __read_swap_cache_async()
1235 * swapcache_prepare()
1236 * __swap_duplicate()
1237 * // check swap_map
1238 * // verify PTE not changed
1239 *
1240 * In __swap_duplicate(), the swap_map need to be checked before
1241 * changing partly because the specified swap entry may be for another
1242 * swap device which has been swapoff. And in do_swap_page(), after
1243 * the page is read from the swap device, the PTE is verified not
1244 * changed with the page table locked to check whether the swap device
1245 * has been swapoff or swapoff+swapon.
1246 */
1247 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1248 {
1249 struct swap_info_struct *si;
1250 unsigned long offset;
1251
1252 if (!entry.val)
1253 goto out;
1254 si = swp_swap_info(entry);
1255 if (!si)
1256 goto bad_nofile;
1257 if (!percpu_ref_tryget_live(&si->users))
1258 goto out;
1259 /*
1260 * Guarantee the si->users are checked before accessing other
1261 * fields of swap_info_struct.
1262 *
1263 * Paired with the spin_unlock() after setup_swap_info() in
1264 * enable_swap_info().
1265 */
1266 smp_rmb();
1267 offset = swp_offset(entry);
1268 if (offset >= si->max)
1269 goto put_out;
1270
1271 return si;
1272 bad_nofile:
1273 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1274 out:
1275 return NULL;
1276 put_out:
1277 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1278 percpu_ref_put(&si->users);
1279 return NULL;
1280 }
1281
1282 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1283 swp_entry_t entry)
1284 {
1285 struct swap_cluster_info *ci;
1286 unsigned long offset = swp_offset(entry);
1287 unsigned char usage;
1288
1289 ci = lock_cluster_or_swap_info(p, offset);
1290 usage = __swap_entry_free_locked(p, offset, 1);
1291 unlock_cluster_or_swap_info(p, ci);
1292 if (!usage)
1293 free_swap_slot(entry);
1294
1295 return usage;
1296 }
1297
1298 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1299 {
1300 struct swap_cluster_info *ci;
1301 unsigned long offset = swp_offset(entry);
1302 unsigned char count;
1303
1304 ci = lock_cluster(p, offset);
1305 count = p->swap_map[offset];
1306 VM_BUG_ON(count != SWAP_HAS_CACHE);
1307 p->swap_map[offset] = 0;
1308 dec_cluster_info_page(p, p->cluster_info, offset);
1309 unlock_cluster(ci);
1310
1311 mem_cgroup_uncharge_swap(entry, 1);
1312 swap_range_free(p, offset, 1);
1313 }
1314
1315 /*
1316 * Caller has made sure that the swap device corresponding to entry
1317 * is still around or has not been recycled.
1318 */
1319 void swap_free(swp_entry_t entry)
1320 {
1321 struct swap_info_struct *p;
1322
1323 p = _swap_info_get(entry);
1324 if (p)
1325 __swap_entry_free(p, entry);
1326 }
1327
1328 /*
1329 * Called after dropping swapcache to decrease refcnt to swap entries.
1330 */
1331 void put_swap_page(struct page *page, swp_entry_t entry)
1332 {
1333 unsigned long offset = swp_offset(entry);
1334 unsigned long idx = offset / SWAPFILE_CLUSTER;
1335 struct swap_cluster_info *ci;
1336 struct swap_info_struct *si;
1337 unsigned char *map;
1338 unsigned int i, free_entries = 0;
1339 unsigned char val;
1340 int size = swap_entry_size(thp_nr_pages(page));
1341
1342 si = _swap_info_get(entry);
1343 if (!si)
1344 return;
1345
1346 ci = lock_cluster_or_swap_info(si, offset);
1347 if (size == SWAPFILE_CLUSTER) {
1348 VM_BUG_ON(!cluster_is_huge(ci));
1349 map = si->swap_map + offset;
1350 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1351 val = map[i];
1352 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1353 if (val == SWAP_HAS_CACHE)
1354 free_entries++;
1355 }
1356 cluster_clear_huge(ci);
1357 if (free_entries == SWAPFILE_CLUSTER) {
1358 unlock_cluster_or_swap_info(si, ci);
1359 spin_lock(&si->lock);
1360 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1361 swap_free_cluster(si, idx);
1362 spin_unlock(&si->lock);
1363 return;
1364 }
1365 }
1366 for (i = 0; i < size; i++, entry.val++) {
1367 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1368 unlock_cluster_or_swap_info(si, ci);
1369 free_swap_slot(entry);
1370 if (i == size - 1)
1371 return;
1372 lock_cluster_or_swap_info(si, offset);
1373 }
1374 }
1375 unlock_cluster_or_swap_info(si, ci);
1376 }
1377
1378 #ifdef CONFIG_THP_SWAP
1379 int split_swap_cluster(swp_entry_t entry)
1380 {
1381 struct swap_info_struct *si;
1382 struct swap_cluster_info *ci;
1383 unsigned long offset = swp_offset(entry);
1384
1385 si = _swap_info_get(entry);
1386 if (!si)
1387 return -EBUSY;
1388 ci = lock_cluster(si, offset);
1389 cluster_clear_huge(ci);
1390 unlock_cluster(ci);
1391 return 0;
1392 }
1393 #endif
1394
1395 static int swp_entry_cmp(const void *ent1, const void *ent2)
1396 {
1397 const swp_entry_t *e1 = ent1, *e2 = ent2;
1398
1399 return (int)swp_type(*e1) - (int)swp_type(*e2);
1400 }
1401
1402 void swapcache_free_entries(swp_entry_t *entries, int n)
1403 {
1404 struct swap_info_struct *p, *prev;
1405 int i;
1406
1407 if (n <= 0)
1408 return;
1409
1410 prev = NULL;
1411 p = NULL;
1412
1413 /*
1414 * Sort swap entries by swap device, so each lock is only taken once.
1415 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1416 * so low that it isn't necessary to optimize further.
1417 */
1418 if (nr_swapfiles > 1)
1419 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1420 for (i = 0; i < n; ++i) {
1421 p = swap_info_get_cont(entries[i], prev);
1422 if (p)
1423 swap_entry_free(p, entries[i]);
1424 prev = p;
1425 }
1426 if (p)
1427 spin_unlock(&p->lock);
1428 }
1429
1430 /*
1431 * How many references to page are currently swapped out?
1432 * This does not give an exact answer when swap count is continued,
1433 * but does include the high COUNT_CONTINUED flag to allow for that.
1434 */
1435 static int page_swapcount(struct page *page)
1436 {
1437 int count = 0;
1438 struct swap_info_struct *p;
1439 struct swap_cluster_info *ci;
1440 swp_entry_t entry;
1441 unsigned long offset;
1442
1443 entry.val = page_private(page);
1444 p = _swap_info_get(entry);
1445 if (p) {
1446 offset = swp_offset(entry);
1447 ci = lock_cluster_or_swap_info(p, offset);
1448 count = swap_count(p->swap_map[offset]);
1449 unlock_cluster_or_swap_info(p, ci);
1450 }
1451 return count;
1452 }
1453
1454 int __swap_count(swp_entry_t entry)
1455 {
1456 struct swap_info_struct *si;
1457 pgoff_t offset = swp_offset(entry);
1458 int count = 0;
1459
1460 si = get_swap_device(entry);
1461 if (si) {
1462 count = swap_count(si->swap_map[offset]);
1463 put_swap_device(si);
1464 }
1465 return count;
1466 }
1467
1468 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1469 {
1470 int count = 0;
1471 pgoff_t offset = swp_offset(entry);
1472 struct swap_cluster_info *ci;
1473
1474 ci = lock_cluster_or_swap_info(si, offset);
1475 count = swap_count(si->swap_map[offset]);
1476 unlock_cluster_or_swap_info(si, ci);
1477 return count;
1478 }
1479
1480 /*
1481 * How many references to @entry are currently swapped out?
1482 * This does not give an exact answer when swap count is continued,
1483 * but does include the high COUNT_CONTINUED flag to allow for that.
1484 */
1485 int __swp_swapcount(swp_entry_t entry)
1486 {
1487 int count = 0;
1488 struct swap_info_struct *si;
1489
1490 si = get_swap_device(entry);
1491 if (si) {
1492 count = swap_swapcount(si, entry);
1493 put_swap_device(si);
1494 }
1495 return count;
1496 }
1497
1498 /*
1499 * How many references to @entry are currently swapped out?
1500 * This considers COUNT_CONTINUED so it returns exact answer.
