]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/swapfile.c
netfilter: use skb_to_full_sk in ip_route_me_harder
[mirror_ubuntu-artful-kernel.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 #include <linux/swap_slots.h>
38
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <linux/swapops.h>
42 #include <linux/swap_cgroup.h>
43
44 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
45 unsigned char);
46 static void free_swap_count_continuations(struct swap_info_struct *);
47 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48
49 DEFINE_SPINLOCK(swap_lock);
50 static unsigned int nr_swapfiles;
51 atomic_long_t nr_swap_pages;
52 /*
53 * Some modules use swappable objects and may try to swap them out under
54 * memory pressure (via the shrinker). Before doing so, they may wish to
55 * check to see if any swap space is available.
56 */
57 EXPORT_SYMBOL_GPL(nr_swap_pages);
58 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
59 long total_swap_pages;
60 static int least_priority;
61
62 static const char Bad_file[] = "Bad swap file entry ";
63 static const char Unused_file[] = "Unused swap file entry ";
64 static const char Bad_offset[] = "Bad swap offset entry ";
65 static const char Unused_offset[] = "Unused swap offset entry ";
66
67 /*
68 * all active swap_info_structs
69 * protected with swap_lock, and ordered by priority.
70 */
71 PLIST_HEAD(swap_active_head);
72
73 /*
74 * all available (active, not full) swap_info_structs
75 * protected with swap_avail_lock, ordered by priority.
76 * This is used by get_swap_page() instead of swap_active_head
77 * because swap_active_head includes all swap_info_structs,
78 * but get_swap_page() doesn't need to look at full ones.
79 * This uses its own lock instead of swap_lock because when a
80 * swap_info_struct changes between not-full/full, it needs to
81 * add/remove itself to/from this list, but the swap_info_struct->lock
82 * is held and the locking order requires swap_lock to be taken
83 * before any swap_info_struct->lock.
84 */
85 static PLIST_HEAD(swap_avail_head);
86 static DEFINE_SPINLOCK(swap_avail_lock);
87
88 struct swap_info_struct *swap_info[MAX_SWAPFILES];
89
90 static DEFINE_MUTEX(swapon_mutex);
91
92 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
93 /* Activity counter to indicate that a swapon or swapoff has occurred */
94 static atomic_t proc_poll_event = ATOMIC_INIT(0);
95
96 static inline unsigned char swap_count(unsigned char ent)
97 {
98 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
99 }
100
101 /* returns 1 if swap entry is freed */
102 static int
103 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
104 {
105 swp_entry_t entry = swp_entry(si->type, offset);
106 struct page *page;
107 int ret = 0;
108
109 page = find_get_page(swap_address_space(entry), swp_offset(entry));
110 if (!page)
111 return 0;
112 /*
113 * This function is called from scan_swap_map() and it's called
114 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
115 * We have to use trylock for avoiding deadlock. This is a special
116 * case and you should use try_to_free_swap() with explicit lock_page()
117 * in usual operations.
118 */
119 if (trylock_page(page)) {
120 ret = try_to_free_swap(page);
121 unlock_page(page);
122 }
123 put_page(page);
124 return ret;
125 }
126
127 /*
128 * swapon tell device that all the old swap contents can be discarded,
129 * to allow the swap device to optimize its wear-levelling.
130 */
131 static int discard_swap(struct swap_info_struct *si)
132 {
133 struct swap_extent *se;
134 sector_t start_block;
135 sector_t nr_blocks;
136 int err = 0;
137
138 /* Do not discard the swap header page! */
139 se = &si->first_swap_extent;
140 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
141 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
142 if (nr_blocks) {
143 err = blkdev_issue_discard(si->bdev, start_block,
144 nr_blocks, GFP_KERNEL, 0);
145 if (err)
146 return err;
147 cond_resched();
148 }
149
150 list_for_each_entry(se, &si->first_swap_extent.list, list) {
151 start_block = se->start_block << (PAGE_SHIFT - 9);
152 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
153
154 err = blkdev_issue_discard(si->bdev, start_block,
155 nr_blocks, GFP_KERNEL, 0);
156 if (err)
157 break;
158
159 cond_resched();
160 }
161 return err; /* That will often be -EOPNOTSUPP */
162 }
163
164 /*
165 * swap allocation tell device that a cluster of swap can now be discarded,
166 * to allow the swap device to optimize its wear-levelling.
167 */
168 static void discard_swap_cluster(struct swap_info_struct *si,
169 pgoff_t start_page, pgoff_t nr_pages)
170 {
171 struct swap_extent *se = si->curr_swap_extent;
172 int found_extent = 0;
173
174 while (nr_pages) {
175 if (se->start_page <= start_page &&
176 start_page < se->start_page + se->nr_pages) {
177 pgoff_t offset = start_page - se->start_page;
178 sector_t start_block = se->start_block + offset;
179 sector_t nr_blocks = se->nr_pages - offset;
180
181 if (nr_blocks > nr_pages)
182 nr_blocks = nr_pages;
183 start_page += nr_blocks;
184 nr_pages -= nr_blocks;
185
186 if (!found_extent++)
187 si->curr_swap_extent = se;
188
189 start_block <<= PAGE_SHIFT - 9;
190 nr_blocks <<= PAGE_SHIFT - 9;
191 if (blkdev_issue_discard(si->bdev, start_block,
192 nr_blocks, GFP_NOIO, 0))
193 break;
194 }
195
196 se = list_next_entry(se, list);
197 }
198 }
199
200 #define SWAPFILE_CLUSTER 256
201 #define LATENCY_LIMIT 256
202
203 static inline void cluster_set_flag(struct swap_cluster_info *info,
204 unsigned int flag)
205 {
206 info->flags = flag;
207 }
208
209 static inline unsigned int cluster_count(struct swap_cluster_info *info)
210 {
211 return info->data;
212 }
213
214 static inline void cluster_set_count(struct swap_cluster_info *info,
215 unsigned int c)
216 {
217 info->data = c;
218 }
219
220 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
221 unsigned int c, unsigned int f)
222 {
223 info->flags = f;
224 info->data = c;
225 }
226
227 static inline unsigned int cluster_next(struct swap_cluster_info *info)
228 {
229 return info->data;
230 }
231
232 static inline void cluster_set_next(struct swap_cluster_info *info,
233 unsigned int n)
234 {
235 info->data = n;
236 }
237
238 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
239 unsigned int n, unsigned int f)
240 {
241 info->flags = f;
242 info->data = n;
243 }
244
245 static inline bool cluster_is_free(struct swap_cluster_info *info)
246 {
247 return info->flags & CLUSTER_FLAG_FREE;
248 }
249
250 static inline bool cluster_is_null(struct swap_cluster_info *info)
251 {
252 return info->flags & CLUSTER_FLAG_NEXT_NULL;
253 }
254
255 static inline void cluster_set_null(struct swap_cluster_info *info)
256 {
257 info->flags = CLUSTER_FLAG_NEXT_NULL;
258 info->data = 0;
259 }
260
261 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
262 unsigned long offset)
263 {
264 struct swap_cluster_info *ci;
265
266 ci = si->cluster_info;
267 if (ci) {
268 ci += offset / SWAPFILE_CLUSTER;
269 spin_lock(&ci->lock);
270 }
271 return ci;
272 }
273
274 static inline void unlock_cluster(struct swap_cluster_info *ci)
275 {
276 if (ci)
277 spin_unlock(&ci->lock);
278 }
279
280 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
281 struct swap_info_struct *si,
282 unsigned long offset)
283 {
284 struct swap_cluster_info *ci;
285
286 ci = lock_cluster(si, offset);
287 if (!ci)
288 spin_lock(&si->lock);
289
290 return ci;
291 }
292
293 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
294 struct swap_cluster_info *ci)
295 {
296 if (ci)
297 unlock_cluster(ci);
298 else
299 spin_unlock(&si->lock);
300 }
301
302 static inline bool cluster_list_empty(struct swap_cluster_list *list)
303 {
304 return cluster_is_null(&list->head);
305 }
306
307 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
308 {
309 return cluster_next(&list->head);
310 }
311
312 static void cluster_list_init(struct swap_cluster_list *list)
313 {
314 cluster_set_null(&list->head);
315 cluster_set_null(&list->tail);
316 }
317
318 static void cluster_list_add_tail(struct swap_cluster_list *list,
319 struct swap_cluster_info *ci,
320 unsigned int idx)
321 {
322 if (cluster_list_empty(list)) {
323 cluster_set_next_flag(&list->head, idx, 0);
324 cluster_set_next_flag(&list->tail, idx, 0);
325 } else {
326 struct swap_cluster_info *ci_tail;
327 unsigned int tail = cluster_next(&list->tail);
328
329 /*
330 * Nested cluster lock, but both cluster locks are
331 * only acquired when we held swap_info_struct->lock
332 */
333 ci_tail = ci + tail;
334 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
335 cluster_set_next(ci_tail, idx);
336 unlock_cluster(ci_tail);
337 cluster_set_next_flag(&list->tail, idx, 0);
338 }
339 }
340
341 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
342 struct swap_cluster_info *ci)
343 {
344 unsigned int idx;
345
346 idx = cluster_next(&list->head);
347 if (cluster_next(&list->tail) == idx) {
348 cluster_set_null(&list->head);
349 cluster_set_null(&list->tail);
350 } else
351 cluster_set_next_flag(&list->head,
352 cluster_next(&ci[idx]), 0);
353
354 return idx;
355 }
356
357 /* Add a cluster to discard list and schedule it to do discard */
358 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
359 unsigned int idx)
360 {
361 /*
362 * If scan_swap_map() can't find a free cluster, it will check
363 * si->swap_map directly. To make sure the discarding cluster isn't
364 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
365 * will be cleared after discard
366 */
367 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
368 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
369
370 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
371
372 schedule_work(&si->discard_work);
373 }
374
375 /*
376 * Doing discard actually. After a cluster discard is finished, the cluster
377 * will be added to free cluster list. caller should hold si->lock.
378 */
379 static void swap_do_scheduled_discard(struct swap_info_struct *si)
380 {
381 struct swap_cluster_info *info, *ci;
382 unsigned int idx;
383
384 info = si->cluster_info;
385
386 while (!cluster_list_empty(&si->discard_clusters)) {
387 idx = cluster_list_del_first(&si->discard_clusters, info);
388 spin_unlock(&si->lock);
389
390 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
391 SWAPFILE_CLUSTER);
392
393 spin_lock(&si->lock);
394 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
395 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
396 unlock_cluster(ci);
397 cluster_list_add_tail(&si->free_clusters, info, idx);
398 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
399 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
400 0, SWAPFILE_CLUSTER);
401 unlock_cluster(ci);
402 }
403 }
404
405 static void swap_discard_work(struct work_struct *work)
406 {
407 struct swap_info_struct *si;
408
409 si = container_of(work, struct swap_info_struct, discard_work);
410
411 spin_lock(&si->lock);
412 swap_do_scheduled_discard(si);
413 spin_unlock(&si->lock);
414 }
415
416 /*
417 * The cluster corresponding to page_nr will be used. The cluster will be
418 * removed from free cluster list and its usage counter will be increased.
419 */
420 static void inc_cluster_info_page(struct swap_info_struct *p,
421 struct swap_cluster_info *cluster_info, unsigned long page_nr)
422 {
423 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
424
425 if (!cluster_info)
426 return;
427 if (cluster_is_free(&cluster_info[idx])) {
428 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
429 cluster_list_del_first(&p->free_clusters, cluster_info);
430 cluster_set_count_flag(&cluster_info[idx], 0, 0);
431 }
432
433 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
434 cluster_set_count(&cluster_info[idx],
435 cluster_count(&cluster_info[idx]) + 1);
436 }
437
438 /*
439 * The cluster corresponding to page_nr decreases one usage. If the usage
440 * counter becomes 0, which means no page in the cluster is in using, we can
441 * optionally discard the cluster and add it to free cluster list.
442 */
443 static void dec_cluster_info_page(struct swap_info_struct *p,
444 struct swap_cluster_info *cluster_info, unsigned long page_nr)
445 {
446 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
447
448 if (!cluster_info)
449 return;
450
451 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
452 cluster_set_count(&cluster_info[idx],
453 cluster_count(&cluster_info[idx]) - 1);
454
455 if (cluster_count(&cluster_info[idx]) == 0) {
456 /*
457 * If the swap is discardable, prepare discard the cluster
458 * instead of free it immediately. The cluster will be freed
459 * after discard.
