]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/swapfile.c
ath10k: drop fragments with multicast DA for PCIe
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 if (type >= READ_ONCE(nr_swapfiles))
104 return NULL;
105
106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
107 return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY 0x1
117 /*
118 * Reclaim the swap entry if there are no more mappings of the
119 * corresponding page
120 */
121 #define TTRS_UNMAPPED 0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL 0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 unsigned long offset, unsigned long flags)
128 {
129 swp_entry_t entry = swp_entry(si->type, offset);
130 struct page *page;
131 int ret = 0;
132
133 page = find_get_page(swap_address_space(entry), offset);
134 if (!page)
135 return 0;
136 /*
137 * When this function is called from scan_swap_map_slots() and it's
138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 * here. We have to use trylock for avoiding deadlock. This is a special
140 * case and you should use try_to_free_swap() with explicit lock_page()
141 * in usual operations.
142 */
143 if (trylock_page(page)) {
144 if ((flags & TTRS_ANYWAY) ||
145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 ret = try_to_free_swap(page);
148 unlock_page(page);
149 }
150 put_page(page);
151 return ret;
152 }
153
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156 struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 return rb_entry(rb, struct swap_extent, rb_node);
158 }
159
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162 struct rb_node *rb = rb_next(&se->rb_node);
163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165
166 /*
167 * swapon tell device that all the old swap contents can be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172 struct swap_extent *se;
173 sector_t start_block;
174 sector_t nr_blocks;
175 int err = 0;
176
177 /* Do not discard the swap header page! */
178 se = first_se(si);
179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 if (nr_blocks) {
182 err = blkdev_issue_discard(si->bdev, start_block,
183 nr_blocks, GFP_KERNEL, 0);
184 if (err)
185 return err;
186 cond_resched();
187 }
188
189 for (se = next_se(se); se; se = next_se(se)) {
190 start_block = se->start_block << (PAGE_SHIFT - 9);
191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192
193 err = blkdev_issue_discard(si->bdev, start_block,
194 nr_blocks, GFP_KERNEL, 0);
195 if (err)
196 break;
197
198 cond_resched();
199 }
200 return err; /* That will often be -EOPNOTSUPP */
201 }
202
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206 struct swap_extent *se;
207 struct rb_node *rb;
208
209 rb = sis->swap_extent_root.rb_node;
210 while (rb) {
211 se = rb_entry(rb, struct swap_extent, rb_node);
212 if (offset < se->start_page)
213 rb = rb->rb_left;
214 else if (offset >= se->start_page + se->nr_pages)
215 rb = rb->rb_right;
216 else
217 return se;
218 }
219 /* It *must* be present */
220 BUG();
221 }
222
223 sector_t swap_page_sector(struct page *page)
224 {
225 struct swap_info_struct *sis = page_swap_info(page);
226 struct swap_extent *se;
227 sector_t sector;
228 pgoff_t offset;
229
230 offset = __page_file_index(page);
231 se = offset_to_swap_extent(sis, offset);
232 sector = se->start_block + (offset - se->start_page);
233 return sector << (PAGE_SHIFT - 9);
234 }
235
236 /*
237 * swap allocation tell device that a cluster of swap can now be discarded,
238 * to allow the swap device to optimize its wear-levelling.
239 */
240 static void discard_swap_cluster(struct swap_info_struct *si,
241 pgoff_t start_page, pgoff_t nr_pages)
242 {
243 struct swap_extent *se = offset_to_swap_extent(si, start_page);
244
245 while (nr_pages) {
246 pgoff_t offset = start_page - se->start_page;
247 sector_t start_block = se->start_block + offset;
248 sector_t nr_blocks = se->nr_pages - offset;
249
250 if (nr_blocks > nr_pages)
251 nr_blocks = nr_pages;
252 start_page += nr_blocks;
253 nr_pages -= nr_blocks;
254
255 start_block <<= PAGE_SHIFT - 9;
256 nr_blocks <<= PAGE_SHIFT - 9;
257 if (blkdev_issue_discard(si->bdev, start_block,
258 nr_blocks, GFP_NOIO, 0))
259 break;
260
261 se = next_se(se);
262 }
263 }
264
265 #ifdef CONFIG_THP_SWAP
266 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
267
268 #define swap_entry_size(size) (size)
269 #else
270 #define SWAPFILE_CLUSTER 256
271
272 /*
273 * Define swap_entry_size() as constant to let compiler to optimize
274 * out some code if !CONFIG_THP_SWAP
275 */
276 #define swap_entry_size(size) 1
277 #endif
278 #define LATENCY_LIMIT 256
279
280 static inline void cluster_set_flag(struct swap_cluster_info *info,
281 unsigned int flag)
282 {
283 info->flags = flag;
284 }
285
286 static inline unsigned int cluster_count(struct swap_cluster_info *info)
287 {
288 return info->data;
289 }
290
291 static inline void cluster_set_count(struct swap_cluster_info *info,
292 unsigned int c)
293 {
294 info->data = c;
295 }
296
297 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
298 unsigned int c, unsigned int f)
299 {
300 info->flags = f;
301 info->data = c;
302 }
303
304 static inline unsigned int cluster_next(struct swap_cluster_info *info)
305 {
306 return info->data;
307 }
308
309 static inline void cluster_set_next(struct swap_cluster_info *info,
310 unsigned int n)
311 {
312 info->data = n;
313 }
314
315 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
316 unsigned int n, unsigned int f)
317 {
318 info->flags = f;
319 info->data = n;
320 }
321
322 static inline bool cluster_is_free(struct swap_cluster_info *info)
323 {
324 return info->flags & CLUSTER_FLAG_FREE;
325 }
326
327 static inline bool cluster_is_null(struct swap_cluster_info *info)
328 {
329 return info->flags & CLUSTER_FLAG_NEXT_NULL;
330 }
331
332 static inline void cluster_set_null(struct swap_cluster_info *info)
333 {
334 info->flags = CLUSTER_FLAG_NEXT_NULL;
335 info->data = 0;
336 }
337
338 static inline bool cluster_is_huge(struct swap_cluster_info *info)
339 {
340 if (IS_ENABLED(CONFIG_THP_SWAP))
341 return info->flags & CLUSTER_FLAG_HUGE;
342 return false;
343 }
344
345 static inline void cluster_clear_huge(struct swap_cluster_info *info)
346 {
347 info->flags &= ~CLUSTER_FLAG_HUGE;
348 }
349
350 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
351 unsigned long offset)
352 {
353 struct swap_cluster_info *ci;
354
355 ci = si->cluster_info;
356 if (ci) {
357 ci += offset / SWAPFILE_CLUSTER;
358 spin_lock(&ci->lock);
359 }
360 return ci;
361 }
362
363 static inline void unlock_cluster(struct swap_cluster_info *ci)
364 {
365 if (ci)
366 spin_unlock(&ci->lock);
367 }
368
369 /*
370 * Determine the locking method in use for this device. Return
371 * swap_cluster_info if SSD-style cluster-based locking is in place.
372 */
373 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
374 struct swap_info_struct *si, unsigned long offset)
375 {
376 struct swap_cluster_info *ci;
377
378 /* Try to use fine-grained SSD-style locking if available: */
379 ci = lock_cluster(si, offset);
380 /* Otherwise, fall back to traditional, coarse locking: */
381 if (!ci)
382 spin_lock(&si->lock);
383
384 return ci;
385 }
386
387 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
388 struct swap_cluster_info *ci)
389 {
390 if (ci)
391 unlock_cluster(ci);
392 else
393 spin_unlock(&si->lock);
394 }
395
396 static inline bool cluster_list_empty(struct swap_cluster_list *list)
397 {
398 return cluster_is_null(&list->head);
399 }
400
401 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402 {
403 return cluster_next(&list->head);
404 }
405
406 static void cluster_list_init(struct swap_cluster_list *list)
407 {
408 cluster_set_null(&list->head);
409 cluster_set_null(&list->tail);
410 }
411
412 static void cluster_list_add_tail(struct swap_cluster_list *list,
413 struct swap_cluster_info *ci,
414 unsigned int idx)
415 {
416 if (cluster_list_empty(list)) {
417 cluster_set_next_flag(&list->head, idx, 0);
418 cluster_set_next_flag(&list->tail, idx, 0);
419 } else {
420 struct swap_cluster_info *ci_tail;
421 unsigned int tail = cluster_next(&list->tail);
422
423 /*
424 * Nested cluster lock, but both cluster locks are
425 * only acquired when we held swap_info_struct->lock
426 */
427 ci_tail = ci + tail;
428 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
429 cluster_set_next(ci_tail, idx);
430 spin_unlock(&ci_tail->lock);
431 cluster_set_next_flag(&list->tail, idx, 0);
432 }
433 }
434
435 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
436 struct swap_cluster_info *ci)
437 {
438 unsigned int idx;
439
440 idx = cluster_next(&list->head);
441 if (cluster_next(&list->tail) == idx) {
442 cluster_set_null(&list->head);
443 cluster_set_null(&list->tail);
444 } else
445 cluster_set_next_flag(&list->head,
446 cluster_next(&ci[idx]), 0);
447
448 return idx;
449 }
450
451 /* Add a cluster to discard list and schedule it to do discard */
452 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
453 unsigned int idx)
454 {
455 /*
456 * If scan_swap_map() can't find a free cluster, it will check
457 * si->swap_map directly. To make sure the discarding cluster isn't
458 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
459 * will be cleared after discard
460 */
461 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463
464 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
465
466 schedule_work(&si->discard_work);
467 }
468
469 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470 {
471 struct swap_cluster_info *ci = si->cluster_info;
472
473 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
474 cluster_list_add_tail(&si->free_clusters, ci, idx);
475 }
476
477 /*
478 * Doing discard actually. After a cluster discard is finished, the cluster
479 * will be added to free cluster list. caller should hold si->lock.
480 */
481 static void swap_do_scheduled_discard(struct swap_info_struct *si)
482 {
483 struct swap_cluster_info *info, *ci;
484 unsigned int idx;
485
486 info = si->cluster_info;
487
488 while (!cluster_list_empty(&si->discard_clusters)) {
489 idx = cluster_list_del_first(&si->discard_clusters, info);
490 spin_unlock(&si->lock);
491
492 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
493 SWAPFILE_CLUSTER);
494
495 spin_lock(&si->lock);
496 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
497 __free_cluster(si, idx);
498 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
499 0, SWAPFILE_CLUSTER);
500 unlock_cluster(ci);
501 }
502 }
503
504 static void swap_discard_work(struct work_struct *work)
505 {
506 struct swap_info_struct *si;
507
508 si = container_of(work, struct swap_info_struct, discard_work);
509
510 spin_lock(&si->lock);
511 swap_do_scheduled_discard(si);
512 spin_unlock(&si->lock);
513 }
514
515 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
516 {
517 struct swap_cluster_info *ci = si->cluster_info;
518
519 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
520 cluster_list_del_first(&si->free_clusters, ci);
521 cluster_set_count_flag(ci + idx, 0, 0);
522 }
523
524 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
525 {
526 struct swap_cluster_info *ci = si->cluster_info + idx;
527
528 VM_BUG_ON(cluster_count(ci) != 0);
529 /*
530 * If the swap is discardable, prepare discard the cluster
531 * instead of free it immediately. The cluster will be freed
532 * after discard.
533 */
534 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
535 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
536 swap_cluster_schedule_discard(si, idx);
537 return;
538 }
539
540 __free_cluster(si, idx);
541 }
542
543 /*
544 * The cluster corresponding to page_nr will be used. The cluster will be
545 * removed from free cluster list and its usage counter will be increased.
546 */
547 static void inc_cluster_info_page(struct swap_info_struct *p,
548 struct swap_cluster_info *cluster_info, unsigned long page_nr)
549 {
550 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
551
552 if (!cluster_info)
553 return;
554 if (cluster_is_free(&cluster_info[idx]))
555 alloc_cluster(p, idx);
556
557 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
558 cluster_set_count(&cluster_info[idx],
559 cluster_count(&cluster_info[idx]) + 1);
560 }
561
562 /*
563 * The cluster corresponding to page_nr decreases one usage. If the usage
564 * counter becomes 0, which means no page in the cluster is in using, we can
565 * optionally discard the cluster and add it to free cluster list.
566 */
567 static void dec_cluster_info_page(struct swap_info_struct *p,
568 struct swap_cluster_info *cluster_info, unsigned long page_nr)
569 {
570 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
571
572 if (!cluster_info)
573 return;
574
575 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
576 cluster_set_count(&cluster_info[idx],
577 cluster_count(&cluster_info[idx]) - 1);
578
579 if (cluster_count(&cluster_info[idx]) == 0)
580 free_cluster(p, idx);
581 }
582
583 /*
584 * It's possible scan_swap_map() uses a free cluster in the middle of free
585 * cluster list. Avoiding such abuse to avoid list corruption.
586 */
587 static bool
588 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
589 unsigned long offset)
590 {
591 struct percpu_cluster *percpu_cluster;
592 bool conflict;
593
594 offset /= SWAPFILE_CLUSTER;
595 conflict = !cluster_list_empty(&si->free_clusters) &&
596 offset != cluster_list_first(&si->free_clusters) &&
597 cluster_is_free(&si->cluster_info[offset]);
598
599 if (!conflict)
600 return false;
601
602 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
603 cluster_set_null(&percpu_cluster->index);
604 return true;
605 }
606
607 /*
608 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
609 * might involve allocating a new cluster for current CPU too.
