]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/swapfile.c
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
[mirror_ubuntu-jammy-kernel.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 if (type >= MAX_SWAPFILES)
104 return NULL;
105
106 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
112 }
113
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY 0x1
116 /*
117 * Reclaim the swap entry if there are no more mappings of the
118 * corresponding page
119 */
120 #define TTRS_UNMAPPED 0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL 0x4
123
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 unsigned long offset, unsigned long flags)
127 {
128 swp_entry_t entry = swp_entry(si->type, offset);
129 struct page *page;
130 int ret = 0;
131
132 page = find_get_page(swap_address_space(entry), offset);
133 if (!page)
134 return 0;
135 /*
136 * When this function is called from scan_swap_map_slots() and it's
137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 * here. We have to use trylock for avoiding deadlock. This is a special
139 * case and you should use try_to_free_swap() with explicit lock_page()
140 * in usual operations.
141 */
142 if (trylock_page(page)) {
143 if ((flags & TTRS_ANYWAY) ||
144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 ret = try_to_free_swap(page);
147 unlock_page(page);
148 }
149 put_page(page);
150 return ret;
151 }
152
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155 struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 return rb_entry(rb, struct swap_extent, rb_node);
157 }
158
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161 struct rb_node *rb = rb_next(&se->rb_node);
162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164
165 /*
166 * swapon tell device that all the old swap contents can be discarded,
167 * to allow the swap device to optimize its wear-levelling.
168 */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171 struct swap_extent *se;
172 sector_t start_block;
173 sector_t nr_blocks;
174 int err = 0;
175
176 /* Do not discard the swap header page! */
177 se = first_se(si);
178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 if (nr_blocks) {
181 err = blkdev_issue_discard(si->bdev, start_block,
182 nr_blocks, GFP_KERNEL, 0);
183 if (err)
184 return err;
185 cond_resched();
186 }
187
188 for (se = next_se(se); se; se = next_se(se)) {
189 start_block = se->start_block << (PAGE_SHIFT - 9);
190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192 err = blkdev_issue_discard(si->bdev, start_block,
193 nr_blocks, GFP_KERNEL, 0);
194 if (err)
195 break;
196
197 cond_resched();
198 }
199 return err; /* That will often be -EOPNOTSUPP */
200 }
201
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205 struct swap_extent *se;
206 struct rb_node *rb;
207
208 rb = sis->swap_extent_root.rb_node;
209 while (rb) {
210 se = rb_entry(rb, struct swap_extent, rb_node);
211 if (offset < se->start_page)
212 rb = rb->rb_left;
213 else if (offset >= se->start_page + se->nr_pages)
214 rb = rb->rb_right;
215 else
216 return se;
217 }
218 /* It *must* be present */
219 BUG();
220 }
221
222 sector_t swap_page_sector(struct page *page)
223 {
224 struct swap_info_struct *sis = page_swap_info(page);
225 struct swap_extent *se;
226 sector_t sector;
227 pgoff_t offset;
228
229 offset = __page_file_index(page);
230 se = offset_to_swap_extent(sis, offset);
231 sector = se->start_block + (offset - se->start_page);
232 return sector << (PAGE_SHIFT - 9);
233 }
234
235 /*
236 * swap allocation tell device that a cluster of swap can now be discarded,
237 * to allow the swap device to optimize its wear-levelling.
238 */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240 pgoff_t start_page, pgoff_t nr_pages)
241 {
242 struct swap_extent *se = offset_to_swap_extent(si, start_page);
243
244 while (nr_pages) {
245 pgoff_t offset = start_page - se->start_page;
246 sector_t start_block = se->start_block + offset;
247 sector_t nr_blocks = se->nr_pages - offset;
248
249 if (nr_blocks > nr_pages)
250 nr_blocks = nr_pages;
251 start_page += nr_blocks;
252 nr_pages -= nr_blocks;
253
254 start_block <<= PAGE_SHIFT - 9;
255 nr_blocks <<= PAGE_SHIFT - 9;
256 if (blkdev_issue_discard(si->bdev, start_block,
257 nr_blocks, GFP_NOIO, 0))
258 break;
259
260 se = next_se(se);
261 }
262 }
263
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
266
267 #define swap_entry_size(size) (size)
268 #else
269 #define SWAPFILE_CLUSTER 256
270
271 /*
272 * Define swap_entry_size() as constant to let compiler to optimize
273 * out some code if !CONFIG_THP_SWAP
274 */
275 #define swap_entry_size(size) 1
276 #endif
277 #define LATENCY_LIMIT 256
278
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280 unsigned int flag)
281 {
282 info->flags = flag;
283 }
284
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287 return info->data;
288 }
289
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291 unsigned int c)
292 {
293 info->data = c;
294 }
295
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 unsigned int c, unsigned int f)
298 {
299 info->flags = f;
300 info->data = c;
301 }
302
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305 return info->data;
306 }
307
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309 unsigned int n)
310 {
311 info->data = n;
312 }
313
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 unsigned int n, unsigned int f)
316 {
317 info->flags = f;
318 info->data = n;
319 }
320
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323 return info->flags & CLUSTER_FLAG_FREE;
324 }
325
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328 return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333 info->flags = CLUSTER_FLAG_NEXT_NULL;
334 info->data = 0;
335 }
336
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339 if (IS_ENABLED(CONFIG_THP_SWAP))
340 return info->flags & CLUSTER_FLAG_HUGE;
341 return false;
342 }
343
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346 info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 unsigned long offset)
351 {
352 struct swap_cluster_info *ci;
353
354 ci = si->cluster_info;
355 if (ci) {
356 ci += offset / SWAPFILE_CLUSTER;
357 spin_lock(&ci->lock);
358 }
359 return ci;
360 }
361
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364 if (ci)
365 spin_unlock(&ci->lock);
366 }
367
368 /*
369 * Determine the locking method in use for this device. Return
370 * swap_cluster_info if SSD-style cluster-based locking is in place.
371 */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 struct swap_info_struct *si, unsigned long offset)
374 {
375 struct swap_cluster_info *ci;
376
377 /* Try to use fine-grained SSD-style locking if available: */
378 ci = lock_cluster(si, offset);
379 /* Otherwise, fall back to traditional, coarse locking: */
380 if (!ci)
381 spin_lock(&si->lock);
382
383 return ci;
384 }
385
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 struct swap_cluster_info *ci)
388 {
389 if (ci)
390 unlock_cluster(ci);
391 else
392 spin_unlock(&si->lock);
393 }
394
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397 return cluster_is_null(&list->head);
398 }
399
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402 return cluster_next(&list->head);
403 }
404
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407 cluster_set_null(&list->head);
408 cluster_set_null(&list->tail);
409 }
410
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412 struct swap_cluster_info *ci,
413 unsigned int idx)
414 {
415 if (cluster_list_empty(list)) {
416 cluster_set_next_flag(&list->head, idx, 0);
417 cluster_set_next_flag(&list->tail, idx, 0);
418 } else {
419 struct swap_cluster_info *ci_tail;
420 unsigned int tail = cluster_next(&list->tail);
421
422 /*
423 * Nested cluster lock, but both cluster locks are
424 * only acquired when we held swap_info_struct->lock
425 */
426 ci_tail = ci + tail;
427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 cluster_set_next(ci_tail, idx);
429 spin_unlock(&ci_tail->lock);
430 cluster_set_next_flag(&list->tail, idx, 0);
431 }
432 }
433
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 struct swap_cluster_info *ci)
436 {
437 unsigned int idx;
438
439 idx = cluster_next(&list->head);
440 if (cluster_next(&list->tail) == idx) {
441 cluster_set_null(&list->head);
442 cluster_set_null(&list->tail);
443 } else
444 cluster_set_next_flag(&list->head,
445 cluster_next(&ci[idx]), 0);
446
447 return idx;
448 }
449
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452 unsigned int idx)
453 {
454 /*
455 * If scan_swap_map_slots() can't find a free cluster, it will check
456 * si->swap_map directly. To make sure the discarding cluster isn't
457 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458 * It will be cleared after discard
459 */
460 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462
463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464
465 schedule_work(&si->discard_work);
466 }
467
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 struct swap_cluster_info *ci = si->cluster_info;
471
472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475
476 /*
477 * Doing discard actually. After a cluster discard is finished, the cluster
478 * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482 struct swap_cluster_info *info, *ci;
483 unsigned int idx;
484
485 info = si->cluster_info;
486
487 while (!cluster_list_empty(&si->discard_clusters)) {
488 idx = cluster_list_del_first(&si->discard_clusters, info);
489 spin_unlock(&si->lock);
490
491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492 SWAPFILE_CLUSTER);
493
494 spin_lock(&si->lock);
495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 __free_cluster(si, idx);
497 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 0, SWAPFILE_CLUSTER);
499 unlock_cluster(ci);
500 }
501 }
502
503 static void swap_discard_work(struct work_struct *work)
504 {
505 struct swap_info_struct *si;
506
507 si = container_of(work, struct swap_info_struct, discard_work);
508
509 spin_lock(&si->lock);
510 swap_do_scheduled_discard(si);
511 spin_unlock(&si->lock);
512 }
513
514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516 struct swap_info_struct *si;
517
518 si = container_of(ref, struct swap_info_struct, users);
519 complete(&si->comp);
520 }
521
522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524 struct swap_cluster_info *ci = si->cluster_info;
525
526 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527 cluster_list_del_first(&si->free_clusters, ci);
528 cluster_set_count_flag(ci + idx, 0, 0);
529 }
530
531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 struct swap_cluster_info *ci = si->cluster_info + idx;
534
535 VM_BUG_ON(cluster_count(ci) != 0);
536 /*
537 * If the swap is discardable, prepare discard the cluster
538 * instead of free it immediately. The cluster will be freed
539 * after discard.
540 */
541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 swap_cluster_schedule_discard(si, idx);
544 return;
545 }
546
547 __free_cluster(si, idx);
548 }
549
550 /*
551 * The cluster corresponding to page_nr will be used. The cluster will be
552 * removed from free cluster list and its usage counter will be increased.
553 */
554 static void inc_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558
559 if (!cluster_info)
560 return;
561 if (cluster_is_free(&cluster_info[idx]))
562 alloc_cluster(p, idx);
563
564 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565 cluster_set_count(&cluster_info[idx],
566 cluster_count(&cluster_info[idx]) + 1);
567 }
568
569 /*
570 * The cluster corresponding to page_nr decreases one usage. If the usage
571 * counter becomes 0, which means no page in the cluster is in using, we can
572 * optionally discard the cluster and add it to free cluster list.
573 */
574 static void dec_cluster_info_page(struct swap_info_struct *p,
575 struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578
579 if (!cluster_info)
580 return;
581
582 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583 cluster_set_count(&cluster_info[idx],
584 cluster_count(&cluster_info[idx]) - 1);
585
586 if (cluster_count(&cluster_info[idx]) == 0)
587 free_cluster(p, idx);
588 }
589
590 /*
591 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592 * cluster list. Avoiding such abuse to avoid list corruption.
593 */
594 static bool
595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596 unsigned long offset)
597 {
598 struct percpu_cluster *percpu_cluster;
599 bool conflict;
600
601 offset /= SWAPFILE_CLUSTER;
602 conflict = !cluster_list_empty(&si->free_clusters) &&
603 offset != cluster_list_first(&si->free_clusters) &&
604 cluster_is_free(&si->cluster_info[offset]);
605
606 if (!conflict)
607 return false;
608
609 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610 cluster_set_null(&percpu_cluster->index);
611 return true;
612 }
613
614 /*
615 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616 * might involve allocating a new cluster for current CPU too.