1501 */
1502 int swp_swapcount(swp_entry_t entry)
1503 {
1504 int count, tmp_count, n;
1505 struct swap_info_struct *p;
1506 struct swap_cluster_info *ci;
1507 struct page *page;
1508 pgoff_t offset;
1509 unsigned char *map;
1510
1511 p = _swap_info_get(entry);
1512 if (!p)
1513 return 0;
1514
1515 offset = swp_offset(entry);
1516
1517 ci = lock_cluster_or_swap_info(p, offset);
1518
1519 count = swap_count(p->swap_map[offset]);
1520 if (!(count & COUNT_CONTINUED))
1521 goto out;
1522
1523 count &= ~COUNT_CONTINUED;
1524 n = SWAP_MAP_MAX + 1;
1525
1526 page = vmalloc_to_page(p->swap_map + offset);
1527 offset &= ~PAGE_MASK;
1528 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1529
1530 do {
1531 page = list_next_entry(page, lru);
1532 map = kmap_atomic(page);
1533 tmp_count = map[offset];
1534 kunmap_atomic(map);
1535
1536 count += (tmp_count & ~COUNT_CONTINUED) * n;
1537 n *= (SWAP_CONT_MAX + 1);
1538 } while (tmp_count & COUNT_CONTINUED);
1539 out:
1540 unlock_cluster_or_swap_info(p, ci);
1541 return count;
1542 }
1543
1544 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1545 swp_entry_t entry)
1546 {
1547 struct swap_cluster_info *ci;
1548 unsigned char *map = si->swap_map;
1549 unsigned long roffset = swp_offset(entry);
1550 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1551 int i;
1552 bool ret = false;
1553
1554 ci = lock_cluster_or_swap_info(si, offset);
1555 if (!ci || !cluster_is_huge(ci)) {
1556 if (swap_count(map[roffset]))
1557 ret = true;
1558 goto unlock_out;
1559 }
1560 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1561 if (swap_count(map[offset + i])) {
1562 ret = true;
1563 break;
1564 }
1565 }
1566 unlock_out:
1567 unlock_cluster_or_swap_info(si, ci);
1568 return ret;
1569 }
1570
1571 static bool folio_swapped(struct folio *folio)
1572 {
1573 swp_entry_t entry;
1574 struct swap_info_struct *si;
1575
1576 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1577 return page_swapcount(&folio->page) != 0;
1578
1579 entry = folio_swap_entry(folio);
1580 si = _swap_info_get(entry);
1581 if (si)
1582 return swap_page_trans_huge_swapped(si, entry);
1583 return false;
1584 }
1585
1586 /*
1587 * If swap is getting full, or if there are no more mappings of this page,
1588 * then try_to_free_swap is called to free its swap space.
1589 */
1590 int try_to_free_swap(struct page *page)
1591 {
1592 struct folio *folio = page_folio(page);
1593 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1594
1595 if (!folio_test_swapcache(folio))
1596 return 0;
1597 if (folio_test_writeback(folio))
1598 return 0;
1599 if (folio_swapped(folio))
1600 return 0;
1601
1602 /*
1603 * Once hibernation has begun to create its image of memory,
1604 * there's a danger that one of the calls to try_to_free_swap()
1605 * - most probably a call from __try_to_reclaim_swap() while
1606 * hibernation is allocating its own swap pages for the image,
1607 * but conceivably even a call from memory reclaim - will free
1608 * the swap from a page which has already been recorded in the
1609 * image as a clean swapcache page, and then reuse its swap for
1610 * another page of the image. On waking from hibernation, the
1611 * original page might be freed under memory pressure, then
1612 * later read back in from swap, now with the wrong data.
1613 *
1614 * Hibernation suspends storage while it is writing the image
1615 * to disk so check that here.
1616 */
1617 if (pm_suspended_storage())
1618 return 0;
1619
1620 delete_from_swap_cache(folio);
1621 folio_set_dirty(folio);
1622 return 1;
1623 }
1624
1625 /*
1626 * Free the swap entry like above, but also try to
1627 * free the page cache entry if it is the last user.
1628 */
1629 int free_swap_and_cache(swp_entry_t entry)
1630 {
1631 struct swap_info_struct *p;
1632 unsigned char count;
1633
1634 if (non_swap_entry(entry))
1635 return 1;
1636
1637 p = _swap_info_get(entry);
1638 if (p) {
1639 count = __swap_entry_free(p, entry);
1640 if (count == SWAP_HAS_CACHE &&
1641 !swap_page_trans_huge_swapped(p, entry))
1642 __try_to_reclaim_swap(p, swp_offset(entry),
1643 TTRS_UNMAPPED | TTRS_FULL);
1644 }
1645 return p != NULL;
1646 }
1647
1648 #ifdef CONFIG_HIBERNATION
1649
1650 swp_entry_t get_swap_page_of_type(int type)
1651 {
1652 struct swap_info_struct *si = swap_type_to_swap_info(type);
1653 swp_entry_t entry = {0};
1654
1655 if (!si)
1656 goto fail;
1657
1658 /* This is called for allocating swap entry, not cache */
1659 spin_lock(&si->lock);
1660 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1661 atomic_long_dec(&nr_swap_pages);
1662 spin_unlock(&si->lock);
1663 fail:
1664 return entry;
1665 }
1666
1667 /*
1668 * Find the swap type that corresponds to given device (if any).
1669 *
1670 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1671 * from 0, in which the swap header is expected to be located.
1672 *
1673 * This is needed for the suspend to disk (aka swsusp).
1674 */
1675 int swap_type_of(dev_t device, sector_t offset)
1676 {
1677 int type;
1678
1679 if (!device)
1680 return -1;
1681
1682 spin_lock(&swap_lock);
1683 for (type = 0; type < nr_swapfiles; type++) {
1684 struct swap_info_struct *sis = swap_info[type];
1685
1686 if (!(sis->flags & SWP_WRITEOK))
1687 continue;
1688
1689 if (device == sis->bdev->bd_dev) {
1690 struct swap_extent *se = first_se(sis);
1691
1692 if (se->start_block == offset) {
1693 spin_unlock(&swap_lock);
1694 return type;
1695 }
1696 }
1697 }
1698 spin_unlock(&swap_lock);
1699 return -ENODEV;
1700 }
1701
1702 int find_first_swap(dev_t *device)
1703 {
1704 int type;
1705
1706 spin_lock(&swap_lock);
1707 for (type = 0; type < nr_swapfiles; type++) {
1708 struct swap_info_struct *sis = swap_info[type];
1709
1710 if (!(sis->flags & SWP_WRITEOK))
1711 continue;
1712 *device = sis->bdev->bd_dev;
1713 spin_unlock(&swap_lock);
1714 return type;
1715 }
1716 spin_unlock(&swap_lock);
1717 return -ENODEV;
1718 }
1719
1720 /*
1721 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1722 * corresponding to given index in swap_info (swap type).
1723 */
1724 sector_t swapdev_block(int type, pgoff_t offset)
1725 {
1726 struct swap_info_struct *si = swap_type_to_swap_info(type);
1727 struct swap_extent *se;
1728
1729 if (!si || !(si->flags & SWP_WRITEOK))
1730 return 0;
1731 se = offset_to_swap_extent(si, offset);
1732 return se->start_block + (offset - se->start_page);
1733 }
1734
1735 /*
1736 * Return either the total number of swap pages of given type, or the number
1737 * of free pages of that type (depending on @free)
1738 *
1739 * This is needed for software suspend
1740 */
1741 unsigned int count_swap_pages(int type, int free)
1742 {
1743 unsigned int n = 0;
1744
1745 spin_lock(&swap_lock);
1746 if ((unsigned int)type < nr_swapfiles) {
1747 struct swap_info_struct *sis = swap_info[type];
1748
1749 spin_lock(&sis->lock);
1750 if (sis->flags & SWP_WRITEOK) {
1751 n = sis->pages;
1752 if (free)
1753 n -= sis->inuse_pages;
1754 }
1755 spin_unlock(&sis->lock);
1756 }
1757 spin_unlock(&swap_lock);
1758 return n;
1759 }
1760 #endif /* CONFIG_HIBERNATION */
1761
1762 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1763 {
1764 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1765 }
1766
1767 /*
1768 * No need to decide whether this PTE shares the swap entry with others,
1769 * just let do_wp_page work it out if a write is requested later - to
1770 * force COW, vm_page_prot omits write permission from any private vma.
1771 */
1772 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1773 unsigned long addr, swp_entry_t entry, struct page *page)
1774 {
1775 struct page *swapcache;
1776 spinlock_t *ptl;
1777 pte_t *pte, new_pte;
1778 int ret = 1;
1779
1780 swapcache = page;
1781 page = ksm_might_need_to_copy(page, vma, addr);
1782 if (unlikely(!page))
1783 return -ENOMEM;
1784
1785 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1786 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1787 ret = 0;
1788 goto out;
1789 }
1790
1791 if (unlikely(!PageUptodate(page))) {
1792 pte_t pteval;
1793
1794 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1795 pteval = swp_entry_to_pte(make_swapin_error_entry(page));
1796 set_pte_at(vma->vm_mm, addr, pte, pteval);
1797 swap_free(entry);
1798 ret = 0;
1799 goto out;
1800 }
1801
1802 /* See do_swap_page() */
1803 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1804 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1805
1806 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1807 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1808 get_page(page);
1809 if (page == swapcache) {
1810 rmap_t rmap_flags = RMAP_NONE;
1811
1812 /*
1813 * See do_swap_page(): PageWriteback() would be problematic.
1814 * However, we do a wait_on_page_writeback() just before this
1815 * call and have the page locked.