610 */
611 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
612 unsigned long *offset, unsigned long *scan_base)
613 {
614 struct percpu_cluster *cluster;
615 struct swap_cluster_info *ci;
616 unsigned long tmp, max;
617
618 new_cluster:
619 cluster = this_cpu_ptr(si->percpu_cluster);
620 if (cluster_is_null(&cluster->index)) {
621 if (!cluster_list_empty(&si->free_clusters)) {
622 cluster->index = si->free_clusters.head;
623 cluster->next = cluster_next(&cluster->index) *
624 SWAPFILE_CLUSTER;
625 } else if (!cluster_list_empty(&si->discard_clusters)) {
626 /*
627 * we don't have free cluster but have some clusters in
628 * discarding, do discard now and reclaim them, then
629 * reread cluster_next_cpu since we dropped si->lock
630 */
631 swap_do_scheduled_discard(si);
632 *scan_base = this_cpu_read(*si->cluster_next_cpu);
633 *offset = *scan_base;
634 goto new_cluster;
635 } else
636 return false;
637 }
638
639 /*
640 * Other CPUs can use our cluster if they can't find a free cluster,
641 * check if there is still free entry in the cluster
642 */
643 tmp = cluster->next;
644 max = min_t(unsigned long, si->max,
645 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
646 if (tmp < max) {
647 ci = lock_cluster(si, tmp);
648 while (tmp < max) {
649 if (!si->swap_map[tmp])
650 break;
651 tmp++;
652 }
653 unlock_cluster(ci);
654 }
655 if (tmp >= max) {
656 cluster_set_null(&cluster->index);
657 goto new_cluster;
658 }
659 cluster->next = tmp + 1;
660 *offset = tmp;
661 *scan_base = tmp;
662 return true;
663 }
664
665 static void __del_from_avail_list(struct swap_info_struct *p)
666 {
667 int nid;
668
669 for_each_node(nid)
670 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
671 }
672
673 static void del_from_avail_list(struct swap_info_struct *p)
674 {
675 spin_lock(&swap_avail_lock);
676 __del_from_avail_list(p);
677 spin_unlock(&swap_avail_lock);
678 }
679
680 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
681 unsigned int nr_entries)
682 {
683 unsigned int end = offset + nr_entries - 1;
684
685 if (offset == si->lowest_bit)
686 si->lowest_bit += nr_entries;
687 if (end == si->highest_bit)
688 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
689 si->inuse_pages += nr_entries;
690 if (si->inuse_pages == si->pages) {
691 si->lowest_bit = si->max;
692 si->highest_bit = 0;
693 del_from_avail_list(si);
694 }
695 }
696
697 static void add_to_avail_list(struct swap_info_struct *p)
698 {
699 int nid;
700
701 spin_lock(&swap_avail_lock);
702 for_each_node(nid) {
703 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
704 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
705 }
706 spin_unlock(&swap_avail_lock);
707 }
708
709 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
710 unsigned int nr_entries)
711 {
712 unsigned long begin = offset;
713 unsigned long end = offset + nr_entries - 1;
714 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
715
716 if (offset < si->lowest_bit)
717 si->lowest_bit = offset;
718 if (end > si->highest_bit) {
719 bool was_full = !si->highest_bit;
720
721 WRITE_ONCE(si->highest_bit, end);
722 if (was_full && (si->flags & SWP_WRITEOK))
723 add_to_avail_list(si);
724 }
725 atomic_long_add(nr_entries, &nr_swap_pages);
726 si->inuse_pages -= nr_entries;
727 if (si->flags & SWP_BLKDEV)
728 swap_slot_free_notify =
729 si->bdev->bd_disk->fops->swap_slot_free_notify;
730 else
731 swap_slot_free_notify = NULL;
732 while (offset <= end) {
733 arch_swap_invalidate_page(si->type, offset);
734 frontswap_invalidate_page(si->type, offset);
735 if (swap_slot_free_notify)
736 swap_slot_free_notify(si->bdev, offset);
737 offset++;
738 }
739 clear_shadow_from_swap_cache(si->type, begin, end);
740 }
741
742 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
743 {
744 unsigned long prev;
745
746 if (!(si->flags & SWP_SOLIDSTATE)) {
747 si->cluster_next = next;
748 return;
749 }
750
751 prev = this_cpu_read(*si->cluster_next_cpu);
752 /*
753 * Cross the swap address space size aligned trunk, choose
754 * another trunk randomly to avoid lock contention on swap
755 * address space if possible.
756 */
757 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
758 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
759 /* No free swap slots available */
760 if (si->highest_bit <= si->lowest_bit)
761 return;
762 next = si->lowest_bit +
763 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
764 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
765 next = max_t(unsigned int, next, si->lowest_bit);
766 }
767 this_cpu_write(*si->cluster_next_cpu, next);
768 }
769
770 static int scan_swap_map_slots(struct swap_info_struct *si,
771 unsigned char usage, int nr,
772 swp_entry_t slots[])
773 {
774 struct swap_cluster_info *ci;
775 unsigned long offset;
776 unsigned long scan_base;
777 unsigned long last_in_cluster = 0;
778 int latency_ration = LATENCY_LIMIT;
779 int n_ret = 0;
780 bool scanned_many = false;
781
782 /*
783 * We try to cluster swap pages by allocating them sequentially
784 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
785 * way, however, we resort to first-free allocation, starting
786 * a new cluster. This prevents us from scattering swap pages
787 * all over the entire swap partition, so that we reduce
788 * overall disk seek times between swap pages. -- sct
789 * But we do now try to find an empty cluster. -Andrea
790 * And we let swap pages go all over an SSD partition. Hugh
791 */
792
793 si->flags += SWP_SCANNING;
794 /*
795 * Use percpu scan base for SSD to reduce lock contention on
796 * cluster and swap cache. For HDD, sequential access is more
797 * important.
798 */
799 if (si->flags & SWP_SOLIDSTATE)
800 scan_base = this_cpu_read(*si->cluster_next_cpu);
801 else
802 scan_base = si->cluster_next;
803 offset = scan_base;
804
805 /* SSD algorithm */
806 if (si->cluster_info) {
807 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
808 goto scan;
809 } else if (unlikely(!si->cluster_nr--)) {
810 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
811 si->cluster_nr = SWAPFILE_CLUSTER - 1;
812 goto checks;
813 }
814
815 spin_unlock(&si->lock);
816
817 /*
818 * If seek is expensive, start searching for new cluster from
819 * start of partition, to minimize the span of allocated swap.
820 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
821 * case, just handled by scan_swap_map_try_ssd_cluster() above.
822 */
823 scan_base = offset = si->lowest_bit;
824 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
825
826 /* Locate the first empty (unaligned) cluster */
827 for (; last_in_cluster <= si->highest_bit; offset++) {
828 if (si->swap_map[offset])
829 last_in_cluster = offset + SWAPFILE_CLUSTER;
830 else if (offset == last_in_cluster) {
831 spin_lock(&si->lock);
832 offset -= SWAPFILE_CLUSTER - 1;
833 si->cluster_next = offset;
834 si->cluster_nr = SWAPFILE_CLUSTER - 1;
835 goto checks;
836 }
837 if (unlikely(--latency_ration < 0)) {
838 cond_resched();
839 latency_ration = LATENCY_LIMIT;
840 }
841 }
842
843 offset = scan_base;
844 spin_lock(&si->lock);
845 si->cluster_nr = SWAPFILE_CLUSTER - 1;
846 }
847
848 checks:
849 if (si->cluster_info) {
850 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
851 /* take a break if we already got some slots */
852 if (n_ret)
853 goto done;
854 if (!scan_swap_map_try_ssd_cluster(si, &offset,
855 &scan_base))
856 goto scan;
857 }
858 }
859 if (!(si->flags & SWP_WRITEOK))
860 goto no_page;
861 if (!si->highest_bit)
862 goto no_page;
863 if (offset > si->highest_bit)
864 scan_base = offset = si->lowest_bit;
865
866 ci = lock_cluster(si, offset);
867 /* reuse swap entry of cache-only swap if not busy. */
868 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
869 int swap_was_freed;
870 unlock_cluster(ci);
871 spin_unlock(&si->lock);
872 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
873 spin_lock(&si->lock);
874 /* entry was freed successfully, try to use this again */
875 if (swap_was_freed)
876 goto checks;
877 goto scan; /* check next one */
878 }
879
880 if (si->swap_map[offset]) {
881 unlock_cluster(ci);
882 if (!n_ret)
883 goto scan;
884 else
885 goto done;
886 }
887 WRITE_ONCE(si->swap_map[offset], usage);
888 inc_cluster_info_page(si, si->cluster_info, offset);
889 unlock_cluster(ci);
890
891 swap_range_alloc(si, offset, 1);
892 slots[n_ret++] = swp_entry(si->type, offset);
893
894 /* got enough slots or reach max slots? */
895 if ((n_ret == nr) || (offset >= si->highest_bit))
896 goto done;
897
898 /* search for next available slot */
899
900 /* time to take a break? */
901 if (unlikely(--latency_ration < 0)) {
902 if (n_ret)
903 goto done;
904 spin_unlock(&si->lock);
905 cond_resched();
906 spin_lock(&si->lock);
907 latency_ration = LATENCY_LIMIT;
908 }
909
910 /* try to get more slots in cluster */
911 if (si->cluster_info) {
912 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
913 goto checks;
914 } else if (si->cluster_nr && !si->swap_map[++offset]) {
915 /* non-ssd case, still more slots in cluster? */
916 --si->cluster_nr;
917 goto checks;
918 }
919
920 /*
921 * Even if there's no free clusters available (fragmented),
922 * try to scan a little more quickly with lock held unless we
923 * have scanned too many slots already.
924 */
925 if (!scanned_many) {
926 unsigned long scan_limit;
927
928 if (offset < scan_base)
929 scan_limit = scan_base;
930 else
931 scan_limit = si->highest_bit;
932 for (; offset <= scan_limit && --latency_ration > 0;
933 offset++) {
934 if (!si->swap_map[offset])
935 goto checks;
936 }
937 }
938
939 done:
940 set_cluster_next(si, offset + 1);
941 si->flags -= SWP_SCANNING;
942 return n_ret;
943
944 scan:
945 spin_unlock(&si->lock);
946 while (++offset <= READ_ONCE(si->highest_bit)) {
947 if (data_race(!si->swap_map[offset])) {
948 spin_lock(&si->lock);
949 goto checks;
950 }
951 if (vm_swap_full() &&
952 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
953 spin_lock(&si->lock);
954 goto checks;
955 }
956 if (unlikely(--latency_ration < 0)) {
957 cond_resched();
958 latency_ration = LATENCY_LIMIT;
959 scanned_many = true;
960 }
961 }
962 offset = si->lowest_bit;
963 while (offset < scan_base) {
964 if (data_race(!si->swap_map[offset])) {
965 spin_lock(&si->lock);
966 goto checks;
967 }
968 if (vm_swap_full() &&
969 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
970 spin_lock(&si->lock);
971 goto checks;
972 }
973 if (unlikely(--latency_ration < 0)) {
974 cond_resched();
975 latency_ration = LATENCY_LIMIT;
976 scanned_many = true;
977 }
978 offset++;
979 }
980 spin_lock(&si->lock);
981
982 no_page:
983 si->flags -= SWP_SCANNING;
984 return n_ret;
985 }
986
987 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
988 {
989 unsigned long idx;
990 struct swap_cluster_info *ci;
991 unsigned long offset;
992
993 /*
994 * Should not even be attempting cluster allocations when huge
995 * page swap is disabled. Warn and fail the allocation.
996 */
997 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
998 VM_WARN_ON_ONCE(1);
999 return 0;
1000 }
1001
1002 if (cluster_list_empty(&si->free_clusters))
1003 return 0;
1004
1005 idx = cluster_list_first(&si->free_clusters);
1006 offset = idx * SWAPFILE_CLUSTER;
1007 ci = lock_cluster(si, offset);
1008 alloc_cluster(si, idx);
1009 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1010
1011 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1012 unlock_cluster(ci);
1013 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1014 *slot = swp_entry(si->type, offset);
1015
1016 return 1;
1017 }
1018
1019 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1020 {
1021 unsigned long offset = idx * SWAPFILE_CLUSTER;
1022 struct swap_cluster_info *ci;
1023
1024 ci = lock_cluster(si, offset);
1025 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1026 cluster_set_count_flag(ci, 0, 0);
1027 free_cluster(si, idx);
1028 unlock_cluster(ci);
1029 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1030 }
1031
1032 static unsigned long scan_swap_map(struct swap_info_struct *si,
1033 unsigned char usage)
1034 {
1035 swp_entry_t entry;
1036 int n_ret;
1037
1038 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1039
1040 if (n_ret)
1041 return swp_offset(entry);
1042 else
1043 return 0;
1044
1045 }
1046
1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1048 {
1049 unsigned long size = swap_entry_size(entry_size);
1050 struct swap_info_struct *si, *next;
1051 long avail_pgs;
1052 int n_ret = 0;
1053 int node;
1054
1055 /* Only single cluster request supported */
1056 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1057
1058 spin_lock(&swap_avail_lock);
1059
1060 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1061 if (avail_pgs <= 0) {
1062 spin_unlock(&swap_avail_lock);
1063 goto noswap;
1064 }
1065
1066 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1067
1068 atomic_long_sub(n_goal * size, &nr_swap_pages);
1069
1070 start_over:
1071 node = numa_node_id();
1072 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1073 /* requeue si to after same-priority siblings */
1074 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1075 spin_unlock(&swap_avail_lock);
1076 spin_lock(&si->lock);
1077 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1078 spin_lock(&swap_avail_lock);
1079 if (plist_node_empty(&si->avail_lists[node])) {
1080 spin_unlock(&si->lock);
1081 goto nextsi;
1082 }
1083 WARN(!si->highest_bit,
1084 "swap_info %d in list but !highest_bit\n",
1085 si->type);
1086 WARN(!(si->flags & SWP_WRITEOK),
1087 "swap_info %d in list but !SWP_WRITEOK\n",
1088 si->type);
1089 __del_from_avail_list(si);
1090 spin_unlock(&si->lock);
1091 goto nextsi;
1092 }
1093 if (size == SWAPFILE_CLUSTER) {
1094 if (si->flags & SWP_BLKDEV)
1095 n_ret = swap_alloc_cluster(si, swp_entries);
1096 } else
1097 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1098 n_goal, swp_entries);
1099 spin_unlock(&si->lock);
1100 if (n_ret || size == SWAPFILE_CLUSTER)
1101 goto check_out;
1102 pr_debug("scan_swap_map of si %d failed to find offset\n",
1103 si->type);
1104
1105 spin_lock(&swap_avail_lock);
1106 nextsi:
1107 /*
1108 * if we got here, it's likely that si was almost full before,
1109 * and since scan_swap_map() can drop the si->lock, multiple
1110 * callers probably all tried to get a page from the same si
1111 * and it filled up before we could get one; or, the si filled
1112 * up between us dropping swap_avail_lock and taking si->lock.