460 */
461 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
462 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
463 swap_cluster_schedule_discard(p, idx);
464 return;
465 }
466
467 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
468 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
469 }
470 }
471
472 /*
473 * It's possible scan_swap_map() uses a free cluster in the middle of free
474 * cluster list. Avoiding such abuse to avoid list corruption.
475 */
476 static bool
477 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
478 unsigned long offset)
479 {
480 struct percpu_cluster *percpu_cluster;
481 bool conflict;
482
483 offset /= SWAPFILE_CLUSTER;
484 conflict = !cluster_list_empty(&si->free_clusters) &&
485 offset != cluster_list_first(&si->free_clusters) &&
486 cluster_is_free(&si->cluster_info[offset]);
487
488 if (!conflict)
489 return false;
490
491 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
492 cluster_set_null(&percpu_cluster->index);
493 return true;
494 }
495
496 /*
497 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
498 * might involve allocating a new cluster for current CPU too.
499 */
500 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
501 unsigned long *offset, unsigned long *scan_base)
502 {
503 struct percpu_cluster *cluster;
504 struct swap_cluster_info *ci;
505 bool found_free;
506 unsigned long tmp, max;
507
508 new_cluster:
509 cluster = this_cpu_ptr(si->percpu_cluster);
510 if (cluster_is_null(&cluster->index)) {
511 if (!cluster_list_empty(&si->free_clusters)) {
512 cluster->index = si->free_clusters.head;
513 cluster->next = cluster_next(&cluster->index) *
514 SWAPFILE_CLUSTER;
515 } else if (!cluster_list_empty(&si->discard_clusters)) {
516 /*
517 * we don't have free cluster but have some clusters in
518 * discarding, do discard now and reclaim them
519 */
520 swap_do_scheduled_discard(si);
521 *scan_base = *offset = si->cluster_next;
522 goto new_cluster;
523 } else
524 return false;
525 }
526
527 found_free = false;
528
529 /*
530 * Other CPUs can use our cluster if they can't find a free cluster,
531 * check if there is still free entry in the cluster
532 */
533 tmp = cluster->next;
534 max = min_t(unsigned long, si->max,
535 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
536 if (tmp >= max) {
537 cluster_set_null(&cluster->index);
538 goto new_cluster;
539 }
540 ci = lock_cluster(si, tmp);
541 while (tmp < max) {
542 if (!si->swap_map[tmp]) {
543 found_free = true;
544 break;
545 }
546 tmp++;
547 }
548 unlock_cluster(ci);
549 if (!found_free) {
550 cluster_set_null(&cluster->index);
551 goto new_cluster;
552 }
553 cluster->next = tmp + 1;
554 *offset = tmp;
555 *scan_base = tmp;
556 return found_free;
557 }
558
559 static int scan_swap_map_slots(struct swap_info_struct *si,
560 unsigned char usage, int nr,
561 swp_entry_t slots[])
562 {
563 struct swap_cluster_info *ci;
564 unsigned long offset;
565 unsigned long scan_base;
566 unsigned long last_in_cluster = 0;
567 int latency_ration = LATENCY_LIMIT;
568 int n_ret = 0;
569
570 if (nr > SWAP_BATCH)
571 nr = SWAP_BATCH;
572
573 /*
574 * We try to cluster swap pages by allocating them sequentially
575 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
576 * way, however, we resort to first-free allocation, starting
577 * a new cluster. This prevents us from scattering swap pages
578 * all over the entire swap partition, so that we reduce
579 * overall disk seek times between swap pages. -- sct
580 * But we do now try to find an empty cluster. -Andrea
581 * And we let swap pages go all over an SSD partition. Hugh
582 */
583
584 si->flags += SWP_SCANNING;
585 scan_base = offset = si->cluster_next;
586
587 /* SSD algorithm */
588 if (si->cluster_info) {
589 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
590 goto checks;
591 else
592 goto scan;
593 }
594
595 if (unlikely(!si->cluster_nr--)) {
596 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
597 si->cluster_nr = SWAPFILE_CLUSTER - 1;
598 goto checks;
599 }
600
601 spin_unlock(&si->lock);
602
603 /*
604 * If seek is expensive, start searching for new cluster from
605 * start of partition, to minimize the span of allocated swap.
606 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
607 * case, just handled by scan_swap_map_try_ssd_cluster() above.
608 */
609 scan_base = offset = si->lowest_bit;
610 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
611
612 /* Locate the first empty (unaligned) cluster */
613 for (; last_in_cluster <= si->highest_bit; offset++) {
614 if (si->swap_map[offset])
615 last_in_cluster = offset + SWAPFILE_CLUSTER;
616 else if (offset == last_in_cluster) {
617 spin_lock(&si->lock);
618 offset -= SWAPFILE_CLUSTER - 1;
619 si->cluster_next = offset;
620 si->cluster_nr = SWAPFILE_CLUSTER - 1;
621 goto checks;
622 }
623 if (unlikely(--latency_ration < 0)) {
624 cond_resched();
625 latency_ration = LATENCY_LIMIT;
626 }
627 }
628
629 offset = scan_base;
630 spin_lock(&si->lock);
631 si->cluster_nr = SWAPFILE_CLUSTER - 1;
632 }
633
634 checks:
635 if (si->cluster_info) {
636 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
637 /* take a break if we already got some slots */
638 if (n_ret)
639 goto done;
640 if (!scan_swap_map_try_ssd_cluster(si, &offset,
641 &scan_base))
642 goto scan;
643 }
644 }
645 if (!(si->flags & SWP_WRITEOK))
646 goto no_page;
647 if (!si->highest_bit)
648 goto no_page;
649 if (offset > si->highest_bit)
650 scan_base = offset = si->lowest_bit;
651
652 ci = lock_cluster(si, offset);
653 /* reuse swap entry of cache-only swap if not busy. */
654 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
655 int swap_was_freed;
656 unlock_cluster(ci);
657 spin_unlock(&si->lock);
658 swap_was_freed = __try_to_reclaim_swap(si, offset);
659 spin_lock(&si->lock);
660 /* entry was freed successfully, try to use this again */
661 if (swap_was_freed)
662 goto checks;
663 goto scan; /* check next one */
664 }
665
666 if (si->swap_map[offset]) {
667 unlock_cluster(ci);
668 if (!n_ret)
669 goto scan;
670 else
671 goto done;
672 }
673
674 if (offset == si->lowest_bit)
675 si->lowest_bit++;
676 if (offset == si->highest_bit)
677 si->highest_bit--;
678 si->inuse_pages++;
679 if (si->inuse_pages == si->pages) {
680 si->lowest_bit = si->max;
681 si->highest_bit = 0;
682 spin_lock(&swap_avail_lock);
683 plist_del(&si->avail_list, &swap_avail_head);
684 spin_unlock(&swap_avail_lock);
685 }
686 si->swap_map[offset] = usage;
687 inc_cluster_info_page(si, si->cluster_info, offset);
688 unlock_cluster(ci);
689 si->cluster_next = offset + 1;
690 slots[n_ret++] = swp_entry(si->type, offset);
691
692 /* got enough slots or reach max slots? */
693 if ((n_ret == nr) || (offset >= si->highest_bit))
694 goto done;
695
696 /* search for next available slot */
697
698 /* time to take a break? */
699 if (unlikely(--latency_ration < 0)) {
700 if (n_ret)
701 goto done;
702 spin_unlock(&si->lock);
703 cond_resched();
704 spin_lock(&si->lock);
705 latency_ration = LATENCY_LIMIT;
706 }
707
708 /* try to get more slots in cluster */
709 if (si->cluster_info) {
710 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
711 goto checks;
712 else
713 goto done;
714 }
715 /* non-ssd case */
716 ++offset;
717
718 /* non-ssd case, still more slots in cluster? */
719 if (si->cluster_nr && !si->swap_map[offset]) {
720 --si->cluster_nr;
721 goto checks;
722 }
723
724 done:
725 si->flags -= SWP_SCANNING;
726 return n_ret;
727
728 scan:
729 spin_unlock(&si->lock);
730 while (++offset <= si->highest_bit) {
731 if (!si->swap_map[offset]) {
732 spin_lock(&si->lock);
733 goto checks;
734 }
735 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
736 spin_lock(&si->lock);
737 goto checks;
738 }
739 if (unlikely(--latency_ration < 0)) {
740 cond_resched();
741 latency_ration = LATENCY_LIMIT;
742 }
743 }
744 offset = si->lowest_bit;
745 while (offset < scan_base) {
746 if (!si->swap_map[offset]) {
747 spin_lock(&si->lock);
748 goto checks;
749 }
750 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
751 spin_lock(&si->lock);
752 goto checks;
753 }
754 if (unlikely(--latency_ration < 0)) {
755 cond_resched();
756 latency_ration = LATENCY_LIMIT;
757 }
758 offset++;
759 }
760 spin_lock(&si->lock);
761
762 no_page:
763 si->flags -= SWP_SCANNING;
764 return n_ret;
765 }
766
767 static unsigned long scan_swap_map(struct swap_info_struct *si,
768 unsigned char usage)
769 {
770 swp_entry_t entry;
771 int n_ret;
772
773 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
774
775 if (n_ret)
776 return swp_offset(entry);
777 else
778 return 0;
779
780 }
781
782 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
783 {
784 struct swap_info_struct *si, *next;
785 long avail_pgs;
786 int n_ret = 0;
787
788 avail_pgs = atomic_long_read(&nr_swap_pages);
789 if (avail_pgs <= 0)
790 goto noswap;
791
792 if (n_goal > SWAP_BATCH)
793 n_goal = SWAP_BATCH;
794
795 if (n_goal > avail_pgs)
796 n_goal = avail_pgs;
797
798 atomic_long_sub(n_goal, &nr_swap_pages);
799
800 spin_lock(&swap_avail_lock);
801
802 start_over:
803 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
804 /* requeue si to after same-priority siblings */
805 plist_requeue(&si->avail_list, &swap_avail_head);
806 spin_unlock(&swap_avail_lock);
807 spin_lock(&si->lock);
808 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
809 spin_lock(&swap_avail_lock);
810 if (plist_node_empty(&si->avail_list)) {
811 spin_unlock(&si->lock);
812 goto nextsi;
813 }
814 WARN(!si->highest_bit,
815 "swap_info %d in list but !highest_bit\n",
816 si->type);
817 WARN(!(si->flags & SWP_WRITEOK),
818 "swap_info %d in list but !SWP_WRITEOK\n",
819 si->type);
820 plist_del(&si->avail_list, &swap_avail_head);
821 spin_unlock(&si->lock);
822 goto nextsi;
823 }
824 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
825 n_goal, swp_entries);
826 spin_unlock(&si->lock);
827 if (n_ret)
828 goto check_out;
829 pr_debug("scan_swap_map of si %d failed to find offset\n",
830 si->type);
831
832 spin_lock(&swap_avail_lock);
833 nextsi:
834 /*
835 * if we got here, it's likely that si was almost full before,
836 * and since scan_swap_map() can drop the si->lock, multiple
837 * callers probably all tried to get a page from the same si
838 * and it filled up before we could get one; or, the si filled
839 * up between us dropping swap_avail_lock and taking si->lock.
840 * Since we dropped the swap_avail_lock, the swap_avail_head
841 * list may have been modified; so if next is still in the
842 * swap_avail_head list then try it, otherwise start over
843 * if we have not gotten any slots.