1816 */
1817 VM_BUG_ON_PAGE(PageWriteback(page), page);
1818 if (pte_swp_exclusive(*pte))
1819 rmap_flags |= RMAP_EXCLUSIVE;
1820
1821 page_add_anon_rmap(page, vma, addr, rmap_flags);
1822 } else { /* ksm created a completely new copy */
1823 page_add_new_anon_rmap(page, vma, addr);
1824 lru_cache_add_inactive_or_unevictable(page, vma);
1825 }
1826 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1827 if (pte_swp_soft_dirty(*pte))
1828 new_pte = pte_mksoft_dirty(new_pte);
1829 if (pte_swp_uffd_wp(*pte))
1830 new_pte = pte_mkuffd_wp(new_pte);
1831 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1832 swap_free(entry);
1833 out:
1834 pte_unmap_unlock(pte, ptl);
1835 if (page != swapcache) {
1836 unlock_page(page);
1837 put_page(page);
1838 }
1839 return ret;
1840 }
1841
1842 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1843 unsigned long addr, unsigned long end,
1844 unsigned int type)
1845 {
1846 struct page *page;
1847 swp_entry_t entry;
1848 pte_t *pte;
1849 struct swap_info_struct *si;
1850 unsigned long offset;
1851 int ret = 0;
1852 volatile unsigned char *swap_map;
1853
1854 si = swap_info[type];
1855 pte = pte_offset_map(pmd, addr);
1856 do {
1857 if (!is_swap_pte(*pte))
1858 continue;
1859
1860 entry = pte_to_swp_entry(*pte);
1861 if (swp_type(entry) != type)
1862 continue;
1863
1864 offset = swp_offset(entry);
1865 pte_unmap(pte);
1866 swap_map = &si->swap_map[offset];
1867 page = lookup_swap_cache(entry, vma, addr);
1868 if (!page) {
1869 struct vm_fault vmf = {
1870 .vma = vma,
1871 .address = addr,
1872 .real_address = addr,
1873 .pmd = pmd,
1874 };
1875
1876 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1877 &vmf);
1878 }
1879 if (!page) {
1880 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1881 goto try_next;
1882 return -ENOMEM;
1883 }
1884
1885 lock_page(page);
1886 wait_on_page_writeback(page);
1887 ret = unuse_pte(vma, pmd, addr, entry, page);
1888 if (ret < 0) {
1889 unlock_page(page);
1890 put_page(page);
1891 goto out;
1892 }
1893
1894 try_to_free_swap(page);
1895 unlock_page(page);
1896 put_page(page);
1897 try_next:
1898 pte = pte_offset_map(pmd, addr);
1899 } while (pte++, addr += PAGE_SIZE, addr != end);
1900 pte_unmap(pte - 1);
1901
1902 ret = 0;
1903 out:
1904 return ret;
1905 }
1906
1907 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1908 unsigned long addr, unsigned long end,
1909 unsigned int type)
1910 {
1911 pmd_t *pmd;
1912 unsigned long next;
1913 int ret;
1914
1915 pmd = pmd_offset(pud, addr);
1916 do {
1917 cond_resched();
1918 next = pmd_addr_end(addr, end);
1919 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1920 continue;
1921 ret = unuse_pte_range(vma, pmd, addr, next, type);
1922 if (ret)
1923 return ret;
1924 } while (pmd++, addr = next, addr != end);
1925 return 0;
1926 }
1927
1928 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1929 unsigned long addr, unsigned long end,
1930 unsigned int type)
1931 {
1932 pud_t *pud;
1933 unsigned long next;
1934 int ret;
1935
1936 pud = pud_offset(p4d, addr);
1937 do {
1938 next = pud_addr_end(addr, end);
1939 if (pud_none_or_clear_bad(pud))
1940 continue;
1941 ret = unuse_pmd_range(vma, pud, addr, next, type);
1942 if (ret)
1943 return ret;
1944 } while (pud++, addr = next, addr != end);
1945 return 0;
1946 }
1947
1948 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949 unsigned long addr, unsigned long end,
1950 unsigned int type)
1951 {
1952 p4d_t *p4d;
1953 unsigned long next;
1954 int ret;
1955
1956 p4d = p4d_offset(pgd, addr);
1957 do {
1958 next = p4d_addr_end(addr, end);
1959 if (p4d_none_or_clear_bad(p4d))
1960 continue;
1961 ret = unuse_pud_range(vma, p4d, addr, next, type);
1962 if (ret)
1963 return ret;
1964 } while (p4d++, addr = next, addr != end);
1965 return 0;
1966 }
1967
1968 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1969 {
1970 pgd_t *pgd;
1971 unsigned long addr, end, next;
1972 int ret;
1973
1974 addr = vma->vm_start;
1975 end = vma->vm_end;
1976
1977 pgd = pgd_offset(vma->vm_mm, addr);
1978 do {
1979 next = pgd_addr_end(addr, end);
1980 if (pgd_none_or_clear_bad(pgd))
1981 continue;
1982 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1983 if (ret)
1984 return ret;
1985 } while (pgd++, addr = next, addr != end);
1986 return 0;
1987 }
1988
1989 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1990 {
1991 struct vm_area_struct *vma;
1992 int ret = 0;
1993
1994 mmap_read_lock(mm);
1995 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1996 if (vma->anon_vma) {
1997 ret = unuse_vma(vma, type);
1998 if (ret)
1999 break;
2000 }
2001 cond_resched();
2002 }
2003 mmap_read_unlock(mm);
2004 return ret;
2005 }
2006
2007 /*
2008 * Scan swap_map from current position to next entry still in use.
2009 * Return 0 if there are no inuse entries after prev till end of
2010 * the map.
2011 */
2012 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2013 unsigned int prev)
2014 {
2015 unsigned int i;
2016 unsigned char count;
2017
2018 /*
2019 * No need for swap_lock here: we're just looking
2020 * for whether an entry is in use, not modifying it; false
2021 * hits are okay, and sys_swapoff() has already prevented new
2022 * allocations from this area (while holding swap_lock).
2023 */
2024 for (i = prev + 1; i < si->max; i++) {
2025 count = READ_ONCE(si->swap_map[i]);
2026 if (count && swap_count(count) != SWAP_MAP_BAD)
2027 break;
2028 if ((i % LATENCY_LIMIT) == 0)
2029 cond_resched();
2030 }
2031
2032 if (i == si->max)
2033 i = 0;
2034
2035 return i;
2036 }
2037
2038 static int try_to_unuse(unsigned int type)
2039 {
2040 struct mm_struct *prev_mm;
2041 struct mm_struct *mm;
2042 struct list_head *p;
2043 int retval = 0;
2044 struct swap_info_struct *si = swap_info[type];
2045 struct page *page;
2046 swp_entry_t entry;
2047 unsigned int i;
2048
2049 if (!READ_ONCE(si->inuse_pages))
2050 return 0;
2051
2052 retry:
2053 retval = shmem_unuse(type);
2054 if (retval)
2055 return retval;
2056
2057 prev_mm = &init_mm;
2058 mmget(prev_mm);
2059
2060 spin_lock(&mmlist_lock);
2061 p = &init_mm.mmlist;
2062 while (READ_ONCE(si->inuse_pages) &&
2063 !signal_pending(current) &&
2064 (p = p->next) != &init_mm.mmlist) {
2065
2066 mm = list_entry(p, struct mm_struct, mmlist);
2067 if (!mmget_not_zero(mm))
2068 continue;
2069 spin_unlock(&mmlist_lock);
2070 mmput(prev_mm);
2071 prev_mm = mm;
2072 retval = unuse_mm(mm, type);
2073 if (retval) {
2074 mmput(prev_mm);
2075 return retval;
2076 }
2077
2078 /*
2079 * Make sure that we aren't completely killing
2080 * interactive performance.
2081 */
2082 cond_resched();
2083 spin_lock(&mmlist_lock);
2084 }
2085 spin_unlock(&mmlist_lock);
2086
2087 mmput(prev_mm);
2088
2089 i = 0;
2090 while (READ_ONCE(si->inuse_pages) &&
2091 !signal_pending(current) &&
2092 (i = find_next_to_unuse(si, i)) != 0) {
2093
2094 entry = swp_entry(type, i);
2095 page = find_get_page(swap_address_space(entry), i);
2096 if (!page)
2097 continue;
2098
2099 /*
2100 * It is conceivable that a racing task removed this page from
2101 * swap cache just before we acquired the page lock. The page
2102 * might even be back in swap cache on another swap area. But
2103 * that is okay, try_to_free_swap() only removes stale pages.
2104 */
2105 lock_page(page);
2106 wait_on_page_writeback(page);
2107 try_to_free_swap(page);
2108 unlock_page(page);
2109 put_page(page);
2110 }
2111
2112 /*
2113 * Lets check again to see if there are still swap entries in the map.
2114 * If yes, we would need to do retry the unuse logic again.
2115 * Under global memory pressure, swap entries can be reinserted back
2116 * into process space after the mmlist loop above passes over them.
2117 *
2118 * Limit the number of retries? No: when mmget_not_zero()
2119 * above fails, that mm is likely to be freeing swap from
2120 * exit_mmap(), which proceeds at its own independent pace;
2121 * and even shmem_writepage() could have been preempted after
2122 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2123 * and robust (though cpu-intensive) just to keep retrying.
2124 */
2125 if (READ_ONCE(si->inuse_pages)) {
2126 if (!signal_pending(current))
2127 goto retry;
2128 return -EINTR;
2129 }
2130
2131 return 0;
2132 }
2133
2134 /*
2135 * After a successful try_to_unuse, if no swap is now in use, we know
2136 * we can empty the mmlist. swap_lock must be held on entry and exit.
2137 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2138 * added to the mmlist just after page_duplicate - before would be racy.