617 */
618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619 unsigned long *offset, unsigned long *scan_base)
620 {
621 struct percpu_cluster *cluster;
622 struct swap_cluster_info *ci;
623 unsigned long tmp, max;
624
625 new_cluster:
626 cluster = this_cpu_ptr(si->percpu_cluster);
627 if (cluster_is_null(&cluster->index)) {
628 if (!cluster_list_empty(&si->free_clusters)) {
629 cluster->index = si->free_clusters.head;
630 cluster->next = cluster_next(&cluster->index) *
631 SWAPFILE_CLUSTER;
632 } else if (!cluster_list_empty(&si->discard_clusters)) {
633 /*
634 * we don't have free cluster but have some clusters in
635 * discarding, do discard now and reclaim them, then
636 * reread cluster_next_cpu since we dropped si->lock
637 */
638 swap_do_scheduled_discard(si);
639 *scan_base = this_cpu_read(*si->cluster_next_cpu);
640 *offset = *scan_base;
641 goto new_cluster;
642 } else
643 return false;
644 }
645
646 /*
647 * Other CPUs can use our cluster if they can't find a free cluster,
648 * check if there is still free entry in the cluster
649 */
650 tmp = cluster->next;
651 max = min_t(unsigned long, si->max,
652 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653 if (tmp < max) {
654 ci = lock_cluster(si, tmp);
655 while (tmp < max) {
656 if (!si->swap_map[tmp])
657 break;
658 tmp++;
659 }
660 unlock_cluster(ci);
661 }
662 if (tmp >= max) {
663 cluster_set_null(&cluster->index);
664 goto new_cluster;
665 }
666 cluster->next = tmp + 1;
667 *offset = tmp;
668 *scan_base = tmp;
669 return true;
670 }
671
672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674 int nid;
675
676 for_each_node(nid)
677 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678 }
679
680 static void del_from_avail_list(struct swap_info_struct *p)
681 {
682 spin_lock(&swap_avail_lock);
683 __del_from_avail_list(p);
684 spin_unlock(&swap_avail_lock);
685 }
686
687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688 unsigned int nr_entries)
689 {
690 unsigned int end = offset + nr_entries - 1;
691
692 if (offset == si->lowest_bit)
693 si->lowest_bit += nr_entries;
694 if (end == si->highest_bit)
695 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
696 si->inuse_pages += nr_entries;
697 if (si->inuse_pages == si->pages) {
698 si->lowest_bit = si->max;
699 si->highest_bit = 0;
700 del_from_avail_list(si);
701 }
702 }
703
704 static void add_to_avail_list(struct swap_info_struct *p)
705 {
706 int nid;
707
708 spin_lock(&swap_avail_lock);
709 for_each_node(nid) {
710 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712 }
713 spin_unlock(&swap_avail_lock);
714 }
715
716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717 unsigned int nr_entries)
718 {
719 unsigned long begin = offset;
720 unsigned long end = offset + nr_entries - 1;
721 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
722
723 if (offset < si->lowest_bit)
724 si->lowest_bit = offset;
725 if (end > si->highest_bit) {
726 bool was_full = !si->highest_bit;
727
728 WRITE_ONCE(si->highest_bit, end);
729 if (was_full && (si->flags & SWP_WRITEOK))
730 add_to_avail_list(si);
731 }
732 atomic_long_add(nr_entries, &nr_swap_pages);
733 si->inuse_pages -= nr_entries;
734 if (si->flags & SWP_BLKDEV)
735 swap_slot_free_notify =
736 si->bdev->bd_disk->fops->swap_slot_free_notify;
737 else
738 swap_slot_free_notify = NULL;
739 while (offset <= end) {
740 arch_swap_invalidate_page(si->type, offset);
741 frontswap_invalidate_page(si->type, offset);
742 if (swap_slot_free_notify)
743 swap_slot_free_notify(si->bdev, offset);
744 offset++;
745 }
746 clear_shadow_from_swap_cache(si->type, begin, end);
747 }
748
749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
750 {
751 unsigned long prev;
752
753 if (!(si->flags & SWP_SOLIDSTATE)) {
754 si->cluster_next = next;
755 return;
756 }
757
758 prev = this_cpu_read(*si->cluster_next_cpu);
759 /*
760 * Cross the swap address space size aligned trunk, choose
761 * another trunk randomly to avoid lock contention on swap
762 * address space if possible.
763 */
764 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766 /* No free swap slots available */
767 if (si->highest_bit <= si->lowest_bit)
768 return;
769 next = si->lowest_bit +
770 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772 next = max_t(unsigned int, next, si->lowest_bit);
773 }
774 this_cpu_write(*si->cluster_next_cpu, next);
775 }
776
777 static int scan_swap_map_slots(struct swap_info_struct *si,
778 unsigned char usage, int nr,
779 swp_entry_t slots[])
780 {
781 struct swap_cluster_info *ci;
782 unsigned long offset;
783 unsigned long scan_base;
784 unsigned long last_in_cluster = 0;
785 int latency_ration = LATENCY_LIMIT;
786 int n_ret = 0;
787 bool scanned_many = false;
788
789 /*
790 * We try to cluster swap pages by allocating them sequentially
791 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
792 * way, however, we resort to first-free allocation, starting
793 * a new cluster. This prevents us from scattering swap pages
794 * all over the entire swap partition, so that we reduce
795 * overall disk seek times between swap pages. -- sct
796 * But we do now try to find an empty cluster. -Andrea
797 * And we let swap pages go all over an SSD partition. Hugh
798 */
799
800 si->flags += SWP_SCANNING;
801 /*
802 * Use percpu scan base for SSD to reduce lock contention on
803 * cluster and swap cache. For HDD, sequential access is more
804 * important.
805 */
806 if (si->flags & SWP_SOLIDSTATE)
807 scan_base = this_cpu_read(*si->cluster_next_cpu);
808 else
809 scan_base = si->cluster_next;
810 offset = scan_base;
811
812 /* SSD algorithm */
813 if (si->cluster_info) {
814 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815 goto scan;
816 } else if (unlikely(!si->cluster_nr--)) {
817 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818 si->cluster_nr = SWAPFILE_CLUSTER - 1;
819 goto checks;
820 }
821
822 spin_unlock(&si->lock);
823
824 /*
825 * If seek is expensive, start searching for new cluster from
826 * start of partition, to minimize the span of allocated swap.
827 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828 * case, just handled by scan_swap_map_try_ssd_cluster() above.
829 */
830 scan_base = offset = si->lowest_bit;
831 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
832
833 /* Locate the first empty (unaligned) cluster */
834 for (; last_in_cluster <= si->highest_bit; offset++) {
835 if (si->swap_map[offset])
836 last_in_cluster = offset + SWAPFILE_CLUSTER;
837 else if (offset == last_in_cluster) {
838 spin_lock(&si->lock);
839 offset -= SWAPFILE_CLUSTER - 1;
840 si->cluster_next = offset;
841 si->cluster_nr = SWAPFILE_CLUSTER - 1;
842 goto checks;
843 }
844 if (unlikely(--latency_ration < 0)) {
845 cond_resched();
846 latency_ration = LATENCY_LIMIT;
847 }
848 }
849
850 offset = scan_base;
851 spin_lock(&si->lock);
852 si->cluster_nr = SWAPFILE_CLUSTER - 1;
853 }
854
855 checks:
856 if (si->cluster_info) {
857 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858 /* take a break if we already got some slots */
859 if (n_ret)
860 goto done;
861 if (!scan_swap_map_try_ssd_cluster(si, &offset,
862 &scan_base))
863 goto scan;
864 }
865 }
866 if (!(si->flags & SWP_WRITEOK))
867 goto no_page;
868 if (!si->highest_bit)
869 goto no_page;
870 if (offset > si->highest_bit)
871 scan_base = offset = si->lowest_bit;
872
873 ci = lock_cluster(si, offset);
874 /* reuse swap entry of cache-only swap if not busy. */
875 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
876 int swap_was_freed;
877 unlock_cluster(ci);
878 spin_unlock(&si->lock);
879 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
880 spin_lock(&si->lock);
881 /* entry was freed successfully, try to use this again */
882 if (swap_was_freed)
883 goto checks;
884 goto scan; /* check next one */
885 }
886
887 if (si->swap_map[offset]) {
888 unlock_cluster(ci);
889 if (!n_ret)
890 goto scan;
891 else
892 goto done;
893 }
894 WRITE_ONCE(si->swap_map[offset], usage);
895 inc_cluster_info_page(si, si->cluster_info, offset);
896 unlock_cluster(ci);
897
898 swap_range_alloc(si, offset, 1);
899 slots[n_ret++] = swp_entry(si->type, offset);
900
901 /* got enough slots or reach max slots? */
902 if ((n_ret == nr) || (offset >= si->highest_bit))
903 goto done;
904
905 /* search for next available slot */
906
907 /* time to take a break? */
908 if (unlikely(--latency_ration < 0)) {
909 if (n_ret)
910 goto done;
911 spin_unlock(&si->lock);
912 cond_resched();
913 spin_lock(&si->lock);
914 latency_ration = LATENCY_LIMIT;
915 }
916
917 /* try to get more slots in cluster */
918 if (si->cluster_info) {
919 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
920 goto checks;
921 } else if (si->cluster_nr && !si->swap_map[++offset]) {
922 /* non-ssd case, still more slots in cluster? */
923 --si->cluster_nr;
924 goto checks;
925 }
926
927 /*
928 * Even if there's no free clusters available (fragmented),
929 * try to scan a little more quickly with lock held unless we
930 * have scanned too many slots already.
931 */
932 if (!scanned_many) {
933 unsigned long scan_limit;
934
935 if (offset < scan_base)
936 scan_limit = scan_base;
937 else
938 scan_limit = si->highest_bit;
939 for (; offset <= scan_limit && --latency_ration > 0;
940 offset++) {
941 if (!si->swap_map[offset])
942 goto checks;
943 }
944 }
945
946 done:
947 set_cluster_next(si, offset + 1);
948 si->flags -= SWP_SCANNING;
949 return n_ret;
950
951 scan:
952 spin_unlock(&si->lock);
953 while (++offset <= READ_ONCE(si->highest_bit)) {
954 if (data_race(!si->swap_map[offset])) {
955 spin_lock(&si->lock);
956 goto checks;
957 }
958 if (vm_swap_full() &&
959 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
960 spin_lock(&si->lock);
961 goto checks;
962 }
963 if (unlikely(--latency_ration < 0)) {
964 cond_resched();
965 latency_ration = LATENCY_LIMIT;
966 scanned_many = true;
967 }
968 }
969 offset = si->lowest_bit;
970 while (offset < scan_base) {
971 if (data_race(!si->swap_map[offset])) {
972 spin_lock(&si->lock);
973 goto checks;
974 }
975 if (vm_swap_full() &&
976 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
977 spin_lock(&si->lock);
978 goto checks;
979 }
980 if (unlikely(--latency_ration < 0)) {
981 cond_resched();
982 latency_ration = LATENCY_LIMIT;
983 scanned_many = true;
984 }
985 offset++;
986 }
987 spin_lock(&si->lock);
988
989 no_page:
990 si->flags -= SWP_SCANNING;
991 return n_ret;
992 }
993
994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
995 {
996 unsigned long idx;
997 struct swap_cluster_info *ci;
998 unsigned long offset;
999
1000 /*
1001 * Should not even be attempting cluster allocations when huge
1002 * page swap is disabled. Warn and fail the allocation.
1003 */
1004 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005 VM_WARN_ON_ONCE(1);
1006 return 0;
1007 }
1008
1009 if (cluster_list_empty(&si->free_clusters))
1010 return 0;
1011
1012 idx = cluster_list_first(&si->free_clusters);
1013 offset = idx * SWAPFILE_CLUSTER;
1014 ci = lock_cluster(si, offset);
1015 alloc_cluster(si, idx);
1016 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017
1018 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019 unlock_cluster(ci);
1020 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021 *slot = swp_entry(si->type, offset);
1022
1023 return 1;
1024 }
1025
1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027 {
1028 unsigned long offset = idx * SWAPFILE_CLUSTER;
1029 struct swap_cluster_info *ci;
1030
1031 ci = lock_cluster(si, offset);
1032 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033 cluster_set_count_flag(ci, 0, 0);
1034 free_cluster(si, idx);
1035 unlock_cluster(ci);
1036 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037 }
1038
1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1040 {
1041 unsigned long size = swap_entry_size(entry_size);
1042 struct swap_info_struct *si, *next;
1043 long avail_pgs;
1044 int n_ret = 0;
1045 int node;
1046
1047 /* Only single cluster request supported */
1048 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049
1050 spin_lock(&swap_avail_lock);
1051
1052 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053 if (avail_pgs <= 0) {
1054 spin_unlock(&swap_avail_lock);
1055 goto noswap;
1056 }
1057
1058 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059
1060 atomic_long_sub(n_goal * size, &nr_swap_pages);
1061
1062 start_over:
1063 node = numa_node_id();
1064 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065 /* requeue si to after same-priority siblings */
1066 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067 spin_unlock(&swap_avail_lock);
1068 spin_lock(&si->lock);
1069 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070 spin_lock(&swap_avail_lock);
1071 if (plist_node_empty(&si->avail_lists[node])) {
1072 spin_unlock(&si->lock);
1073 goto nextsi;
1074 }
1075 WARN(!si->highest_bit,
1076 "swap_info %d in list but !highest_bit\n",
1077 si->type);
1078 WARN(!(si->flags & SWP_WRITEOK),
1079 "swap_info %d in list but !SWP_WRITEOK\n",
1080 si->type);
1081 __del_from_avail_list(si);
1082 spin_unlock(&si->lock);
1083 goto nextsi;
1084 }
1085 if (size == SWAPFILE_CLUSTER) {
1086 if (si->flags & SWP_BLKDEV)
1087 n_ret = swap_alloc_cluster(si, swp_entries);
1088 } else
1089 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090 n_goal, swp_entries);
1091 spin_unlock(&si->lock);
1092 if (n_ret || size == SWAPFILE_CLUSTER)
1093 goto check_out;
1094 pr_debug("scan_swap_map of si %d failed to find offset\n",
1095 si->type);
1096
1097 spin_lock(&swap_avail_lock);
1098 nextsi:
1099 /*
1100 * if we got here, it's likely that si was almost full before,
1101 * and since scan_swap_map_slots() can drop the si->lock,
1102 * multiple callers probably all tried to get a page from the
1103 * same si and it filled up before we could get one; or, the si
1104 * filled up between us dropping swap_avail_lock and taking
1105 * si->lock. Since we dropped the swap_avail_lock, the
1106 * swap_avail_head list may have been modified; so if next is
1107 * still in the swap_avail_head list then try it, otherwise
1108 * start over if we have not gotten any slots.