844 */
845 if (plist_node_empty(&next->avail_list))
846 goto start_over;
847 }
848
849 spin_unlock(&swap_avail_lock);
850
851 check_out:
852 if (n_ret < n_goal)
853 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
854 noswap:
855 return n_ret;
856 }
857
858 /* The only caller of this function is now suspend routine */
859 swp_entry_t get_swap_page_of_type(int type)
860 {
861 struct swap_info_struct *si;
862 pgoff_t offset;
863
864 si = swap_info[type];
865 spin_lock(&si->lock);
866 if (si && (si->flags & SWP_WRITEOK)) {
867 atomic_long_dec(&nr_swap_pages);
868 /* This is called for allocating swap entry, not cache */
869 offset = scan_swap_map(si, 1);
870 if (offset) {
871 spin_unlock(&si->lock);
872 return swp_entry(type, offset);
873 }
874 atomic_long_inc(&nr_swap_pages);
875 }
876 spin_unlock(&si->lock);
877 return (swp_entry_t) {0};
878 }
879
880 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
881 {
882 struct swap_info_struct *p;
883 unsigned long offset, type;
884
885 if (!entry.val)
886 goto out;
887 type = swp_type(entry);
888 if (type >= nr_swapfiles)
889 goto bad_nofile;
890 p = swap_info[type];
891 if (!(p->flags & SWP_USED))
892 goto bad_device;
893 offset = swp_offset(entry);
894 if (offset >= p->max)
895 goto bad_offset;
896 return p;
897
898 bad_offset:
899 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
900 goto out;
901 bad_device:
902 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
903 goto out;
904 bad_nofile:
905 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
906 out:
907 return NULL;
908 }
909
910 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
911 {
912 struct swap_info_struct *p;
913
914 p = __swap_info_get(entry);
915 if (!p)
916 goto out;
917 if (!p->swap_map[swp_offset(entry)])
918 goto bad_free;
919 return p;
920
921 bad_free:
922 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
923 goto out;
924 out:
925 return NULL;
926 }
927
928 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
929 {
930 struct swap_info_struct *p;
931
932 p = _swap_info_get(entry);
933 if (p)
934 spin_lock(&p->lock);
935 return p;
936 }
937
938 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
939 struct swap_info_struct *q)
940 {
941 struct swap_info_struct *p;
942
943 p = _swap_info_get(entry);
944
945 if (p != q) {
946 if (q != NULL)
947 spin_unlock(&q->lock);
948 if (p != NULL)
949 spin_lock(&p->lock);
950 }
951 return p;
952 }
953
954 static unsigned char __swap_entry_free(struct swap_info_struct *p,
955 swp_entry_t entry, unsigned char usage)
956 {
957 struct swap_cluster_info *ci;
958 unsigned long offset = swp_offset(entry);
959 unsigned char count;
960 unsigned char has_cache;
961
962 ci = lock_cluster_or_swap_info(p, offset);
963
964 count = p->swap_map[offset];
965
966 has_cache = count & SWAP_HAS_CACHE;
967 count &= ~SWAP_HAS_CACHE;
968
969 if (usage == SWAP_HAS_CACHE) {
970 VM_BUG_ON(!has_cache);
971 has_cache = 0;
972 } else if (count == SWAP_MAP_SHMEM) {
973 /*
974 * Or we could insist on shmem.c using a special
975 * swap_shmem_free() and free_shmem_swap_and_cache()...
976 */
977 count = 0;
978 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
979 if (count == COUNT_CONTINUED) {
980 if (swap_count_continued(p, offset, count))
981 count = SWAP_MAP_MAX | COUNT_CONTINUED;
982 else
983 count = SWAP_MAP_MAX;
984 } else
985 count--;
986 }
987
988 usage = count | has_cache;
989 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
990
991 unlock_cluster_or_swap_info(p, ci);
992
993 return usage;
994 }
995
996 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
997 {
998 struct swap_cluster_info *ci;
999 unsigned long offset = swp_offset(entry);
1000 unsigned char count;
1001
1002 ci = lock_cluster(p, offset);
1003 count = p->swap_map[offset];
1004 VM_BUG_ON(count != SWAP_HAS_CACHE);
1005 p->swap_map[offset] = 0;
1006 dec_cluster_info_page(p, p->cluster_info, offset);
1007 unlock_cluster(ci);
1008
1009 mem_cgroup_uncharge_swap(entry);
1010 if (offset < p->lowest_bit)
1011 p->lowest_bit = offset;
1012 if (offset > p->highest_bit) {
1013 bool was_full = !p->highest_bit;
1014
1015 p->highest_bit = offset;
1016 if (was_full && (p->flags & SWP_WRITEOK)) {
1017 spin_lock(&swap_avail_lock);
1018 WARN_ON(!plist_node_empty(&p->avail_list));
1019 if (plist_node_empty(&p->avail_list))
1020 plist_add(&p->avail_list,
1021 &swap_avail_head);
1022 spin_unlock(&swap_avail_lock);
1023 }
1024 }
1025 atomic_long_inc(&nr_swap_pages);
1026 p->inuse_pages--;
1027 frontswap_invalidate_page(p->type, offset);
1028 if (p->flags & SWP_BLKDEV) {
1029 struct gendisk *disk = p->bdev->bd_disk;
1030
1031 if (disk->fops->swap_slot_free_notify)
1032 disk->fops->swap_slot_free_notify(p->bdev,
1033 offset);
1034 }
1035 }
1036
1037 /*
1038 * Caller has made sure that the swap device corresponding to entry
1039 * is still around or has not been recycled.
1040 */
1041 void swap_free(swp_entry_t entry)
1042 {
1043 struct swap_info_struct *p;
1044
1045 p = _swap_info_get(entry);
1046 if (p) {
1047 if (!__swap_entry_free(p, entry, 1))
1048 free_swap_slot(entry);
1049 }
1050 }
1051
1052 /*
1053 * Called after dropping swapcache to decrease refcnt to swap entries.
1054 */
1055 void swapcache_free(swp_entry_t entry)
1056 {
1057 struct swap_info_struct *p;
1058
1059 p = _swap_info_get(entry);
1060 if (p) {
1061 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1062 free_swap_slot(entry);
1063 }
1064 }
1065
1066 void swapcache_free_entries(swp_entry_t *entries, int n)
1067 {
1068 struct swap_info_struct *p, *prev;
1069 int i;
1070
1071 if (n <= 0)
1072 return;
1073
1074 prev = NULL;
1075 p = NULL;
1076 for (i = 0; i < n; ++i) {
1077 p = swap_info_get_cont(entries[i], prev);
1078 if (p)
1079 swap_entry_free(p, entries[i]);
1080 else
1081 break;
1082 prev = p;
1083 }
1084 if (p)
1085 spin_unlock(&p->lock);
1086 }
1087
1088 /*
1089 * How many references to page are currently swapped out?
1090 * This does not give an exact answer when swap count is continued,
1091 * but does include the high COUNT_CONTINUED flag to allow for that.
1092 */
1093 int page_swapcount(struct page *page)
1094 {
1095 int count = 0;
1096 struct swap_info_struct *p;
1097 struct swap_cluster_info *ci;
1098 swp_entry_t entry;
1099 unsigned long offset;
1100
1101 entry.val = page_private(page);
1102 p = _swap_info_get(entry);
1103 if (p) {
1104 offset = swp_offset(entry);
1105 ci = lock_cluster_or_swap_info(p, offset);
1106 count = swap_count(p->swap_map[offset]);
1107 unlock_cluster_or_swap_info(p, ci);
1108 }
1109 return count;
1110 }
1111
1112 /*
1113 * How many references to @entry are currently swapped out?
1114 * This does not give an exact answer when swap count is continued,
1115 * but does include the high COUNT_CONTINUED flag to allow for that.
1116 */
1117 int __swp_swapcount(swp_entry_t entry)
1118 {
1119 int count = 0;
1120 pgoff_t offset;
1121 struct swap_info_struct *si;
1122 struct swap_cluster_info *ci;
1123
1124 si = __swap_info_get(entry);
1125 if (si) {
1126 offset = swp_offset(entry);
1127 ci = lock_cluster_or_swap_info(si, offset);
1128 count = swap_count(si->swap_map[offset]);
1129 unlock_cluster_or_swap_info(si, ci);
1130 }
1131 return count;
1132 }
1133
1134 /*
1135 * How many references to @entry are currently swapped out?
1136 * This considers COUNT_CONTINUED so it returns exact answer.
1137 */
1138 int swp_swapcount(swp_entry_t entry)
1139 {
1140 int count, tmp_count, n;
1141 struct swap_info_struct *p;
1142 struct swap_cluster_info *ci;
1143 struct page *page;
1144 pgoff_t offset;
1145 unsigned char *map;
1146
1147 p = _swap_info_get(entry);
1148 if (!p)
1149 return 0;
1150
1151 offset = swp_offset(entry);
1152
1153 ci = lock_cluster_or_swap_info(p, offset);
1154
1155 count = swap_count(p->swap_map[offset]);
1156 if (!(count & COUNT_CONTINUED))
1157 goto out;
1158
1159 count &= ~COUNT_CONTINUED;
1160 n = SWAP_MAP_MAX + 1;
1161
1162 page = vmalloc_to_page(p->swap_map + offset);
1163 offset &= ~PAGE_MASK;
1164 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1165
1166 do {
1167 page = list_next_entry(page, lru);
1168 map = kmap_atomic(page);
1169 tmp_count = map[offset];
1170 kunmap_atomic(map);
1171
1172 count += (tmp_count & ~COUNT_CONTINUED) * n;
1173 n *= (SWAP_CONT_MAX + 1);
1174 } while (tmp_count & COUNT_CONTINUED);
1175 out:
1176 unlock_cluster_or_swap_info(p, ci);
1177 return count;
1178 }
1179
1180 /*
1181 * We can write to an anon page without COW if there are no other references
1182 * to it. And as a side-effect, free up its swap: because the old content
1183 * on disk will never be read, and seeking back there to write new content
1184 * later would only waste time away from clustering.
1185 *
1186 * NOTE: total_mapcount should not be relied upon by the caller if
1187 * reuse_swap_page() returns false, but it may be always overwritten
1188 * (see the other implementation for CONFIG_SWAP=n).
1189 */
1190 bool reuse_swap_page(struct page *page, int *total_mapcount)
1191 {
1192 int count;
1193
1194 VM_BUG_ON_PAGE(!PageLocked(page), page);
1195 if (unlikely(PageKsm(page)))
1196 return false;
1197 count = page_trans_huge_mapcount(page, total_mapcount);
1198 if (count <= 1 && PageSwapCache(page)) {
1199 count += page_swapcount(page);
1200 if (count != 1)
1201 goto out;
1202 if (!PageWriteback(page)) {
1203 delete_from_swap_cache(page);
1204 SetPageDirty(page);
1205 } else {
1206 swp_entry_t entry;
1207 struct swap_info_struct *p;
1208
1209 entry.val = page_private(page);
1210 p = swap_info_get(entry);
1211 if (p->flags & SWP_STABLE_WRITES) {
1212 spin_unlock(&p->lock);
1213 return false;
1214 }
1215 spin_unlock(&p->lock);
1216 }
1217 }
1218 out:
1219 return count <= 1;
1220 }
1221
1222 /*
1223 * If swap is getting full, or if there are no more mappings of this page,
1224 * then try_to_free_swap is called to free its swap space.
1225 */
1226 int try_to_free_swap(struct page *page)
1227 {
1228 VM_BUG_ON_PAGE(!PageLocked(page), page);
1229
1230 if (!PageSwapCache(page))
1231 return 0;
1232 if (PageWriteback(page))
1233 return 0;
1234 if (page_swapcount(page))
1235 return 0;
1236
1237 /*
1238 * Once hibernation has begun to create its image of memory,
1239 * there's a danger that one of the calls to try_to_free_swap()
1240 * - most probably a call from __try_to_reclaim_swap() while
1241 * hibernation is allocating its own swap pages for the image,
1242 * but conceivably even a call from memory reclaim - will free
1243 * the swap from a page which has already been recorded in the
1244 * image as a clean swapcache page, and then reuse its swap for
1245 * another page of the image. On waking from hibernation, the
1246 * original page might be freed under memory pressure, then
1247 * later read back in from swap, now with the wrong data.
1248 *
1249 * Hibernation suspends storage while it is writing the image
1250 * to disk so check that here.
1251 */
1252 if (pm_suspended_storage())
1253 return 0;
1254
1255 delete_from_swap_cache(page);
1256 SetPageDirty(page);
1257 return 1;
1258 }
1259
1260 /*
1261 * Free the swap entry like above, but also try to
1262 * free the page cache entry if it is the last user.
1263 */
1264 int free_swap_and_cache(swp_entry_t entry)
1265 {
1266 struct swap_info_struct *p;
1267 struct page *page = NULL;
1268 unsigned char count;
1269
1270 if (non_swap_entry(entry))
1271 return 1;
1272
1273 p = _swap_info_get(entry);
1274 if (p) {
1275 count = __swap_entry_free(p, entry, 1);
1276 if (count == SWAP_HAS_CACHE) {
1277 page = find_get_page(swap_address_space(entry),
1278 swp_offset(entry));
1279 if (page && !trylock_page(page)) {
1280 put_page(page);
1281 page = NULL;
1282 }
1283 } else if (!count)
1284 free_swap_slot(entry);
1285 }
1286 if (page) {
1287 /*
1288 * Not mapped elsewhere, or swap space full? Free it!