2139 */
2140 static void drain_mmlist(void)
2141 {
2142 struct list_head *p, *next;
2143 unsigned int type;
2144
2145 for (type = 0; type < nr_swapfiles; type++)
2146 if (swap_info[type]->inuse_pages)
2147 return;
2148 spin_lock(&mmlist_lock);
2149 list_for_each_safe(p, next, &init_mm.mmlist)
2150 list_del_init(p);
2151 spin_unlock(&mmlist_lock);
2152 }
2153
2154 /*
2155 * Free all of a swapdev's extent information
2156 */
2157 static void destroy_swap_extents(struct swap_info_struct *sis)
2158 {
2159 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2160 struct rb_node *rb = sis->swap_extent_root.rb_node;
2161 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2162
2163 rb_erase(rb, &sis->swap_extent_root);
2164 kfree(se);
2165 }
2166
2167 if (sis->flags & SWP_ACTIVATED) {
2168 struct file *swap_file = sis->swap_file;
2169 struct address_space *mapping = swap_file->f_mapping;
2170
2171 sis->flags &= ~SWP_ACTIVATED;
2172 if (mapping->a_ops->swap_deactivate)
2173 mapping->a_ops->swap_deactivate(swap_file);
2174 }
2175 }
2176
2177 /*
2178 * Add a block range (and the corresponding page range) into this swapdev's
2179 * extent tree.
2180 *
2181 * This function rather assumes that it is called in ascending page order.
2182 */
2183 int
2184 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2185 unsigned long nr_pages, sector_t start_block)
2186 {
2187 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2188 struct swap_extent *se;
2189 struct swap_extent *new_se;
2190
2191 /*
2192 * place the new node at the right most since the
2193 * function is called in ascending page order.
2194 */
2195 while (*link) {
2196 parent = *link;
2197 link = &parent->rb_right;
2198 }
2199
2200 if (parent) {
2201 se = rb_entry(parent, struct swap_extent, rb_node);
2202 BUG_ON(se->start_page + se->nr_pages != start_page);
2203 if (se->start_block + se->nr_pages == start_block) {
2204 /* Merge it */
2205 se->nr_pages += nr_pages;
2206 return 0;
2207 }
2208 }
2209
2210 /* No merge, insert a new extent. */
2211 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2212 if (new_se == NULL)
2213 return -ENOMEM;
2214 new_se->start_page = start_page;
2215 new_se->nr_pages = nr_pages;
2216 new_se->start_block = start_block;
2217
2218 rb_link_node(&new_se->rb_node, parent, link);
2219 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2220 return 1;
2221 }
2222 EXPORT_SYMBOL_GPL(add_swap_extent);
2223
2224 /*
2225 * A `swap extent' is a simple thing which maps a contiguous range of pages
2226 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2227 * built at swapon time and is then used at swap_writepage/swap_readpage
2228 * time for locating where on disk a page belongs.
2229 *
2230 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2231 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2232 * swap files identically.
2233 *
2234 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2235 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2236 * swapfiles are handled *identically* after swapon time.
2237 *
2238 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2239 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2240 * blocks are found which do not fall within the PAGE_SIZE alignment
2241 * requirements, they are simply tossed out - we will never use those blocks
2242 * for swapping.
2243 *
2244 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2245 * prevents users from writing to the swap device, which will corrupt memory.
2246 *
2247 * The amount of disk space which a single swap extent represents varies.
2248 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2249 * extents in the rbtree. - akpm.
2250 */
2251 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2252 {
2253 struct file *swap_file = sis->swap_file;
2254 struct address_space *mapping = swap_file->f_mapping;
2255 struct inode *inode = mapping->host;
2256 int ret;
2257
2258 if (S_ISBLK(inode->i_mode)) {
2259 ret = add_swap_extent(sis, 0, sis->max, 0);
2260 *span = sis->pages;
2261 return ret;
2262 }
2263
2264 if (mapping->a_ops->swap_activate) {
2265 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2266 if (ret < 0)
2267 return ret;
2268 sis->flags |= SWP_ACTIVATED;
2269 if ((sis->flags & SWP_FS_OPS) &&
2270 sio_pool_init() != 0) {
2271 destroy_swap_extents(sis);
2272 return -ENOMEM;
2273 }
2274 return ret;
2275 }
2276
2277 return generic_swapfile_activate(sis, swap_file, span);
2278 }
2279
2280 static int swap_node(struct swap_info_struct *p)
2281 {
2282 struct block_device *bdev;
2283
2284 if (p->bdev)
2285 bdev = p->bdev;
2286 else
2287 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2288
2289 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2290 }
2291
2292 static void setup_swap_info(struct swap_info_struct *p, int prio,
2293 unsigned char *swap_map,
2294 struct swap_cluster_info *cluster_info)
2295 {
2296 int i;
2297
2298 if (prio >= 0)
2299 p->prio = prio;
2300 else
2301 p->prio = --least_priority;
2302 /*
2303 * the plist prio is negated because plist ordering is
2304 * low-to-high, while swap ordering is high-to-low
2305 */
2306 p->list.prio = -p->prio;
2307 for_each_node(i) {
2308 if (p->prio >= 0)
2309 p->avail_lists[i].prio = -p->prio;
2310 else {
2311 if (swap_node(p) == i)
2312 p->avail_lists[i].prio = 1;
2313 else
2314 p->avail_lists[i].prio = -p->prio;
2315 }
2316 }
2317 p->swap_map = swap_map;
2318 p->cluster_info = cluster_info;
2319 }
2320
2321 static void _enable_swap_info(struct swap_info_struct *p)
2322 {
2323 p->flags |= SWP_WRITEOK;
2324 atomic_long_add(p->pages, &nr_swap_pages);
2325 total_swap_pages += p->pages;
2326
2327 assert_spin_locked(&swap_lock);
2328 /*
2329 * both lists are plists, and thus priority ordered.
2330 * swap_active_head needs to be priority ordered for swapoff(),
2331 * which on removal of any swap_info_struct with an auto-assigned
2332 * (i.e. negative) priority increments the auto-assigned priority
2333 * of any lower-priority swap_info_structs.
2334 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2335 * which allocates swap pages from the highest available priority
2336 * swap_info_struct.
2337 */
2338 plist_add(&p->list, &swap_active_head);
2339 add_to_avail_list(p);
2340 }
2341
2342 static void enable_swap_info(struct swap_info_struct *p, int prio,
2343 unsigned char *swap_map,
2344 struct swap_cluster_info *cluster_info,
2345 unsigned long *frontswap_map)
2346 {
2347 if (IS_ENABLED(CONFIG_FRONTSWAP))
2348 frontswap_init(p->type, frontswap_map);
2349 spin_lock(&swap_lock);
2350 spin_lock(&p->lock);
2351 setup_swap_info(p, prio, swap_map, cluster_info);
2352 spin_unlock(&p->lock);
2353 spin_unlock(&swap_lock);
2354 /*
2355 * Finished initializing swap device, now it's safe to reference it.
2356 */
2357 percpu_ref_resurrect(&p->users);
2358 spin_lock(&swap_lock);
2359 spin_lock(&p->lock);
2360 _enable_swap_info(p);
2361 spin_unlock(&p->lock);
2362 spin_unlock(&swap_lock);
2363 }
2364
2365 static void reinsert_swap_info(struct swap_info_struct *p)
2366 {
2367 spin_lock(&swap_lock);
2368 spin_lock(&p->lock);
2369 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2370 _enable_swap_info(p);
2371 spin_unlock(&p->lock);
2372 spin_unlock(&swap_lock);
2373 }
2374
2375 bool has_usable_swap(void)
2376 {
2377 bool ret = true;
2378
2379 spin_lock(&swap_lock);
2380 if (plist_head_empty(&swap_active_head))
2381 ret = false;
2382 spin_unlock(&swap_lock);
2383 return ret;
2384 }
2385
2386 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2387 {
2388 struct swap_info_struct *p = NULL;
2389 unsigned char *swap_map;
2390 struct swap_cluster_info *cluster_info;
2391 unsigned long *frontswap_map;
2392 struct file *swap_file, *victim;
2393 struct address_space *mapping;
2394 struct inode *inode;
2395 struct filename *pathname;
2396 int err, found = 0;
2397 unsigned int old_block_size;
2398
2399 if (!capable(CAP_SYS_ADMIN))
2400 return -EPERM;
2401
2402 BUG_ON(!current->mm);
2403
2404 pathname = getname(specialfile);
2405 if (IS_ERR(pathname))
2406 return PTR_ERR(pathname);
2407
2408 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2409 err = PTR_ERR(victim);
2410 if (IS_ERR(victim))
2411 goto out;
2412
2413 mapping = victim->f_mapping;
2414 spin_lock(&swap_lock);
2415 plist_for_each_entry(p, &swap_active_head, list) {
2416 if (p->flags & SWP_WRITEOK) {
2417 if (p->swap_file->f_mapping == mapping) {
2418 found = 1;
2419 break;
2420 }
2421 }
2422 }
2423 if (!found) {
2424 err = -EINVAL;
2425 spin_unlock(&swap_lock);
2426 goto out_dput;
2427 }
2428 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2429 vm_unacct_memory(p->pages);
2430 else {
2431 err = -ENOMEM;
2432 spin_unlock(&swap_lock);
2433 goto out_dput;
2434 }
2435 del_from_avail_list(p);
2436 spin_lock(&p->lock);
2437 if (p->prio < 0) {
2438 struct swap_info_struct *si = p;
2439 int nid;
2440
2441 plist_for_each_entry_continue(si, &swap_active_head, list) {
2442 si->prio++;
2443 si->list.prio--;
2444 for_each_node(nid) {
2445 if (si->avail_lists[nid].prio != 1)
2446 si->avail_lists[nid].prio--;
2447 }
2448 }
2449 least_priority++;
2450 }
2451 plist_del(&p->list, &swap_active_head);
2452 atomic_long_sub(p->pages, &nr_swap_pages);
2453 total_swap_pages -= p->pages;
2454 p->flags &= ~SWP_WRITEOK;
2455 spin_unlock(&p->lock);
2456 spin_unlock(&swap_lock);
2457
2458 disable_swap_slots_cache_lock();
2459
2460 set_current_oom_origin();
2461 err = try_to_unuse(p->type);
2462 clear_current_oom_origin();
2463
2464 if (err) {
2465 /* re-insert swap space back into swap_list */
2466 reinsert_swap_info(p);
2467 reenable_swap_slots_cache_unlock();
2468 goto out_dput;
2469 }
2470
2471 reenable_swap_slots_cache_unlock();
2472
2473 /*
2474 * Wait for swap operations protected by get/put_swap_device()
2475 * to complete.