1113 * Since we dropped the swap_avail_lock, the swap_avail_head
1114 * list may have been modified; so if next is still in the
1115 * swap_avail_head list then try it, otherwise start over
1116 * if we have not gotten any slots.
1117 */
1118 if (plist_node_empty(&next->avail_lists[node]))
1119 goto start_over;
1120 }
1121
1122 spin_unlock(&swap_avail_lock);
1123
1124 check_out:
1125 if (n_ret < n_goal)
1126 atomic_long_add((long)(n_goal - n_ret) * size,
1127 &nr_swap_pages);
1128 noswap:
1129 return n_ret;
1130 }
1131
1132 /* The only caller of this function is now suspend routine */
1133 swp_entry_t get_swap_page_of_type(int type)
1134 {
1135 struct swap_info_struct *si = swap_type_to_swap_info(type);
1136 pgoff_t offset;
1137
1138 if (!si)
1139 goto fail;
1140
1141 spin_lock(&si->lock);
1142 if (si->flags & SWP_WRITEOK) {
1143 /* This is called for allocating swap entry, not cache */
1144 offset = scan_swap_map(si, 1);
1145 if (offset) {
1146 atomic_long_dec(&nr_swap_pages);
1147 spin_unlock(&si->lock);
1148 return swp_entry(type, offset);
1149 }
1150 }
1151 spin_unlock(&si->lock);
1152 fail:
1153 return (swp_entry_t) {0};
1154 }
1155
1156 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1157 {
1158 struct swap_info_struct *p;
1159 unsigned long offset;
1160
1161 if (!entry.val)
1162 goto out;
1163 p = swp_swap_info(entry);
1164 if (!p)
1165 goto bad_nofile;
1166 if (data_race(!(p->flags & SWP_USED)))
1167 goto bad_device;
1168 offset = swp_offset(entry);
1169 if (offset >= p->max)
1170 goto bad_offset;
1171 return p;
1172
1173 bad_offset:
1174 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1175 goto out;
1176 bad_device:
1177 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1178 goto out;
1179 bad_nofile:
1180 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1181 out:
1182 return NULL;
1183 }
1184
1185 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1186 {
1187 struct swap_info_struct *p;
1188
1189 p = __swap_info_get(entry);
1190 if (!p)
1191 goto out;
1192 if (data_race(!p->swap_map[swp_offset(entry)]))
1193 goto bad_free;
1194 return p;
1195
1196 bad_free:
1197 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1198 out:
1199 return NULL;
1200 }
1201
1202 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1203 {
1204 struct swap_info_struct *p;
1205
1206 p = _swap_info_get(entry);
1207 if (p)
1208 spin_lock(&p->lock);
1209 return p;
1210 }
1211
1212 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1213 struct swap_info_struct *q)
1214 {
1215 struct swap_info_struct *p;
1216
1217 p = _swap_info_get(entry);
1218
1219 if (p != q) {
1220 if (q != NULL)
1221 spin_unlock(&q->lock);
1222 if (p != NULL)
1223 spin_lock(&p->lock);
1224 }
1225 return p;
1226 }
1227
1228 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1229 unsigned long offset,
1230 unsigned char usage)
1231 {
1232 unsigned char count;
1233 unsigned char has_cache;
1234
1235 count = p->swap_map[offset];
1236
1237 has_cache = count & SWAP_HAS_CACHE;
1238 count &= ~SWAP_HAS_CACHE;
1239
1240 if (usage == SWAP_HAS_CACHE) {
1241 VM_BUG_ON(!has_cache);
1242 has_cache = 0;
1243 } else if (count == SWAP_MAP_SHMEM) {
1244 /*
1245 * Or we could insist on shmem.c using a special
1246 * swap_shmem_free() and free_shmem_swap_and_cache()...
1247 */
1248 count = 0;
1249 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1250 if (count == COUNT_CONTINUED) {
1251 if (swap_count_continued(p, offset, count))
1252 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1253 else
1254 count = SWAP_MAP_MAX;
1255 } else
1256 count--;
1257 }
1258
1259 usage = count | has_cache;
1260 if (usage)
1261 WRITE_ONCE(p->swap_map[offset], usage);
1262 else
1263 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1264
1265 return usage;
1266 }
1267
1268 /*
1269 * Check whether swap entry is valid in the swap device. If so,
1270 * return pointer to swap_info_struct, and keep the swap entry valid
1271 * via preventing the swap device from being swapoff, until
1272 * put_swap_device() is called. Otherwise return NULL.
1273 *
1274 * The entirety of the RCU read critical section must come before the
1275 * return from or after the call to synchronize_rcu() in
1276 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1277 * true, the si->map, si->cluster_info, etc. must be valid in the
1278 * critical section.
1279 *
1280 * Notice that swapoff or swapoff+swapon can still happen before the
1281 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1282 * in put_swap_device() if there isn't any other way to prevent
1283 * swapoff, such as page lock, page table lock, etc. The caller must
1284 * be prepared for that. For example, the following situation is
1285 * possible.
1286 *
1287 * CPU1 CPU2
1288 * do_swap_page()
1289 * ... swapoff+swapon
1290 * __read_swap_cache_async()
1291 * swapcache_prepare()
1292 * __swap_duplicate()
1293 * // check swap_map
1294 * // verify PTE not changed
1295 *
1296 * In __swap_duplicate(), the swap_map need to be checked before
1297 * changing partly because the specified swap entry may be for another
1298 * swap device which has been swapoff. And in do_swap_page(), after
1299 * the page is read from the swap device, the PTE is verified not
1300 * changed with the page table locked to check whether the swap device
1301 * has been swapoff or swapoff+swapon.
1302 */
1303 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1304 {
1305 struct swap_info_struct *si;
1306 unsigned long offset;
1307
1308 if (!entry.val)
1309 goto out;
1310 si = swp_swap_info(entry);
1311 if (!si)
1312 goto bad_nofile;
1313
1314 rcu_read_lock();
1315 if (data_race(!(si->flags & SWP_VALID)))
1316 goto unlock_out;
1317 offset = swp_offset(entry);
1318 if (offset >= si->max)
1319 goto unlock_out;
1320
1321 return si;
1322 bad_nofile:
1323 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1324 out:
1325 return NULL;
1326 unlock_out:
1327 rcu_read_unlock();
1328 return NULL;
1329 }
1330
1331 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1332 swp_entry_t entry)
1333 {
1334 struct swap_cluster_info *ci;
1335 unsigned long offset = swp_offset(entry);
1336 unsigned char usage;
1337
1338 ci = lock_cluster_or_swap_info(p, offset);
1339 usage = __swap_entry_free_locked(p, offset, 1);
1340 unlock_cluster_or_swap_info(p, ci);
1341 if (!usage)
1342 free_swap_slot(entry);
1343
1344 return usage;
1345 }
1346
1347 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1348 {
1349 struct swap_cluster_info *ci;
1350 unsigned long offset = swp_offset(entry);
1351 unsigned char count;
1352
1353 ci = lock_cluster(p, offset);
1354 count = p->swap_map[offset];
1355 VM_BUG_ON(count != SWAP_HAS_CACHE);
1356 p->swap_map[offset] = 0;
1357 dec_cluster_info_page(p, p->cluster_info, offset);
1358 unlock_cluster(ci);
1359
1360 mem_cgroup_uncharge_swap(entry, 1);
1361 swap_range_free(p, offset, 1);
1362 }
1363
1364 /*
1365 * Caller has made sure that the swap device corresponding to entry
1366 * is still around or has not been recycled.
1367 */
1368 void swap_free(swp_entry_t entry)
1369 {
1370 struct swap_info_struct *p;
1371
1372 p = _swap_info_get(entry);
1373 if (p)
1374 __swap_entry_free(p, entry);
1375 }
1376
1377 /*
1378 * Called after dropping swapcache to decrease refcnt to swap entries.
1379 */
1380 void put_swap_page(struct page *page, swp_entry_t entry)
1381 {
1382 unsigned long offset = swp_offset(entry);
1383 unsigned long idx = offset / SWAPFILE_CLUSTER;
1384 struct swap_cluster_info *ci;
1385 struct swap_info_struct *si;
1386 unsigned char *map;
1387 unsigned int i, free_entries = 0;
1388 unsigned char val;
1389 int size = swap_entry_size(thp_nr_pages(page));
1390
1391 si = _swap_info_get(entry);
1392 if (!si)
1393 return;
1394
1395 ci = lock_cluster_or_swap_info(si, offset);
1396 if (size == SWAPFILE_CLUSTER) {
1397 VM_BUG_ON(!cluster_is_huge(ci));
1398 map = si->swap_map + offset;
1399 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1400 val = map[i];
1401 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1402 if (val == SWAP_HAS_CACHE)
1403 free_entries++;
1404 }
1405 cluster_clear_huge(ci);
1406 if (free_entries == SWAPFILE_CLUSTER) {
1407 unlock_cluster_or_swap_info(si, ci);
1408 spin_lock(&si->lock);
1409 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1410 swap_free_cluster(si, idx);
1411 spin_unlock(&si->lock);
1412 return;
1413 }
1414 }
1415 for (i = 0; i < size; i++, entry.val++) {
1416 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1417 unlock_cluster_or_swap_info(si, ci);
1418 free_swap_slot(entry);
1419 if (i == size - 1)
1420 return;
1421 lock_cluster_or_swap_info(si, offset);
1422 }
1423 }
1424 unlock_cluster_or_swap_info(si, ci);
1425 }
1426
1427 #ifdef CONFIG_THP_SWAP
1428 int split_swap_cluster(swp_entry_t entry)
1429 {
1430 struct swap_info_struct *si;
1431 struct swap_cluster_info *ci;
1432 unsigned long offset = swp_offset(entry);
1433
1434 si = _swap_info_get(entry);
1435 if (!si)
1436 return -EBUSY;
1437 ci = lock_cluster(si, offset);
1438 cluster_clear_huge(ci);
1439 unlock_cluster(ci);
1440 return 0;
1441 }
1442 #endif
1443
1444 static int swp_entry_cmp(const void *ent1, const void *ent2)
1445 {
1446 const swp_entry_t *e1 = ent1, *e2 = ent2;
1447
1448 return (int)swp_type(*e1) - (int)swp_type(*e2);
1449 }
1450
1451 void swapcache_free_entries(swp_entry_t *entries, int n)
1452 {
1453 struct swap_info_struct *p, *prev;
1454 int i;
1455
1456 if (n <= 0)
1457 return;
1458
1459 prev = NULL;
1460 p = NULL;
1461
1462 /*
1463 * Sort swap entries by swap device, so each lock is only taken once.
1464 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1465 * so low that it isn't necessary to optimize further.
1466 */
1467 if (nr_swapfiles > 1)
1468 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1469 for (i = 0; i < n; ++i) {
1470 p = swap_info_get_cont(entries[i], prev);
1471 if (p)
1472 swap_entry_free(p, entries[i]);
1473 prev = p;
1474 }
1475 if (p)
1476 spin_unlock(&p->lock);
1477 }
1478
1479 /*
1480 * How many references to page are currently swapped out?
1481 * This does not give an exact answer when swap count is continued,
1482 * but does include the high COUNT_CONTINUED flag to allow for that.
1483 */
1484 int page_swapcount(struct page *page)
1485 {
1486 int count = 0;
1487 struct swap_info_struct *p;
1488 struct swap_cluster_info *ci;
1489 swp_entry_t entry;
1490 unsigned long offset;
1491
1492 entry.val = page_private(page);
1493 p = _swap_info_get(entry);
1494 if (p) {
1495 offset = swp_offset(entry);
1496 ci = lock_cluster_or_swap_info(p, offset);
1497 count = swap_count(p->swap_map[offset]);
1498 unlock_cluster_or_swap_info(p, ci);
1499 }
1500 return count;
1501 }
1502
1503 int __swap_count(swp_entry_t entry)
1504 {
1505 struct swap_info_struct *si;
1506 pgoff_t offset = swp_offset(entry);
1507 int count = 0;
1508
1509 si = get_swap_device(entry);
1510 if (si) {
1511 count = swap_count(si->swap_map[offset]);
1512 put_swap_device(si);
1513 }
1514 return count;
1515 }
1516
1517 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1518 {
1519 int count = 0;
1520 pgoff_t offset = swp_offset(entry);
1521 struct swap_cluster_info *ci;
1522
1523 ci = lock_cluster_or_swap_info(si, offset);
1524 count = swap_count(si->swap_map[offset]);
1525 unlock_cluster_or_swap_info(si, ci);
1526 return count;
1527 }
1528
1529 /*
1530 * How many references to @entry are currently swapped out?