1289 * Also recheck PageSwapCache now page is locked (above).
1290 */
1291 if (PageSwapCache(page) && !PageWriteback(page) &&
1292 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1293 delete_from_swap_cache(page);
1294 SetPageDirty(page);
1295 }
1296 unlock_page(page);
1297 put_page(page);
1298 }
1299 return p != NULL;
1300 }
1301
1302 #ifdef CONFIG_HIBERNATION
1303 /*
1304 * Find the swap type that corresponds to given device (if any).
1305 *
1306 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1307 * from 0, in which the swap header is expected to be located.
1308 *
1309 * This is needed for the suspend to disk (aka swsusp).
1310 */
1311 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1312 {
1313 struct block_device *bdev = NULL;
1314 int type;
1315
1316 if (device)
1317 bdev = bdget(device);
1318
1319 spin_lock(&swap_lock);
1320 for (type = 0; type < nr_swapfiles; type++) {
1321 struct swap_info_struct *sis = swap_info[type];
1322
1323 if (!(sis->flags & SWP_WRITEOK))
1324 continue;
1325
1326 if (!bdev) {
1327 if (bdev_p)
1328 *bdev_p = bdgrab(sis->bdev);
1329
1330 spin_unlock(&swap_lock);
1331 return type;
1332 }
1333 if (bdev == sis->bdev) {
1334 struct swap_extent *se = &sis->first_swap_extent;
1335
1336 if (se->start_block == offset) {
1337 if (bdev_p)
1338 *bdev_p = bdgrab(sis->bdev);
1339
1340 spin_unlock(&swap_lock);
1341 bdput(bdev);
1342 return type;
1343 }
1344 }
1345 }
1346 spin_unlock(&swap_lock);
1347 if (bdev)
1348 bdput(bdev);
1349
1350 return -ENODEV;
1351 }
1352
1353 /*
1354 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1355 * corresponding to given index in swap_info (swap type).
1356 */
1357 sector_t swapdev_block(int type, pgoff_t offset)
1358 {
1359 struct block_device *bdev;
1360
1361 if ((unsigned int)type >= nr_swapfiles)
1362 return 0;
1363 if (!(swap_info[type]->flags & SWP_WRITEOK))
1364 return 0;
1365 return map_swap_entry(swp_entry(type, offset), &bdev);
1366 }
1367
1368 /*
1369 * Return either the total number of swap pages of given type, or the number
1370 * of free pages of that type (depending on @free)
1371 *
1372 * This is needed for software suspend
1373 */
1374 unsigned int count_swap_pages(int type, int free)
1375 {
1376 unsigned int n = 0;
1377
1378 spin_lock(&swap_lock);
1379 if ((unsigned int)type < nr_swapfiles) {
1380 struct swap_info_struct *sis = swap_info[type];
1381
1382 spin_lock(&sis->lock);
1383 if (sis->flags & SWP_WRITEOK) {
1384 n = sis->pages;
1385 if (free)
1386 n -= sis->inuse_pages;
1387 }
1388 spin_unlock(&sis->lock);
1389 }
1390 spin_unlock(&swap_lock);
1391 return n;
1392 }
1393 #endif /* CONFIG_HIBERNATION */
1394
1395 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1396 {
1397 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1398 }
1399
1400 /*
1401 * No need to decide whether this PTE shares the swap entry with others,
1402 * just let do_wp_page work it out if a write is requested later - to
1403 * force COW, vm_page_prot omits write permission from any private vma.
1404 */
1405 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1406 unsigned long addr, swp_entry_t entry, struct page *page)
1407 {
1408 struct page *swapcache;
1409 struct mem_cgroup *memcg;
1410 spinlock_t *ptl;
1411 pte_t *pte;
1412 int ret = 1;
1413
1414 swapcache = page;
1415 page = ksm_might_need_to_copy(page, vma, addr);
1416 if (unlikely(!page))
1417 return -ENOMEM;
1418
1419 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1420 &memcg, false)) {
1421 ret = -ENOMEM;
1422 goto out_nolock;
1423 }
1424
1425 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1426 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1427 mem_cgroup_cancel_charge(page, memcg, false);
1428 ret = 0;
1429 goto out;
1430 }
1431
1432 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1433 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1434 get_page(page);
1435 set_pte_at(vma->vm_mm, addr, pte,
1436 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1437 if (page == swapcache) {
1438 page_add_anon_rmap(page, vma, addr, false);
1439 mem_cgroup_commit_charge(page, memcg, true, false);
1440 } else { /* ksm created a completely new copy */
1441 page_add_new_anon_rmap(page, vma, addr, false);
1442 mem_cgroup_commit_charge(page, memcg, false, false);
1443 lru_cache_add_active_or_unevictable(page, vma);
1444 }
1445 swap_free(entry);
1446 /*
1447 * Move the page to the active list so it is not
1448 * immediately swapped out again after swapon.
1449 */
1450 activate_page(page);
1451 out:
1452 pte_unmap_unlock(pte, ptl);
1453 out_nolock:
1454 if (page != swapcache) {
1455 unlock_page(page);
1456 put_page(page);
1457 }
1458 return ret;
1459 }
1460
1461 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1462 unsigned long addr, unsigned long end,
1463 swp_entry_t entry, struct page *page)
1464 {
1465 pte_t swp_pte = swp_entry_to_pte(entry);
1466 pte_t *pte;
1467 int ret = 0;
1468
1469 /*
1470 * We don't actually need pte lock while scanning for swp_pte: since
1471 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1472 * page table while we're scanning; though it could get zapped, and on
1473 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1474 * of unmatched parts which look like swp_pte, so unuse_pte must
1475 * recheck under pte lock. Scanning without pte lock lets it be
1476 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1477 */
1478 pte = pte_offset_map(pmd, addr);
1479 do {
1480 /*
1481 * swapoff spends a _lot_ of time in this loop!
1482 * Test inline before going to call unuse_pte.
1483 */
1484 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1485 pte_unmap(pte);
1486 ret = unuse_pte(vma, pmd, addr, entry, page);
1487 if (ret)
1488 goto out;
1489 pte = pte_offset_map(pmd, addr);
1490 }
1491 } while (pte++, addr += PAGE_SIZE, addr != end);
1492 pte_unmap(pte - 1);
1493 out:
1494 return ret;
1495 }
1496
1497 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1498 unsigned long addr, unsigned long end,
1499 swp_entry_t entry, struct page *page)
1500 {
1501 pmd_t *pmd;
1502 unsigned long next;
1503 int ret;
1504
1505 pmd = pmd_offset(pud, addr);
1506 do {
1507 cond_resched();
1508 next = pmd_addr_end(addr, end);
1509 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1510 continue;
1511 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1512 if (ret)
1513 return ret;
1514 } while (pmd++, addr = next, addr != end);
1515 return 0;
1516 }
1517
1518 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1519 unsigned long addr, unsigned long end,
1520 swp_entry_t entry, struct page *page)
1521 {
1522 pud_t *pud;
1523 unsigned long next;
1524 int ret;
1525
1526 pud = pud_offset(pgd, addr);
1527 do {
1528 next = pud_addr_end(addr, end);
1529 if (pud_none_or_clear_bad(pud))
1530 continue;
1531 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1532 if (ret)
1533 return ret;
1534 } while (pud++, addr = next, addr != end);
1535 return 0;
1536 }
1537
1538 static int unuse_vma(struct vm_area_struct *vma,
1539 swp_entry_t entry, struct page *page)
1540 {
1541 pgd_t *pgd;
1542 unsigned long addr, end, next;
1543 int ret;
1544
1545 if (page_anon_vma(page)) {
1546 addr = page_address_in_vma(page, vma);
1547 if (addr == -EFAULT)
1548 return 0;
1549 else
1550 end = addr + PAGE_SIZE;
1551 } else {
1552 addr = vma->vm_start;
1553 end = vma->vm_end;
1554 }
1555
1556 pgd = pgd_offset(vma->vm_mm, addr);
1557 do {
1558 next = pgd_addr_end(addr, end);
1559 if (pgd_none_or_clear_bad(pgd))
1560 continue;
1561 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1562 if (ret)
1563 return ret;
1564 } while (pgd++, addr = next, addr != end);
1565 return 0;
1566 }
1567
1568 static int unuse_mm(struct mm_struct *mm,
1569 swp_entry_t entry, struct page *page)
1570 {
1571 struct vm_area_struct *vma;
1572 int ret = 0;
1573
1574 if (!down_read_trylock(&mm->mmap_sem)) {
1575 /*
1576 * Activate page so shrink_inactive_list is unlikely to unmap
1577 * its ptes while lock is dropped, so swapoff can make progress.
1578 */
1579 activate_page(page);
1580 unlock_page(page);
1581 down_read(&mm->mmap_sem);
1582 lock_page(page);
1583 }
1584 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1585 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1586 break;
1587 cond_resched();
1588 }
1589 up_read(&mm->mmap_sem);
1590 return (ret < 0)? ret: 0;
1591 }
1592
1593 /*
1594 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1595 * from current position to next entry still in use.
1596 * Recycle to start on reaching the end, returning 0 when empty.
1597 */
1598 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1599 unsigned int prev, bool frontswap)
1600 {
1601 unsigned int max = si->max;
1602 unsigned int i = prev;
1603 unsigned char count;
1604
1605 /*
1606 * No need for swap_lock here: we're just looking
1607 * for whether an entry is in use, not modifying it; false
1608 * hits are okay, and sys_swapoff() has already prevented new
1609 * allocations from this area (while holding swap_lock).
1610 */
1611 for (;;) {
1612 if (++i >= max) {
1613 if (!prev) {
1614 i = 0;
1615 break;
1616 }
1617 /*
1618 * No entries in use at top of swap_map,
1619 * loop back to start and recheck there.
1620 */
1621 max = prev + 1;
1622 prev = 0;
1623 i = 1;
1624 }
1625 count = READ_ONCE(si->swap_map[i]);
1626 if (count && swap_count(count) != SWAP_MAP_BAD)
1627 if (!frontswap || frontswap_test(si, i))
1628 break;
1629 if ((i % LATENCY_LIMIT) == 0)
1630 cond_resched();
1631 }
1632 return i;
1633 }
1634
1635 /*
1636 * We completely avoid races by reading each swap page in advance,
1637 * and then search for the process using it. All the necessary
1638 * page table adjustments can then be made atomically.
1639 *
1640 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1641 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1642 */
1643 int try_to_unuse(unsigned int type, bool frontswap,
1644 unsigned long pages_to_unuse)
1645 {
1646 struct swap_info_struct *si = swap_info[type];
1647 struct mm_struct *start_mm;
1648 volatile unsigned char *swap_map; /* swap_map is accessed without
1649 * locking. Mark it as volatile
1650 * to prevent compiler doing
1651 * something odd.
1652 */
1653 unsigned char swcount;
1654 struct page *page;
1655 swp_entry_t entry;
1656 unsigned int i = 0;
1657 int retval = 0;
1658
1659 /*
1660 * When searching mms for an entry, a good strategy is to
1661 * start at the first mm we freed the previous entry from
1662 * (though actually we don't notice whether we or coincidence
1663 * freed the entry). Initialize this start_mm with a hold.
1664 *
1665 * A simpler strategy would be to start at the last mm we
1666 * freed the previous entry from; but that would take less
1667 * advantage of mmlist ordering, which clusters forked mms
1668 * together, child after parent. If we race with dup_mmap(), we
1669 * prefer to resolve parent before child, lest we miss entries
1670 * duplicated after we scanned child: using last mm would invert
1671 * that.
1672 */
1673 start_mm = &init_mm;
1674 atomic_inc(&init_mm.mm_users);
1675
1676 /*
1677 * Keep on scanning until all entries have gone. Usually,
1678 * one pass through swap_map is enough, but not necessarily:
1679 * there are races when an instance of an entry might be missed.
1680 */
1681 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1682 if (signal_pending(current)) {
1683 retval = -EINTR;
1684 break;
1685 }
1686
1687 /*
1688 * Get a page for the entry, using the existing swap
1689 * cache page if there is one. Otherwise, get a clean
1690 * page and read the swap into it.
1691 */
1692 swap_map = &si->swap_map[i];
1693 entry = swp_entry(type, i);
1694 page = read_swap_cache_async(entry,
1695 GFP_HIGHUSER_MOVABLE, NULL, 0);
1696 if (!page) {
1697 /*
1698 * Either swap_duplicate() failed because entry
1699 * has been freed independently, and will not be
1700 * reused since sys_swapoff() already disabled
1701 * allocation from here, or alloc_page() failed.