2476 *
2477 * We need synchronize_rcu() here to protect the accessing to
2478 * the swap cache data structure.
2479 */
2480 percpu_ref_kill(&p->users);
2481 synchronize_rcu();
2482 wait_for_completion(&p->comp);
2483
2484 flush_work(&p->discard_work);
2485
2486 destroy_swap_extents(p);
2487 if (p->flags & SWP_CONTINUED)
2488 free_swap_count_continuations(p);
2489
2490 if (!p->bdev || !bdev_nonrot(p->bdev))
2491 atomic_dec(&nr_rotate_swap);
2492
2493 mutex_lock(&swapon_mutex);
2494 spin_lock(&swap_lock);
2495 spin_lock(&p->lock);
2496 drain_mmlist();
2497
2498 /* wait for anyone still in scan_swap_map_slots */
2499 p->highest_bit = 0; /* cuts scans short */
2500 while (p->flags >= SWP_SCANNING) {
2501 spin_unlock(&p->lock);
2502 spin_unlock(&swap_lock);
2503 schedule_timeout_uninterruptible(1);
2504 spin_lock(&swap_lock);
2505 spin_lock(&p->lock);
2506 }
2507
2508 swap_file = p->swap_file;
2509 old_block_size = p->old_block_size;
2510 p->swap_file = NULL;
2511 p->max = 0;
2512 swap_map = p->swap_map;
2513 p->swap_map = NULL;
2514 cluster_info = p->cluster_info;
2515 p->cluster_info = NULL;
2516 frontswap_map = frontswap_map_get(p);
2517 spin_unlock(&p->lock);
2518 spin_unlock(&swap_lock);
2519 arch_swap_invalidate_area(p->type);
2520 frontswap_invalidate_area(p->type);
2521 frontswap_map_set(p, NULL);
2522 mutex_unlock(&swapon_mutex);
2523 free_percpu(p->percpu_cluster);
2524 p->percpu_cluster = NULL;
2525 free_percpu(p->cluster_next_cpu);
2526 p->cluster_next_cpu = NULL;
2527 vfree(swap_map);
2528 kvfree(cluster_info);
2529 kvfree(frontswap_map);
2530 /* Destroy swap account information */
2531 swap_cgroup_swapoff(p->type);
2532 exit_swap_address_space(p->type);
2533
2534 inode = mapping->host;
2535 if (S_ISBLK(inode->i_mode)) {
2536 struct block_device *bdev = I_BDEV(inode);
2537
2538 set_blocksize(bdev, old_block_size);
2539 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2540 }
2541
2542 inode_lock(inode);
2543 inode->i_flags &= ~S_SWAPFILE;
2544 inode_unlock(inode);
2545 filp_close(swap_file, NULL);
2546
2547 /*
2548 * Clear the SWP_USED flag after all resources are freed so that swapon
2549 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2550 * not hold p->lock after we cleared its SWP_WRITEOK.
2551 */
2552 spin_lock(&swap_lock);
2553 p->flags = 0;
2554 spin_unlock(&swap_lock);
2555
2556 err = 0;
2557 atomic_inc(&proc_poll_event);
2558 wake_up_interruptible(&proc_poll_wait);
2559
2560 out_dput:
2561 filp_close(victim, NULL);
2562 out:
2563 putname(pathname);
2564 return err;
2565 }
2566
2567 #ifdef CONFIG_PROC_FS
2568 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2569 {
2570 struct seq_file *seq = file->private_data;
2571
2572 poll_wait(file, &proc_poll_wait, wait);
2573
2574 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2575 seq->poll_event = atomic_read(&proc_poll_event);
2576 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2577 }
2578
2579 return EPOLLIN | EPOLLRDNORM;
2580 }
2581
2582 /* iterator */
2583 static void *swap_start(struct seq_file *swap, loff_t *pos)
2584 {
2585 struct swap_info_struct *si;
2586 int type;
2587 loff_t l = *pos;
2588
2589 mutex_lock(&swapon_mutex);
2590
2591 if (!l)
2592 return SEQ_START_TOKEN;
2593
2594 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2595 if (!(si->flags & SWP_USED) || !si->swap_map)
2596 continue;
2597 if (!--l)
2598 return si;
2599 }
2600
2601 return NULL;
2602 }
2603
2604 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2605 {
2606 struct swap_info_struct *si = v;
2607 int type;
2608
2609 if (v == SEQ_START_TOKEN)
2610 type = 0;
2611 else
2612 type = si->type + 1;
2613
2614 ++(*pos);
2615 for (; (si = swap_type_to_swap_info(type)); type++) {
2616 if (!(si->flags & SWP_USED) || !si->swap_map)
2617 continue;
2618 return si;
2619 }
2620
2621 return NULL;
2622 }
2623
2624 static void swap_stop(struct seq_file *swap, void *v)
2625 {
2626 mutex_unlock(&swapon_mutex);
2627 }
2628
2629 static int swap_show(struct seq_file *swap, void *v)
2630 {
2631 struct swap_info_struct *si = v;
2632 struct file *file;
2633 int len;
2634 unsigned long bytes, inuse;
2635
2636 if (si == SEQ_START_TOKEN) {
2637 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2638 return 0;
2639 }
2640
2641 bytes = si->pages << (PAGE_SHIFT - 10);
2642 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2643
2644 file = si->swap_file;
2645 len = seq_file_path(swap, file, " \t\n\\");
2646 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2647 len < 40 ? 40 - len : 1, " ",
2648 S_ISBLK(file_inode(file)->i_mode) ?
2649 "partition" : "file\t",
2650 bytes, bytes < 10000000 ? "\t" : "",
2651 inuse, inuse < 10000000 ? "\t" : "",
2652 si->prio);
2653 return 0;
2654 }
2655
2656 static const struct seq_operations swaps_op = {
2657 .start = swap_start,
2658 .next = swap_next,
2659 .stop = swap_stop,
2660 .show = swap_show
2661 };
2662
2663 static int swaps_open(struct inode *inode, struct file *file)
2664 {
2665 struct seq_file *seq;
2666 int ret;
2667
2668 ret = seq_open(file, &swaps_op);
2669 if (ret)
2670 return ret;
2671
2672 seq = file->private_data;
2673 seq->poll_event = atomic_read(&proc_poll_event);
2674 return 0;
2675 }
2676
2677 static const struct proc_ops swaps_proc_ops = {
2678 .proc_flags = PROC_ENTRY_PERMANENT,
2679 .proc_open = swaps_open,
2680 .proc_read = seq_read,
2681 .proc_lseek = seq_lseek,
2682 .proc_release = seq_release,
2683 .proc_poll = swaps_poll,
2684 };
2685
2686 static int __init procswaps_init(void)
2687 {
2688 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2689 return 0;
2690 }
2691 __initcall(procswaps_init);
2692 #endif /* CONFIG_PROC_FS */
2693
2694 #ifdef MAX_SWAPFILES_CHECK
2695 static int __init max_swapfiles_check(void)
2696 {
2697 MAX_SWAPFILES_CHECK();
2698 return 0;
2699 }
2700 late_initcall(max_swapfiles_check);
2701 #endif
2702
2703 static struct swap_info_struct *alloc_swap_info(void)
2704 {
2705 struct swap_info_struct *p;
2706 struct swap_info_struct *defer = NULL;
2707 unsigned int type;
2708 int i;
2709
2710 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2711 if (!p)
2712 return ERR_PTR(-ENOMEM);
2713
2714 if (percpu_ref_init(&p->users, swap_users_ref_free,
2715 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2716 kvfree(p);
2717 return ERR_PTR(-ENOMEM);
2718 }
2719
2720 spin_lock(&swap_lock);
2721 for (type = 0; type < nr_swapfiles; type++) {
2722 if (!(swap_info[type]->flags & SWP_USED))
2723 break;
2724 }
2725 if (type >= MAX_SWAPFILES) {
2726 spin_unlock(&swap_lock);
2727 percpu_ref_exit(&p->users);
2728 kvfree(p);
2729 return ERR_PTR(-EPERM);
2730 }
2731 if (type >= nr_swapfiles) {
2732 p->type = type;
2733 /*
2734 * Publish the swap_info_struct after initializing it.
2735 * Note that kvzalloc() above zeroes all its fields.
2736 */
2737 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2738 nr_swapfiles++;
2739 } else {
2740 defer = p;
2741 p = swap_info[type];
2742 /*
2743 * Do not memset this entry: a racing procfs swap_next()
2744 * would be relying on p->type to remain valid.