1109 */
1110 if (plist_node_empty(&next->avail_lists[node]))
1111 goto start_over;
1112 }
1113
1114 spin_unlock(&swap_avail_lock);
1115
1116 check_out:
1117 if (n_ret < n_goal)
1118 atomic_long_add((long)(n_goal - n_ret) * size,
1119 &nr_swap_pages);
1120 noswap:
1121 return n_ret;
1122 }
1123
1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1125 {
1126 struct swap_info_struct *p;
1127 unsigned long offset;
1128
1129 if (!entry.val)
1130 goto out;
1131 p = swp_swap_info(entry);
1132 if (!p)
1133 goto bad_nofile;
1134 if (data_race(!(p->flags & SWP_USED)))
1135 goto bad_device;
1136 offset = swp_offset(entry);
1137 if (offset >= p->max)
1138 goto bad_offset;
1139 return p;
1140
1141 bad_offset:
1142 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143 goto out;
1144 bad_device:
1145 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146 goto out;
1147 bad_nofile:
1148 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149 out:
1150 return NULL;
1151 }
1152
1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154 {
1155 struct swap_info_struct *p;
1156
1157 p = __swap_info_get(entry);
1158 if (!p)
1159 goto out;
1160 if (data_race(!p->swap_map[swp_offset(entry)]))
1161 goto bad_free;
1162 return p;
1163
1164 bad_free:
1165 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166 out:
1167 return NULL;
1168 }
1169
1170 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1171 {
1172 struct swap_info_struct *p;
1173
1174 p = _swap_info_get(entry);
1175 if (p)
1176 spin_lock(&p->lock);
1177 return p;
1178 }
1179
1180 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1181 struct swap_info_struct *q)
1182 {
1183 struct swap_info_struct *p;
1184
1185 p = _swap_info_get(entry);
1186
1187 if (p != q) {
1188 if (q != NULL)
1189 spin_unlock(&q->lock);
1190 if (p != NULL)
1191 spin_lock(&p->lock);
1192 }
1193 return p;
1194 }
1195
1196 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1197 unsigned long offset,
1198 unsigned char usage)
1199 {
1200 unsigned char count;
1201 unsigned char has_cache;
1202
1203 count = p->swap_map[offset];
1204
1205 has_cache = count & SWAP_HAS_CACHE;
1206 count &= ~SWAP_HAS_CACHE;
1207
1208 if (usage == SWAP_HAS_CACHE) {
1209 VM_BUG_ON(!has_cache);
1210 has_cache = 0;
1211 } else if (count == SWAP_MAP_SHMEM) {
1212 /*
1213 * Or we could insist on shmem.c using a special
1214 * swap_shmem_free() and free_shmem_swap_and_cache()...
1215 */
1216 count = 0;
1217 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1218 if (count == COUNT_CONTINUED) {
1219 if (swap_count_continued(p, offset, count))
1220 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1221 else
1222 count = SWAP_MAP_MAX;
1223 } else
1224 count--;
1225 }
1226
1227 usage = count | has_cache;
1228 if (usage)
1229 WRITE_ONCE(p->swap_map[offset], usage);
1230 else
1231 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1232
1233 return usage;
1234 }
1235
1236 /*
1237 * Check whether swap entry is valid in the swap device. If so,
1238 * return pointer to swap_info_struct, and keep the swap entry valid
1239 * via preventing the swap device from being swapoff, until
1240 * put_swap_device() is called. Otherwise return NULL.
1241 *
1242 * Notice that swapoff or swapoff+swapon can still happen before the
1243 * percpu_ref_tryget_live() in get_swap_device() or after the
1244 * percpu_ref_put() in put_swap_device() if there isn't any other way
1245 * to prevent swapoff, such as page lock, page table lock, etc. The
1246 * caller must be prepared for that. For example, the following
1247 * situation is possible.
1248 *
1249 * CPU1 CPU2
1250 * do_swap_page()
1251 * ... swapoff+swapon
1252 * __read_swap_cache_async()
1253 * swapcache_prepare()
1254 * __swap_duplicate()
1255 * // check swap_map
1256 * // verify PTE not changed
1257 *
1258 * In __swap_duplicate(), the swap_map need to be checked before
1259 * changing partly because the specified swap entry may be for another
1260 * swap device which has been swapoff. And in do_swap_page(), after
1261 * the page is read from the swap device, the PTE is verified not
1262 * changed with the page table locked to check whether the swap device
1263 * has been swapoff or swapoff+swapon.
1264 */
1265 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1266 {
1267 struct swap_info_struct *si;
1268 unsigned long offset;
1269
1270 if (!entry.val)
1271 goto out;
1272 si = swp_swap_info(entry);
1273 if (!si)
1274 goto bad_nofile;
1275 if (!percpu_ref_tryget_live(&si->users))
1276 goto out;
1277 /*
1278 * Guarantee the si->users are checked before accessing other
1279 * fields of swap_info_struct.
1280 *
1281 * Paired with the spin_unlock() after setup_swap_info() in
1282 * enable_swap_info().
1283 */
1284 smp_rmb();
1285 offset = swp_offset(entry);
1286 if (offset >= si->max)
1287 goto put_out;
1288
1289 return si;
1290 bad_nofile:
1291 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1292 out:
1293 return NULL;
1294 put_out:
1295 percpu_ref_put(&si->users);
1296 return NULL;
1297 }
1298
1299 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1300 swp_entry_t entry)
1301 {
1302 struct swap_cluster_info *ci;
1303 unsigned long offset = swp_offset(entry);
1304 unsigned char usage;
1305
1306 ci = lock_cluster_or_swap_info(p, offset);
1307 usage = __swap_entry_free_locked(p, offset, 1);
1308 unlock_cluster_or_swap_info(p, ci);
1309 if (!usage)
1310 free_swap_slot(entry);
1311
1312 return usage;
1313 }
1314
1315 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1316 {
1317 struct swap_cluster_info *ci;
1318 unsigned long offset = swp_offset(entry);
1319 unsigned char count;
1320
1321 ci = lock_cluster(p, offset);
1322 count = p->swap_map[offset];
1323 VM_BUG_ON(count != SWAP_HAS_CACHE);
1324 p->swap_map[offset] = 0;
1325 dec_cluster_info_page(p, p->cluster_info, offset);
1326 unlock_cluster(ci);
1327
1328 mem_cgroup_uncharge_swap(entry, 1);
1329 swap_range_free(p, offset, 1);
1330 }
1331
1332 /*
1333 * Caller has made sure that the swap device corresponding to entry
1334 * is still around or has not been recycled.
1335 */
1336 void swap_free(swp_entry_t entry)
1337 {
1338 struct swap_info_struct *p;
1339
1340 p = _swap_info_get(entry);
1341 if (p)
1342 __swap_entry_free(p, entry);
1343 }
1344
1345 /*
1346 * Called after dropping swapcache to decrease refcnt to swap entries.
1347 */
1348 void put_swap_page(struct page *page, swp_entry_t entry)
1349 {
1350 unsigned long offset = swp_offset(entry);
1351 unsigned long idx = offset / SWAPFILE_CLUSTER;
1352 struct swap_cluster_info *ci;
1353 struct swap_info_struct *si;
1354 unsigned char *map;
1355 unsigned int i, free_entries = 0;
1356 unsigned char val;
1357 int size = swap_entry_size(thp_nr_pages(page));
1358
1359 si = _swap_info_get(entry);
1360 if (!si)
1361 return;
1362
1363 ci = lock_cluster_or_swap_info(si, offset);
1364 if (size == SWAPFILE_CLUSTER) {
1365 VM_BUG_ON(!cluster_is_huge(ci));
1366 map = si->swap_map + offset;
1367 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1368 val = map[i];
1369 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1370 if (val == SWAP_HAS_CACHE)
1371 free_entries++;
1372 }
1373 cluster_clear_huge(ci);
1374 if (free_entries == SWAPFILE_CLUSTER) {
1375 unlock_cluster_or_swap_info(si, ci);
1376 spin_lock(&si->lock);
1377 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1378 swap_free_cluster(si, idx);
1379 spin_unlock(&si->lock);
1380 return;
1381 }
1382 }
1383 for (i = 0; i < size; i++, entry.val++) {
1384 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1385 unlock_cluster_or_swap_info(si, ci);
1386 free_swap_slot(entry);
1387 if (i == size - 1)
1388 return;
1389 lock_cluster_or_swap_info(si, offset);
1390 }
1391 }
1392 unlock_cluster_or_swap_info(si, ci);
1393 }
1394
1395 #ifdef CONFIG_THP_SWAP
1396 int split_swap_cluster(swp_entry_t entry)
1397 {
1398 struct swap_info_struct *si;
1399 struct swap_cluster_info *ci;
1400 unsigned long offset = swp_offset(entry);
1401
1402 si = _swap_info_get(entry);
1403 if (!si)
1404 return -EBUSY;
1405 ci = lock_cluster(si, offset);
1406 cluster_clear_huge(ci);
1407 unlock_cluster(ci);
1408 return 0;
1409 }
1410 #endif
1411
1412 static int swp_entry_cmp(const void *ent1, const void *ent2)
1413 {
1414 const swp_entry_t *e1 = ent1, *e2 = ent2;
1415
1416 return (int)swp_type(*e1) - (int)swp_type(*e2);
1417 }
1418
1419 void swapcache_free_entries(swp_entry_t *entries, int n)
1420 {
1421 struct swap_info_struct *p, *prev;
1422 int i;
1423
1424 if (n <= 0)
1425 return;
1426
1427 prev = NULL;
1428 p = NULL;
1429
1430 /*
1431 * Sort swap entries by swap device, so each lock is only taken once.
1432 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1433 * so low that it isn't necessary to optimize further.
1434 */
1435 if (nr_swapfiles > 1)
1436 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1437 for (i = 0; i < n; ++i) {
1438 p = swap_info_get_cont(entries[i], prev);
1439 if (p)
1440 swap_entry_free(p, entries[i]);
1441 prev = p;
1442 }
1443 if (p)
1444 spin_unlock(&p->lock);
1445 }
1446
1447 /*
1448 * How many references to page are currently swapped out?
1449 * This does not give an exact answer when swap count is continued,
1450 * but does include the high COUNT_CONTINUED flag to allow for that.
1451 */
1452 int page_swapcount(struct page *page)
1453 {
1454 int count = 0;
1455 struct swap_info_struct *p;
1456 struct swap_cluster_info *ci;
1457 swp_entry_t entry;
1458 unsigned long offset;
1459
1460 entry.val = page_private(page);
1461 p = _swap_info_get(entry);
1462 if (p) {
1463 offset = swp_offset(entry);
1464 ci = lock_cluster_or_swap_info(p, offset);
1465 count = swap_count(p->swap_map[offset]);
1466 unlock_cluster_or_swap_info(p, ci);
1467 }
1468 return count;
1469 }
1470
1471 int __swap_count(swp_entry_t entry)
1472 {
1473 struct swap_info_struct *si;
1474 pgoff_t offset = swp_offset(entry);
1475 int count = 0;
1476
1477 si = get_swap_device(entry);
1478 if (si) {
1479 count = swap_count(si->swap_map[offset]);
1480 put_swap_device(si);
1481 }
1482 return count;
1483 }
1484
1485 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1486 {
1487 int count = 0;
1488 pgoff_t offset = swp_offset(entry);
1489 struct swap_cluster_info *ci;
1490
1491 ci = lock_cluster_or_swap_info(si, offset);
1492 count = swap_count(si->swap_map[offset]);
1493 unlock_cluster_or_swap_info(si, ci);
1494 return count;
1495 }
1496
1497 /*
1498 * How many references to @entry are currently swapped out?
1499 * This does not give an exact answer when swap count is continued,
1500 * but does include the high COUNT_CONTINUED flag to allow for that.
1501 */
1502 int __swp_swapcount(swp_entry_t entry)
1503 {
1504 int count = 0;
1505 struct swap_info_struct *si;
1506
1507 si = get_swap_device(entry);
1508 if (si) {
1509 count = swap_swapcount(si, entry);
1510 put_swap_device(si);
1511 }
1512 return count;
1513 }
1514
1515 /*
1516 * How many references to @entry are currently swapped out?
1517 * This considers COUNT_CONTINUED so it returns exact answer.