1531 * This does not give an exact answer when swap count is continued,
1532 * but does include the high COUNT_CONTINUED flag to allow for that.
1533 */
1534 int __swp_swapcount(swp_entry_t entry)
1535 {
1536 int count = 0;
1537 struct swap_info_struct *si;
1538
1539 si = get_swap_device(entry);
1540 if (si) {
1541 count = swap_swapcount(si, entry);
1542 put_swap_device(si);
1543 }
1544 return count;
1545 }
1546
1547 /*
1548 * How many references to @entry are currently swapped out?
1549 * This considers COUNT_CONTINUED so it returns exact answer.
1550 */
1551 int swp_swapcount(swp_entry_t entry)
1552 {
1553 int count, tmp_count, n;
1554 struct swap_info_struct *p;
1555 struct swap_cluster_info *ci;
1556 struct page *page;
1557 pgoff_t offset;
1558 unsigned char *map;
1559
1560 p = _swap_info_get(entry);
1561 if (!p)
1562 return 0;
1563
1564 offset = swp_offset(entry);
1565
1566 ci = lock_cluster_or_swap_info(p, offset);
1567
1568 count = swap_count(p->swap_map[offset]);
1569 if (!(count & COUNT_CONTINUED))
1570 goto out;
1571
1572 count &= ~COUNT_CONTINUED;
1573 n = SWAP_MAP_MAX + 1;
1574
1575 page = vmalloc_to_page(p->swap_map + offset);
1576 offset &= ~PAGE_MASK;
1577 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1578
1579 do {
1580 page = list_next_entry(page, lru);
1581 map = kmap_atomic(page);
1582 tmp_count = map[offset];
1583 kunmap_atomic(map);
1584
1585 count += (tmp_count & ~COUNT_CONTINUED) * n;
1586 n *= (SWAP_CONT_MAX + 1);
1587 } while (tmp_count & COUNT_CONTINUED);
1588 out:
1589 unlock_cluster_or_swap_info(p, ci);
1590 return count;
1591 }
1592
1593 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1594 swp_entry_t entry)
1595 {
1596 struct swap_cluster_info *ci;
1597 unsigned char *map = si->swap_map;
1598 unsigned long roffset = swp_offset(entry);
1599 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1600 int i;
1601 bool ret = false;
1602
1603 ci = lock_cluster_or_swap_info(si, offset);
1604 if (!ci || !cluster_is_huge(ci)) {
1605 if (swap_count(map[roffset]))
1606 ret = true;
1607 goto unlock_out;
1608 }
1609 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1610 if (swap_count(map[offset + i])) {
1611 ret = true;
1612 break;
1613 }
1614 }
1615 unlock_out:
1616 unlock_cluster_or_swap_info(si, ci);
1617 return ret;
1618 }
1619
1620 static bool page_swapped(struct page *page)
1621 {
1622 swp_entry_t entry;
1623 struct swap_info_struct *si;
1624
1625 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1626 return page_swapcount(page) != 0;
1627
1628 page = compound_head(page);
1629 entry.val = page_private(page);
1630 si = _swap_info_get(entry);
1631 if (si)
1632 return swap_page_trans_huge_swapped(si, entry);
1633 return false;
1634 }
1635
1636 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1637 int *total_swapcount)
1638 {
1639 int i, map_swapcount, _total_mapcount, _total_swapcount;
1640 unsigned long offset = 0;
1641 struct swap_info_struct *si;
1642 struct swap_cluster_info *ci = NULL;
1643 unsigned char *map = NULL;
1644 int mapcount, swapcount = 0;
1645
1646 /* hugetlbfs shouldn't call it */
1647 VM_BUG_ON_PAGE(PageHuge(page), page);
1648
1649 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1650 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1651 if (PageSwapCache(page))
1652 swapcount = page_swapcount(page);
1653 if (total_swapcount)
1654 *total_swapcount = swapcount;
1655 return mapcount + swapcount;
1656 }
1657
1658 page = compound_head(page);
1659
1660 _total_mapcount = _total_swapcount = map_swapcount = 0;
1661 if (PageSwapCache(page)) {
1662 swp_entry_t entry;
1663
1664 entry.val = page_private(page);
1665 si = _swap_info_get(entry);
1666 if (si) {
1667 map = si->swap_map;
1668 offset = swp_offset(entry);
1669 }
1670 }
1671 if (map)
1672 ci = lock_cluster(si, offset);
1673 for (i = 0; i < HPAGE_PMD_NR; i++) {
1674 mapcount = atomic_read(&page[i]._mapcount) + 1;
1675 _total_mapcount += mapcount;
1676 if (map) {
1677 swapcount = swap_count(map[offset + i]);
1678 _total_swapcount += swapcount;
1679 }
1680 map_swapcount = max(map_swapcount, mapcount + swapcount);
1681 }
1682 unlock_cluster(ci);
1683 if (PageDoubleMap(page)) {
1684 map_swapcount -= 1;
1685 _total_mapcount -= HPAGE_PMD_NR;
1686 }
1687 mapcount = compound_mapcount(page);
1688 map_swapcount += mapcount;
1689 _total_mapcount += mapcount;
1690 if (total_mapcount)
1691 *total_mapcount = _total_mapcount;
1692 if (total_swapcount)
1693 *total_swapcount = _total_swapcount;
1694
1695 return map_swapcount;
1696 }
1697
1698 /*
1699 * We can write to an anon page without COW if there are no other references
1700 * to it. And as a side-effect, free up its swap: because the old content
1701 * on disk will never be read, and seeking back there to write new content
1702 * later would only waste time away from clustering.
1703 *
1704 * NOTE: total_map_swapcount should not be relied upon by the caller if
1705 * reuse_swap_page() returns false, but it may be always overwritten
1706 * (see the other implementation for CONFIG_SWAP=n).
1707 */
1708 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1709 {
1710 int count, total_mapcount, total_swapcount;
1711
1712 VM_BUG_ON_PAGE(!PageLocked(page), page);
1713 if (unlikely(PageKsm(page)))
1714 return false;
1715 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1716 &total_swapcount);
1717 if (total_map_swapcount)
1718 *total_map_swapcount = total_mapcount + total_swapcount;
1719 if (count == 1 && PageSwapCache(page) &&
1720 (likely(!PageTransCompound(page)) ||
1721 /* The remaining swap count will be freed soon */
1722 total_swapcount == page_swapcount(page))) {
1723 if (!PageWriteback(page)) {
1724 page = compound_head(page);
1725 delete_from_swap_cache(page);
1726 SetPageDirty(page);
1727 } else {
1728 swp_entry_t entry;
1729 struct swap_info_struct *p;
1730
1731 entry.val = page_private(page);
1732 p = swap_info_get(entry);
1733 if (p->flags & SWP_STABLE_WRITES) {
1734 spin_unlock(&p->lock);
1735 return false;
1736 }
1737 spin_unlock(&p->lock);
1738 }
1739 }
1740
1741 return count <= 1;
1742 }
1743
1744 /*
1745 * If swap is getting full, or if there are no more mappings of this page,
1746 * then try_to_free_swap is called to free its swap space.
1747 */
1748 int try_to_free_swap(struct page *page)
1749 {
1750 VM_BUG_ON_PAGE(!PageLocked(page), page);
1751
1752 if (!PageSwapCache(page))
1753 return 0;
1754 if (PageWriteback(page))
1755 return 0;
1756 if (page_swapped(page))
1757 return 0;
1758
1759 /*
1760 * Once hibernation has begun to create its image of memory,
1761 * there's a danger that one of the calls to try_to_free_swap()
1762 * - most probably a call from __try_to_reclaim_swap() while
1763 * hibernation is allocating its own swap pages for the image,
1764 * but conceivably even a call from memory reclaim - will free
1765 * the swap from a page which has already been recorded in the
1766 * image as a clean swapcache page, and then reuse its swap for
1767 * another page of the image. On waking from hibernation, the
1768 * original page might be freed under memory pressure, then
1769 * later read back in from swap, now with the wrong data.
1770 *
1771 * Hibernation suspends storage while it is writing the image
1772 * to disk so check that here.
1773 */
1774 if (pm_suspended_storage())
1775 return 0;
1776
1777 page = compound_head(page);
1778 delete_from_swap_cache(page);
1779 SetPageDirty(page);
1780 return 1;
1781 }
1782
1783 /*
1784 * Free the swap entry like above, but also try to
1785 * free the page cache entry if it is the last user.
1786 */
1787 int free_swap_and_cache(swp_entry_t entry)
1788 {
1789 struct swap_info_struct *p;
1790 unsigned char count;
1791
1792 if (non_swap_entry(entry))
1793 return 1;
1794
1795 p = _swap_info_get(entry);
1796 if (p) {
1797 count = __swap_entry_free(p, entry);
1798 if (count == SWAP_HAS_CACHE &&
1799 !swap_page_trans_huge_swapped(p, entry))
1800 __try_to_reclaim_swap(p, swp_offset(entry),
1801 TTRS_UNMAPPED | TTRS_FULL);
1802 }
1803 return p != NULL;
1804 }
1805
1806 #ifdef CONFIG_HIBERNATION
1807 /*
1808 * Find the swap type that corresponds to given device (if any).
1809 *
1810 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1811 * from 0, in which the swap header is expected to be located.
1812 *
1813 * This is needed for the suspend to disk (aka swsusp).
1814 */
1815 int swap_type_of(dev_t device, sector_t offset)
1816 {
1817 int type;
1818
1819 if (!device)
1820 return -1;
1821
1822 spin_lock(&swap_lock);
1823 for (type = 0; type < nr_swapfiles; type++) {
1824 struct swap_info_struct *sis = swap_info[type];
1825
1826 if (!(sis->flags & SWP_WRITEOK))
1827 continue;
1828
1829 if (device == sis->bdev->bd_dev) {
1830 struct swap_extent *se = first_se(sis);
1831
1832 if (se->start_block == offset) {
1833 spin_unlock(&swap_lock);
1834 return type;
1835 }
1836 }
1837 }
1838 spin_unlock(&swap_lock);
1839 return -ENODEV;
1840 }
1841
1842 int find_first_swap(dev_t *device)
1843 {
1844 int type;
1845
1846 spin_lock(&swap_lock);
1847 for (type = 0; type < nr_swapfiles; type++) {
1848 struct swap_info_struct *sis = swap_info[type];
1849
1850 if (!(sis->flags & SWP_WRITEOK))
1851 continue;
1852 *device = sis->bdev->bd_dev;
1853 spin_unlock(&swap_lock);
1854 return type;
1855 }
1856 spin_unlock(&swap_lock);
1857 return -ENODEV;
1858 }
1859
1860 /*
1861 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1862 * corresponding to given index in swap_info (swap type).
1863 */
1864 sector_t swapdev_block(int type, pgoff_t offset)
1865 {
1866 struct block_device *bdev;
1867 struct swap_info_struct *si = swap_type_to_swap_info(type);
1868
1869 if (!si || !(si->flags & SWP_WRITEOK))
1870 return 0;
1871 return map_swap_entry(swp_entry(type, offset), &bdev);
1872 }
1873
1874 /*
1875 * Return either the total number of swap pages of given type, or the number
1876 * of free pages of that type (depending on @free)
1877 *
1878 * This is needed for software suspend
1879 */
1880 unsigned int count_swap_pages(int type, int free)
1881 {
1882 unsigned int n = 0;
1883
1884 spin_lock(&swap_lock);
1885 if ((unsigned int)type < nr_swapfiles) {
1886 struct swap_info_struct *sis = swap_info[type];
1887
1888 spin_lock(&sis->lock);
1889 if (sis->flags & SWP_WRITEOK) {
1890 n = sis->pages;
1891 if (free)
1892 n -= sis->inuse_pages;
1893 }
1894 spin_unlock(&sis->lock);
1895 }
1896 spin_unlock(&swap_lock);
1897 return n;
1898 }
1899 #endif /* CONFIG_HIBERNATION */
1900
1901 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1902 {
1903 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1904 }
1905
1906 /*
1907 * No need to decide whether this PTE shares the swap entry with others,
1908 * just let do_wp_page work it out if a write is requested later - to
1909 * force COW, vm_page_prot omits write permission from any private vma.