2745 */
2746 }
2747 p->swap_extent_root = RB_ROOT;
2748 plist_node_init(&p->list, 0);
2749 for_each_node(i)
2750 plist_node_init(&p->avail_lists[i], 0);
2751 p->flags = SWP_USED;
2752 spin_unlock(&swap_lock);
2753 if (defer) {
2754 percpu_ref_exit(&defer->users);
2755 kvfree(defer);
2756 }
2757 spin_lock_init(&p->lock);
2758 spin_lock_init(&p->cont_lock);
2759 init_completion(&p->comp);
2760
2761 return p;
2762 }
2763
2764 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2765 {
2766 int error;
2767
2768 if (S_ISBLK(inode->i_mode)) {
2769 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2770 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2771 if (IS_ERR(p->bdev)) {
2772 error = PTR_ERR(p->bdev);
2773 p->bdev = NULL;
2774 return error;
2775 }
2776 p->old_block_size = block_size(p->bdev);
2777 error = set_blocksize(p->bdev, PAGE_SIZE);
2778 if (error < 0)
2779 return error;
2780 /*
2781 * Zoned block devices contain zones that have a sequential
2782 * write only restriction. Hence zoned block devices are not
2783 * suitable for swapping. Disallow them here.
2784 */
2785 if (bdev_is_zoned(p->bdev))
2786 return -EINVAL;
2787 p->flags |= SWP_BLKDEV;
2788 } else if (S_ISREG(inode->i_mode)) {
2789 p->bdev = inode->i_sb->s_bdev;
2790 }
2791
2792 return 0;
2793 }
2794
2795
2796 /*
2797 * Find out how many pages are allowed for a single swap device. There
2798 * are two limiting factors:
2799 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2800 * 2) the number of bits in the swap pte, as defined by the different
2801 * architectures.
2802 *
2803 * In order to find the largest possible bit mask, a swap entry with
2804 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2805 * decoded to a swp_entry_t again, and finally the swap offset is
2806 * extracted.
2807 *
2808 * This will mask all the bits from the initial ~0UL mask that can't
2809 * be encoded in either the swp_entry_t or the architecture definition
2810 * of a swap pte.
2811 */
2812 unsigned long generic_max_swapfile_size(void)
2813 {
2814 return swp_offset(pte_to_swp_entry(
2815 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2816 }
2817
2818 /* Can be overridden by an architecture for additional checks. */
2819 __weak unsigned long max_swapfile_size(void)
2820 {
2821 return generic_max_swapfile_size();
2822 }
2823
2824 static unsigned long read_swap_header(struct swap_info_struct *p,
2825 union swap_header *swap_header,
2826 struct inode *inode)
2827 {
2828 int i;
2829 unsigned long maxpages;
2830 unsigned long swapfilepages;
2831 unsigned long last_page;
2832
2833 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2834 pr_err("Unable to find swap-space signature\n");
2835 return 0;
2836 }
2837
2838 /* swap partition endianness hack... */
2839 if (swab32(swap_header->info.version) == 1) {
2840 swab32s(&swap_header->info.version);
2841 swab32s(&swap_header->info.last_page);
2842 swab32s(&swap_header->info.nr_badpages);
2843 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2844 return 0;
2845 for (i = 0; i < swap_header->info.nr_badpages; i++)
2846 swab32s(&swap_header->info.badpages[i]);
2847 }
2848 /* Check the swap header's sub-version */
2849 if (swap_header->info.version != 1) {
2850 pr_warn("Unable to handle swap header version %d\n",
2851 swap_header->info.version);
2852 return 0;
2853 }
2854
2855 p->lowest_bit = 1;
2856 p->cluster_next = 1;
2857 p->cluster_nr = 0;
2858
2859 maxpages = max_swapfile_size();
2860 last_page = swap_header->info.last_page;
2861 if (!last_page) {
2862 pr_warn("Empty swap-file\n");
2863 return 0;
2864 }
2865 if (last_page > maxpages) {
2866 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2867 maxpages << (PAGE_SHIFT - 10),
2868 last_page << (PAGE_SHIFT - 10));
2869 }
2870 if (maxpages > last_page) {
2871 maxpages = last_page + 1;
2872 /* p->max is an unsigned int: don't overflow it */
2873 if ((unsigned int)maxpages == 0)
2874 maxpages = UINT_MAX;
2875 }
2876 p->highest_bit = maxpages - 1;
2877
2878 if (!maxpages)
2879 return 0;
2880 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2881 if (swapfilepages && maxpages > swapfilepages) {
2882 pr_warn("Swap area shorter than signature indicates\n");
2883 return 0;
2884 }
2885 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2886 return 0;
2887 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2888 return 0;
2889
2890 return maxpages;
2891 }
2892
2893 #define SWAP_CLUSTER_INFO_COLS \
2894 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2895 #define SWAP_CLUSTER_SPACE_COLS \
2896 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2897 #define SWAP_CLUSTER_COLS \
2898 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2899
2900 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2901 union swap_header *swap_header,
2902 unsigned char *swap_map,
2903 struct swap_cluster_info *cluster_info,
2904 unsigned long maxpages,
2905 sector_t *span)
2906 {
2907 unsigned int j, k;
2908 unsigned int nr_good_pages;
2909 int nr_extents;
2910 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2911 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2912 unsigned long i, idx;
2913
2914 nr_good_pages = maxpages - 1; /* omit header page */
2915
2916 cluster_list_init(&p->free_clusters);
2917 cluster_list_init(&p->discard_clusters);
2918
2919 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2920 unsigned int page_nr = swap_header->info.badpages[i];
2921 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2922 return -EINVAL;
2923 if (page_nr < maxpages) {
2924 swap_map[page_nr] = SWAP_MAP_BAD;
2925 nr_good_pages--;
2926 /*
2927 * Haven't marked the cluster free yet, no list
2928 * operation involved
2929 */
2930 inc_cluster_info_page(p, cluster_info, page_nr);
2931 }
2932 }
2933
2934 /* Haven't marked the cluster free yet, no list operation involved */
2935 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2936 inc_cluster_info_page(p, cluster_info, i);
2937
2938 if (nr_good_pages) {
2939 swap_map[0] = SWAP_MAP_BAD;
2940 /*
2941 * Not mark the cluster free yet, no list
2942 * operation involved
2943 */
2944 inc_cluster_info_page(p, cluster_info, 0);
2945 p->max = maxpages;
2946 p->pages = nr_good_pages;
2947 nr_extents = setup_swap_extents(p, span);
2948 if (nr_extents < 0)
2949 return nr_extents;
2950 nr_good_pages = p->pages;
2951 }
2952 if (!nr_good_pages) {
2953 pr_warn("Empty swap-file\n");
2954 return -EINVAL;
2955 }
2956
2957 if (!cluster_info)
2958 return nr_extents;
2959
2960
2961 /*
2962 * Reduce false cache line sharing between cluster_info and
2963 * sharing same address space.
2964 */
2965 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2966 j = (k + col) % SWAP_CLUSTER_COLS;
2967 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2968 idx = i * SWAP_CLUSTER_COLS + j;
2969 if (idx >= nr_clusters)
2970 continue;
2971 if (cluster_count(&cluster_info[idx]))
2972 continue;
2973 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2974 cluster_list_add_tail(&p->free_clusters, cluster_info,
2975 idx);
2976 }
2977 }
2978 return nr_extents;
2979 }
2980
2981 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2982 {
2983 struct swap_info_struct *p;
2984 struct filename *name;
2985 struct file *swap_file = NULL;
2986 struct address_space *mapping;
2987 struct dentry *dentry;
2988 int prio;
2989 int error;
2990 union swap_header *swap_header;
2991 int nr_extents;
2992 sector_t span;
2993 unsigned long maxpages;
2994 unsigned char *swap_map = NULL;
2995 struct swap_cluster_info *cluster_info = NULL;
2996 unsigned long *frontswap_map = NULL;
2997 struct page *page = NULL;
2998 struct inode *inode = NULL;
2999 bool inced_nr_rotate_swap = false;
3000
3001 if (swap_flags & ~SWAP_FLAGS_VALID)
3002 return -EINVAL;
3003
3004 if (!capable(CAP_SYS_ADMIN))
3005 return -EPERM;
3006
3007 if (!swap_avail_heads)
3008 return -ENOMEM;
3009
3010 p = alloc_swap_info();
3011 if (IS_ERR(p))
3012 return PTR_ERR(p);
3013
3014 INIT_WORK(&p->discard_work, swap_discard_work);
3015
3016 name = getname(specialfile);
3017 if (IS_ERR(name)) {
3018 error = PTR_ERR(name);
3019 name = NULL;
3020 goto bad_swap;
3021 }
3022 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3023 if (IS_ERR(swap_file)) {
3024 error = PTR_ERR(swap_file);
3025 swap_file = NULL;
3026 goto bad_swap;
3027 }
3028
3029 p->swap_file = swap_file;
3030 mapping = swap_file->f_mapping;
3031 dentry = swap_file->f_path.dentry;
3032 inode = mapping->host;
3033
3034 error = claim_swapfile(p, inode);
3035 if (unlikely(error))
3036 goto bad_swap;
3037
3038 inode_lock(inode);
3039 if (d_unlinked(dentry) || cant_mount(dentry)) {
3040 error = -ENOENT;
3041 goto bad_swap_unlock_inode;
3042 }
3043 if (IS_SWAPFILE(inode)) {
3044 error = -EBUSY;
3045 goto bad_swap_unlock_inode;
3046 }
3047
3048 /*
3049 * Read the swap header.