1702 */
1703 swcount = *swap_map;
1704 /*
1705 * We don't hold lock here, so the swap entry could be
1706 * SWAP_MAP_BAD (when the cluster is discarding).
1707 * Instead of fail out, We can just skip the swap
1708 * entry because swapoff will wait for discarding
1709 * finish anyway.
1710 */
1711 if (!swcount || swcount == SWAP_MAP_BAD)
1712 continue;
1713 retval = -ENOMEM;
1714 break;
1715 }
1716
1717 /*
1718 * Don't hold on to start_mm if it looks like exiting.
1719 */
1720 if (atomic_read(&start_mm->mm_users) == 1) {
1721 mmput(start_mm);
1722 start_mm = &init_mm;
1723 atomic_inc(&init_mm.mm_users);
1724 }
1725
1726 /*
1727 * Wait for and lock page. When do_swap_page races with
1728 * try_to_unuse, do_swap_page can handle the fault much
1729 * faster than try_to_unuse can locate the entry. This
1730 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1731 * defer to do_swap_page in such a case - in some tests,
1732 * do_swap_page and try_to_unuse repeatedly compete.
1733 */
1734 wait_on_page_locked(page);
1735 wait_on_page_writeback(page);
1736 lock_page(page);
1737 wait_on_page_writeback(page);
1738
1739 /*
1740 * Remove all references to entry.
1741 */
1742 swcount = *swap_map;
1743 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1744 retval = shmem_unuse(entry, page);
1745 /* page has already been unlocked and released */
1746 if (retval < 0)
1747 break;
1748 continue;
1749 }
1750 if (swap_count(swcount) && start_mm != &init_mm)
1751 retval = unuse_mm(start_mm, entry, page);
1752
1753 if (swap_count(*swap_map)) {
1754 int set_start_mm = (*swap_map >= swcount);
1755 struct list_head *p = &start_mm->mmlist;
1756 struct mm_struct *new_start_mm = start_mm;
1757 struct mm_struct *prev_mm = start_mm;
1758 struct mm_struct *mm;
1759
1760 atomic_inc(&new_start_mm->mm_users);
1761 atomic_inc(&prev_mm->mm_users);
1762 spin_lock(&mmlist_lock);
1763 while (swap_count(*swap_map) && !retval &&
1764 (p = p->next) != &start_mm->mmlist) {
1765 mm = list_entry(p, struct mm_struct, mmlist);
1766 if (!atomic_inc_not_zero(&mm->mm_users))
1767 continue;
1768 spin_unlock(&mmlist_lock);
1769 mmput(prev_mm);
1770 prev_mm = mm;
1771
1772 cond_resched();
1773
1774 swcount = *swap_map;
1775 if (!swap_count(swcount)) /* any usage ? */
1776 ;
1777 else if (mm == &init_mm)
1778 set_start_mm = 1;
1779 else
1780 retval = unuse_mm(mm, entry, page);
1781
1782 if (set_start_mm && *swap_map < swcount) {
1783 mmput(new_start_mm);
1784 atomic_inc(&mm->mm_users);
1785 new_start_mm = mm;
1786 set_start_mm = 0;
1787 }
1788 spin_lock(&mmlist_lock);
1789 }
1790 spin_unlock(&mmlist_lock);
1791 mmput(prev_mm);
1792 mmput(start_mm);
1793 start_mm = new_start_mm;
1794 }
1795 if (retval) {
1796 unlock_page(page);
1797 put_page(page);
1798 break;
1799 }
1800
1801 /*
1802 * If a reference remains (rare), we would like to leave
1803 * the page in the swap cache; but try_to_unmap could
1804 * then re-duplicate the entry once we drop page lock,
1805 * so we might loop indefinitely; also, that page could
1806 * not be swapped out to other storage meanwhile. So:
1807 * delete from cache even if there's another reference,
1808 * after ensuring that the data has been saved to disk -
1809 * since if the reference remains (rarer), it will be
1810 * read from disk into another page. Splitting into two
1811 * pages would be incorrect if swap supported "shared
1812 * private" pages, but they are handled by tmpfs files.
1813 *
1814 * Given how unuse_vma() targets one particular offset
1815 * in an anon_vma, once the anon_vma has been determined,
1816 * this splitting happens to be just what is needed to
1817 * handle where KSM pages have been swapped out: re-reading
1818 * is unnecessarily slow, but we can fix that later on.
1819 */
1820 if (swap_count(*swap_map) &&
1821 PageDirty(page) && PageSwapCache(page)) {
1822 struct writeback_control wbc = {
1823 .sync_mode = WB_SYNC_NONE,
1824 };
1825
1826 swap_writepage(page, &wbc);
1827 lock_page(page);
1828 wait_on_page_writeback(page);
1829 }
1830
1831 /*
1832 * It is conceivable that a racing task removed this page from
1833 * swap cache just before we acquired the page lock at the top,
1834 * or while we dropped it in unuse_mm(). The page might even
1835 * be back in swap cache on another swap area: that we must not
1836 * delete, since it may not have been written out to swap yet.
1837 */
1838 if (PageSwapCache(page) &&
1839 likely(page_private(page) == entry.val))
1840 delete_from_swap_cache(page);
1841
1842 /*
1843 * So we could skip searching mms once swap count went
1844 * to 1, we did not mark any present ptes as dirty: must
1845 * mark page dirty so shrink_page_list will preserve it.
1846 */
1847 SetPageDirty(page);
1848 unlock_page(page);
1849 put_page(page);
1850
1851 /*
1852 * Make sure that we aren't completely killing
1853 * interactive performance.
1854 */
1855 cond_resched();
1856 if (frontswap && pages_to_unuse > 0) {
1857 if (!--pages_to_unuse)
1858 break;
1859 }
1860 }
1861
1862 mmput(start_mm);
1863 return retval;
1864 }
1865
1866 /*
1867 * After a successful try_to_unuse, if no swap is now in use, we know
1868 * we can empty the mmlist. swap_lock must be held on entry and exit.
1869 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1870 * added to the mmlist just after page_duplicate - before would be racy.
1871 */
1872 static void drain_mmlist(void)
1873 {
1874 struct list_head *p, *next;
1875 unsigned int type;
1876
1877 for (type = 0; type < nr_swapfiles; type++)
1878 if (swap_info[type]->inuse_pages)
1879 return;
1880 spin_lock(&mmlist_lock);
1881 list_for_each_safe(p, next, &init_mm.mmlist)
1882 list_del_init(p);
1883 spin_unlock(&mmlist_lock);
1884 }
1885
1886 /*
1887 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1888 * corresponds to page offset for the specified swap entry.
1889 * Note that the type of this function is sector_t, but it returns page offset
1890 * into the bdev, not sector offset.
1891 */
1892 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1893 {
1894 struct swap_info_struct *sis;
1895 struct swap_extent *start_se;
1896 struct swap_extent *se;
1897 pgoff_t offset;
1898
1899 sis = swap_info[swp_type(entry)];
1900 *bdev = sis->bdev;
1901
1902 offset = swp_offset(entry);
1903 start_se = sis->curr_swap_extent;
1904 se = start_se;
1905
1906 for ( ; ; ) {
1907 if (se->start_page <= offset &&
1908 offset < (se->start_page + se->nr_pages)) {
1909 return se->start_block + (offset - se->start_page);
1910 }
1911 se = list_next_entry(se, list);
1912 sis->curr_swap_extent = se;
1913 BUG_ON(se == start_se); /* It *must* be present */
1914 }
1915 }
1916
1917 /*
1918 * Returns the page offset into bdev for the specified page's swap entry.
1919 */
1920 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1921 {
1922 swp_entry_t entry;
1923 entry.val = page_private(page);
1924 return map_swap_entry(entry, bdev);
1925 }
1926
1927 /*
1928 * Free all of a swapdev's extent information
1929 */
1930 static void destroy_swap_extents(struct swap_info_struct *sis)
1931 {
1932 while (!list_empty(&sis->first_swap_extent.list)) {
1933 struct swap_extent *se;
1934
1935 se = list_first_entry(&sis->first_swap_extent.list,
1936 struct swap_extent, list);
1937 list_del(&se->list);
1938 kfree(se);
1939 }
1940
1941 if (sis->flags & SWP_FILE) {
1942 struct file *swap_file = sis->swap_file;
1943 struct address_space *mapping = swap_file->f_mapping;
1944
1945 sis->flags &= ~SWP_FILE;
1946 mapping->a_ops->swap_deactivate(swap_file);
1947 }
1948 }
1949
1950 /*
1951 * Add a block range (and the corresponding page range) into this swapdev's
1952 * extent list. The extent list is kept sorted in page order.
1953 *
1954 * This function rather assumes that it is called in ascending page order.
1955 */
1956 int
1957 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1958 unsigned long nr_pages, sector_t start_block)
1959 {
1960 struct swap_extent *se;
1961 struct swap_extent *new_se;
1962 struct list_head *lh;
1963
1964 if (start_page == 0) {
1965 se = &sis->first_swap_extent;
1966 sis->curr_swap_extent = se;
1967 se->start_page = 0;
1968 se->nr_pages = nr_pages;
1969 se->start_block = start_block;
1970 return 1;
1971 } else {
1972 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1973 se = list_entry(lh, struct swap_extent, list);
1974 BUG_ON(se->start_page + se->nr_pages != start_page);
1975 if (se->start_block + se->nr_pages == start_block) {
1976 /* Merge it */
1977 se->nr_pages += nr_pages;
1978 return 0;
1979 }
1980 }
1981
1982 /*
1983 * No merge. Insert a new extent, preserving ordering.
1984 */
1985 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1986 if (new_se == NULL)
1987 return -ENOMEM;
1988 new_se->start_page = start_page;
1989 new_se->nr_pages = nr_pages;
1990 new_se->start_block = start_block;
1991
1992 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1993 return 1;
1994 }
1995
1996 /*
1997 * A `swap extent' is a simple thing which maps a contiguous range of pages
1998 * onto a contiguous range of disk blocks. An ordered list of swap extents
1999 * is built at swapon time and is then used at swap_writepage/swap_readpage
2000 * time for locating where on disk a page belongs.
2001 *
2002 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2003 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2004 * swap files identically.
2005 *
2006 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2007 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2008 * swapfiles are handled *identically* after swapon time.
2009 *
2010 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2011 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2012 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2013 * requirements, they are simply tossed out - we will never use those blocks
2014 * for swapping.
2015 *
2016 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2017 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2018 * which will scribble on the fs.
2019 *
2020 * The amount of disk space which a single swap extent represents varies.
2021 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2022 * extents in the list. To avoid much list walking, we cache the previous
2023 * search location in `curr_swap_extent', and start new searches from there.
2024 * This is extremely effective. The average number of iterations in
2025 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2026 */
2027 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2028 {
2029 struct file *swap_file = sis->swap_file;
2030 struct address_space *mapping = swap_file->f_mapping;
2031 struct inode *inode = mapping->host;
2032 int ret;
2033
2034 if (S_ISBLK(inode->i_mode)) {
2035 ret = add_swap_extent(sis, 0, sis->max, 0);
2036 *span = sis->pages;
2037 return ret;
2038 }
2039
2040 if (mapping->a_ops->swap_activate) {
2041 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2042 if (!ret) {
2043 sis->flags |= SWP_FILE;
2044 ret = add_swap_extent(sis, 0, sis->max, 0);
2045 *span = sis->pages;
2046 }
2047 return ret;
2048 }
2049
2050 return generic_swapfile_activate(sis, swap_file, span);
2051 }
2052
2053 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2054 unsigned char *swap_map,
2055 struct swap_cluster_info *cluster_info)
2056 {
2057 if (prio >= 0)
2058 p->prio = prio;
2059 else
2060 p->prio = --least_priority;
2061 /*
2062 * the plist prio is negated because plist ordering is
2063 * low-to-high, while swap ordering is high-to-low
2064 */
2065 p->list.prio = -p->prio;
2066 p->avail_list.prio = -p->prio;
2067 p->swap_map = swap_map;
2068 p->cluster_info = cluster_info;
2069 p->flags |= SWP_WRITEOK;
2070 atomic_long_add(p->pages, &nr_swap_pages);
2071 total_swap_pages += p->pages;
2072
2073 assert_spin_locked(&swap_lock);
2074 /*
2075 * both lists are plists, and thus priority ordered.