1518 */
1519 int swp_swapcount(swp_entry_t entry)
1520 {
1521 int count, tmp_count, n;
1522 struct swap_info_struct *p;
1523 struct swap_cluster_info *ci;
1524 struct page *page;
1525 pgoff_t offset;
1526 unsigned char *map;
1527
1528 p = _swap_info_get(entry);
1529 if (!p)
1530 return 0;
1531
1532 offset = swp_offset(entry);
1533
1534 ci = lock_cluster_or_swap_info(p, offset);
1535
1536 count = swap_count(p->swap_map[offset]);
1537 if (!(count & COUNT_CONTINUED))
1538 goto out;
1539
1540 count &= ~COUNT_CONTINUED;
1541 n = SWAP_MAP_MAX + 1;
1542
1543 page = vmalloc_to_page(p->swap_map + offset);
1544 offset &= ~PAGE_MASK;
1545 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1546
1547 do {
1548 page = list_next_entry(page, lru);
1549 map = kmap_atomic(page);
1550 tmp_count = map[offset];
1551 kunmap_atomic(map);
1552
1553 count += (tmp_count & ~COUNT_CONTINUED) * n;
1554 n *= (SWAP_CONT_MAX + 1);
1555 } while (tmp_count & COUNT_CONTINUED);
1556 out:
1557 unlock_cluster_or_swap_info(p, ci);
1558 return count;
1559 }
1560
1561 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1562 swp_entry_t entry)
1563 {
1564 struct swap_cluster_info *ci;
1565 unsigned char *map = si->swap_map;
1566 unsigned long roffset = swp_offset(entry);
1567 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1568 int i;
1569 bool ret = false;
1570
1571 ci = lock_cluster_or_swap_info(si, offset);
1572 if (!ci || !cluster_is_huge(ci)) {
1573 if (swap_count(map[roffset]))
1574 ret = true;
1575 goto unlock_out;
1576 }
1577 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1578 if (swap_count(map[offset + i])) {
1579 ret = true;
1580 break;
1581 }
1582 }
1583 unlock_out:
1584 unlock_cluster_or_swap_info(si, ci);
1585 return ret;
1586 }
1587
1588 static bool page_swapped(struct page *page)
1589 {
1590 swp_entry_t entry;
1591 struct swap_info_struct *si;
1592
1593 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1594 return page_swapcount(page) != 0;
1595
1596 page = compound_head(page);
1597 entry.val = page_private(page);
1598 si = _swap_info_get(entry);
1599 if (si)
1600 return swap_page_trans_huge_swapped(si, entry);
1601 return false;
1602 }
1603
1604 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1605 int *total_swapcount)
1606 {
1607 int i, map_swapcount, _total_mapcount, _total_swapcount;
1608 unsigned long offset = 0;
1609 struct swap_info_struct *si;
1610 struct swap_cluster_info *ci = NULL;
1611 unsigned char *map = NULL;
1612 int mapcount, swapcount = 0;
1613
1614 /* hugetlbfs shouldn't call it */
1615 VM_BUG_ON_PAGE(PageHuge(page), page);
1616
1617 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1618 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1619 if (PageSwapCache(page))
1620 swapcount = page_swapcount(page);
1621 if (total_swapcount)
1622 *total_swapcount = swapcount;
1623 return mapcount + swapcount;
1624 }
1625
1626 page = compound_head(page);
1627
1628 _total_mapcount = _total_swapcount = map_swapcount = 0;
1629 if (PageSwapCache(page)) {
1630 swp_entry_t entry;
1631
1632 entry.val = page_private(page);
1633 si = _swap_info_get(entry);
1634 if (si) {
1635 map = si->swap_map;
1636 offset = swp_offset(entry);
1637 }
1638 }
1639 if (map)
1640 ci = lock_cluster(si, offset);
1641 for (i = 0; i < HPAGE_PMD_NR; i++) {
1642 mapcount = atomic_read(&page[i]._mapcount) + 1;
1643 _total_mapcount += mapcount;
1644 if (map) {
1645 swapcount = swap_count(map[offset + i]);
1646 _total_swapcount += swapcount;
1647 }
1648 map_swapcount = max(map_swapcount, mapcount + swapcount);
1649 }
1650 unlock_cluster(ci);
1651 if (PageDoubleMap(page)) {
1652 map_swapcount -= 1;
1653 _total_mapcount -= HPAGE_PMD_NR;
1654 }
1655 mapcount = compound_mapcount(page);
1656 map_swapcount += mapcount;
1657 _total_mapcount += mapcount;
1658 if (total_mapcount)
1659 *total_mapcount = _total_mapcount;
1660 if (total_swapcount)
1661 *total_swapcount = _total_swapcount;
1662
1663 return map_swapcount;
1664 }
1665
1666 /*
1667 * We can write to an anon page without COW if there are no other references
1668 * to it. And as a side-effect, free up its swap: because the old content
1669 * on disk will never be read, and seeking back there to write new content
1670 * later would only waste time away from clustering.
1671 *
1672 * NOTE: total_map_swapcount should not be relied upon by the caller if
1673 * reuse_swap_page() returns false, but it may be always overwritten
1674 * (see the other implementation for CONFIG_SWAP=n).
1675 */
1676 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1677 {
1678 int count, total_mapcount, total_swapcount;
1679
1680 VM_BUG_ON_PAGE(!PageLocked(page), page);
1681 if (unlikely(PageKsm(page)))
1682 return false;
1683 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1684 &total_swapcount);
1685 if (total_map_swapcount)
1686 *total_map_swapcount = total_mapcount + total_swapcount;
1687 if (count == 1 && PageSwapCache(page) &&
1688 (likely(!PageTransCompound(page)) ||
1689 /* The remaining swap count will be freed soon */
1690 total_swapcount == page_swapcount(page))) {
1691 if (!PageWriteback(page)) {
1692 page = compound_head(page);
1693 delete_from_swap_cache(page);
1694 SetPageDirty(page);
1695 } else {
1696 swp_entry_t entry;
1697 struct swap_info_struct *p;
1698
1699 entry.val = page_private(page);
1700 p = swap_info_get(entry);
1701 if (p->flags & SWP_STABLE_WRITES) {
1702 spin_unlock(&p->lock);
1703 return false;
1704 }
1705 spin_unlock(&p->lock);
1706 }
1707 }
1708
1709 return count <= 1;
1710 }
1711
1712 /*
1713 * If swap is getting full, or if there are no more mappings of this page,
1714 * then try_to_free_swap is called to free its swap space.
1715 */
1716 int try_to_free_swap(struct page *page)
1717 {
1718 VM_BUG_ON_PAGE(!PageLocked(page), page);
1719
1720 if (!PageSwapCache(page))
1721 return 0;
1722 if (PageWriteback(page))
1723 return 0;
1724 if (page_swapped(page))
1725 return 0;
1726
1727 /*
1728 * Once hibernation has begun to create its image of memory,
1729 * there's a danger that one of the calls to try_to_free_swap()
1730 * - most probably a call from __try_to_reclaim_swap() while
1731 * hibernation is allocating its own swap pages for the image,
1732 * but conceivably even a call from memory reclaim - will free
1733 * the swap from a page which has already been recorded in the
1734 * image as a clean swapcache page, and then reuse its swap for
1735 * another page of the image. On waking from hibernation, the
1736 * original page might be freed under memory pressure, then
1737 * later read back in from swap, now with the wrong data.
1738 *
1739 * Hibernation suspends storage while it is writing the image
1740 * to disk so check that here.
1741 */
1742 if (pm_suspended_storage())
1743 return 0;
1744
1745 page = compound_head(page);
1746 delete_from_swap_cache(page);
1747 SetPageDirty(page);
1748 return 1;
1749 }
1750
1751 /*
1752 * Free the swap entry like above, but also try to
1753 * free the page cache entry if it is the last user.
1754 */
1755 int free_swap_and_cache(swp_entry_t entry)
1756 {
1757 struct swap_info_struct *p;
1758 unsigned char count;
1759
1760 if (non_swap_entry(entry))
1761 return 1;
1762
1763 p = _swap_info_get(entry);
1764 if (p) {
1765 count = __swap_entry_free(p, entry);
1766 if (count == SWAP_HAS_CACHE &&
1767 !swap_page_trans_huge_swapped(p, entry))
1768 __try_to_reclaim_swap(p, swp_offset(entry),
1769 TTRS_UNMAPPED | TTRS_FULL);
1770 }
1771 return p != NULL;
1772 }
1773
1774 #ifdef CONFIG_HIBERNATION
1775
1776 swp_entry_t get_swap_page_of_type(int type)
1777 {
1778 struct swap_info_struct *si = swap_type_to_swap_info(type);
1779 swp_entry_t entry = {0};
1780
1781 if (!si)
1782 goto fail;
1783
1784 /* This is called for allocating swap entry, not cache */
1785 spin_lock(&si->lock);
1786 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1787 atomic_long_dec(&nr_swap_pages);
1788 spin_unlock(&si->lock);
1789 fail:
1790 return entry;
1791 }
1792
1793 /*
1794 * Find the swap type that corresponds to given device (if any).
1795 *
1796 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1797 * from 0, in which the swap header is expected to be located.
1798 *
1799 * This is needed for the suspend to disk (aka swsusp).
1800 */
1801 int swap_type_of(dev_t device, sector_t offset)
1802 {
1803 int type;
1804
1805 if (!device)
1806 return -1;
1807
1808 spin_lock(&swap_lock);
1809 for (type = 0; type < nr_swapfiles; type++) {
1810 struct swap_info_struct *sis = swap_info[type];
1811
1812 if (!(sis->flags & SWP_WRITEOK))
1813 continue;
1814
1815 if (device == sis->bdev->bd_dev) {
1816 struct swap_extent *se = first_se(sis);
1817
1818 if (se->start_block == offset) {
1819 spin_unlock(&swap_lock);
1820 return type;
1821 }
1822 }
1823 }
1824 spin_unlock(&swap_lock);
1825 return -ENODEV;
1826 }
1827
1828 int find_first_swap(dev_t *device)
1829 {
1830 int type;
1831
1832 spin_lock(&swap_lock);
1833 for (type = 0; type < nr_swapfiles; type++) {
1834 struct swap_info_struct *sis = swap_info[type];
1835
1836 if (!(sis->flags & SWP_WRITEOK))
1837 continue;
1838 *device = sis->bdev->bd_dev;
1839 spin_unlock(&swap_lock);
1840 return type;
1841 }
1842 spin_unlock(&swap_lock);
1843 return -ENODEV;
1844 }
1845
1846 /*
1847 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1848 * corresponding to given index in swap_info (swap type).
1849 */
1850 sector_t swapdev_block(int type, pgoff_t offset)
1851 {
1852 struct swap_info_struct *si = swap_type_to_swap_info(type);
1853 struct swap_extent *se;
1854
1855 if (!si || !(si->flags & SWP_WRITEOK))
1856 return 0;
1857 se = offset_to_swap_extent(si, offset);
1858 return se->start_block + (offset - se->start_page);
1859 }
1860
1861 /*
1862 * Return either the total number of swap pages of given type, or the number
1863 * of free pages of that type (depending on @free)
1864 *
1865 * This is needed for software suspend
1866 */
1867 unsigned int count_swap_pages(int type, int free)
1868 {
1869 unsigned int n = 0;
1870
1871 spin_lock(&swap_lock);
1872 if ((unsigned int)type < nr_swapfiles) {
1873 struct swap_info_struct *sis = swap_info[type];
1874
1875 spin_lock(&sis->lock);
1876 if (sis->flags & SWP_WRITEOK) {
1877 n = sis->pages;
1878 if (free)
1879 n -= sis->inuse_pages;
1880 }
1881 spin_unlock(&sis->lock);
1882 }
1883 spin_unlock(&swap_lock);
1884 return n;
1885 }
1886 #endif /* CONFIG_HIBERNATION */
1887
1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1889 {
1890 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1891 }
1892
1893 /*
1894 * No need to decide whether this PTE shares the swap entry with others,
1895 * just let do_wp_page work it out if a write is requested later - to
1896 * force COW, vm_page_prot omits write permission from any private vma.
1897 */
1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899 unsigned long addr, swp_entry_t entry, struct page *page)
1900 {
1901 struct page *swapcache;
1902 spinlock_t *ptl;
1903 pte_t *pte;
1904 int ret = 1;
1905
1906 swapcache = page;
1907 page = ksm_might_need_to_copy(page, vma, addr);
1908 if (unlikely(!page))
1909 return -ENOMEM;
1910
1911 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913 ret = 0;
1914 goto out;
1915 }
1916
1917 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919 get_page(page);
1920 set_pte_at(vma->vm_mm, addr, pte,
1921 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922 if (page == swapcache) {
1923 page_add_anon_rmap(page, vma, addr, false);
1924 } else { /* ksm created a completely new copy */
1925 page_add_new_anon_rmap(page, vma, addr, false);
1926 lru_cache_add_inactive_or_unevictable(page, vma);
1927 }
1928 swap_free(entry);
1929 out:
1930 pte_unmap_unlock(pte, ptl);
1931 if (page != swapcache) {
1932 unlock_page(page);
1933 put_page(page);
1934 }
1935 return ret;
1936 }
1937
1938 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939 unsigned long addr, unsigned long end,
1940 unsigned int type, bool frontswap,
1941 unsigned long *fs_pages_to_unuse)
1942 {
1943 struct page *page;
1944 swp_entry_t entry;
1945 pte_t *pte;
1946 struct swap_info_struct *si;
1947 unsigned long offset;
1948 int ret = 0;
1949 volatile unsigned char *swap_map;
1950
1951 si = swap_info[type];
1952 pte = pte_offset_map(pmd, addr);
1953 do {
1954 if (!is_swap_pte(*pte))
1955 continue;
1956
1957 entry = pte_to_swp_entry(*pte);
1958 if (swp_type(entry) != type)
1959 continue;
1960
1961 offset = swp_offset(entry);
1962 if (frontswap && !frontswap_test(si, offset))
1963 continue;
1964
1965 pte_unmap(pte);
1966 swap_map = &si->swap_map[offset];
1967 page = lookup_swap_cache(entry, vma, addr);
1968 if (!page) {
1969 struct vm_fault vmf = {
1970 .vma = vma,
1971 .address = addr,
1972 .pmd = pmd,
1973 };
1974
1975 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1976 &vmf);
1977 }
1978 if (!page) {
1979 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1980 goto try_next;
1981 return -ENOMEM;
1982 }
1983
1984 lock_page(page);
1985 wait_on_page_writeback(page);
1986 ret = unuse_pte(vma, pmd, addr, entry, page);
1987 if (ret < 0) {
1988 unlock_page(page);
1989 put_page(page);
1990 goto out;
1991 }
1992
1993 try_to_free_swap(page);
1994 unlock_page(page);
1995 put_page(page);
1996
1997 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1998 ret = FRONTSWAP_PAGES_UNUSED;
1999 goto out;
2000 }
2001 try_next:
2002 pte = pte_offset_map(pmd, addr);
2003 } while (pte++, addr += PAGE_SIZE, addr != end);
2004 pte_unmap(pte - 1);
2005
2006 ret = 0;
2007 out:
2008 return ret;
2009 }
2010
2011 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2012 unsigned long addr, unsigned long end,
2013 unsigned int type, bool frontswap,
2014 unsigned long *fs_pages_to_unuse)
2015 {
2016 pmd_t *pmd;
2017 unsigned long next;
2018 int ret;
2019
2020 pmd = pmd_offset(pud, addr);
2021 do {
2022 cond_resched();
2023 next = pmd_addr_end(addr, end);
2024 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2025 continue;
2026 ret = unuse_pte_range(vma, pmd, addr, next, type,
2027 frontswap, fs_pages_to_unuse);
2028 if (ret)
2029 return ret;
2030 } while (pmd++, addr = next, addr != end);
2031 return 0;
2032 }
2033
2034 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2035 unsigned long addr, unsigned long end,
2036 unsigned int type, bool frontswap,
2037 unsigned long *fs_pages_to_unuse)
2038 {
2039 pud_t *pud;
2040 unsigned long next;
2041 int ret;
2042
2043 pud = pud_offset(p4d, addr);
2044 do {
2045 next = pud_addr_end(addr, end);
2046 if (pud_none_or_clear_bad(pud))
2047 continue;
2048 ret = unuse_pmd_range(vma, pud, addr, next, type,
2049 frontswap, fs_pages_to_unuse);
2050 if (ret)
2051 return ret;
2052 } while (pud++, addr = next, addr != end);
2053 return 0;
2054 }
2055
2056 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2057 unsigned long addr, unsigned long end,
2058 unsigned int type, bool frontswap,
2059 unsigned long *fs_pages_to_unuse)
2060 {
2061 p4d_t *p4d;
2062 unsigned long next;
2063 int ret;
2064
2065 p4d = p4d_offset(pgd, addr);
2066 do {
2067 next = p4d_addr_end(addr, end);
2068 if (p4d_none_or_clear_bad(p4d))
2069 continue;
2070 ret = unuse_pud_range(vma, p4d, addr, next, type,
2071 frontswap, fs_pages_to_unuse);
2072 if (ret)
2073 return ret;
2074 } while (p4d++, addr = next, addr != end);
2075 return 0;
2076 }
2077
2078 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2079 bool frontswap, unsigned long *fs_pages_to_unuse)
2080 {
2081 pgd_t *pgd;
2082 unsigned long addr, end, next;
2083 int ret;
2084
2085 addr = vma->vm_start;
2086 end = vma->vm_end;
2087
2088 pgd = pgd_offset(vma->vm_mm, addr);
2089 do {
2090 next = pgd_addr_end(addr, end);
2091 if (pgd_none_or_clear_bad(pgd))
2092 continue;
2093 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2094 frontswap, fs_pages_to_unuse);
2095 if (ret)
2096 return ret;
2097 } while (pgd++, addr = next, addr != end);
2098 return 0;
2099 }
2100
2101 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2102 bool frontswap, unsigned long *fs_pages_to_unuse)
2103 {
2104 struct vm_area_struct *vma;
2105 int ret = 0;
2106
2107 mmap_read_lock(mm);
2108 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2109 if (vma->anon_vma) {
2110 ret = unuse_vma(vma, type, frontswap,
2111 fs_pages_to_unuse);
2112 if (ret)
2113 break;
2114 }
2115 cond_resched();
2116 }
2117 mmap_read_unlock(mm);
2118 return ret;
2119 }
2120
2121 /*
2122 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2123 * from current position to next entry still in use. Return 0
2124 * if there are no inuse entries after prev till end of the map.