1910 */
1911 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1912 unsigned long addr, swp_entry_t entry, struct page *page)
1913 {
1914 struct page *swapcache;
1915 spinlock_t *ptl;
1916 pte_t *pte;
1917 int ret = 1;
1918
1919 swapcache = page;
1920 page = ksm_might_need_to_copy(page, vma, addr);
1921 if (unlikely(!page))
1922 return -ENOMEM;
1923
1924 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1925 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1926 ret = 0;
1927 goto out;
1928 }
1929
1930 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1931 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1932 get_page(page);
1933 set_pte_at(vma->vm_mm, addr, pte,
1934 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1935 if (page == swapcache) {
1936 page_add_anon_rmap(page, vma, addr, false);
1937 } else { /* ksm created a completely new copy */
1938 page_add_new_anon_rmap(page, vma, addr, false);
1939 lru_cache_add_inactive_or_unevictable(page, vma);
1940 }
1941 swap_free(entry);
1942 out:
1943 pte_unmap_unlock(pte, ptl);
1944 if (page != swapcache) {
1945 unlock_page(page);
1946 put_page(page);
1947 }
1948 return ret;
1949 }
1950
1951 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1952 unsigned long addr, unsigned long end,
1953 unsigned int type, bool frontswap,
1954 unsigned long *fs_pages_to_unuse)
1955 {
1956 struct page *page;
1957 swp_entry_t entry;
1958 pte_t *pte;
1959 struct swap_info_struct *si;
1960 unsigned long offset;
1961 int ret = 0;
1962 volatile unsigned char *swap_map;
1963
1964 si = swap_info[type];
1965 pte = pte_offset_map(pmd, addr);
1966 do {
1967 struct vm_fault vmf;
1968
1969 if (!is_swap_pte(*pte))
1970 continue;
1971
1972 entry = pte_to_swp_entry(*pte);
1973 if (swp_type(entry) != type)
1974 continue;
1975
1976 offset = swp_offset(entry);
1977 if (frontswap && !frontswap_test(si, offset))
1978 continue;
1979
1980 pte_unmap(pte);
1981 swap_map = &si->swap_map[offset];
1982 page = lookup_swap_cache(entry, vma, addr);
1983 if (!page) {
1984 vmf.vma = vma;
1985 vmf.address = addr;
1986 vmf.pmd = pmd;
1987 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1988 &vmf);
1989 }
1990 if (!page) {
1991 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1992 goto try_next;
1993 return -ENOMEM;
1994 }
1995
1996 lock_page(page);
1997 wait_on_page_writeback(page);
1998 ret = unuse_pte(vma, pmd, addr, entry, page);
1999 if (ret < 0) {
2000 unlock_page(page);
2001 put_page(page);
2002 goto out;
2003 }
2004
2005 try_to_free_swap(page);
2006 unlock_page(page);
2007 put_page(page);
2008
2009 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2010 ret = FRONTSWAP_PAGES_UNUSED;
2011 goto out;
2012 }
2013 try_next:
2014 pte = pte_offset_map(pmd, addr);
2015 } while (pte++, addr += PAGE_SIZE, addr != end);
2016 pte_unmap(pte - 1);
2017
2018 ret = 0;
2019 out:
2020 return ret;
2021 }
2022
2023 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2024 unsigned long addr, unsigned long end,
2025 unsigned int type, bool frontswap,
2026 unsigned long *fs_pages_to_unuse)
2027 {
2028 pmd_t *pmd;
2029 unsigned long next;
2030 int ret;
2031
2032 pmd = pmd_offset(pud, addr);
2033 do {
2034 cond_resched();
2035 next = pmd_addr_end(addr, end);
2036 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2037 continue;
2038 ret = unuse_pte_range(vma, pmd, addr, next, type,
2039 frontswap, fs_pages_to_unuse);
2040 if (ret)
2041 return ret;
2042 } while (pmd++, addr = next, addr != end);
2043 return 0;
2044 }
2045
2046 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2047 unsigned long addr, unsigned long end,
2048 unsigned int type, bool frontswap,
2049 unsigned long *fs_pages_to_unuse)
2050 {
2051 pud_t *pud;
2052 unsigned long next;
2053 int ret;
2054
2055 pud = pud_offset(p4d, addr);
2056 do {
2057 next = pud_addr_end(addr, end);
2058 if (pud_none_or_clear_bad(pud))
2059 continue;
2060 ret = unuse_pmd_range(vma, pud, addr, next, type,
2061 frontswap, fs_pages_to_unuse);
2062 if (ret)
2063 return ret;
2064 } while (pud++, addr = next, addr != end);
2065 return 0;
2066 }
2067
2068 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2069 unsigned long addr, unsigned long end,
2070 unsigned int type, bool frontswap,
2071 unsigned long *fs_pages_to_unuse)
2072 {
2073 p4d_t *p4d;
2074 unsigned long next;
2075 int ret;
2076
2077 p4d = p4d_offset(pgd, addr);
2078 do {
2079 next = p4d_addr_end(addr, end);
2080 if (p4d_none_or_clear_bad(p4d))
2081 continue;
2082 ret = unuse_pud_range(vma, p4d, addr, next, type,
2083 frontswap, fs_pages_to_unuse);
2084 if (ret)
2085 return ret;
2086 } while (p4d++, addr = next, addr != end);
2087 return 0;
2088 }
2089
2090 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2091 bool frontswap, unsigned long *fs_pages_to_unuse)
2092 {
2093 pgd_t *pgd;
2094 unsigned long addr, end, next;
2095 int ret;
2096
2097 addr = vma->vm_start;
2098 end = vma->vm_end;
2099
2100 pgd = pgd_offset(vma->vm_mm, addr);
2101 do {
2102 next = pgd_addr_end(addr, end);
2103 if (pgd_none_or_clear_bad(pgd))
2104 continue;
2105 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2106 frontswap, fs_pages_to_unuse);
2107 if (ret)
2108 return ret;
2109 } while (pgd++, addr = next, addr != end);
2110 return 0;
2111 }
2112
2113 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2114 bool frontswap, unsigned long *fs_pages_to_unuse)
2115 {
2116 struct vm_area_struct *vma;
2117 int ret = 0;
2118
2119 mmap_read_lock(mm);
2120 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2121 if (vma->anon_vma) {
2122 ret = unuse_vma(vma, type, frontswap,
2123 fs_pages_to_unuse);
2124 if (ret)
2125 break;
2126 }
2127 cond_resched();
2128 }
2129 mmap_read_unlock(mm);
2130 return ret;
2131 }
2132
2133 /*
2134 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2135 * from current position to next entry still in use. Return 0
2136 * if there are no inuse entries after prev till end of the map.
2137 */
2138 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2139 unsigned int prev, bool frontswap)
2140 {
2141 unsigned int i;
2142 unsigned char count;
2143
2144 /*
2145 * No need for swap_lock here: we're just looking
2146 * for whether an entry is in use, not modifying it; false
2147 * hits are okay, and sys_swapoff() has already prevented new
2148 * allocations from this area (while holding swap_lock).
2149 */
2150 for (i = prev + 1; i < si->max; i++) {
2151 count = READ_ONCE(si->swap_map[i]);
2152 if (count && swap_count(count) != SWAP_MAP_BAD)
2153 if (!frontswap || frontswap_test(si, i))
2154 break;
2155 if ((i % LATENCY_LIMIT) == 0)
2156 cond_resched();
2157 }
2158
2159 if (i == si->max)
2160 i = 0;
2161
2162 return i;
2163 }
2164
2165 /*
2166 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2167 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2168 */
2169 int try_to_unuse(unsigned int type, bool frontswap,
2170 unsigned long pages_to_unuse)
2171 {
2172 struct mm_struct *prev_mm;
2173 struct mm_struct *mm;
2174 struct list_head *p;
2175 int retval = 0;
2176 struct swap_info_struct *si = swap_info[type];
2177 struct page *page;
2178 swp_entry_t entry;
2179 unsigned int i;
2180
2181 if (!READ_ONCE(si->inuse_pages))
2182 return 0;
2183
2184 if (!frontswap)
2185 pages_to_unuse = 0;
2186
2187 retry:
2188 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2189 if (retval)
2190 goto out;
2191
2192 prev_mm = &init_mm;
2193 mmget(prev_mm);
2194
2195 spin_lock(&mmlist_lock);
2196 p = &init_mm.mmlist;
2197 while (READ_ONCE(si->inuse_pages) &&
2198 !signal_pending(current) &&
2199 (p = p->next) != &init_mm.mmlist) {
2200
2201 mm = list_entry(p, struct mm_struct, mmlist);
2202 if (!mmget_not_zero(mm))
2203 continue;
2204 spin_unlock(&mmlist_lock);
2205 mmput(prev_mm);
2206 prev_mm = mm;
2207 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2208
2209 if (retval) {
2210 mmput(prev_mm);
2211 goto out;
2212 }
2213
2214 /*
2215 * Make sure that we aren't completely killing
2216 * interactive performance.
2217 */
2218 cond_resched();
2219 spin_lock(&mmlist_lock);
2220 }
2221 spin_unlock(&mmlist_lock);
2222
2223 mmput(prev_mm);
2224
2225 i = 0;
2226 while (READ_ONCE(si->inuse_pages) &&
2227 !signal_pending(current) &&
2228 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2229
2230 entry = swp_entry(type, i);
2231 page = find_get_page(swap_address_space(entry), i);
2232 if (!page)
2233 continue;
2234
2235 /*
2236 * It is conceivable that a racing task removed this page from
2237 * swap cache just before we acquired the page lock. The page
2238 * might even be back in swap cache on another swap area. But
2239 * that is okay, try_to_free_swap() only removes stale pages.
2240 */
2241 lock_page(page);
2242 wait_on_page_writeback(page);
2243 try_to_free_swap(page);
2244 unlock_page(page);
2245 put_page(page);
2246
2247 /*
2248 * For frontswap, we just need to unuse pages_to_unuse, if
2249 * it was specified. Need not check frontswap again here as
2250 * we already zeroed out pages_to_unuse if not frontswap.
2251 */
2252 if (pages_to_unuse && --pages_to_unuse == 0)
2253 goto out;
2254 }
2255
2256 /*
2257 * Lets check again to see if there are still swap entries in the map.
2258 * If yes, we would need to do retry the unuse logic again.
2259 * Under global memory pressure, swap entries can be reinserted back
2260 * into process space after the mmlist loop above passes over them.
2261 *
2262 * Limit the number of retries? No: when mmget_not_zero() above fails,
2263 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2264 * at its own independent pace; and even shmem_writepage() could have
2265 * been preempted after get_swap_page(), temporarily hiding that swap.
2266 * It's easy and robust (though cpu-intensive) just to keep retrying.
2267 */
2268 if (READ_ONCE(si->inuse_pages)) {
2269 if (!signal_pending(current))
2270 goto retry;
2271 retval = -EINTR;
2272 }
2273 out:
2274 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2275 }
2276
2277 /*
2278 * After a successful try_to_unuse, if no swap is now in use, we know
2279 * we can empty the mmlist. swap_lock must be held on entry and exit.
2280 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2281 * added to the mmlist just after page_duplicate - before would be racy.
2282 */
2283 static void drain_mmlist(void)
2284 {
2285 struct list_head *p, *next;
2286 unsigned int type;
2287
2288 for (type = 0; type < nr_swapfiles; type++)
2289 if (swap_info[type]->inuse_pages)
2290 return;
2291 spin_lock(&mmlist_lock);
2292 list_for_each_safe(p, next, &init_mm.mmlist)
2293 list_del_init(p);
2294 spin_unlock(&mmlist_lock);
2295 }
2296
2297 /*
2298 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2299 * corresponds to page offset for the specified swap entry.
2300 * Note that the type of this function is sector_t, but it returns page offset
2301 * into the bdev, not sector offset.
2302 */
2303 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2304 {
2305 struct swap_info_struct *sis;
2306 struct swap_extent *se;
2307 pgoff_t offset;
2308
2309 sis = swp_swap_info(entry);
2310 *bdev = sis->bdev;
2311
2312 offset = swp_offset(entry);
2313 se = offset_to_swap_extent(sis, offset);
2314 return se->start_block + (offset - se->start_page);
2315 }
2316
2317 /*
2318 * Returns the page offset into bdev for the specified page's swap entry.
2319 */
2320 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2321 {
2322 swp_entry_t entry;
2323 entry.val = page_private(page);
2324 return map_swap_entry(entry, bdev);
2325 }
2326
2327 /*
2328 * Free all of a swapdev's extent information
2329 */
2330 static void destroy_swap_extents(struct swap_info_struct *sis)
2331 {
2332 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2333 struct rb_node *rb = sis->swap_extent_root.rb_node;
2334 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2335
2336 rb_erase(rb, &sis->swap_extent_root);
2337 kfree(se);
2338 }
2339
2340 if (sis->flags & SWP_ACTIVATED) {
2341 struct file *swap_file = sis->swap_file;
2342 struct address_space *mapping = swap_file->f_mapping;
2343
2344 sis->flags &= ~SWP_ACTIVATED;
2345 if (mapping->a_ops->swap_deactivate)
2346 mapping->a_ops->swap_deactivate(swap_file);
2347 }
2348 }
2349
2350 /*
2351 * Add a block range (and the corresponding page range) into this swapdev's
2352 * extent tree.
2353 *
2354 * This function rather assumes that it is called in ascending page order.
2355 */
2356 int
2357 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2358 unsigned long nr_pages, sector_t start_block)
2359 {
2360 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2361 struct swap_extent *se;
2362 struct swap_extent *new_se;
2363
2364 /*
2365 * place the new node at the right most since the
2366 * function is called in ascending page order.
2367 */
2368 while (*link) {
2369 parent = *link;
2370 link = &parent->rb_right;
2371 }
2372
2373 if (parent) {
2374 se = rb_entry(parent, struct swap_extent, rb_node);
2375 BUG_ON(se->start_page + se->nr_pages != start_page);
2376 if (se->start_block + se->nr_pages == start_block) {
2377 /* Merge it */
2378 se->nr_pages += nr_pages;
2379 return 0;
2380 }
2381 }
2382
2383 /* No merge, insert a new extent. */
2384 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2385 if (new_se == NULL)
2386 return -ENOMEM;
2387 new_se->start_page = start_page;
2388 new_se->nr_pages = nr_pages;
2389 new_se->start_block = start_block;
2390
2391 rb_link_node(&new_se->rb_node, parent, link);
2392 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2393 return 1;
2394 }
2395 EXPORT_SYMBOL_GPL(add_swap_extent);
2396
2397 /*
2398 * A `swap extent' is a simple thing which maps a contiguous range of pages
2399 * onto a contiguous range of disk blocks. An ordered list of swap extents
2400 * is built at swapon time and is then used at swap_writepage/swap_readpage
2401 * time for locating where on disk a page belongs.