2076 * swap_active_head needs to be priority ordered for swapoff(),
2077 * which on removal of any swap_info_struct with an auto-assigned
2078 * (i.e. negative) priority increments the auto-assigned priority
2079 * of any lower-priority swap_info_structs.
2080 * swap_avail_head needs to be priority ordered for get_swap_page(),
2081 * which allocates swap pages from the highest available priority
2082 * swap_info_struct.
2083 */
2084 plist_add(&p->list, &swap_active_head);
2085 spin_lock(&swap_avail_lock);
2086 plist_add(&p->avail_list, &swap_avail_head);
2087 spin_unlock(&swap_avail_lock);
2088 }
2089
2090 static void enable_swap_info(struct swap_info_struct *p, int prio,
2091 unsigned char *swap_map,
2092 struct swap_cluster_info *cluster_info,
2093 unsigned long *frontswap_map)
2094 {
2095 frontswap_init(p->type, frontswap_map);
2096 spin_lock(&swap_lock);
2097 spin_lock(&p->lock);
2098 _enable_swap_info(p, prio, swap_map, cluster_info);
2099 spin_unlock(&p->lock);
2100 spin_unlock(&swap_lock);
2101 }
2102
2103 static void reinsert_swap_info(struct swap_info_struct *p)
2104 {
2105 spin_lock(&swap_lock);
2106 spin_lock(&p->lock);
2107 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2108 spin_unlock(&p->lock);
2109 spin_unlock(&swap_lock);
2110 }
2111
2112 bool has_usable_swap(void)
2113 {
2114 bool ret = true;
2115
2116 spin_lock(&swap_lock);
2117 if (plist_head_empty(&swap_active_head))
2118 ret = false;
2119 spin_unlock(&swap_lock);
2120 return ret;
2121 }
2122
2123 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2124 {
2125 struct swap_info_struct *p = NULL;
2126 unsigned char *swap_map;
2127 struct swap_cluster_info *cluster_info;
2128 unsigned long *frontswap_map;
2129 struct file *swap_file, *victim;
2130 struct address_space *mapping;
2131 struct inode *inode;
2132 struct filename *pathname;
2133 int err, found = 0;
2134 unsigned int old_block_size;
2135
2136 if (!capable(CAP_SYS_ADMIN))
2137 return -EPERM;
2138
2139 BUG_ON(!current->mm);
2140
2141 pathname = getname(specialfile);
2142 if (IS_ERR(pathname))
2143 return PTR_ERR(pathname);
2144
2145 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2146 err = PTR_ERR(victim);
2147 if (IS_ERR(victim))
2148 goto out;
2149
2150 mapping = victim->f_mapping;
2151 spin_lock(&swap_lock);
2152 plist_for_each_entry(p, &swap_active_head, list) {
2153 if (p->flags & SWP_WRITEOK) {
2154 if (p->swap_file->f_mapping == mapping) {
2155 found = 1;
2156 break;
2157 }
2158 }
2159 }
2160 if (!found) {
2161 err = -EINVAL;
2162 spin_unlock(&swap_lock);
2163 goto out_dput;
2164 }
2165 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2166 vm_unacct_memory(p->pages);
2167 else {
2168 err = -ENOMEM;
2169 spin_unlock(&swap_lock);
2170 goto out_dput;
2171 }
2172 spin_lock(&swap_avail_lock);
2173 plist_del(&p->avail_list, &swap_avail_head);
2174 spin_unlock(&swap_avail_lock);
2175 spin_lock(&p->lock);
2176 if (p->prio < 0) {
2177 struct swap_info_struct *si = p;
2178
2179 plist_for_each_entry_continue(si, &swap_active_head, list) {
2180 si->prio++;
2181 si->list.prio--;
2182 si->avail_list.prio--;
2183 }
2184 least_priority++;
2185 }
2186 plist_del(&p->list, &swap_active_head);
2187 atomic_long_sub(p->pages, &nr_swap_pages);
2188 total_swap_pages -= p->pages;
2189 p->flags &= ~SWP_WRITEOK;
2190 spin_unlock(&p->lock);
2191 spin_unlock(&swap_lock);
2192
2193 disable_swap_slots_cache_lock();
2194
2195 set_current_oom_origin();
2196 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2197 clear_current_oom_origin();
2198
2199 if (err) {
2200 /* re-insert swap space back into swap_list */
2201 reinsert_swap_info(p);
2202 reenable_swap_slots_cache_unlock();
2203 goto out_dput;
2204 }
2205
2206 reenable_swap_slots_cache_unlock();
2207
2208 flush_work(&p->discard_work);
2209
2210 destroy_swap_extents(p);
2211 if (p->flags & SWP_CONTINUED)
2212 free_swap_count_continuations(p);
2213
2214 mutex_lock(&swapon_mutex);
2215 spin_lock(&swap_lock);
2216 spin_lock(&p->lock);
2217 drain_mmlist();
2218
2219 /* wait for anyone still in scan_swap_map */
2220 p->highest_bit = 0; /* cuts scans short */
2221 while (p->flags >= SWP_SCANNING) {
2222 spin_unlock(&p->lock);
2223 spin_unlock(&swap_lock);
2224 schedule_timeout_uninterruptible(1);
2225 spin_lock(&swap_lock);
2226 spin_lock(&p->lock);
2227 }
2228
2229 swap_file = p->swap_file;
2230 old_block_size = p->old_block_size;
2231 p->swap_file = NULL;
2232 p->max = 0;
2233 swap_map = p->swap_map;
2234 p->swap_map = NULL;
2235 cluster_info = p->cluster_info;
2236 p->cluster_info = NULL;
2237 frontswap_map = frontswap_map_get(p);
2238 spin_unlock(&p->lock);
2239 spin_unlock(&swap_lock);
2240 frontswap_invalidate_area(p->type);
2241 frontswap_map_set(p, NULL);
2242 mutex_unlock(&swapon_mutex);
2243 free_percpu(p->percpu_cluster);
2244 p->percpu_cluster = NULL;
2245 vfree(swap_map);
2246 vfree(cluster_info);
2247 vfree(frontswap_map);
2248 /* Destroy swap account information */
2249 swap_cgroup_swapoff(p->type);
2250 exit_swap_address_space(p->type);
2251
2252 inode = mapping->host;
2253 if (S_ISBLK(inode->i_mode)) {
2254 struct block_device *bdev = I_BDEV(inode);
2255 set_blocksize(bdev, old_block_size);
2256 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2257 } else {
2258 inode_lock(inode);
2259 inode->i_flags &= ~S_SWAPFILE;
2260 inode_unlock(inode);
2261 }
2262 filp_close(swap_file, NULL);
2263
2264 /*
2265 * Clear the SWP_USED flag after all resources are freed so that swapon
2266 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2267 * not hold p->lock after we cleared its SWP_WRITEOK.
2268 */
2269 spin_lock(&swap_lock);
2270 p->flags = 0;
2271 spin_unlock(&swap_lock);
2272
2273 err = 0;
2274 atomic_inc(&proc_poll_event);
2275 wake_up_interruptible(&proc_poll_wait);
2276
2277 out_dput:
2278 filp_close(victim, NULL);
2279 out:
2280 putname(pathname);
2281 return err;
2282 }
2283
2284 #ifdef CONFIG_PROC_FS
2285 static unsigned swaps_poll(struct file *file, poll_table *wait)
2286 {
2287 struct seq_file *seq = file->private_data;
2288
2289 poll_wait(file, &proc_poll_wait, wait);
2290
2291 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2292 seq->poll_event = atomic_read(&proc_poll_event);
2293 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2294 }
2295
2296 return POLLIN | POLLRDNORM;
2297 }
2298
2299 /* iterator */
2300 static void *swap_start(struct seq_file *swap, loff_t *pos)
2301 {
2302 struct swap_info_struct *si;
2303 int type;
2304 loff_t l = *pos;
2305
2306 mutex_lock(&swapon_mutex);
2307
2308 if (!l)
2309 return SEQ_START_TOKEN;
2310
2311 for (type = 0; type < nr_swapfiles; type++) {
2312 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2313 si = swap_info[type];
2314 if (!(si->flags & SWP_USED) || !si->swap_map)
2315 continue;
2316 if (!--l)
2317 return si;
2318 }
2319
2320 return NULL;
2321 }
2322
2323 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2324 {
2325 struct swap_info_struct *si = v;
2326 int type;
2327
2328 if (v == SEQ_START_TOKEN)
2329 type = 0;
2330 else
2331 type = si->type + 1;
2332
2333 for (; type < nr_swapfiles; type++) {
2334 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2335 si = swap_info[type];
2336 if (!(si->flags & SWP_USED) || !si->swap_map)
2337 continue;
2338 ++*pos;
2339 return si;
2340 }
2341
2342 return NULL;
2343 }
2344
2345 static void swap_stop(struct seq_file *swap, void *v)
2346 {
2347 mutex_unlock(&swapon_mutex);
2348 }
2349
2350 static int swap_show(struct seq_file *swap, void *v)
2351 {
2352 struct swap_info_struct *si = v;
2353 struct file *file;
2354 int len;
2355
2356 if (si == SEQ_START_TOKEN) {
2357 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2358 return 0;
2359 }
2360
2361 file = si->swap_file;
2362 len = seq_file_path(swap, file, " \t\n\\");
2363 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2364 len < 40 ? 40 - len : 1, " ",
2365 S_ISBLK(file_inode(file)->i_mode) ?
2366 "partition" : "file\t",
2367 si->pages << (PAGE_SHIFT - 10),
2368 si->inuse_pages << (PAGE_SHIFT - 10),
2369 si->prio);
2370 return 0;
2371 }
2372
2373 static const struct seq_operations swaps_op = {
2374 .start = swap_start,
2375 .next = swap_next,
2376 .stop = swap_stop,
2377 .show = swap_show
2378 };
2379
2380 static int swaps_open(struct inode *inode, struct file *file)
2381 {
2382 struct seq_file *seq;
2383 int ret;
2384
2385 ret = seq_open(file, &swaps_op);
2386 if (ret)
2387 return ret;
2388
2389 seq = file->private_data;
2390 seq->poll_event = atomic_read(&proc_poll_event);
2391 return 0;
2392 }
2393
2394 static const struct file_operations proc_swaps_operations = {
2395 .open = swaps_open,
2396 .read = seq_read,
2397 .llseek = seq_lseek,
2398 .release = seq_release,
2399 .poll = swaps_poll,
2400 };
2401
2402 static int __init procswaps_init(void)
2403 {
2404 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2405 return 0;
2406 }
2407 __initcall(procswaps_init);
2408 #endif /* CONFIG_PROC_FS */
2409
2410 #ifdef MAX_SWAPFILES_CHECK
2411 static int __init max_swapfiles_check(void)
2412 {
2413 MAX_SWAPFILES_CHECK();
2414 return 0;
2415 }
2416 late_initcall(max_swapfiles_check);
2417 #endif
2418
2419 static struct swap_info_struct *alloc_swap_info(void)
2420 {
2421 struct swap_info_struct *p;
2422 unsigned int type;
2423
2424 p = kzalloc(sizeof(*p), GFP_KERNEL);
2425 if (!p)
2426 return ERR_PTR(-ENOMEM);
2427
2428 spin_lock(&swap_lock);
2429 for (type = 0; type < nr_swapfiles; type++) {
2430 if (!(swap_info[type]->flags & SWP_USED))
2431 break;
2432 }
2433 if (type >= MAX_SWAPFILES) {
2434 spin_unlock(&swap_lock);
2435 kfree(p);
2436 return ERR_PTR(-EPERM);
2437 }
2438 if (type >= nr_swapfiles) {
2439 p->type = type;
2440 swap_info[type] = p;
2441 /*
2442 * Write swap_info[type] before nr_swapfiles, in case a
2443 * racing procfs swap_start() or swap_next() is reading them.
2444 * (We never shrink nr_swapfiles, we never free this entry.)
2445 */
2446 smp_wmb();
2447 nr_swapfiles++;
2448 } else {
2449 kfree(p);
2450 p = swap_info[type];
2451 /*
2452 * Do not memset this entry: a racing procfs swap_next()
2453 * would be relying on p->type to remain valid.