2125 */
2126 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2127 unsigned int prev, bool frontswap)
2128 {
2129 unsigned int i;
2130 unsigned char count;
2131
2132 /*
2133 * No need for swap_lock here: we're just looking
2134 * for whether an entry is in use, not modifying it; false
2135 * hits are okay, and sys_swapoff() has already prevented new
2136 * allocations from this area (while holding swap_lock).
2137 */
2138 for (i = prev + 1; i < si->max; i++) {
2139 count = READ_ONCE(si->swap_map[i]);
2140 if (count && swap_count(count) != SWAP_MAP_BAD)
2141 if (!frontswap || frontswap_test(si, i))
2142 break;
2143 if ((i % LATENCY_LIMIT) == 0)
2144 cond_resched();
2145 }
2146
2147 if (i == si->max)
2148 i = 0;
2149
2150 return i;
2151 }
2152
2153 /*
2154 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2155 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2156 */
2157 int try_to_unuse(unsigned int type, bool frontswap,
2158 unsigned long pages_to_unuse)
2159 {
2160 struct mm_struct *prev_mm;
2161 struct mm_struct *mm;
2162 struct list_head *p;
2163 int retval = 0;
2164 struct swap_info_struct *si = swap_info[type];
2165 struct page *page;
2166 swp_entry_t entry;
2167 unsigned int i;
2168
2169 if (!READ_ONCE(si->inuse_pages))
2170 return 0;
2171
2172 if (!frontswap)
2173 pages_to_unuse = 0;
2174
2175 retry:
2176 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2177 if (retval)
2178 goto out;
2179
2180 prev_mm = &init_mm;
2181 mmget(prev_mm);
2182
2183 spin_lock(&mmlist_lock);
2184 p = &init_mm.mmlist;
2185 while (READ_ONCE(si->inuse_pages) &&
2186 !signal_pending(current) &&
2187 (p = p->next) != &init_mm.mmlist) {
2188
2189 mm = list_entry(p, struct mm_struct, mmlist);
2190 if (!mmget_not_zero(mm))
2191 continue;
2192 spin_unlock(&mmlist_lock);
2193 mmput(prev_mm);
2194 prev_mm = mm;
2195 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2196
2197 if (retval) {
2198 mmput(prev_mm);
2199 goto out;
2200 }
2201
2202 /*
2203 * Make sure that we aren't completely killing
2204 * interactive performance.
2205 */
2206 cond_resched();
2207 spin_lock(&mmlist_lock);
2208 }
2209 spin_unlock(&mmlist_lock);
2210
2211 mmput(prev_mm);
2212
2213 i = 0;
2214 while (READ_ONCE(si->inuse_pages) &&
2215 !signal_pending(current) &&
2216 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2217
2218 entry = swp_entry(type, i);
2219 page = find_get_page(swap_address_space(entry), i);
2220 if (!page)
2221 continue;
2222
2223 /*
2224 * It is conceivable that a racing task removed this page from
2225 * swap cache just before we acquired the page lock. The page
2226 * might even be back in swap cache on another swap area. But
2227 * that is okay, try_to_free_swap() only removes stale pages.
2228 */
2229 lock_page(page);
2230 wait_on_page_writeback(page);
2231 try_to_free_swap(page);
2232 unlock_page(page);
2233 put_page(page);
2234
2235 /*
2236 * For frontswap, we just need to unuse pages_to_unuse, if
2237 * it was specified. Need not check frontswap again here as
2238 * we already zeroed out pages_to_unuse if not frontswap.
2239 */
2240 if (pages_to_unuse && --pages_to_unuse == 0)
2241 goto out;
2242 }
2243
2244 /*
2245 * Lets check again to see if there are still swap entries in the map.
2246 * If yes, we would need to do retry the unuse logic again.
2247 * Under global memory pressure, swap entries can be reinserted back
2248 * into process space after the mmlist loop above passes over them.
2249 *
2250 * Limit the number of retries? No: when mmget_not_zero() above fails,
2251 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2252 * at its own independent pace; and even shmem_writepage() could have
2253 * been preempted after get_swap_page(), temporarily hiding that swap.
2254 * It's easy and robust (though cpu-intensive) just to keep retrying.
2255 */
2256 if (READ_ONCE(si->inuse_pages)) {
2257 if (!signal_pending(current))
2258 goto retry;
2259 retval = -EINTR;
2260 }
2261 out:
2262 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2263 }
2264
2265 /*
2266 * After a successful try_to_unuse, if no swap is now in use, we know
2267 * we can empty the mmlist. swap_lock must be held on entry and exit.
2268 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2269 * added to the mmlist just after page_duplicate - before would be racy.
2270 */
2271 static void drain_mmlist(void)
2272 {
2273 struct list_head *p, *next;
2274 unsigned int type;
2275
2276 for (type = 0; type < nr_swapfiles; type++)
2277 if (swap_info[type]->inuse_pages)
2278 return;
2279 spin_lock(&mmlist_lock);
2280 list_for_each_safe(p, next, &init_mm.mmlist)
2281 list_del_init(p);
2282 spin_unlock(&mmlist_lock);
2283 }
2284
2285 /*
2286 * Free all of a swapdev's extent information
2287 */
2288 static void destroy_swap_extents(struct swap_info_struct *sis)
2289 {
2290 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2291 struct rb_node *rb = sis->swap_extent_root.rb_node;
2292 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2293
2294 rb_erase(rb, &sis->swap_extent_root);
2295 kfree(se);
2296 }
2297
2298 if (sis->flags & SWP_ACTIVATED) {
2299 struct file *swap_file = sis->swap_file;
2300 struct address_space *mapping = swap_file->f_mapping;
2301
2302 sis->flags &= ~SWP_ACTIVATED;
2303 if (mapping->a_ops->swap_deactivate)
2304 mapping->a_ops->swap_deactivate(swap_file);
2305 }
2306 }
2307
2308 /*
2309 * Add a block range (and the corresponding page range) into this swapdev's
2310 * extent tree.
2311 *
2312 * This function rather assumes that it is called in ascending page order.
2313 */
2314 int
2315 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2316 unsigned long nr_pages, sector_t start_block)
2317 {
2318 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2319 struct swap_extent *se;
2320 struct swap_extent *new_se;
2321
2322 /*
2323 * place the new node at the right most since the
2324 * function is called in ascending page order.
2325 */
2326 while (*link) {
2327 parent = *link;
2328 link = &parent->rb_right;
2329 }
2330
2331 if (parent) {
2332 se = rb_entry(parent, struct swap_extent, rb_node);
2333 BUG_ON(se->start_page + se->nr_pages != start_page);
2334 if (se->start_block + se->nr_pages == start_block) {
2335 /* Merge it */
2336 se->nr_pages += nr_pages;
2337 return 0;
2338 }
2339 }
2340
2341 /* No merge, insert a new extent. */
2342 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2343 if (new_se == NULL)
2344 return -ENOMEM;
2345 new_se->start_page = start_page;
2346 new_se->nr_pages = nr_pages;
2347 new_se->start_block = start_block;
2348
2349 rb_link_node(&new_se->rb_node, parent, link);
2350 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2351 return 1;
2352 }
2353 EXPORT_SYMBOL_GPL(add_swap_extent);
2354
2355 /*
2356 * A `swap extent' is a simple thing which maps a contiguous range of pages
2357 * onto a contiguous range of disk blocks. An ordered list of swap extents
2358 * is built at swapon time and is then used at swap_writepage/swap_readpage
2359 * time for locating where on disk a page belongs.
2360 *
2361 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2362 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2363 * swap files identically.
2364 *
2365 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2366 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2367 * swapfiles are handled *identically* after swapon time.
2368 *
2369 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2370 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2371 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2372 * requirements, they are simply tossed out - we will never use those blocks
2373 * for swapping.
2374 *
2375 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2376 * prevents users from writing to the swap device, which will corrupt memory.
2377 *
2378 * The amount of disk space which a single swap extent represents varies.
2379 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2380 * extents in the list. To avoid much list walking, we cache the previous
2381 * search location in `curr_swap_extent', and start new searches from there.
2382 * This is extremely effective. The average number of iterations in
2383 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2384 */
2385 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2386 {
2387 struct file *swap_file = sis->swap_file;
2388 struct address_space *mapping = swap_file->f_mapping;
2389 struct inode *inode = mapping->host;
2390 int ret;
2391
2392 if (S_ISBLK(inode->i_mode)) {
2393 ret = add_swap_extent(sis, 0, sis->max, 0);
2394 *span = sis->pages;
2395 return ret;
2396 }
2397
2398 if (mapping->a_ops->swap_activate) {
2399 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2400 if (ret >= 0)
2401 sis->flags |= SWP_ACTIVATED;
2402 if (!ret) {
2403 sis->flags |= SWP_FS_OPS;
2404 ret = add_swap_extent(sis, 0, sis->max, 0);
2405 *span = sis->pages;
2406 }
2407 return ret;
2408 }
2409
2410 return generic_swapfile_activate(sis, swap_file, span);
2411 }
2412
2413 static int swap_node(struct swap_info_struct *p)
2414 {
2415 struct block_device *bdev;
2416
2417 if (p->bdev)
2418 bdev = p->bdev;
2419 else
2420 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2421
2422 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2423 }
2424
2425 static void setup_swap_info(struct swap_info_struct *p, int prio,
2426 unsigned char *swap_map,
2427 struct swap_cluster_info *cluster_info)
2428 {
2429 int i;
2430
2431 if (prio >= 0)
2432 p->prio = prio;
2433 else
2434 p->prio = --least_priority;
2435 /*
2436 * the plist prio is negated because plist ordering is
2437 * low-to-high, while swap ordering is high-to-low
2438 */
2439 p->list.prio = -p->prio;
2440 for_each_node(i) {
2441 if (p->prio >= 0)
2442 p->avail_lists[i].prio = -p->prio;
2443 else {
2444 if (swap_node(p) == i)
2445 p->avail_lists[i].prio = 1;
2446 else
2447 p->avail_lists[i].prio = -p->prio;
2448 }
2449 }
2450 p->swap_map = swap_map;
2451 p->cluster_info = cluster_info;
2452 }
2453
2454 static void _enable_swap_info(struct swap_info_struct *p)
2455 {
2456 p->flags |= SWP_WRITEOK;
2457 atomic_long_add(p->pages, &nr_swap_pages);
2458 total_swap_pages += p->pages;
2459
2460 assert_spin_locked(&swap_lock);
2461 /*
2462 * both lists are plists, and thus priority ordered.
2463 * swap_active_head needs to be priority ordered for swapoff(),
2464 * which on removal of any swap_info_struct with an auto-assigned
2465 * (i.e. negative) priority increments the auto-assigned priority
2466 * of any lower-priority swap_info_structs.
2467 * swap_avail_head needs to be priority ordered for get_swap_page(),
2468 * which allocates swap pages from the highest available priority
2469 * swap_info_struct.