2402 *
2403 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2404 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2405 * swap files identically.
2406 *
2407 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2408 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2409 * swapfiles are handled *identically* after swapon time.
2410 *
2411 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2412 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2413 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2414 * requirements, they are simply tossed out - we will never use those blocks
2415 * for swapping.
2416 *
2417 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2418 * prevents users from writing to the swap device, which will corrupt memory.
2419 *
2420 * The amount of disk space which a single swap extent represents varies.
2421 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2422 * extents in the list. To avoid much list walking, we cache the previous
2423 * search location in `curr_swap_extent', and start new searches from there.
2424 * This is extremely effective. The average number of iterations in
2425 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2426 */
2427 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2428 {
2429 struct file *swap_file = sis->swap_file;
2430 struct address_space *mapping = swap_file->f_mapping;
2431 struct inode *inode = mapping->host;
2432 int ret;
2433
2434 if (S_ISBLK(inode->i_mode)) {
2435 ret = add_swap_extent(sis, 0, sis->max, 0);
2436 *span = sis->pages;
2437 return ret;
2438 }
2439
2440 if (mapping->a_ops->swap_activate) {
2441 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2442 if (ret >= 0)
2443 sis->flags |= SWP_ACTIVATED;
2444 if (!ret) {
2445 sis->flags |= SWP_FS_OPS;
2446 ret = add_swap_extent(sis, 0, sis->max, 0);
2447 *span = sis->pages;
2448 }
2449 return ret;
2450 }
2451
2452 return generic_swapfile_activate(sis, swap_file, span);
2453 }
2454
2455 static int swap_node(struct swap_info_struct *p)
2456 {
2457 struct block_device *bdev;
2458
2459 if (p->bdev)
2460 bdev = p->bdev;
2461 else
2462 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2463
2464 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2465 }
2466
2467 static void setup_swap_info(struct swap_info_struct *p, int prio,
2468 unsigned char *swap_map,
2469 struct swap_cluster_info *cluster_info)
2470 {
2471 int i;
2472
2473 if (prio >= 0)
2474 p->prio = prio;
2475 else
2476 p->prio = --least_priority;
2477 /*
2478 * the plist prio is negated because plist ordering is
2479 * low-to-high, while swap ordering is high-to-low
2480 */
2481 p->list.prio = -p->prio;
2482 for_each_node(i) {
2483 if (p->prio >= 0)
2484 p->avail_lists[i].prio = -p->prio;
2485 else {
2486 if (swap_node(p) == i)
2487 p->avail_lists[i].prio = 1;
2488 else
2489 p->avail_lists[i].prio = -p->prio;
2490 }
2491 }
2492 p->swap_map = swap_map;
2493 p->cluster_info = cluster_info;
2494 }
2495
2496 static void _enable_swap_info(struct swap_info_struct *p)
2497 {
2498 p->flags |= SWP_WRITEOK | SWP_VALID;
2499 atomic_long_add(p->pages, &nr_swap_pages);
2500 total_swap_pages += p->pages;
2501
2502 assert_spin_locked(&swap_lock);
2503 /*
2504 * both lists are plists, and thus priority ordered.
2505 * swap_active_head needs to be priority ordered for swapoff(),
2506 * which on removal of any swap_info_struct with an auto-assigned
2507 * (i.e. negative) priority increments the auto-assigned priority
2508 * of any lower-priority swap_info_structs.
2509 * swap_avail_head needs to be priority ordered for get_swap_page(),
2510 * which allocates swap pages from the highest available priority
2511 * swap_info_struct.
2512 */
2513 plist_add(&p->list, &swap_active_head);
2514 add_to_avail_list(p);
2515 }
2516
2517 static void enable_swap_info(struct swap_info_struct *p, int prio,
2518 unsigned char *swap_map,
2519 struct swap_cluster_info *cluster_info,
2520 unsigned long *frontswap_map)
2521 {
2522 frontswap_init(p->type, frontswap_map);
2523 spin_lock(&swap_lock);
2524 spin_lock(&p->lock);
2525 setup_swap_info(p, prio, swap_map, cluster_info);
2526 spin_unlock(&p->lock);
2527 spin_unlock(&swap_lock);
2528 /*
2529 * Guarantee swap_map, cluster_info, etc. fields are valid
2530 * between get/put_swap_device() if SWP_VALID bit is set
2531 */
2532 synchronize_rcu();
2533 spin_lock(&swap_lock);
2534 spin_lock(&p->lock);
2535 _enable_swap_info(p);
2536 spin_unlock(&p->lock);
2537 spin_unlock(&swap_lock);
2538 }
2539
2540 static void reinsert_swap_info(struct swap_info_struct *p)
2541 {
2542 spin_lock(&swap_lock);
2543 spin_lock(&p->lock);
2544 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2545 _enable_swap_info(p);
2546 spin_unlock(&p->lock);
2547 spin_unlock(&swap_lock);
2548 }
2549
2550 bool has_usable_swap(void)
2551 {
2552 bool ret = true;
2553
2554 spin_lock(&swap_lock);
2555 if (plist_head_empty(&swap_active_head))
2556 ret = false;
2557 spin_unlock(&swap_lock);
2558 return ret;
2559 }
2560
2561 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2562 {
2563 struct swap_info_struct *p = NULL;
2564 unsigned char *swap_map;
2565 struct swap_cluster_info *cluster_info;
2566 unsigned long *frontswap_map;
2567 struct file *swap_file, *victim;
2568 struct address_space *mapping;
2569 struct inode *inode;
2570 struct filename *pathname;
2571 int err, found = 0;
2572 unsigned int old_block_size;
2573
2574 if (!capable(CAP_SYS_ADMIN))
2575 return -EPERM;
2576
2577 BUG_ON(!current->mm);
2578
2579 pathname = getname(specialfile);
2580 if (IS_ERR(pathname))
2581 return PTR_ERR(pathname);
2582
2583 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2584 err = PTR_ERR(victim);
2585 if (IS_ERR(victim))
2586 goto out;
2587
2588 mapping = victim->f_mapping;
2589 spin_lock(&swap_lock);
2590 plist_for_each_entry(p, &swap_active_head, list) {
2591 if (p->flags & SWP_WRITEOK) {
2592 if (p->swap_file->f_mapping == mapping) {
2593 found = 1;
2594 break;
2595 }
2596 }
2597 }
2598 if (!found) {
2599 err = -EINVAL;
2600 spin_unlock(&swap_lock);
2601 goto out_dput;
2602 }
2603 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2604 vm_unacct_memory(p->pages);
2605 else {
2606 err = -ENOMEM;
2607 spin_unlock(&swap_lock);
2608 goto out_dput;
2609 }
2610 del_from_avail_list(p);
2611 spin_lock(&p->lock);
2612 if (p->prio < 0) {
2613 struct swap_info_struct *si = p;
2614 int nid;
2615
2616 plist_for_each_entry_continue(si, &swap_active_head, list) {
2617 si->prio++;
2618 si->list.prio--;
2619 for_each_node(nid) {
2620 if (si->avail_lists[nid].prio != 1)
2621 si->avail_lists[nid].prio--;
2622 }
2623 }
2624 least_priority++;
2625 }
2626 plist_del(&p->list, &swap_active_head);
2627 atomic_long_sub(p->pages, &nr_swap_pages);
2628 total_swap_pages -= p->pages;
2629 p->flags &= ~SWP_WRITEOK;
2630 spin_unlock(&p->lock);
2631 spin_unlock(&swap_lock);
2632
2633 disable_swap_slots_cache_lock();
2634
2635 set_current_oom_origin();
2636 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2637 clear_current_oom_origin();
2638
2639 if (err) {
2640 /* re-insert swap space back into swap_list */
2641 reinsert_swap_info(p);
2642 reenable_swap_slots_cache_unlock();
2643 goto out_dput;
2644 }
2645
2646 reenable_swap_slots_cache_unlock();
2647
2648 spin_lock(&swap_lock);
2649 spin_lock(&p->lock);
2650 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2651 spin_unlock(&p->lock);
2652 spin_unlock(&swap_lock);
2653 /*
2654 * wait for swap operations protected by get/put_swap_device()
2655 * to complete
2656 */
2657 synchronize_rcu();
2658
2659 flush_work(&p->discard_work);
2660
2661 destroy_swap_extents(p);
2662 if (p->flags & SWP_CONTINUED)
2663 free_swap_count_continuations(p);
2664
2665 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2666 atomic_dec(&nr_rotate_swap);
2667
2668 mutex_lock(&swapon_mutex);
2669 spin_lock(&swap_lock);
2670 spin_lock(&p->lock);
2671 drain_mmlist();
2672
2673 /* wait for anyone still in scan_swap_map */
2674 p->highest_bit = 0; /* cuts scans short */
2675 while (p->flags >= SWP_SCANNING) {
2676 spin_unlock(&p->lock);
2677 spin_unlock(&swap_lock);
2678 schedule_timeout_uninterruptible(1);
2679 spin_lock(&swap_lock);
2680 spin_lock(&p->lock);
2681 }
2682
2683 swap_file = p->swap_file;
2684 old_block_size = p->old_block_size;
2685 p->swap_file = NULL;
2686 p->max = 0;
2687 swap_map = p->swap_map;
2688 p->swap_map = NULL;
2689 cluster_info = p->cluster_info;
2690 p->cluster_info = NULL;
2691 frontswap_map = frontswap_map_get(p);
2692 spin_unlock(&p->lock);
2693 spin_unlock(&swap_lock);
2694 arch_swap_invalidate_area(p->type);
2695 frontswap_invalidate_area(p->type);
2696 frontswap_map_set(p, NULL);
2697 mutex_unlock(&swapon_mutex);
2698 free_percpu(p->percpu_cluster);
2699 p->percpu_cluster = NULL;
2700 free_percpu(p->cluster_next_cpu);
2701 p->cluster_next_cpu = NULL;
2702 vfree(swap_map);
2703 kvfree(cluster_info);
2704 kvfree(frontswap_map);
2705 /* Destroy swap account information */
2706 swap_cgroup_swapoff(p->type);
2707 exit_swap_address_space(p->type);
2708
2709 inode = mapping->host;
2710 if (S_ISBLK(inode->i_mode)) {
2711 struct block_device *bdev = I_BDEV(inode);
2712
2713 set_blocksize(bdev, old_block_size);
2714 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2715 }
2716
2717 inode_lock(inode);
2718 inode->i_flags &= ~S_SWAPFILE;
2719 inode_unlock(inode);
2720 filp_close(swap_file, NULL);
2721
2722 /*
2723 * Clear the SWP_USED flag after all resources are freed so that swapon
2724 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2725 * not hold p->lock after we cleared its SWP_WRITEOK.
2726 */
2727 spin_lock(&swap_lock);
2728 p->flags = 0;
2729 spin_unlock(&swap_lock);
2730
2731 err = 0;
2732 atomic_inc(&proc_poll_event);
2733 wake_up_interruptible(&proc_poll_wait);
2734
2735 out_dput:
2736 filp_close(victim, NULL);
2737 out:
2738 putname(pathname);
2739 return err;
2740 }
2741
2742 #ifdef CONFIG_PROC_FS
2743 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2744 {
2745 struct seq_file *seq = file->private_data;
2746
2747 poll_wait(file, &proc_poll_wait, wait);
2748
2749 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2750 seq->poll_event = atomic_read(&proc_poll_event);
2751 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2752 }
2753
2754 return EPOLLIN | EPOLLRDNORM;
2755 }
2756
2757 /* iterator */
2758 static void *swap_start(struct seq_file *swap, loff_t *pos)
2759 {
2760 struct swap_info_struct *si;
2761 int type;
2762 loff_t l = *pos;
2763
2764 mutex_lock(&swapon_mutex);
2765
2766 if (!l)
2767 return SEQ_START_TOKEN;
2768
2769 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2770 if (!(si->flags & SWP_USED) || !si->swap_map)
2771 continue;
2772 if (!--l)
2773 return si;
2774 }
2775
2776 return NULL;
2777 }
2778
2779 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2780 {
2781 struct swap_info_struct *si = v;
2782 int type;
2783
2784 if (v == SEQ_START_TOKEN)
2785 type = 0;
2786 else
2787 type = si->type + 1;
2788
2789 ++(*pos);
2790 for (; (si = swap_type_to_swap_info(type)); type++) {
2791 if (!(si->flags & SWP_USED) || !si->swap_map)
2792 continue;
2793 return si;
2794 }
2795
2796 return NULL;
2797 }
2798
2799 static void swap_stop(struct seq_file *swap, void *v)
2800 {
2801 mutex_unlock(&swapon_mutex);
2802 }
2803
2804 static int swap_show(struct seq_file *swap, void *v)
2805 {
2806 struct swap_info_struct *si = v;
2807 struct file *file;
2808 int len;
2809 unsigned int bytes, inuse;
2810
2811 if (si == SEQ_START_TOKEN) {
2812 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2813 return 0;
2814 }
2815
2816 bytes = si->pages << (PAGE_SHIFT - 10);
2817 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2818
2819 file = si->swap_file;
2820 len = seq_file_path(swap, file, " \t\n\\");
2821 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2822 len < 40 ? 40 - len : 1, " ",