2454 */
2455 }
2456 INIT_LIST_HEAD(&p->first_swap_extent.list);
2457 plist_node_init(&p->list, 0);
2458 plist_node_init(&p->avail_list, 0);
2459 p->flags = SWP_USED;
2460 spin_unlock(&swap_lock);
2461 spin_lock_init(&p->lock);
2462
2463 return p;
2464 }
2465
2466 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2467 {
2468 int error;
2469
2470 if (S_ISBLK(inode->i_mode)) {
2471 p->bdev = bdgrab(I_BDEV(inode));
2472 error = blkdev_get(p->bdev,
2473 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2474 if (error < 0) {
2475 p->bdev = NULL;
2476 return error;
2477 }
2478 p->old_block_size = block_size(p->bdev);
2479 error = set_blocksize(p->bdev, PAGE_SIZE);
2480 if (error < 0)
2481 return error;
2482 p->flags |= SWP_BLKDEV;
2483 } else if (S_ISREG(inode->i_mode)) {
2484 p->bdev = inode->i_sb->s_bdev;
2485 inode_lock(inode);
2486 if (IS_SWAPFILE(inode))
2487 return -EBUSY;
2488 } else
2489 return -EINVAL;
2490
2491 return 0;
2492 }
2493
2494 static unsigned long read_swap_header(struct swap_info_struct *p,
2495 union swap_header *swap_header,
2496 struct inode *inode)
2497 {
2498 int i;
2499 unsigned long maxpages;
2500 unsigned long swapfilepages;
2501 unsigned long last_page;
2502
2503 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2504 pr_err("Unable to find swap-space signature\n");
2505 return 0;
2506 }
2507
2508 /* swap partition endianess hack... */
2509 if (swab32(swap_header->info.version) == 1) {
2510 swab32s(&swap_header->info.version);
2511 swab32s(&swap_header->info.last_page);
2512 swab32s(&swap_header->info.nr_badpages);
2513 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2514 return 0;
2515 for (i = 0; i < swap_header->info.nr_badpages; i++)
2516 swab32s(&swap_header->info.badpages[i]);
2517 }
2518 /* Check the swap header's sub-version */
2519 if (swap_header->info.version != 1) {
2520 pr_warn("Unable to handle swap header version %d\n",
2521 swap_header->info.version);
2522 return 0;
2523 }
2524
2525 p->lowest_bit = 1;
2526 p->cluster_next = 1;
2527 p->cluster_nr = 0;
2528
2529 /*
2530 * Find out how many pages are allowed for a single swap
2531 * device. There are two limiting factors: 1) the number
2532 * of bits for the swap offset in the swp_entry_t type, and
2533 * 2) the number of bits in the swap pte as defined by the
2534 * different architectures. In order to find the
2535 * largest possible bit mask, a swap entry with swap type 0
2536 * and swap offset ~0UL is created, encoded to a swap pte,
2537 * decoded to a swp_entry_t again, and finally the swap
2538 * offset is extracted. This will mask all the bits from
2539 * the initial ~0UL mask that can't be encoded in either
2540 * the swp_entry_t or the architecture definition of a
2541 * swap pte.
2542 */
2543 maxpages = swp_offset(pte_to_swp_entry(
2544 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2545 last_page = swap_header->info.last_page;
2546 if (last_page > maxpages) {
2547 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2548 maxpages << (PAGE_SHIFT - 10),
2549 last_page << (PAGE_SHIFT - 10));
2550 }
2551 if (maxpages > last_page) {
2552 maxpages = last_page + 1;
2553 /* p->max is an unsigned int: don't overflow it */
2554 if ((unsigned int)maxpages == 0)
2555 maxpages = UINT_MAX;
2556 }
2557 p->highest_bit = maxpages - 1;
2558
2559 if (!maxpages)
2560 return 0;
2561 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2562 if (swapfilepages && maxpages > swapfilepages) {
2563 pr_warn("Swap area shorter than signature indicates\n");
2564 return 0;
2565 }
2566 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2567 return 0;
2568 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2569 return 0;
2570
2571 return maxpages;
2572 }
2573
2574 #define SWAP_CLUSTER_INFO_COLS \
2575 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2576 #define SWAP_CLUSTER_SPACE_COLS \
2577 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2578 #define SWAP_CLUSTER_COLS \
2579 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2580
2581 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2582 union swap_header *swap_header,
2583 unsigned char *swap_map,
2584 struct swap_cluster_info *cluster_info,
2585 unsigned long maxpages,
2586 sector_t *span)
2587 {
2588 unsigned int j, k;
2589 unsigned int nr_good_pages;
2590 int nr_extents;
2591 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2592 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2593 unsigned long i, idx;
2594
2595 nr_good_pages = maxpages - 1; /* omit header page */
2596
2597 cluster_list_init(&p->free_clusters);
2598 cluster_list_init(&p->discard_clusters);
2599
2600 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2601 unsigned int page_nr = swap_header->info.badpages[i];
2602 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2603 return -EINVAL;
2604 if (page_nr < maxpages) {
2605 swap_map[page_nr] = SWAP_MAP_BAD;
2606 nr_good_pages--;
2607 /*
2608 * Haven't marked the cluster free yet, no list
2609 * operation involved
2610 */
2611 inc_cluster_info_page(p, cluster_info, page_nr);
2612 }
2613 }
2614
2615 /* Haven't marked the cluster free yet, no list operation involved */
2616 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2617 inc_cluster_info_page(p, cluster_info, i);
2618
2619 if (nr_good_pages) {
2620 swap_map[0] = SWAP_MAP_BAD;
2621 /*
2622 * Not mark the cluster free yet, no list
2623 * operation involved
2624 */
2625 inc_cluster_info_page(p, cluster_info, 0);
2626 p->max = maxpages;
2627 p->pages = nr_good_pages;
2628 nr_extents = setup_swap_extents(p, span);
2629 if (nr_extents < 0)
2630 return nr_extents;
2631 nr_good_pages = p->pages;
2632 }
2633 if (!nr_good_pages) {
2634 pr_warn("Empty swap-file\n");
2635 return -EINVAL;
2636 }
2637
2638 if (!cluster_info)
2639 return nr_extents;
2640
2641
2642 /*
2643 * Reduce false cache line sharing between cluster_info and
2644 * sharing same address space.
2645 */
2646 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2647 j = (k + col) % SWAP_CLUSTER_COLS;
2648 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2649 idx = i * SWAP_CLUSTER_COLS + j;
2650 if (idx >= nr_clusters)
2651 continue;
2652 if (cluster_count(&cluster_info[idx]))
2653 continue;
2654 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2655 cluster_list_add_tail(&p->free_clusters, cluster_info,
2656 idx);
2657 }
2658 }
2659 return nr_extents;
2660 }
2661
2662 /*
2663 * Helper to sys_swapon determining if a given swap
2664 * backing device queue supports DISCARD operations.
2665 */
2666 static bool swap_discardable(struct swap_info_struct *si)
2667 {
2668 struct request_queue *q = bdev_get_queue(si->bdev);
2669
2670 if (!q || !blk_queue_discard(q))
2671 return false;
2672
2673 return true;
2674 }
2675
2676 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2677 {
2678 struct swap_info_struct *p;
2679 struct filename *name;
2680 struct file *swap_file = NULL;
2681 struct address_space *mapping;
2682 int prio;
2683 int error;
2684 union swap_header *swap_header;
2685 int nr_extents;
2686 sector_t span;
2687 unsigned long maxpages;
2688 unsigned char *swap_map = NULL;
2689 struct swap_cluster_info *cluster_info = NULL;
2690 unsigned long *frontswap_map = NULL;
2691 struct page *page = NULL;
2692 struct inode *inode = NULL;
2693
2694 if (swap_flags & ~SWAP_FLAGS_VALID)
2695 return -EINVAL;
2696
2697 if (!capable(CAP_SYS_ADMIN))
2698 return -EPERM;
2699
2700 p = alloc_swap_info();
2701 if (IS_ERR(p))
2702 return PTR_ERR(p);
2703
2704 INIT_WORK(&p->discard_work, swap_discard_work);
2705
2706 name = getname(specialfile);
2707 if (IS_ERR(name)) {
2708 error = PTR_ERR(name);
2709 name = NULL;
2710 goto bad_swap;
2711 }
2712 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2713 if (IS_ERR(swap_file)) {
2714 error = PTR_ERR(swap_file);
2715 swap_file = NULL;
2716 goto bad_swap;
2717 }
2718
2719 p->swap_file = swap_file;
2720 mapping = swap_file->f_mapping;
2721 inode = mapping->host;
2722
2723 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2724 error = claim_swapfile(p, inode);
2725 if (unlikely(error))
2726 goto bad_swap;
2727
2728 /*
2729 * Read the swap header.
2730 */
2731 if (!mapping->a_ops->readpage) {
2732 error = -EINVAL;
2733 goto bad_swap;
2734 }
2735 page = read_mapping_page(mapping, 0, swap_file);
2736 if (IS_ERR(page)) {
2737 error = PTR_ERR(page);
2738 goto bad_swap;
2739 }
2740 swap_header = kmap(page);
2741
2742 maxpages = read_swap_header(p, swap_header, inode);
2743 if (unlikely(!maxpages)) {
2744 error = -EINVAL;
2745 goto bad_swap;
2746 }
2747
2748 /* OK, set up the swap map and apply the bad block list */
2749 swap_map = vzalloc(maxpages);
2750 if (!swap_map) {
2751 error = -ENOMEM;
2752 goto bad_swap;
2753 }
2754
2755 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2756 p->flags |= SWP_STABLE_WRITES;
2757
2758 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2759 int cpu;
2760 unsigned long ci, nr_cluster;
2761
2762 p->flags |= SWP_SOLIDSTATE;
2763 /*
2764 * select a random position to start with to help wear leveling
2765 * SSD
2766 */
2767 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2768 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2769
2770 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2771 if (!cluster_info) {
2772 error = -ENOMEM;
2773 goto bad_swap;
2774 }
2775
2776 for (ci = 0; ci < nr_cluster; ci++)
2777 spin_lock_init(&((cluster_info + ci)->lock));
2778
2779 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2780 if (!p->percpu_cluster) {
2781 error = -ENOMEM;
2782 goto bad_swap;
2783 }
2784 for_each_possible_cpu(cpu) {
2785 struct percpu_cluster *cluster;
2786 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2787 cluster_set_null(&cluster->index);
2788 }
2789 }
2790
2791 error = swap_cgroup_swapon(p->type, maxpages);
2792 if (error)
2793 goto bad_swap;
2794
2795 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2796 cluster_info, maxpages, &span);
2797 if (unlikely(nr_extents < 0)) {
2798 error = nr_extents;
2799 goto bad_swap;
2800 }
2801 /* frontswap enabled? set up bit-per-page map for frontswap */
2802 if (IS_ENABLED(CONFIG_FRONTSWAP))
2803 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2804
2805 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2806 /*
2807 * When discard is enabled for swap with no particular
2808 * policy flagged, we set all swap discard flags here in
2809 * order to sustain backward compatibility with older
2810 * swapon(8) releases.
2811 */
2812 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2813 SWP_PAGE_DISCARD);
2814
2815 /*
2816 * By flagging sys_swapon, a sysadmin can tell us to
2817 * either do single-time area discards only, or to just
2818 * perform discards for released swap page-clusters.
2819 * Now it's time to adjust the p->flags accordingly.