3050 */
3051 if (!mapping->a_ops->read_folio) {
3052 error = -EINVAL;
3053 goto bad_swap_unlock_inode;
3054 }
3055 page = read_mapping_page(mapping, 0, swap_file);
3056 if (IS_ERR(page)) {
3057 error = PTR_ERR(page);
3058 goto bad_swap_unlock_inode;
3059 }
3060 swap_header = kmap(page);
3061
3062 maxpages = read_swap_header(p, swap_header, inode);
3063 if (unlikely(!maxpages)) {
3064 error = -EINVAL;
3065 goto bad_swap_unlock_inode;
3066 }
3067
3068 /* OK, set up the swap map and apply the bad block list */
3069 swap_map = vzalloc(maxpages);
3070 if (!swap_map) {
3071 error = -ENOMEM;
3072 goto bad_swap_unlock_inode;
3073 }
3074
3075 if (p->bdev && bdev_stable_writes(p->bdev))
3076 p->flags |= SWP_STABLE_WRITES;
3077
3078 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3079 p->flags |= SWP_SYNCHRONOUS_IO;
3080
3081 if (p->bdev && bdev_nonrot(p->bdev)) {
3082 int cpu;
3083 unsigned long ci, nr_cluster;
3084
3085 p->flags |= SWP_SOLIDSTATE;
3086 p->cluster_next_cpu = alloc_percpu(unsigned int);
3087 if (!p->cluster_next_cpu) {
3088 error = -ENOMEM;
3089 goto bad_swap_unlock_inode;
3090 }
3091 /*
3092 * select a random position to start with to help wear leveling
3093 * SSD
3094 */
3095 for_each_possible_cpu(cpu) {
3096 per_cpu(*p->cluster_next_cpu, cpu) =
3097 1 + prandom_u32_max(p->highest_bit);
3098 }
3099 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3100
3101 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3102 GFP_KERNEL);
3103 if (!cluster_info) {
3104 error = -ENOMEM;
3105 goto bad_swap_unlock_inode;
3106 }
3107
3108 for (ci = 0; ci < nr_cluster; ci++)
3109 spin_lock_init(&((cluster_info + ci)->lock));
3110
3111 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3112 if (!p->percpu_cluster) {
3113 error = -ENOMEM;
3114 goto bad_swap_unlock_inode;
3115 }
3116 for_each_possible_cpu(cpu) {
3117 struct percpu_cluster *cluster;
3118 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3119 cluster_set_null(&cluster->index);
3120 }
3121 } else {
3122 atomic_inc(&nr_rotate_swap);
3123 inced_nr_rotate_swap = true;
3124 }
3125
3126 error = swap_cgroup_swapon(p->type, maxpages);
3127 if (error)
3128 goto bad_swap_unlock_inode;
3129
3130 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3131 cluster_info, maxpages, &span);
3132 if (unlikely(nr_extents < 0)) {
3133 error = nr_extents;
3134 goto bad_swap_unlock_inode;
3135 }
3136 /* frontswap enabled? set up bit-per-page map for frontswap */
3137 if (IS_ENABLED(CONFIG_FRONTSWAP))
3138 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3139 sizeof(long),
3140 GFP_KERNEL);
3141
3142 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3143 p->bdev && bdev_max_discard_sectors(p->bdev)) {
3144 /*
3145 * When discard is enabled for swap with no particular
3146 * policy flagged, we set all swap discard flags here in
3147 * order to sustain backward compatibility with older
3148 * swapon(8) releases.
3149 */
3150 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3151 SWP_PAGE_DISCARD);
3152
3153 /*
3154 * By flagging sys_swapon, a sysadmin can tell us to
3155 * either do single-time area discards only, or to just
3156 * perform discards for released swap page-clusters.
3157 * Now it's time to adjust the p->flags accordingly.
3158 */
3159 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3160 p->flags &= ~SWP_PAGE_DISCARD;
3161 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3162 p->flags &= ~SWP_AREA_DISCARD;
3163
3164 /* issue a swapon-time discard if it's still required */
3165 if (p->flags & SWP_AREA_DISCARD) {
3166 int err = discard_swap(p);
3167 if (unlikely(err))
3168 pr_err("swapon: discard_swap(%p): %d\n",
3169 p, err);
3170 }
3171 }
3172
3173 error = init_swap_address_space(p->type, maxpages);
3174 if (error)
3175 goto bad_swap_unlock_inode;
3176
3177 /*
3178 * Flush any pending IO and dirty mappings before we start using this
3179 * swap device.
3180 */
3181 inode->i_flags |= S_SWAPFILE;
3182 error = inode_drain_writes(inode);
3183 if (error) {
3184 inode->i_flags &= ~S_SWAPFILE;
3185 goto free_swap_address_space;
3186 }
3187
3188 mutex_lock(&swapon_mutex);
3189 prio = -1;
3190 if (swap_flags & SWAP_FLAG_PREFER)
3191 prio =
3192 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3193 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3194
3195 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3196 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3197 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3198 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3199 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3200 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3201 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3202 (frontswap_map) ? "FS" : "");
3203
3204 mutex_unlock(&swapon_mutex);
3205 atomic_inc(&proc_poll_event);
3206 wake_up_interruptible(&proc_poll_wait);
3207
3208 error = 0;
3209 goto out;
3210 free_swap_address_space:
3211 exit_swap_address_space(p->type);
3212 bad_swap_unlock_inode:
3213 inode_unlock(inode);
3214 bad_swap:
3215 free_percpu(p->percpu_cluster);
3216 p->percpu_cluster = NULL;
3217 free_percpu(p->cluster_next_cpu);
3218 p->cluster_next_cpu = NULL;
3219 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3220 set_blocksize(p->bdev, p->old_block_size);
3221 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3222 }
3223 inode = NULL;
3224 destroy_swap_extents(p);
3225 swap_cgroup_swapoff(p->type);
3226 spin_lock(&swap_lock);
3227 p->swap_file = NULL;
3228 p->flags = 0;
3229 spin_unlock(&swap_lock);
3230 vfree(swap_map);
3231 kvfree(cluster_info);
3232 kvfree(frontswap_map);
3233 if (inced_nr_rotate_swap)
3234 atomic_dec(&nr_rotate_swap);
3235 if (swap_file)
3236 filp_close(swap_file, NULL);
3237 out:
3238 if (page && !IS_ERR(page)) {
3239 kunmap(page);
3240 put_page(page);
3241 }
3242 if (name)
3243 putname(name);
3244 if (inode)
3245 inode_unlock(inode);
3246 if (!error)
3247 enable_swap_slots_cache();
3248 return error;
3249 }
3250
3251 void si_swapinfo(struct sysinfo *val)
3252 {
3253 unsigned int type;
3254 unsigned long nr_to_be_unused = 0;
3255
3256 spin_lock(&swap_lock);
3257 for (type = 0; type < nr_swapfiles; type++) {
3258 struct swap_info_struct *si = swap_info[type];
3259
3260 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3261 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3262 }
3263 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3264 val->totalswap = total_swap_pages + nr_to_be_unused;
3265 spin_unlock(&swap_lock);
3266 }
3267
3268 /*
3269 * Verify that a swap entry is valid and increment its swap map count.
3270 *
3271 * Returns error code in following case.
3272 * - success -> 0
3273 * - swp_entry is invalid -> EINVAL
3274 * - swp_entry is migration entry -> EINVAL
3275 * - swap-cache reference is requested but there is already one. -> EEXIST
3276 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3277 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3278 */
3279 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3280 {
3281 struct swap_info_struct *p;
3282 struct swap_cluster_info *ci;
3283 unsigned long offset;
3284 unsigned char count;
3285 unsigned char has_cache;
3286 int err;
3287
3288 p = get_swap_device(entry);
3289 if (!p)
3290 return -EINVAL;
3291
3292 offset = swp_offset(entry);
3293 ci = lock_cluster_or_swap_info(p, offset);
3294
3295 count = p->swap_map[offset];
3296
3297 /*
3298 * swapin_readahead() doesn't check if a swap entry is valid, so the
3299 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3300 */
3301 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3302 err = -ENOENT;
3303 goto unlock_out;
3304 }
3305
3306 has_cache = count & SWAP_HAS_CACHE;
3307 count &= ~SWAP_HAS_CACHE;
3308 err = 0;
3309
3310 if (usage == SWAP_HAS_CACHE) {
3311
3312 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3313 if (!has_cache && count)
3314 has_cache = SWAP_HAS_CACHE;
3315 else if (has_cache) /* someone else added cache */
3316 err = -EEXIST;
3317 else /* no users remaining */
3318 err = -ENOENT;
3319
3320 } else if (count || has_cache) {
3321
3322 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3323 count += usage;
3324 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3325 err = -EINVAL;
3326 else if (swap_count_continued(p, offset, count))
3327 count = COUNT_CONTINUED;
3328 else
3329 err = -ENOMEM;
3330 } else
3331 err = -ENOENT; /* unused swap entry */
3332
3333 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3334
3335 unlock_out:
3336 unlock_cluster_or_swap_info(p, ci);
3337 put_swap_device(p);
3338 return err;
3339 }
3340
3341 /*
3342 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3343 * (in which case its reference count is never incremented).
3344 */
3345 void swap_shmem_alloc(swp_entry_t entry)
3346 {
3347 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3348 }
3349
3350 /*
3351 * Increase reference count of swap entry by 1.
3352 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3353 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3354 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3355 * might occur if a page table entry has got corrupted.