2823 S_ISBLK(file_inode(file)->i_mode) ?
2824 "partition" : "file\t",
2825 bytes, bytes < 10000000 ? "\t" : "",
2826 inuse, inuse < 10000000 ? "\t" : "",
2827 si->prio);
2828 return 0;
2829 }
2830
2831 static const struct seq_operations swaps_op = {
2832 .start = swap_start,
2833 .next = swap_next,
2834 .stop = swap_stop,
2835 .show = swap_show
2836 };
2837
2838 static int swaps_open(struct inode *inode, struct file *file)
2839 {
2840 struct seq_file *seq;
2841 int ret;
2842
2843 ret = seq_open(file, &swaps_op);
2844 if (ret)
2845 return ret;
2846
2847 seq = file->private_data;
2848 seq->poll_event = atomic_read(&proc_poll_event);
2849 return 0;
2850 }
2851
2852 static const struct proc_ops swaps_proc_ops = {
2853 .proc_flags = PROC_ENTRY_PERMANENT,
2854 .proc_open = swaps_open,
2855 .proc_read = seq_read,
2856 .proc_lseek = seq_lseek,
2857 .proc_release = seq_release,
2858 .proc_poll = swaps_poll,
2859 };
2860
2861 static int __init procswaps_init(void)
2862 {
2863 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2864 return 0;
2865 }
2866 __initcall(procswaps_init);
2867 #endif /* CONFIG_PROC_FS */
2868
2869 #ifdef MAX_SWAPFILES_CHECK
2870 static int __init max_swapfiles_check(void)
2871 {
2872 MAX_SWAPFILES_CHECK();
2873 return 0;
2874 }
2875 late_initcall(max_swapfiles_check);
2876 #endif
2877
2878 static struct swap_info_struct *alloc_swap_info(void)
2879 {
2880 struct swap_info_struct *p;
2881 struct swap_info_struct *defer = NULL;
2882 unsigned int type;
2883 int i;
2884
2885 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2886 if (!p)
2887 return ERR_PTR(-ENOMEM);
2888
2889 spin_lock(&swap_lock);
2890 for (type = 0; type < nr_swapfiles; type++) {
2891 if (!(swap_info[type]->flags & SWP_USED))
2892 break;
2893 }
2894 if (type >= MAX_SWAPFILES) {
2895 spin_unlock(&swap_lock);
2896 kvfree(p);
2897 return ERR_PTR(-EPERM);
2898 }
2899 if (type >= nr_swapfiles) {
2900 p->type = type;
2901 WRITE_ONCE(swap_info[type], p);
2902 /*
2903 * Write swap_info[type] before nr_swapfiles, in case a
2904 * racing procfs swap_start() or swap_next() is reading them.
2905 * (We never shrink nr_swapfiles, we never free this entry.)
2906 */
2907 smp_wmb();
2908 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2909 } else {
2910 defer = p;
2911 p = swap_info[type];
2912 /*
2913 * Do not memset this entry: a racing procfs swap_next()
2914 * would be relying on p->type to remain valid.
2915 */
2916 }
2917 p->swap_extent_root = RB_ROOT;
2918 plist_node_init(&p->list, 0);
2919 for_each_node(i)
2920 plist_node_init(&p->avail_lists[i], 0);
2921 p->flags = SWP_USED;
2922 spin_unlock(&swap_lock);
2923 kvfree(defer);
2924 spin_lock_init(&p->lock);
2925 spin_lock_init(&p->cont_lock);
2926
2927 return p;
2928 }
2929
2930 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2931 {
2932 int error;
2933
2934 if (S_ISBLK(inode->i_mode)) {
2935 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2936 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2937 if (IS_ERR(p->bdev)) {
2938 error = PTR_ERR(p->bdev);
2939 p->bdev = NULL;
2940 return error;
2941 }
2942 p->old_block_size = block_size(p->bdev);
2943 error = set_blocksize(p->bdev, PAGE_SIZE);
2944 if (error < 0)
2945 return error;
2946 /*
2947 * Zoned block devices contain zones that have a sequential
2948 * write only restriction. Hence zoned block devices are not
2949 * suitable for swapping. Disallow them here.
2950 */
2951 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2952 return -EINVAL;
2953 p->flags |= SWP_BLKDEV;
2954 } else if (S_ISREG(inode->i_mode)) {
2955 p->bdev = inode->i_sb->s_bdev;
2956 }
2957
2958 return 0;
2959 }
2960
2961
2962 /*
2963 * Find out how many pages are allowed for a single swap device. There
2964 * are two limiting factors:
2965 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2966 * 2) the number of bits in the swap pte, as defined by the different
2967 * architectures.
2968 *
2969 * In order to find the largest possible bit mask, a swap entry with
2970 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2971 * decoded to a swp_entry_t again, and finally the swap offset is
2972 * extracted.
2973 *
2974 * This will mask all the bits from the initial ~0UL mask that can't
2975 * be encoded in either the swp_entry_t or the architecture definition
2976 * of a swap pte.
2977 */
2978 unsigned long generic_max_swapfile_size(void)
2979 {
2980 return swp_offset(pte_to_swp_entry(
2981 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2982 }
2983
2984 /* Can be overridden by an architecture for additional checks. */
2985 __weak unsigned long max_swapfile_size(void)
2986 {
2987 return generic_max_swapfile_size();
2988 }
2989
2990 static unsigned long read_swap_header(struct swap_info_struct *p,
2991 union swap_header *swap_header,
2992 struct inode *inode)
2993 {
2994 int i;
2995 unsigned long maxpages;
2996 unsigned long swapfilepages;
2997 unsigned long last_page;
2998
2999 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3000 pr_err("Unable to find swap-space signature\n");
3001 return 0;
3002 }
3003
3004 /* swap partition endianess hack... */
3005 if (swab32(swap_header->info.version) == 1) {
3006 swab32s(&swap_header->info.version);
3007 swab32s(&swap_header->info.last_page);
3008 swab32s(&swap_header->info.nr_badpages);
3009 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3010 return 0;
3011 for (i = 0; i < swap_header->info.nr_badpages; i++)
3012 swab32s(&swap_header->info.badpages[i]);
3013 }
3014 /* Check the swap header's sub-version */
3015 if (swap_header->info.version != 1) {
3016 pr_warn("Unable to handle swap header version %d\n",
3017 swap_header->info.version);
3018 return 0;
3019 }
3020
3021 p->lowest_bit = 1;
3022 p->cluster_next = 1;
3023 p->cluster_nr = 0;
3024
3025 maxpages = max_swapfile_size();
3026 last_page = swap_header->info.last_page;
3027 if (!last_page) {
3028 pr_warn("Empty swap-file\n");
3029 return 0;
3030 }
3031 if (last_page > maxpages) {
3032 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3033 maxpages << (PAGE_SHIFT - 10),
3034 last_page << (PAGE_SHIFT - 10));
3035 }
3036 if (maxpages > last_page) {
3037 maxpages = last_page + 1;
3038 /* p->max is an unsigned int: don't overflow it */
3039 if ((unsigned int)maxpages == 0)
3040 maxpages = UINT_MAX;
3041 }
3042 p->highest_bit = maxpages - 1;
3043
3044 if (!maxpages)
3045 return 0;
3046 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3047 if (swapfilepages && maxpages > swapfilepages) {
3048 pr_warn("Swap area shorter than signature indicates\n");
3049 return 0;
3050 }
3051 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3052 return 0;
3053 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3054 return 0;
3055
3056 return maxpages;
3057 }
3058
3059 #define SWAP_CLUSTER_INFO_COLS \
3060 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3061 #define SWAP_CLUSTER_SPACE_COLS \
3062 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3063 #define SWAP_CLUSTER_COLS \
3064 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3065
3066 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3067 union swap_header *swap_header,
3068 unsigned char *swap_map,
3069 struct swap_cluster_info *cluster_info,
3070 unsigned long maxpages,
3071 sector_t *span)
3072 {
3073 unsigned int j, k;
3074 unsigned int nr_good_pages;
3075 int nr_extents;
3076 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3077 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3078 unsigned long i, idx;
3079
3080 nr_good_pages = maxpages - 1; /* omit header page */
3081
3082 cluster_list_init(&p->free_clusters);
3083 cluster_list_init(&p->discard_clusters);
3084
3085 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3086 unsigned int page_nr = swap_header->info.badpages[i];
3087 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3088 return -EINVAL;
3089 if (page_nr < maxpages) {
3090 swap_map[page_nr] = SWAP_MAP_BAD;
3091 nr_good_pages--;
3092 /*
3093 * Haven't marked the cluster free yet, no list
3094 * operation involved
3095 */
3096 inc_cluster_info_page(p, cluster_info, page_nr);
3097 }
3098 }
3099
3100 /* Haven't marked the cluster free yet, no list operation involved */
3101 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3102 inc_cluster_info_page(p, cluster_info, i);
3103
3104 if (nr_good_pages) {
3105 swap_map[0] = SWAP_MAP_BAD;
3106 /*
3107 * Not mark the cluster free yet, no list
3108 * operation involved
3109 */
3110 inc_cluster_info_page(p, cluster_info, 0);
3111 p->max = maxpages;
3112 p->pages = nr_good_pages;
3113 nr_extents = setup_swap_extents(p, span);
3114 if (nr_extents < 0)
3115 return nr_extents;
3116 nr_good_pages = p->pages;
3117 }
3118 if (!nr_good_pages) {
3119 pr_warn("Empty swap-file\n");
3120 return -EINVAL;
3121 }
3122
3123 if (!cluster_info)
3124 return nr_extents;
3125
3126
3127 /*
3128 * Reduce false cache line sharing between cluster_info and
3129 * sharing same address space.
3130 */
3131 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3132 j = (k + col) % SWAP_CLUSTER_COLS;
3133 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3134 idx = i * SWAP_CLUSTER_COLS + j;
3135 if (idx >= nr_clusters)
3136 continue;
3137 if (cluster_count(&cluster_info[idx]))
3138 continue;
3139 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3140 cluster_list_add_tail(&p->free_clusters, cluster_info,
3141 idx);
3142 }
3143 }
3144 return nr_extents;
3145 }
3146
3147 /*
3148 * Helper to sys_swapon determining if a given swap
3149 * backing device queue supports DISCARD operations.
3150 */
3151 static bool swap_discardable(struct swap_info_struct *si)
3152 {
3153 struct request_queue *q = bdev_get_queue(si->bdev);
3154
3155 if (!q || !blk_queue_discard(q))
3156 return false;
3157
3158 return true;
3159 }
3160
3161 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3162 {
3163 struct swap_info_struct *p;
3164 struct filename *name;
3165 struct file *swap_file = NULL;
3166 struct address_space *mapping;
3167 int prio;
3168 int error;
3169 union swap_header *swap_header;
3170 int nr_extents;
3171 sector_t span;
3172 unsigned long maxpages;
3173 unsigned char *swap_map = NULL;
3174 struct swap_cluster_info *cluster_info = NULL;
3175 unsigned long *frontswap_map = NULL;
3176 struct page *page = NULL;
3177 struct inode *inode = NULL;
3178 bool inced_nr_rotate_swap = false;
3179
3180 if (swap_flags & ~SWAP_FLAGS_VALID)
3181 return -EINVAL;
3182
3183 if (!capable(CAP_SYS_ADMIN))
3184 return -EPERM;
3185
3186 if (!swap_avail_heads)
3187 return -ENOMEM;
3188
3189 p = alloc_swap_info();
3190 if (IS_ERR(p))
3191 return PTR_ERR(p);
3192
3193 INIT_WORK(&p->discard_work, swap_discard_work);
3194
3195 name = getname(specialfile);
3196 if (IS_ERR(name)) {
3197 error = PTR_ERR(name);
3198 name = NULL;
3199 goto bad_swap;
3200 }
3201 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3202 if (IS_ERR(swap_file)) {
3203 error = PTR_ERR(swap_file);
3204 swap_file = NULL;
3205 goto bad_swap;
3206 }
3207
3208 p->swap_file = swap_file;
3209 mapping = swap_file->f_mapping;
3210 inode = mapping->host;
3211
3212 error = claim_swapfile(p, inode);
3213 if (unlikely(error))
3214 goto bad_swap;
3215
3216 inode_lock(inode);
3217 if (IS_SWAPFILE(inode)) {
3218 error = -EBUSY;
3219 goto bad_swap_unlock_inode;
3220 }
3221
3222 /*
3223 * Read the swap header.