2820 */
2821 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2822 p->flags &= ~SWP_PAGE_DISCARD;
2823 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2824 p->flags &= ~SWP_AREA_DISCARD;
2825
2826 /* issue a swapon-time discard if it's still required */
2827 if (p->flags & SWP_AREA_DISCARD) {
2828 int err = discard_swap(p);
2829 if (unlikely(err))
2830 pr_err("swapon: discard_swap(%p): %d\n",
2831 p, err);
2832 }
2833 }
2834
2835 error = init_swap_address_space(p->type, maxpages);
2836 if (error)
2837 goto bad_swap;
2838
2839 mutex_lock(&swapon_mutex);
2840 prio = -1;
2841 if (swap_flags & SWAP_FLAG_PREFER)
2842 prio =
2843 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2844 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2845
2846 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2847 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2848 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2849 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2850 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2851 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2852 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2853 (frontswap_map) ? "FS" : "");
2854
2855 mutex_unlock(&swapon_mutex);
2856 atomic_inc(&proc_poll_event);
2857 wake_up_interruptible(&proc_poll_wait);
2858
2859 if (S_ISREG(inode->i_mode))
2860 inode->i_flags |= S_SWAPFILE;
2861 error = 0;
2862 goto out;
2863 bad_swap:
2864 free_percpu(p->percpu_cluster);
2865 p->percpu_cluster = NULL;
2866 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2867 set_blocksize(p->bdev, p->old_block_size);
2868 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2869 }
2870 destroy_swap_extents(p);
2871 swap_cgroup_swapoff(p->type);
2872 spin_lock(&swap_lock);
2873 p->swap_file = NULL;
2874 p->flags = 0;
2875 spin_unlock(&swap_lock);
2876 vfree(swap_map);
2877 vfree(cluster_info);
2878 if (swap_file) {
2879 if (inode && S_ISREG(inode->i_mode)) {
2880 inode_unlock(inode);
2881 inode = NULL;
2882 }
2883 filp_close(swap_file, NULL);
2884 }
2885 out:
2886 if (page && !IS_ERR(page)) {
2887 kunmap(page);
2888 put_page(page);
2889 }
2890 if (name)
2891 putname(name);
2892 if (inode && S_ISREG(inode->i_mode))
2893 inode_unlock(inode);
2894 if (!error)
2895 enable_swap_slots_cache();
2896 return error;
2897 }
2898
2899 void si_swapinfo(struct sysinfo *val)
2900 {
2901 unsigned int type;
2902 unsigned long nr_to_be_unused = 0;
2903
2904 spin_lock(&swap_lock);
2905 for (type = 0; type < nr_swapfiles; type++) {
2906 struct swap_info_struct *si = swap_info[type];
2907
2908 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2909 nr_to_be_unused += si->inuse_pages;
2910 }
2911 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2912 val->totalswap = total_swap_pages + nr_to_be_unused;
2913 spin_unlock(&swap_lock);
2914 }
2915
2916 /*
2917 * Verify that a swap entry is valid and increment its swap map count.
2918 *
2919 * Returns error code in following case.
2920 * - success -> 0
2921 * - swp_entry is invalid -> EINVAL
2922 * - swp_entry is migration entry -> EINVAL
2923 * - swap-cache reference is requested but there is already one. -> EEXIST
2924 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2925 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2926 */
2927 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2928 {
2929 struct swap_info_struct *p;
2930 struct swap_cluster_info *ci;
2931 unsigned long offset, type;
2932 unsigned char count;
2933 unsigned char has_cache;
2934 int err = -EINVAL;
2935
2936 if (non_swap_entry(entry))
2937 goto out;
2938
2939 type = swp_type(entry);
2940 if (type >= nr_swapfiles)
2941 goto bad_file;
2942 p = swap_info[type];
2943 offset = swp_offset(entry);
2944 if (unlikely(offset >= p->max))
2945 goto out;
2946
2947 ci = lock_cluster_or_swap_info(p, offset);
2948
2949 count = p->swap_map[offset];
2950
2951 /*
2952 * swapin_readahead() doesn't check if a swap entry is valid, so the
2953 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2954 */
2955 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2956 err = -ENOENT;
2957 goto unlock_out;
2958 }
2959
2960 has_cache = count & SWAP_HAS_CACHE;
2961 count &= ~SWAP_HAS_CACHE;
2962 err = 0;
2963
2964 if (usage == SWAP_HAS_CACHE) {
2965
2966 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2967 if (!has_cache && count)
2968 has_cache = SWAP_HAS_CACHE;
2969 else if (has_cache) /* someone else added cache */
2970 err = -EEXIST;
2971 else /* no users remaining */
2972 err = -ENOENT;
2973
2974 } else if (count || has_cache) {
2975
2976 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2977 count += usage;
2978 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2979 err = -EINVAL;
2980 else if (swap_count_continued(p, offset, count))
2981 count = COUNT_CONTINUED;
2982 else
2983 err = -ENOMEM;
2984 } else
2985 err = -ENOENT; /* unused swap entry */
2986
2987 p->swap_map[offset] = count | has_cache;
2988
2989 unlock_out:
2990 unlock_cluster_or_swap_info(p, ci);
2991 out:
2992 return err;
2993
2994 bad_file:
2995 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2996 goto out;
2997 }
2998
2999 /*
3000 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3001 * (in which case its reference count is never incremented).
3002 */
3003 void swap_shmem_alloc(swp_entry_t entry)
3004 {
3005 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3006 }
3007
3008 /*
3009 * Increase reference count of swap entry by 1.
3010 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3011 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3012 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3013 * might occur if a page table entry has got corrupted.
3014 */
3015 int swap_duplicate(swp_entry_t entry)
3016 {
3017 int err = 0;
3018
3019 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3020 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3021 return err;
3022 }
3023
3024 /*
3025 * @entry: swap entry for which we allocate swap cache.
3026 *
3027 * Called when allocating swap cache for existing swap entry,
3028 * This can return error codes. Returns 0 at success.
3029 * -EBUSY means there is a swap cache.
3030 * Note: return code is different from swap_duplicate().
3031 */
3032 int swapcache_prepare(swp_entry_t entry)
3033 {
3034 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3035 }
3036
3037 struct swap_info_struct *page_swap_info(struct page *page)
3038 {
3039 swp_entry_t swap = { .val = page_private(page) };
3040 return swap_info[swp_type(swap)];
3041 }
3042
3043 /*
3044 * out-of-line __page_file_ methods to avoid include hell.
3045 */
3046 struct address_space *__page_file_mapping(struct page *page)
3047 {
3048 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3049 return page_swap_info(page)->swap_file->f_mapping;
3050 }
3051 EXPORT_SYMBOL_GPL(__page_file_mapping);
3052
3053 pgoff_t __page_file_index(struct page *page)
3054 {
3055 swp_entry_t swap = { .val = page_private(page) };
3056 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3057 return swp_offset(swap);
3058 }
3059 EXPORT_SYMBOL_GPL(__page_file_index);
3060
3061 /*
3062 * add_swap_count_continuation - called when a swap count is duplicated
3063 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3064 * page of the original vmalloc'ed swap_map, to hold the continuation count
3065 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3066 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3067 *
3068 * These continuation pages are seldom referenced: the common paths all work
3069 * on the original swap_map, only referring to a continuation page when the
3070 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3071 *
3072 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3073 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3074 * can be called after dropping locks.
3075 */
3076 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3077 {
3078 struct swap_info_struct *si;
3079 struct swap_cluster_info *ci;
3080 struct page *head;
3081 struct page *page;
3082 struct page *list_page;
3083 pgoff_t offset;
3084 unsigned char count;
3085
3086 /*
3087 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3088 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3089 */
3090 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3091
3092 si = swap_info_get(entry);
3093 if (!si) {
3094 /*
3095 * An acceptable race has occurred since the failing
3096 * __swap_duplicate(): the swap entry has been freed,
3097 * perhaps even the whole swap_map cleared for swapoff.
3098 */
3099 goto outer;
3100 }
3101
3102 offset = swp_offset(entry);
3103
3104 ci = lock_cluster(si, offset);
3105
3106 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3107
3108 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3109 /*
3110 * The higher the swap count, the more likely it is that tasks
3111 * will race to add swap count continuation: we need to avoid
3112 * over-provisioning.
3113 */
3114 goto out;
3115 }
3116
3117 if (!page) {
3118 unlock_cluster(ci);
3119 spin_unlock(&si->lock);
3120 return -ENOMEM;
3121 }
3122
3123 /*
3124 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3125 * no architecture is using highmem pages for kernel page tables: so it
3126 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3127 */
3128 head = vmalloc_to_page(si->swap_map + offset);
3129 offset &= ~PAGE_MASK;
3130
3131 /*
3132 * Page allocation does not initialize the page's lru field,
3133 * but it does always reset its private field.
3134 */
3135 if (!page_private(head)) {
3136 BUG_ON(count & COUNT_CONTINUED);
3137 INIT_LIST_HEAD(&head->lru);
3138 set_page_private(head, SWP_CONTINUED);
3139 si->flags |= SWP_CONTINUED;
3140 }
3141
3142 list_for_each_entry(list_page, &head->lru, lru) {
3143 unsigned char *map;
3144
3145 /*
3146 * If the previous map said no continuation, but we've found
3147 * a continuation page, free our allocation and use this one.
3148 */
3149 if (!(count & COUNT_CONTINUED))
3150 goto out;
3151
3152 map = kmap_atomic(list_page) + offset;
3153 count = *map;
3154 kunmap_atomic(map);
3155
3156 /*
3157 * If this continuation count now has some space in it,
3158 * free our allocation and use this one.
3159 */
3160 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3161 goto out;
3162 }
3163
3164 list_add_tail(&page->lru, &head->lru);
3165 page = NULL; /* now it's attached, don't free it */
3166 out:
3167 unlock_cluster(ci);
3168 spin_unlock(&si->lock);
3169 outer:
3170 if (page)
3171 __free_page(page);
3172 return 0;
3173 }
3174
3175 /*
3176 * swap_count_continued - when the original swap_map count is incremented
3177 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3178 * into, carry if so, or else fail until a new continuation page is allocated;
3179 * when the original swap_map count is decremented from 0 with continuation,
3180 * borrow from the continuation and report whether it still holds more.
3181 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3182 * lock.
3183 */
3184 static bool swap_count_continued(struct swap_info_struct *si,
3185 pgoff_t offset, unsigned char count)
3186 {
3187 struct page *head;
3188 struct page *page;
3189 unsigned char *map;
3190
3191 head = vmalloc_to_page(si->swap_map + offset);
3192 if (page_private(head) != SWP_CONTINUED) {
3193 BUG_ON(count & COUNT_CONTINUED);
3194 return false; /* need to add count continuation */
3195 }
3196
3197 offset &= ~PAGE_MASK;
3198 page = list_entry(head->lru.next, struct page, lru);
3199 map = kmap_atomic(page) + offset;
3200
3201 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3202 goto init_map; /* jump over SWAP_CONT_MAX checks */
3203
3204 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3205 /*
3206 * Think of how you add 1 to 999
3207 */
3208 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3209 kunmap_atomic(map);
3210 page = list_entry(page->lru.next, struct page, lru);
3211 BUG_ON(page == head);
3212 map = kmap_atomic(page) + offset;
3213 }
3214 if (*map == SWAP_CONT_MAX) {
3215 kunmap_atomic(map);
3216 page = list_entry(page->lru.next, struct page, lru);
3217 if (page == head)
3218 return false; /* add count continuation */
3219 map = kmap_atomic(page) + offset;
3220 init_map: *map = 0; /* we didn't zero the page */
3221 }
3222 *map += 1;
3223 kunmap_atomic(map);
3224 page = list_entry(page->lru.prev, struct page, lru);
3225 while (page != head) {
3226 map = kmap_atomic(page) + offset;
3227 *map = COUNT_CONTINUED;
3228 kunmap_atomic(map);
3229 page = list_entry(page->lru.prev, struct page, lru);
3230 }
3231 return true; /* incremented */
3232
3233 } else { /* decrementing */
3234 /*
3235 * Think of how you subtract 1 from 1000
3236 */
3237 BUG_ON(count != COUNT_CONTINUED);
3238 while (*map == COUNT_CONTINUED) {
3239 kunmap_atomic(map);
3240 page = list_entry(page->lru.next, struct page, lru);
3241 BUG_ON(page == head);
3242 map = kmap_atomic(page) + offset;
3243 }
3244 BUG_ON(*map == 0);
3245 *map -= 1;
3246 if (*map == 0)
3247 count = 0;
3248 kunmap_atomic(map);
3249 page = list_entry(page->lru.prev, struct page, lru);
3250 while (page != head) {
3251 map = kmap_atomic(page) + offset;
3252 *map = SWAP_CONT_MAX | count;
3253 count = COUNT_CONTINUED;
3254 kunmap_atomic(map);
3255 page = list_entry(page->lru.prev, struct page, lru);
3256 }
3257 return count == COUNT_CONTINUED;
3258 }
3259 }
3260
3261 /*
3262 * free_swap_count_continuations - swapoff free all the continuation pages
3263 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3264 */
3265 static void free_swap_count_continuations(struct swap_info_struct *si)
3266 {
3267 pgoff_t offset;
3268
3269 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3270 struct page *head;
3271 head = vmalloc_to_page(si->swap_map + offset);
3272 if (page_private(head)) {
3273 struct page *page, *next;
3274
3275 list_for_each_entry_safe(page, next, &head->lru, lru) {
3276 list_del(&page->lru);
3277 __free_page(page);
3278 }
3279 }
3280 }
3281 }