2470 */
2471 plist_add(&p->list, &swap_active_head);
2472 add_to_avail_list(p);
2473 }
2474
2475 static void enable_swap_info(struct swap_info_struct *p, int prio,
2476 unsigned char *swap_map,
2477 struct swap_cluster_info *cluster_info,
2478 unsigned long *frontswap_map)
2479 {
2480 frontswap_init(p->type, frontswap_map);
2481 spin_lock(&swap_lock);
2482 spin_lock(&p->lock);
2483 setup_swap_info(p, prio, swap_map, cluster_info);
2484 spin_unlock(&p->lock);
2485 spin_unlock(&swap_lock);
2486 /*
2487 * Finished initializing swap device, now it's safe to reference it.
2488 */
2489 percpu_ref_resurrect(&p->users);
2490 spin_lock(&swap_lock);
2491 spin_lock(&p->lock);
2492 _enable_swap_info(p);
2493 spin_unlock(&p->lock);
2494 spin_unlock(&swap_lock);
2495 }
2496
2497 static void reinsert_swap_info(struct swap_info_struct *p)
2498 {
2499 spin_lock(&swap_lock);
2500 spin_lock(&p->lock);
2501 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2502 _enable_swap_info(p);
2503 spin_unlock(&p->lock);
2504 spin_unlock(&swap_lock);
2505 }
2506
2507 bool has_usable_swap(void)
2508 {
2509 bool ret = true;
2510
2511 spin_lock(&swap_lock);
2512 if (plist_head_empty(&swap_active_head))
2513 ret = false;
2514 spin_unlock(&swap_lock);
2515 return ret;
2516 }
2517
2518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2519 {
2520 struct swap_info_struct *p = NULL;
2521 unsigned char *swap_map;
2522 struct swap_cluster_info *cluster_info;
2523 unsigned long *frontswap_map;
2524 struct file *swap_file, *victim;
2525 struct address_space *mapping;
2526 struct inode *inode;
2527 struct filename *pathname;
2528 int err, found = 0;
2529 unsigned int old_block_size;
2530
2531 if (!capable(CAP_SYS_ADMIN))
2532 return -EPERM;
2533
2534 BUG_ON(!current->mm);
2535
2536 pathname = getname(specialfile);
2537 if (IS_ERR(pathname))
2538 return PTR_ERR(pathname);
2539
2540 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2541 err = PTR_ERR(victim);
2542 if (IS_ERR(victim))
2543 goto out;
2544
2545 mapping = victim->f_mapping;
2546 spin_lock(&swap_lock);
2547 plist_for_each_entry(p, &swap_active_head, list) {
2548 if (p->flags & SWP_WRITEOK) {
2549 if (p->swap_file->f_mapping == mapping) {
2550 found = 1;
2551 break;
2552 }
2553 }
2554 }
2555 if (!found) {
2556 err = -EINVAL;
2557 spin_unlock(&swap_lock);
2558 goto out_dput;
2559 }
2560 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2561 vm_unacct_memory(p->pages);
2562 else {
2563 err = -ENOMEM;
2564 spin_unlock(&swap_lock);
2565 goto out_dput;
2566 }
2567 del_from_avail_list(p);
2568 spin_lock(&p->lock);
2569 if (p->prio < 0) {
2570 struct swap_info_struct *si = p;
2571 int nid;
2572
2573 plist_for_each_entry_continue(si, &swap_active_head, list) {
2574 si->prio++;
2575 si->list.prio--;
2576 for_each_node(nid) {
2577 if (si->avail_lists[nid].prio != 1)
2578 si->avail_lists[nid].prio--;
2579 }
2580 }
2581 least_priority++;
2582 }
2583 plist_del(&p->list, &swap_active_head);
2584 atomic_long_sub(p->pages, &nr_swap_pages);
2585 total_swap_pages -= p->pages;
2586 p->flags &= ~SWP_WRITEOK;
2587 spin_unlock(&p->lock);
2588 spin_unlock(&swap_lock);
2589
2590 disable_swap_slots_cache_lock();
2591
2592 set_current_oom_origin();
2593 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2594 clear_current_oom_origin();
2595
2596 if (err) {
2597 /* re-insert swap space back into swap_list */
2598 reinsert_swap_info(p);
2599 reenable_swap_slots_cache_unlock();
2600 goto out_dput;
2601 }
2602
2603 reenable_swap_slots_cache_unlock();
2604
2605 /*
2606 * Wait for swap operations protected by get/put_swap_device()
2607 * to complete.
2608 *
2609 * We need synchronize_rcu() here to protect the accessing to
2610 * the swap cache data structure.
2611 */
2612 percpu_ref_kill(&p->users);
2613 synchronize_rcu();
2614 wait_for_completion(&p->comp);
2615
2616 flush_work(&p->discard_work);
2617
2618 destroy_swap_extents(p);
2619 if (p->flags & SWP_CONTINUED)
2620 free_swap_count_continuations(p);
2621
2622 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2623 atomic_dec(&nr_rotate_swap);
2624
2625 mutex_lock(&swapon_mutex);
2626 spin_lock(&swap_lock);
2627 spin_lock(&p->lock);
2628 drain_mmlist();
2629
2630 /* wait for anyone still in scan_swap_map_slots */
2631 p->highest_bit = 0; /* cuts scans short */
2632 while (p->flags >= SWP_SCANNING) {
2633 spin_unlock(&p->lock);
2634 spin_unlock(&swap_lock);
2635 schedule_timeout_uninterruptible(1);
2636 spin_lock(&swap_lock);
2637 spin_lock(&p->lock);
2638 }
2639
2640 swap_file = p->swap_file;
2641 old_block_size = p->old_block_size;
2642 p->swap_file = NULL;
2643 p->max = 0;
2644 swap_map = p->swap_map;
2645 p->swap_map = NULL;
2646 cluster_info = p->cluster_info;
2647 p->cluster_info = NULL;
2648 frontswap_map = frontswap_map_get(p);
2649 spin_unlock(&p->lock);
2650 spin_unlock(&swap_lock);
2651 arch_swap_invalidate_area(p->type);
2652 frontswap_invalidate_area(p->type);
2653 frontswap_map_set(p, NULL);
2654 mutex_unlock(&swapon_mutex);
2655 free_percpu(p->percpu_cluster);
2656 p->percpu_cluster = NULL;
2657 free_percpu(p->cluster_next_cpu);
2658 p->cluster_next_cpu = NULL;
2659 vfree(swap_map);
2660 kvfree(cluster_info);
2661 kvfree(frontswap_map);
2662 /* Destroy swap account information */
2663 swap_cgroup_swapoff(p->type);
2664 exit_swap_address_space(p->type);
2665
2666 inode = mapping->host;
2667 if (S_ISBLK(inode->i_mode)) {
2668 struct block_device *bdev = I_BDEV(inode);
2669
2670 set_blocksize(bdev, old_block_size);
2671 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2672 }
2673
2674 inode_lock(inode);
2675 inode->i_flags &= ~S_SWAPFILE;
2676 inode_unlock(inode);
2677 filp_close(swap_file, NULL);
2678
2679 /*
2680 * Clear the SWP_USED flag after all resources are freed so that swapon
2681 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2682 * not hold p->lock after we cleared its SWP_WRITEOK.
2683 */
2684 spin_lock(&swap_lock);
2685 p->flags = 0;
2686 spin_unlock(&swap_lock);
2687
2688 err = 0;
2689 atomic_inc(&proc_poll_event);
2690 wake_up_interruptible(&proc_poll_wait);
2691
2692 out_dput:
2693 filp_close(victim, NULL);
2694 out:
2695 putname(pathname);
2696 return err;
2697 }
2698
2699 #ifdef CONFIG_PROC_FS
2700 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2701 {
2702 struct seq_file *seq = file->private_data;
2703
2704 poll_wait(file, &proc_poll_wait, wait);
2705
2706 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2707 seq->poll_event = atomic_read(&proc_poll_event);
2708 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2709 }
2710
2711 return EPOLLIN | EPOLLRDNORM;
2712 }
2713
2714 /* iterator */
2715 static void *swap_start(struct seq_file *swap, loff_t *pos)
2716 {
2717 struct swap_info_struct *si;
2718 int type;
2719 loff_t l = *pos;
2720
2721 mutex_lock(&swapon_mutex);
2722
2723 if (!l)
2724 return SEQ_START_TOKEN;
2725
2726 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2727 if (!(si->flags & SWP_USED) || !si->swap_map)
2728 continue;
2729 if (!--l)
2730 return si;
2731 }
2732
2733 return NULL;
2734 }
2735
2736 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2737 {
2738 struct swap_info_struct *si = v;
2739 int type;
2740
2741 if (v == SEQ_START_TOKEN)
2742 type = 0;
2743 else
2744 type = si->type + 1;
2745
2746 ++(*pos);
2747 for (; (si = swap_type_to_swap_info(type)); type++) {
2748 if (!(si->flags & SWP_USED) || !si->swap_map)
2749 continue;
2750 return si;
2751 }
2752
2753 return NULL;
2754 }
2755
2756 static void swap_stop(struct seq_file *swap, void *v)
2757 {
2758 mutex_unlock(&swapon_mutex);
2759 }
2760
2761 static int swap_show(struct seq_file *swap, void *v)
2762 {
2763 struct swap_info_struct *si = v;
2764 struct file *file;
2765 int len;
2766 unsigned int bytes, inuse;
2767
2768 if (si == SEQ_START_TOKEN) {
2769 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2770 return 0;
2771 }
2772
2773 bytes = si->pages << (PAGE_SHIFT - 10);
2774 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2775
2776 file = si->swap_file;
2777 len = seq_file_path(swap, file, " \t\n\\");
2778 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2779 len < 40 ? 40 - len : 1, " ",
2780 S_ISBLK(file_inode(file)->i_mode) ?
2781 "partition" : "file\t",
2782 bytes, bytes < 10000000 ? "\t" : "",
2783 inuse, inuse < 10000000 ? "\t" : "",
2784 si->prio);
2785 return 0;
2786 }
2787
2788 static const struct seq_operations swaps_op = {
2789 .start = swap_start,
2790 .next = swap_next,
2791 .stop = swap_stop,
2792 .show = swap_show
2793 };
2794
2795 static int swaps_open(struct inode *inode, struct file *file)
2796 {
2797 struct seq_file *seq;
2798 int ret;
2799
2800 ret = seq_open(file, &swaps_op);
2801 if (ret)
2802 return ret;
2803
2804 seq = file->private_data;
2805 seq->poll_event = atomic_read(&proc_poll_event);
2806 return 0;
2807 }
2808
2809 static const struct proc_ops swaps_proc_ops = {
2810 .proc_flags = PROC_ENTRY_PERMANENT,
2811 .proc_open = swaps_open,
2812 .proc_read = seq_read,
2813 .proc_lseek = seq_lseek,
2814 .proc_release = seq_release,
2815 .proc_poll = swaps_poll,
2816 };
2817
2818 static int __init procswaps_init(void)
2819 {
2820 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2821 return 0;
2822 }
2823 __initcall(procswaps_init);
2824 #endif /* CONFIG_PROC_FS */
2825
2826 #ifdef MAX_SWAPFILES_CHECK
2827 static int __init max_swapfiles_check(void)
2828 {
2829 MAX_SWAPFILES_CHECK();
2830 return 0;
2831 }
2832 late_initcall(max_swapfiles_check);
2833 #endif
2834
2835 static struct swap_info_struct *alloc_swap_info(void)
2836 {
2837 struct swap_info_struct *p;
2838 struct swap_info_struct *defer = NULL;
2839 unsigned int type;
2840 int i;
2841
2842 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2843 if (!p)
2844 return ERR_PTR(-ENOMEM);
2845
2846 if (percpu_ref_init(&p->users, swap_users_ref_free,
2847 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2848 kvfree(p);
2849 return ERR_PTR(-ENOMEM);
2850 }
2851
2852 spin_lock(&swap_lock);
2853 for (type = 0; type < nr_swapfiles; type++) {
2854 if (!(swap_info[type]->flags & SWP_USED))
2855 break;
2856 }
2857 if (type >= MAX_SWAPFILES) {
2858 spin_unlock(&swap_lock);
2859 percpu_ref_exit(&p->users);
2860 kvfree(p);
2861 return ERR_PTR(-EPERM);
2862 }
2863 if (type >= nr_swapfiles) {
2864 p->type = type;
2865 /*
2866 * Publish the swap_info_struct after initializing it.
2867 * Note that kvzalloc() above zeroes all its fields.
2868 */
2869 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2870 nr_swapfiles++;
2871 } else {
2872 defer = p;
2873 p = swap_info[type];
2874 /*
2875 * Do not memset this entry: a racing procfs swap_next()
2876 * would be relying on p->type to remain valid.
2877 */
2878 }
2879 p->swap_extent_root = RB_ROOT;
2880 plist_node_init(&p->list, 0);
2881 for_each_node(i)
2882 plist_node_init(&p->avail_lists[i], 0);
2883 p->flags = SWP_USED;
2884 spin_unlock(&swap_lock);
2885 if (defer) {
2886 percpu_ref_exit(&defer->users);
2887 kvfree(defer);
2888 }
2889 spin_lock_init(&p->lock);
2890 spin_lock_init(&p->cont_lock);
2891 init_completion(&p->comp);
2892
2893 return p;
2894 }
2895
2896 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2897 {
2898 int error;
2899
2900 if (S_ISBLK(inode->i_mode)) {
2901 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2902 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2903 if (IS_ERR(p->bdev)) {
2904 error = PTR_ERR(p->bdev);
2905 p->bdev = NULL;
2906 return error;
2907 }
2908 p->old_block_size = block_size(p->bdev);
2909 error = set_blocksize(p->bdev, PAGE_SIZE);
2910 if (error < 0)
2911 return error;
2912 /*
2913 * Zoned block devices contain zones that have a sequential
2914 * write only restriction. Hence zoned block devices are not
2915 * suitable for swapping. Disallow them here.