3356 */
3357 int swap_duplicate(swp_entry_t entry)
3358 {
3359 int err = 0;
3360
3361 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3362 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3363 return err;
3364 }
3365
3366 /*
3367 * @entry: swap entry for which we allocate swap cache.
3368 *
3369 * Called when allocating swap cache for existing swap entry,
3370 * This can return error codes. Returns 0 at success.
3371 * -EEXIST means there is a swap cache.
3372 * Note: return code is different from swap_duplicate().
3373 */
3374 int swapcache_prepare(swp_entry_t entry)
3375 {
3376 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3377 }
3378
3379 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3380 {
3381 return swap_type_to_swap_info(swp_type(entry));
3382 }
3383
3384 struct swap_info_struct *page_swap_info(struct page *page)
3385 {
3386 swp_entry_t entry = { .val = page_private(page) };
3387 return swp_swap_info(entry);
3388 }
3389
3390 /*
3391 * out-of-line methods to avoid include hell.
3392 */
3393 struct address_space *swapcache_mapping(struct folio *folio)
3394 {
3395 return page_swap_info(&folio->page)->swap_file->f_mapping;
3396 }
3397 EXPORT_SYMBOL_GPL(swapcache_mapping);
3398
3399 pgoff_t __page_file_index(struct page *page)
3400 {
3401 swp_entry_t swap = { .val = page_private(page) };
3402 return swp_offset(swap);
3403 }
3404 EXPORT_SYMBOL_GPL(__page_file_index);
3405
3406 /*
3407 * add_swap_count_continuation - called when a swap count is duplicated
3408 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3409 * page of the original vmalloc'ed swap_map, to hold the continuation count
3410 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3411 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3412 *
3413 * These continuation pages are seldom referenced: the common paths all work
3414 * on the original swap_map, only referring to a continuation page when the
3415 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3416 *
3417 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3418 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3419 * can be called after dropping locks.
3420 */
3421 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3422 {
3423 struct swap_info_struct *si;
3424 struct swap_cluster_info *ci;
3425 struct page *head;
3426 struct page *page;
3427 struct page *list_page;
3428 pgoff_t offset;
3429 unsigned char count;
3430 int ret = 0;
3431
3432 /*
3433 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3434 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3435 */
3436 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3437
3438 si = get_swap_device(entry);
3439 if (!si) {
3440 /*
3441 * An acceptable race has occurred since the failing
3442 * __swap_duplicate(): the swap device may be swapoff
3443 */
3444 goto outer;
3445 }
3446 spin_lock(&si->lock);
3447
3448 offset = swp_offset(entry);
3449
3450 ci = lock_cluster(si, offset);
3451
3452 count = swap_count(si->swap_map[offset]);
3453
3454 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3455 /*
3456 * The higher the swap count, the more likely it is that tasks
3457 * will race to add swap count continuation: we need to avoid
3458 * over-provisioning.
3459 */
3460 goto out;
3461 }
3462
3463 if (!page) {
3464 ret = -ENOMEM;
3465 goto out;
3466 }
3467
3468 /*
3469 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3470 * no architecture is using highmem pages for kernel page tables: so it
3471 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3472 */
3473 head = vmalloc_to_page(si->swap_map + offset);
3474 offset &= ~PAGE_MASK;
3475
3476 spin_lock(&si->cont_lock);
3477 /*
3478 * Page allocation does not initialize the page's lru field,
3479 * but it does always reset its private field.
3480 */
3481 if (!page_private(head)) {
3482 BUG_ON(count & COUNT_CONTINUED);
3483 INIT_LIST_HEAD(&head->lru);
3484 set_page_private(head, SWP_CONTINUED);
3485 si->flags |= SWP_CONTINUED;
3486 }
3487
3488 list_for_each_entry(list_page, &head->lru, lru) {
3489 unsigned char *map;
3490
3491 /*
3492 * If the previous map said no continuation, but we've found
3493 * a continuation page, free our allocation and use this one.
3494 */
3495 if (!(count & COUNT_CONTINUED))
3496 goto out_unlock_cont;
3497
3498 map = kmap_atomic(list_page) + offset;
3499 count = *map;
3500 kunmap_atomic(map);
3501
3502 /*
3503 * If this continuation count now has some space in it,
3504 * free our allocation and use this one.
3505 */
3506 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3507 goto out_unlock_cont;
3508 }
3509
3510 list_add_tail(&page->lru, &head->lru);
3511 page = NULL; /* now it's attached, don't free it */
3512 out_unlock_cont:
3513 spin_unlock(&si->cont_lock);
3514 out:
3515 unlock_cluster(ci);
3516 spin_unlock(&si->lock);
3517 put_swap_device(si);
3518 outer:
3519 if (page)
3520 __free_page(page);
3521 return ret;
3522 }
3523
3524 /*
3525 * swap_count_continued - when the original swap_map count is incremented
3526 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3527 * into, carry if so, or else fail until a new continuation page is allocated;
3528 * when the original swap_map count is decremented from 0 with continuation,
3529 * borrow from the continuation and report whether it still holds more.
3530 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3531 * lock.
3532 */
3533 static bool swap_count_continued(struct swap_info_struct *si,
3534 pgoff_t offset, unsigned char count)
3535 {
3536 struct page *head;
3537 struct page *page;
3538 unsigned char *map;
3539 bool ret;
3540
3541 head = vmalloc_to_page(si->swap_map + offset);
3542 if (page_private(head) != SWP_CONTINUED) {
3543 BUG_ON(count & COUNT_CONTINUED);
3544 return false; /* need to add count continuation */
3545 }
3546
3547 spin_lock(&si->cont_lock);
3548 offset &= ~PAGE_MASK;
3549 page = list_next_entry(head, lru);
3550 map = kmap_atomic(page) + offset;
3551
3552 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3553 goto init_map; /* jump over SWAP_CONT_MAX checks */
3554
3555 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3556 /*
3557 * Think of how you add 1 to 999
3558 */
3559 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3560 kunmap_atomic(map);
3561 page = list_next_entry(page, lru);
3562 BUG_ON(page == head);
3563 map = kmap_atomic(page) + offset;
3564 }
3565 if (*map == SWAP_CONT_MAX) {
3566 kunmap_atomic(map);
3567 page = list_next_entry(page, lru);
3568 if (page == head) {
3569 ret = false; /* add count continuation */
3570 goto out;
3571 }
3572 map = kmap_atomic(page) + offset;
3573 init_map: *map = 0; /* we didn't zero the page */
3574 }
3575 *map += 1;
3576 kunmap_atomic(map);
3577 while ((page = list_prev_entry(page, lru)) != head) {
3578 map = kmap_atomic(page) + offset;
3579 *map = COUNT_CONTINUED;
3580 kunmap_atomic(map);
3581 }
3582 ret = true; /* incremented */
3583
3584 } else { /* decrementing */
3585 /*
3586 * Think of how you subtract 1 from 1000
3587 */
3588 BUG_ON(count != COUNT_CONTINUED);
3589 while (*map == COUNT_CONTINUED) {
3590 kunmap_atomic(map);
3591 page = list_next_entry(page, lru);
3592 BUG_ON(page == head);
3593 map = kmap_atomic(page) + offset;
3594 }
3595 BUG_ON(*map == 0);
3596 *map -= 1;
3597 if (*map == 0)
3598 count = 0;
3599 kunmap_atomic(map);
3600 while ((page = list_prev_entry(page, lru)) != head) {
3601 map = kmap_atomic(page) + offset;
3602 *map = SWAP_CONT_MAX | count;
3603 count = COUNT_CONTINUED;
3604 kunmap_atomic(map);
3605 }
3606 ret = count == COUNT_CONTINUED;
3607 }
3608 out:
3609 spin_unlock(&si->cont_lock);
3610 return ret;
3611 }
3612
3613 /*
3614 * free_swap_count_continuations - swapoff free all the continuation pages
3615 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3616 */
3617 static void free_swap_count_continuations(struct swap_info_struct *si)
3618 {
3619 pgoff_t offset;
3620
3621 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3622 struct page *head;
3623 head = vmalloc_to_page(si->swap_map + offset);
3624 if (page_private(head)) {
3625 struct page *page, *next;
3626
3627 list_for_each_entry_safe(page, next, &head->lru, lru) {
3628 list_del(&page->lru);
3629 __free_page(page);
3630 }
3631 }
3632 }
3633 }
3634
3635 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3636 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3637 {
3638 struct swap_info_struct *si, *next;
3639 int nid = page_to_nid(page);
3640
3641 if (!(gfp_mask & __GFP_IO))
3642 return;
3643
3644 if (!blk_cgroup_congested())
3645 return;
3646
3647 /*
3648 * We've already scheduled a throttle, avoid taking the global swap
3649 * lock.
3650 */
3651 if (current->throttle_queue)
3652 return;
3653
3654 spin_lock(&swap_avail_lock);
3655 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3656 avail_lists[nid]) {
3657 if (si->bdev) {
3658 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3659 break;
3660 }
3661 }
3662 spin_unlock(&swap_avail_lock);
3663 }
3664 #endif
3665
3666 static int __init swapfile_init(void)
3667 {
3668 int nid;
3669
3670 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3671 GFP_KERNEL);
3672 if (!swap_avail_heads) {
3673 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3674 return -ENOMEM;
3675 }
3676
3677 for_each_node(nid)
3678 plist_head_init(&swap_avail_heads[nid]);
3679
3680 return 0;
3681 }
3682 subsys_initcall(swapfile_init);