2916 */
2917 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2918 return -EINVAL;
2919 p->flags |= SWP_BLKDEV;
2920 } else if (S_ISREG(inode->i_mode)) {
2921 p->bdev = inode->i_sb->s_bdev;
2922 }
2923
2924 return 0;
2925 }
2926
2927
2928 /*
2929 * Find out how many pages are allowed for a single swap device. There
2930 * are two limiting factors:
2931 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2932 * 2) the number of bits in the swap pte, as defined by the different
2933 * architectures.
2934 *
2935 * In order to find the largest possible bit mask, a swap entry with
2936 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2937 * decoded to a swp_entry_t again, and finally the swap offset is
2938 * extracted.
2939 *
2940 * This will mask all the bits from the initial ~0UL mask that can't
2941 * be encoded in either the swp_entry_t or the architecture definition
2942 * of a swap pte.
2943 */
2944 unsigned long generic_max_swapfile_size(void)
2945 {
2946 return swp_offset(pte_to_swp_entry(
2947 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2948 }
2949
2950 /* Can be overridden by an architecture for additional checks. */
2951 __weak unsigned long max_swapfile_size(void)
2952 {
2953 return generic_max_swapfile_size();
2954 }
2955
2956 static unsigned long read_swap_header(struct swap_info_struct *p,
2957 union swap_header *swap_header,
2958 struct inode *inode)
2959 {
2960 int i;
2961 unsigned long maxpages;
2962 unsigned long swapfilepages;
2963 unsigned long last_page;
2964
2965 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2966 pr_err("Unable to find swap-space signature\n");
2967 return 0;
2968 }
2969
2970 /* swap partition endianness hack... */
2971 if (swab32(swap_header->info.version) == 1) {
2972 swab32s(&swap_header->info.version);
2973 swab32s(&swap_header->info.last_page);
2974 swab32s(&swap_header->info.nr_badpages);
2975 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2976 return 0;
2977 for (i = 0; i < swap_header->info.nr_badpages; i++)
2978 swab32s(&swap_header->info.badpages[i]);
2979 }
2980 /* Check the swap header's sub-version */
2981 if (swap_header->info.version != 1) {
2982 pr_warn("Unable to handle swap header version %d\n",
2983 swap_header->info.version);
2984 return 0;
2985 }
2986
2987 p->lowest_bit = 1;
2988 p->cluster_next = 1;
2989 p->cluster_nr = 0;
2990
2991 maxpages = max_swapfile_size();
2992 last_page = swap_header->info.last_page;
2993 if (!last_page) {
2994 pr_warn("Empty swap-file\n");
2995 return 0;
2996 }
2997 if (last_page > maxpages) {
2998 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2999 maxpages << (PAGE_SHIFT - 10),
3000 last_page << (PAGE_SHIFT - 10));
3001 }
3002 if (maxpages > last_page) {
3003 maxpages = last_page + 1;
3004 /* p->max is an unsigned int: don't overflow it */
3005 if ((unsigned int)maxpages == 0)
3006 maxpages = UINT_MAX;
3007 }
3008 p->highest_bit = maxpages - 1;
3009
3010 if (!maxpages)
3011 return 0;
3012 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3013 if (swapfilepages && maxpages > swapfilepages) {
3014 pr_warn("Swap area shorter than signature indicates\n");
3015 return 0;
3016 }
3017 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3018 return 0;
3019 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3020 return 0;
3021
3022 return maxpages;
3023 }
3024
3025 #define SWAP_CLUSTER_INFO_COLS \
3026 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3027 #define SWAP_CLUSTER_SPACE_COLS \
3028 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3029 #define SWAP_CLUSTER_COLS \
3030 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3031
3032 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3033 union swap_header *swap_header,
3034 unsigned char *swap_map,
3035 struct swap_cluster_info *cluster_info,
3036 unsigned long maxpages,
3037 sector_t *span)
3038 {
3039 unsigned int j, k;
3040 unsigned int nr_good_pages;
3041 int nr_extents;
3042 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3043 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3044 unsigned long i, idx;
3045
3046 nr_good_pages = maxpages - 1; /* omit header page */
3047
3048 cluster_list_init(&p->free_clusters);
3049 cluster_list_init(&p->discard_clusters);
3050
3051 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3052 unsigned int page_nr = swap_header->info.badpages[i];
3053 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3054 return -EINVAL;
3055 if (page_nr < maxpages) {
3056 swap_map[page_nr] = SWAP_MAP_BAD;
3057 nr_good_pages--;
3058 /*
3059 * Haven't marked the cluster free yet, no list
3060 * operation involved
3061 */
3062 inc_cluster_info_page(p, cluster_info, page_nr);
3063 }
3064 }
3065
3066 /* Haven't marked the cluster free yet, no list operation involved */
3067 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3068 inc_cluster_info_page(p, cluster_info, i);
3069
3070 if (nr_good_pages) {
3071 swap_map[0] = SWAP_MAP_BAD;
3072 /*
3073 * Not mark the cluster free yet, no list
3074 * operation involved
3075 */
3076 inc_cluster_info_page(p, cluster_info, 0);
3077 p->max = maxpages;
3078 p->pages = nr_good_pages;
3079 nr_extents = setup_swap_extents(p, span);
3080 if (nr_extents < 0)
3081 return nr_extents;
3082 nr_good_pages = p->pages;
3083 }
3084 if (!nr_good_pages) {
3085 pr_warn("Empty swap-file\n");
3086 return -EINVAL;
3087 }
3088
3089 if (!cluster_info)
3090 return nr_extents;
3091
3092
3093 /*
3094 * Reduce false cache line sharing between cluster_info and
3095 * sharing same address space.
3096 */
3097 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3098 j = (k + col) % SWAP_CLUSTER_COLS;
3099 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3100 idx = i * SWAP_CLUSTER_COLS + j;
3101 if (idx >= nr_clusters)
3102 continue;
3103 if (cluster_count(&cluster_info[idx]))
3104 continue;
3105 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3106 cluster_list_add_tail(&p->free_clusters, cluster_info,
3107 idx);
3108 }
3109 }
3110 return nr_extents;
3111 }
3112
3113 /*
3114 * Helper to sys_swapon determining if a given swap
3115 * backing device queue supports DISCARD operations.
3116 */
3117 static bool swap_discardable(struct swap_info_struct *si)
3118 {
3119 struct request_queue *q = bdev_get_queue(si->bdev);
3120
3121 if (!q || !blk_queue_discard(q))
3122 return false;
3123
3124 return true;
3125 }
3126
3127 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3128 {
3129 struct swap_info_struct *p;
3130 struct filename *name;
3131 struct file *swap_file = NULL;
3132 struct address_space *mapping;
3133 struct dentry *dentry;
3134 int prio;
3135 int error;
3136 union swap_header *swap_header;
3137 int nr_extents;
3138 sector_t span;
3139 unsigned long maxpages;
3140 unsigned char *swap_map = NULL;
3141 struct swap_cluster_info *cluster_info = NULL;
3142 unsigned long *frontswap_map = NULL;
3143 struct page *page = NULL;
3144 struct inode *inode = NULL;
3145 bool inced_nr_rotate_swap = false;
3146
3147 if (swap_flags & ~SWAP_FLAGS_VALID)
3148 return -EINVAL;
3149
3150 if (!capable(CAP_SYS_ADMIN))
3151 return -EPERM;
3152
3153 if (!swap_avail_heads)
3154 return -ENOMEM;
3155
3156 p = alloc_swap_info();
3157 if (IS_ERR(p))
3158 return PTR_ERR(p);
3159
3160 INIT_WORK(&p->discard_work, swap_discard_work);
3161
3162 name = getname(specialfile);
3163 if (IS_ERR(name)) {
3164 error = PTR_ERR(name);
3165 name = NULL;
3166 goto bad_swap;
3167 }
3168 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3169 if (IS_ERR(swap_file)) {
3170 error = PTR_ERR(swap_file);
3171 swap_file = NULL;
3172 goto bad_swap;
3173 }
3174
3175 p->swap_file = swap_file;
3176 mapping = swap_file->f_mapping;
3177 dentry = swap_file->f_path.dentry;
3178 inode = mapping->host;
3179
3180 error = claim_swapfile(p, inode);
3181 if (unlikely(error))
3182 goto bad_swap;
3183
3184 inode_lock(inode);
3185 if (d_unlinked(dentry) || cant_mount(dentry)) {
3186 error = -ENOENT;
3187 goto bad_swap_unlock_inode;
3188 }
3189 if (IS_SWAPFILE(inode)) {
3190 error = -EBUSY;
3191 goto bad_swap_unlock_inode;
3192 }
3193
3194 /*
3195 * Read the swap header.
3196 */
3197 if (!mapping->a_ops->readpage) {
3198 error = -EINVAL;
3199 goto bad_swap_unlock_inode;
3200 }
3201 page = read_mapping_page(mapping, 0, swap_file);
3202 if (IS_ERR(page)) {
3203 error = PTR_ERR(page);
3204 goto bad_swap_unlock_inode;
3205 }
3206 swap_header = kmap(page);
3207
3208 maxpages = read_swap_header(p, swap_header, inode);
3209 if (unlikely(!maxpages)) {
3210 error = -EINVAL;
3211 goto bad_swap_unlock_inode;
3212 }
3213
3214 /* OK, set up the swap map and apply the bad block list */
3215 swap_map = vzalloc(maxpages);
3216 if (!swap_map) {
3217 error = -ENOMEM;
3218 goto bad_swap_unlock_inode;
3219 }
3220
3221 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3222 p->flags |= SWP_STABLE_WRITES;
3223
3224 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3225 p->flags |= SWP_SYNCHRONOUS_IO;
3226
3227 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3228 int cpu;
3229 unsigned long ci, nr_cluster;
3230
3231 p->flags |= SWP_SOLIDSTATE;
3232 p->cluster_next_cpu = alloc_percpu(unsigned int);
3233 if (!p->cluster_next_cpu) {
3234 error = -ENOMEM;
3235 goto bad_swap_unlock_inode;
3236 }
3237 /*
3238 * select a random position to start with to help wear leveling
3239 * SSD
3240 */
3241 for_each_possible_cpu(cpu) {
3242 per_cpu(*p->cluster_next_cpu, cpu) =
3243 1 + prandom_u32_max(p->highest_bit);
3244 }
3245 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3246
3247 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3248 GFP_KERNEL);
3249 if (!cluster_info) {
3250 error = -ENOMEM;
3251 goto bad_swap_unlock_inode;
3252 }
3253
3254 for (ci = 0; ci < nr_cluster; ci++)
3255 spin_lock_init(&((cluster_info + ci)->lock));
3256
3257 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3258 if (!p->percpu_cluster) {
3259 error = -ENOMEM;
3260 goto bad_swap_unlock_inode;
3261 }
3262 for_each_possible_cpu(cpu) {
3263 struct percpu_cluster *cluster;
3264 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3265 cluster_set_null(&cluster->index);
3266 }
3267 } else {
3268 atomic_inc(&nr_rotate_swap);
3269 inced_nr_rotate_swap = true;
3270 }
3271
3272 error = swap_cgroup_swapon(p->type, maxpages);
3273 if (error)
3274 goto bad_swap_unlock_inode;
3275
3276 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3277 cluster_info, maxpages, &span);
3278 if (unlikely(nr_extents < 0)) {
3279 error = nr_extents;
3280 goto bad_swap_unlock_inode;
3281 }
3282 /* frontswap enabled? set up bit-per-page map for frontswap */
3283 if (IS_ENABLED(CONFIG_FRONTSWAP))
3284 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3285 sizeof(long),
3286 GFP_KERNEL);
3287
3288 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3289 /*
3290 * When discard is enabled for swap with no particular
3291 * policy flagged, we set all swap discard flags here in
3292 * order to sustain backward compatibility with older
3293 * swapon(8) releases.
3294 */
3295 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3296 SWP_PAGE_DISCARD);
3297
3298 /*
3299 * By flagging sys_swapon, a sysadmin can tell us to
3300 * either do single-time area discards only, or to just
3301 * perform discards for released swap page-clusters.
3302 * Now it's time to adjust the p->flags accordingly.
3303 */
3304 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3305 p->flags &= ~SWP_PAGE_DISCARD;
3306 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3307 p->flags &= ~SWP_AREA_DISCARD;
3308
3309 /* issue a swapon-time discard if it's still required */
3310 if (p->flags & SWP_AREA_DISCARD) {
3311 int err = discard_swap(p);
3312 if (unlikely(err))
3313 pr_err("swapon: discard_swap(%p): %d\n",
3314 p, err);
3315 }
3316 }
3317
3318 error = init_swap_address_space(p->type, maxpages);
3319 if (error)
3320 goto bad_swap_unlock_inode;
3321
3322 /*
3323 * Flush any pending IO and dirty mappings before we start using this
3324 * swap device.
3325 */
3326 inode->i_flags |= S_SWAPFILE;
3327 error = inode_drain_writes(inode);
3328 if (error) {
3329 inode->i_flags &= ~S_SWAPFILE;
3330 goto free_swap_address_space;
3331 }
3332
3333 mutex_lock(&swapon_mutex);
3334 prio = -1;
3335 if (swap_flags & SWAP_FLAG_PREFER)
3336 prio =
3337 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3338 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3339
3340 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3341 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3342 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3343 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3344 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3345 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3346 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3347 (frontswap_map) ? "FS" : "");
3348
3349 mutex_unlock(&swapon_mutex);
3350 atomic_inc(&proc_poll_event);
3351 wake_up_interruptible(&proc_poll_wait);
3352
3353 error = 0;
3354 goto out;
3355 free_swap_address_space:
3356 exit_swap_address_space(p->type);
3357 bad_swap_unlock_inode:
3358 inode_unlock(inode);
3359 bad_swap:
3360 free_percpu(p->percpu_cluster);
3361 p->percpu_cluster = NULL;
3362 free_percpu(p->cluster_next_cpu);
3363 p->cluster_next_cpu = NULL;
3364 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3365 set_blocksize(p->bdev, p->old_block_size);
3366 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3367 }
3368 inode = NULL;
3369 destroy_swap_extents(p);
3370 swap_cgroup_swapoff(p->type);
3371 spin_lock(&swap_lock);
3372 p->swap_file = NULL;
3373 p->flags = 0;
3374 spin_unlock(&swap_lock);
3375 vfree(swap_map);
3376 kvfree(cluster_info);
3377 kvfree(frontswap_map);
3378 if (inced_nr_rotate_swap)
3379 atomic_dec(&nr_rotate_swap);
3380 if (swap_file)
3381 filp_close(swap_file, NULL);
3382 out:
3383 if (page && !IS_ERR(page)) {
3384 kunmap(page);
3385 put_page(page);
3386 }
3387 if (name)
3388 putname(name);
3389 if (inode)
3390 inode_unlock(inode);
3391 if (!error)
3392 enable_swap_slots_cache();
3393 return error;
3394 }
3395
3396 void si_swapinfo(struct sysinfo *val)
3397 {
3398 unsigned int type;
3399 unsigned long nr_to_be_unused = 0;
3400
3401 spin_lock(&swap_lock);
3402 for (type = 0; type < nr_swapfiles; type++) {
3403 struct swap_info_struct *si = swap_info[type];
3404
3405 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3406 nr_to_be_unused += si->inuse_pages;
3407 }
3408 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3409 val->totalswap = total_swap_pages + nr_to_be_unused;
3410 spin_unlock(&swap_lock);
3411 }
3412
3413 /*
3414 * Verify that a swap entry is valid and increment its swap map count.
3415 *
3416 * Returns error code in following case.
3417 * - success -> 0
3418 * - swp_entry is invalid -> EINVAL
3419 * - swp_entry is migration entry -> EINVAL
3420 * - swap-cache reference is requested but there is already one. -> EEXIST
3421 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3422 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3423 */
3424 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3425 {
3426 struct swap_info_struct *p;
3427 struct swap_cluster_info *ci;
3428 unsigned long offset;
3429 unsigned char count;
3430 unsigned char has_cache;
3431 int err;
3432
3433 p = get_swap_device(entry);
3434 if (!p)
3435 return -EINVAL;
3436
3437 offset = swp_offset(entry);
3438 ci = lock_cluster_or_swap_info(p, offset);
3439
3440 count = p->swap_map[offset];
3441
3442 /*
3443 * swapin_readahead() doesn't check if a swap entry is valid, so the
3444 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3445 */
3446 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3447 err = -ENOENT;
3448 goto unlock_out;
3449 }
3450
3451 has_cache = count & SWAP_HAS_CACHE;
3452 count &= ~SWAP_HAS_CACHE;
3453 err = 0;
3454
3455 if (usage == SWAP_HAS_CACHE) {
3456
3457 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3458 if (!has_cache && count)
3459 has_cache = SWAP_HAS_CACHE;
3460 else if (has_cache) /* someone else added cache */
3461 err = -EEXIST;
3462 else /* no users remaining */
3463 err = -ENOENT;
3464
3465 } else if (count || has_cache) {
3466
3467 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3468 count += usage;
3469 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3470 err = -EINVAL;
3471 else if (swap_count_continued(p, offset, count))
3472 count = COUNT_CONTINUED;
3473 else
3474 err = -ENOMEM;
3475 } else
3476 err = -ENOENT; /* unused swap entry */
3477
3478 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3479
3480 unlock_out:
3481 unlock_cluster_or_swap_info(p, ci);
3482 if (p)
3483 put_swap_device(p);
3484 return err;
3485 }
3486
3487 /*
3488 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3489 * (in which case its reference count is never incremented).
3490 */
3491 void swap_shmem_alloc(swp_entry_t entry)
3492 {
3493 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3494 }
3495
3496 /*
3497 * Increase reference count of swap entry by 1.
3498 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3499 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3500 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3501 * might occur if a page table entry has got corrupted.
3502 */
3503 int swap_duplicate(swp_entry_t entry)
3504 {
3505 int err = 0;
3506
3507 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3508 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3509 return err;
3510 }
3511
3512 /*
3513 * @entry: swap entry for which we allocate swap cache.
3514 *
3515 * Called when allocating swap cache for existing swap entry,
3516 * This can return error codes. Returns 0 at success.
3517 * -EEXIST means there is a swap cache.
3518 * Note: return code is different from swap_duplicate().
3519 */
3520 int swapcache_prepare(swp_entry_t entry)
3521 {
3522 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3523 }
3524
3525 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3526 {
3527 return swap_type_to_swap_info(swp_type(entry));
3528 }
3529
3530 struct swap_info_struct *page_swap_info(struct page *page)
3531 {
3532 swp_entry_t entry = { .val = page_private(page) };
3533 return swp_swap_info(entry);
3534 }
3535
3536 /*
3537 * out-of-line __page_file_ methods to avoid include hell.
3538 */
3539 struct address_space *__page_file_mapping(struct page *page)
3540 {
3541 return page_swap_info(page)->swap_file->f_mapping;
3542 }
3543 EXPORT_SYMBOL_GPL(__page_file_mapping);
3544
3545 pgoff_t __page_file_index(struct page *page)
3546 {
3547 swp_entry_t swap = { .val = page_private(page) };
3548 return swp_offset(swap);
3549 }
3550 EXPORT_SYMBOL_GPL(__page_file_index);
3551
3552 /*
3553 * add_swap_count_continuation - called when a swap count is duplicated
3554 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3555 * page of the original vmalloc'ed swap_map, to hold the continuation count
3556 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3557 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3558 *
3559 * These continuation pages are seldom referenced: the common paths all work
3560 * on the original swap_map, only referring to a continuation page when the
3561 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3562 *
3563 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3564 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3565 * can be called after dropping locks.
3566 */
3567 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3568 {
3569 struct swap_info_struct *si;
3570 struct swap_cluster_info *ci;
3571 struct page *head;
3572 struct page *page;
3573 struct page *list_page;
3574 pgoff_t offset;
3575 unsigned char count;
3576 int ret = 0;
3577
3578 /*
3579 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3580 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3581 */
3582 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3583
3584 si = get_swap_device(entry);
3585 if (!si) {
3586 /*
3587 * An acceptable race has occurred since the failing
3588 * __swap_duplicate(): the swap device may be swapoff
3589 */
3590 goto outer;
3591 }
3592 spin_lock(&si->lock);
3593
3594 offset = swp_offset(entry);
3595
3596 ci = lock_cluster(si, offset);
3597
3598 count = swap_count(si->swap_map[offset]);
3599
3600 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3601 /*
3602 * The higher the swap count, the more likely it is that tasks
3603 * will race to add swap count continuation: we need to avoid
3604 * over-provisioning.
3605 */
3606 goto out;
3607 }
3608
3609 if (!page) {
3610 ret = -ENOMEM;
3611 goto out;
3612 }
3613
3614 /*
3615 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3616 * no architecture is using highmem pages for kernel page tables: so it
3617 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3618 */
3619 head = vmalloc_to_page(si->swap_map + offset);
3620 offset &= ~PAGE_MASK;
3621
3622 spin_lock(&si->cont_lock);
3623 /*
3624 * Page allocation does not initialize the page's lru field,
3625 * but it does always reset its private field.
3626 */
3627 if (!page_private(head)) {
3628 BUG_ON(count & COUNT_CONTINUED);
3629 INIT_LIST_HEAD(&head->lru);
3630 set_page_private(head, SWP_CONTINUED);
3631 si->flags |= SWP_CONTINUED;
3632 }
3633
3634 list_for_each_entry(list_page, &head->lru, lru) {
3635 unsigned char *map;
3636
3637 /*
3638 * If the previous map said no continuation, but we've found
3639 * a continuation page, free our allocation and use this one.
3640 */
3641 if (!(count & COUNT_CONTINUED))
3642 goto out_unlock_cont;
3643
3644 map = kmap_atomic(list_page) + offset;
3645 count = *map;
3646 kunmap_atomic(map);
3647
3648 /*
3649 * If this continuation count now has some space in it,
3650 * free our allocation and use this one.
3651 */
3652 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3653 goto out_unlock_cont;
3654 }
3655
3656 list_add_tail(&page->lru, &head->lru);
3657 page = NULL; /* now it's attached, don't free it */
3658 out_unlock_cont:
3659 spin_unlock(&si->cont_lock);
3660 out:
3661 unlock_cluster(ci);
3662 spin_unlock(&si->lock);
3663 put_swap_device(si);
3664 outer:
3665 if (page)
3666 __free_page(page);
3667 return ret;
3668 }
3669
3670 /*
3671 * swap_count_continued - when the original swap_map count is incremented
3672 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3673 * into, carry if so, or else fail until a new continuation page is allocated;
3674 * when the original swap_map count is decremented from 0 with continuation,
3675 * borrow from the continuation and report whether it still holds more.
3676 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3677 * lock.
3678 */
3679 static bool swap_count_continued(struct swap_info_struct *si,
3680 pgoff_t offset, unsigned char count)
3681 {
3682 struct page *head;
3683 struct page *page;
3684 unsigned char *map;
3685 bool ret;
3686
3687 head = vmalloc_to_page(si->swap_map + offset);
3688 if (page_private(head) != SWP_CONTINUED) {
3689 BUG_ON(count & COUNT_CONTINUED);
3690 return false; /* need to add count continuation */
3691 }
3692
3693 spin_lock(&si->cont_lock);
3694 offset &= ~PAGE_MASK;
3695 page = list_next_entry(head, lru);
3696 map = kmap_atomic(page) + offset;
3697
3698 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3699 goto init_map; /* jump over SWAP_CONT_MAX checks */
3700
3701 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3702 /*
3703 * Think of how you add 1 to 999
3704 */
3705 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3706 kunmap_atomic(map);
3707 page = list_next_entry(page, lru);
3708 BUG_ON(page == head);
3709 map = kmap_atomic(page) + offset;
3710 }
3711 if (*map == SWAP_CONT_MAX) {
3712 kunmap_atomic(map);
3713 page = list_next_entry(page, lru);
3714 if (page == head) {
3715 ret = false; /* add count continuation */
3716 goto out;
3717 }
3718 map = kmap_atomic(page) + offset;
3719 init_map: *map = 0; /* we didn't zero the page */
3720 }
3721 *map += 1;
3722 kunmap_atomic(map);
3723 while ((page = list_prev_entry(page, lru)) != head) {
3724 map = kmap_atomic(page) + offset;
3725 *map = COUNT_CONTINUED;
3726 kunmap_atomic(map);
3727 }
3728 ret = true; /* incremented */
3729
3730 } else { /* decrementing */
3731 /*
3732 * Think of how you subtract 1 from 1000
3733 */
3734 BUG_ON(count != COUNT_CONTINUED);
3735 while (*map == COUNT_CONTINUED) {
3736 kunmap_atomic(map);
3737 page = list_next_entry(page, lru);
3738 BUG_ON(page == head);
3739 map = kmap_atomic(page) + offset;
3740 }
3741 BUG_ON(*map == 0);
3742 *map -= 1;
3743 if (*map == 0)
3744 count = 0;
3745 kunmap_atomic(map);
3746 while ((page = list_prev_entry(page, lru)) != head) {
3747 map = kmap_atomic(page) + offset;
3748 *map = SWAP_CONT_MAX | count;
3749 count = COUNT_CONTINUED;
3750 kunmap_atomic(map);
3751 }
3752 ret = count == COUNT_CONTINUED;
3753 }
3754 out:
3755 spin_unlock(&si->cont_lock);
3756 return ret;
3757 }
3758
3759 /*
3760 * free_swap_count_continuations - swapoff free all the continuation pages
3761 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3762 */
3763 static void free_swap_count_continuations(struct swap_info_struct *si)
3764 {
3765 pgoff_t offset;
3766
3767 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3768 struct page *head;
3769 head = vmalloc_to_page(si->swap_map + offset);
3770 if (page_private(head)) {
3771 struct page *page, *next;
3772
3773 list_for_each_entry_safe(page, next, &head->lru, lru) {
3774 list_del(&page->lru);
3775 __free_page(page);
3776 }
3777 }
3778 }
3779 }
3780
3781 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3782 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3783 {
3784 struct swap_info_struct *si, *next;
3785 int nid = page_to_nid(page);
3786
3787 if (!(gfp_mask & __GFP_IO))
3788 return;
3789
3790 if (!blk_cgroup_congested())
3791 return;
3792
3793 /*
3794 * We've already scheduled a throttle, avoid taking the global swap
3795 * lock.
3796 */
3797 if (current->throttle_queue)
3798 return;
3799
3800 spin_lock(&swap_avail_lock);
3801 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3802 avail_lists[nid]) {
3803 if (si->bdev) {
3804 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3805 break;
3806 }
3807 }
3808 spin_unlock(&swap_avail_lock);
3809 }
3810 #endif
3811
3812 static int __init swapfile_init(void)
3813 {
3814 int nid;
3815
3816 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3817 GFP_KERNEL);
3818 if (!swap_avail_heads) {
3819 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3820 return -ENOMEM;
3821 }
3822
3823 for_each_node(nid)
3824 plist_head_init(&swap_avail_heads[nid]);
3825
3826 return 0;
3827 }
3828 subsys_initcall(swapfile_init);