3224 */
3225 if (!mapping->a_ops->readpage) {
3226 error = -EINVAL;
3227 goto bad_swap_unlock_inode;
3228 }
3229 page = read_mapping_page(mapping, 0, swap_file);
3230 if (IS_ERR(page)) {
3231 error = PTR_ERR(page);
3232 goto bad_swap_unlock_inode;
3233 }
3234 swap_header = kmap(page);
3235
3236 maxpages = read_swap_header(p, swap_header, inode);
3237 if (unlikely(!maxpages)) {
3238 error = -EINVAL;
3239 goto bad_swap_unlock_inode;
3240 }
3241
3242 /* OK, set up the swap map and apply the bad block list */
3243 swap_map = vzalloc(maxpages);
3244 if (!swap_map) {
3245 error = -ENOMEM;
3246 goto bad_swap_unlock_inode;
3247 }
3248
3249 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3250 p->flags |= SWP_STABLE_WRITES;
3251
3252 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3253 p->flags |= SWP_SYNCHRONOUS_IO;
3254
3255 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3256 int cpu;
3257 unsigned long ci, nr_cluster;
3258
3259 p->flags |= SWP_SOLIDSTATE;
3260 p->cluster_next_cpu = alloc_percpu(unsigned int);
3261 if (!p->cluster_next_cpu) {
3262 error = -ENOMEM;
3263 goto bad_swap_unlock_inode;
3264 }
3265 /*
3266 * select a random position to start with to help wear leveling
3267 * SSD
3268 */
3269 for_each_possible_cpu(cpu) {
3270 per_cpu(*p->cluster_next_cpu, cpu) =
3271 1 + prandom_u32_max(p->highest_bit);
3272 }
3273 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3274
3275 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3276 GFP_KERNEL);
3277 if (!cluster_info) {
3278 error = -ENOMEM;
3279 goto bad_swap_unlock_inode;
3280 }
3281
3282 for (ci = 0; ci < nr_cluster; ci++)
3283 spin_lock_init(&((cluster_info + ci)->lock));
3284
3285 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3286 if (!p->percpu_cluster) {
3287 error = -ENOMEM;
3288 goto bad_swap_unlock_inode;
3289 }
3290 for_each_possible_cpu(cpu) {
3291 struct percpu_cluster *cluster;
3292 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3293 cluster_set_null(&cluster->index);
3294 }
3295 } else {
3296 atomic_inc(&nr_rotate_swap);
3297 inced_nr_rotate_swap = true;
3298 }
3299
3300 error = swap_cgroup_swapon(p->type, maxpages);
3301 if (error)
3302 goto bad_swap_unlock_inode;
3303
3304 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3305 cluster_info, maxpages, &span);
3306 if (unlikely(nr_extents < 0)) {
3307 error = nr_extents;
3308 goto bad_swap_unlock_inode;
3309 }
3310 /* frontswap enabled? set up bit-per-page map for frontswap */
3311 if (IS_ENABLED(CONFIG_FRONTSWAP))
3312 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3313 sizeof(long),
3314 GFP_KERNEL);
3315
3316 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3317 /*
3318 * When discard is enabled for swap with no particular
3319 * policy flagged, we set all swap discard flags here in
3320 * order to sustain backward compatibility with older
3321 * swapon(8) releases.
3322 */
3323 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3324 SWP_PAGE_DISCARD);
3325
3326 /*
3327 * By flagging sys_swapon, a sysadmin can tell us to
3328 * either do single-time area discards only, or to just
3329 * perform discards for released swap page-clusters.
3330 * Now it's time to adjust the p->flags accordingly.
3331 */
3332 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3333 p->flags &= ~SWP_PAGE_DISCARD;
3334 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3335 p->flags &= ~SWP_AREA_DISCARD;
3336
3337 /* issue a swapon-time discard if it's still required */
3338 if (p->flags & SWP_AREA_DISCARD) {
3339 int err = discard_swap(p);
3340 if (unlikely(err))
3341 pr_err("swapon: discard_swap(%p): %d\n",
3342 p, err);
3343 }
3344 }
3345
3346 error = init_swap_address_space(p->type, maxpages);
3347 if (error)
3348 goto bad_swap_unlock_inode;
3349
3350 /*
3351 * Flush any pending IO and dirty mappings before we start using this
3352 * swap device.
3353 */
3354 inode->i_flags |= S_SWAPFILE;
3355 error = inode_drain_writes(inode);
3356 if (error) {
3357 inode->i_flags &= ~S_SWAPFILE;
3358 goto free_swap_address_space;
3359 }
3360
3361 mutex_lock(&swapon_mutex);
3362 prio = -1;
3363 if (swap_flags & SWAP_FLAG_PREFER)
3364 prio =
3365 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3366 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3367
3368 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3369 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3370 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3371 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3372 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3373 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3374 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3375 (frontswap_map) ? "FS" : "");
3376
3377 mutex_unlock(&swapon_mutex);
3378 atomic_inc(&proc_poll_event);
3379 wake_up_interruptible(&proc_poll_wait);
3380
3381 error = 0;
3382 goto out;
3383 free_swap_address_space:
3384 exit_swap_address_space(p->type);
3385 bad_swap_unlock_inode:
3386 inode_unlock(inode);
3387 bad_swap:
3388 free_percpu(p->percpu_cluster);
3389 p->percpu_cluster = NULL;
3390 free_percpu(p->cluster_next_cpu);
3391 p->cluster_next_cpu = NULL;
3392 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3393 set_blocksize(p->bdev, p->old_block_size);
3394 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3395 }
3396 inode = NULL;
3397 destroy_swap_extents(p);
3398 swap_cgroup_swapoff(p->type);
3399 spin_lock(&swap_lock);
3400 p->swap_file = NULL;
3401 p->flags = 0;
3402 spin_unlock(&swap_lock);
3403 vfree(swap_map);
3404 kvfree(cluster_info);
3405 kvfree(frontswap_map);
3406 if (inced_nr_rotate_swap)
3407 atomic_dec(&nr_rotate_swap);
3408 if (swap_file)
3409 filp_close(swap_file, NULL);
3410 out:
3411 if (page && !IS_ERR(page)) {
3412 kunmap(page);
3413 put_page(page);
3414 }
3415 if (name)
3416 putname(name);
3417 if (inode)
3418 inode_unlock(inode);
3419 if (!error)
3420 enable_swap_slots_cache();
3421 return error;
3422 }
3423
3424 void si_swapinfo(struct sysinfo *val)
3425 {
3426 unsigned int type;
3427 unsigned long nr_to_be_unused = 0;
3428
3429 spin_lock(&swap_lock);
3430 for (type = 0; type < nr_swapfiles; type++) {
3431 struct swap_info_struct *si = swap_info[type];
3432
3433 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3434 nr_to_be_unused += si->inuse_pages;
3435 }
3436 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3437 val->totalswap = total_swap_pages + nr_to_be_unused;
3438 spin_unlock(&swap_lock);
3439 }
3440
3441 /*
3442 * Verify that a swap entry is valid and increment its swap map count.
3443 *
3444 * Returns error code in following case.
3445 * - success -> 0
3446 * - swp_entry is invalid -> EINVAL
3447 * - swp_entry is migration entry -> EINVAL
3448 * - swap-cache reference is requested but there is already one. -> EEXIST
3449 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3450 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3451 */
3452 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3453 {
3454 struct swap_info_struct *p;
3455 struct swap_cluster_info *ci;
3456 unsigned long offset;
3457 unsigned char count;
3458 unsigned char has_cache;
3459 int err;
3460
3461 p = get_swap_device(entry);
3462 if (!p)
3463 return -EINVAL;
3464
3465 offset = swp_offset(entry);
3466 ci = lock_cluster_or_swap_info(p, offset);
3467
3468 count = p->swap_map[offset];
3469
3470 /*
3471 * swapin_readahead() doesn't check if a swap entry is valid, so the
3472 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3473 */
3474 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3475 err = -ENOENT;
3476 goto unlock_out;
3477 }
3478
3479 has_cache = count & SWAP_HAS_CACHE;
3480 count &= ~SWAP_HAS_CACHE;
3481 err = 0;
3482
3483 if (usage == SWAP_HAS_CACHE) {
3484
3485 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3486 if (!has_cache && count)
3487 has_cache = SWAP_HAS_CACHE;
3488 else if (has_cache) /* someone else added cache */
3489 err = -EEXIST;
3490 else /* no users remaining */
3491 err = -ENOENT;
3492
3493 } else if (count || has_cache) {
3494
3495 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3496 count += usage;
3497 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3498 err = -EINVAL;
3499 else if (swap_count_continued(p, offset, count))
3500 count = COUNT_CONTINUED;
3501 else
3502 err = -ENOMEM;
3503 } else
3504 err = -ENOENT; /* unused swap entry */
3505
3506 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3507
3508 unlock_out:
3509 unlock_cluster_or_swap_info(p, ci);
3510 if (p)
3511 put_swap_device(p);
3512 return err;
3513 }
3514
3515 /*
3516 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3517 * (in which case its reference count is never incremented).
3518 */
3519 void swap_shmem_alloc(swp_entry_t entry)
3520 {
3521 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3522 }
3523
3524 /*
3525 * Increase reference count of swap entry by 1.
3526 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3527 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3528 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3529 * might occur if a page table entry has got corrupted.
3530 */
3531 int swap_duplicate(swp_entry_t entry)
3532 {
3533 int err = 0;
3534
3535 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3536 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3537 return err;
3538 }
3539
3540 /*
3541 * @entry: swap entry for which we allocate swap cache.
3542 *
3543 * Called when allocating swap cache for existing swap entry,
3544 * This can return error codes. Returns 0 at success.
3545 * -EEXIST means there is a swap cache.
3546 * Note: return code is different from swap_duplicate().
3547 */
3548 int swapcache_prepare(swp_entry_t entry)
3549 {
3550 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3551 }
3552
3553 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3554 {
3555 return swap_type_to_swap_info(swp_type(entry));
3556 }
3557
3558 struct swap_info_struct *page_swap_info(struct page *page)
3559 {
3560 swp_entry_t entry = { .val = page_private(page) };
3561 return swp_swap_info(entry);
3562 }
3563
3564 /*
3565 * out-of-line __page_file_ methods to avoid include hell.
3566 */
3567 struct address_space *__page_file_mapping(struct page *page)
3568 {
3569 return page_swap_info(page)->swap_file->f_mapping;
3570 }
3571 EXPORT_SYMBOL_GPL(__page_file_mapping);
3572
3573 pgoff_t __page_file_index(struct page *page)
3574 {
3575 swp_entry_t swap = { .val = page_private(page) };
3576 return swp_offset(swap);
3577 }
3578 EXPORT_SYMBOL_GPL(__page_file_index);
3579
3580 /*
3581 * add_swap_count_continuation - called when a swap count is duplicated
3582 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3583 * page of the original vmalloc'ed swap_map, to hold the continuation count
3584 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3585 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3586 *
3587 * These continuation pages are seldom referenced: the common paths all work
3588 * on the original swap_map, only referring to a continuation page when the
3589 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3590 *
3591 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3592 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3593 * can be called after dropping locks.
3594 */
3595 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3596 {
3597 struct swap_info_struct *si;
3598 struct swap_cluster_info *ci;
3599 struct page *head;
3600 struct page *page;
3601 struct page *list_page;
3602 pgoff_t offset;
3603 unsigned char count;
3604 int ret = 0;
3605
3606 /*
3607 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3608 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3609 */
3610 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3611
3612 si = get_swap_device(entry);
3613 if (!si) {
3614 /*
3615 * An acceptable race has occurred since the failing
3616 * __swap_duplicate(): the swap device may be swapoff
3617 */
3618 goto outer;
3619 }
3620 spin_lock(&si->lock);
3621
3622 offset = swp_offset(entry);
3623
3624 ci = lock_cluster(si, offset);
3625
3626 count = swap_count(si->swap_map[offset]);
3627
3628 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3629 /*
3630 * The higher the swap count, the more likely it is that tasks
3631 * will race to add swap count continuation: we need to avoid
3632 * over-provisioning.
3633 */
3634 goto out;
3635 }
3636
3637 if (!page) {
3638 ret = -ENOMEM;
3639 goto out;
3640 }
3641
3642 /*
3643 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3644 * no architecture is using highmem pages for kernel page tables: so it
3645 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3646 */
3647 head = vmalloc_to_page(si->swap_map + offset);
3648 offset &= ~PAGE_MASK;
3649
3650 spin_lock(&si->cont_lock);
3651 /*
3652 * Page allocation does not initialize the page's lru field,
3653 * but it does always reset its private field.
3654 */
3655 if (!page_private(head)) {
3656 BUG_ON(count & COUNT_CONTINUED);
3657 INIT_LIST_HEAD(&head->lru);
3658 set_page_private(head, SWP_CONTINUED);
3659 si->flags |= SWP_CONTINUED;
3660 }
3661
3662 list_for_each_entry(list_page, &head->lru, lru) {
3663 unsigned char *map;
3664
3665 /*
3666 * If the previous map said no continuation, but we've found
3667 * a continuation page, free our allocation and use this one.
3668 */
3669 if (!(count & COUNT_CONTINUED))
3670 goto out_unlock_cont;
3671
3672 map = kmap_atomic(list_page) + offset;
3673 count = *map;
3674 kunmap_atomic(map);
3675
3676 /*
3677 * If this continuation count now has some space in it,
3678 * free our allocation and use this one.
3679 */
3680 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3681 goto out_unlock_cont;
3682 }
3683
3684 list_add_tail(&page->lru, &head->lru);
3685 page = NULL; /* now it's attached, don't free it */
3686 out_unlock_cont:
3687 spin_unlock(&si->cont_lock);
3688 out:
3689 unlock_cluster(ci);
3690 spin_unlock(&si->lock);
3691 put_swap_device(si);
3692 outer:
3693 if (page)
3694 __free_page(page);
3695 return ret;
3696 }
3697
3698 /*
3699 * swap_count_continued - when the original swap_map count is incremented
3700 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3701 * into, carry if so, or else fail until a new continuation page is allocated;
3702 * when the original swap_map count is decremented from 0 with continuation,
3703 * borrow from the continuation and report whether it still holds more.
3704 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3705 * lock.
3706 */
3707 static bool swap_count_continued(struct swap_info_struct *si,
3708 pgoff_t offset, unsigned char count)
3709 {
3710 struct page *head;
3711 struct page *page;
3712 unsigned char *map;
3713 bool ret;
3714
3715 head = vmalloc_to_page(si->swap_map + offset);
3716 if (page_private(head) != SWP_CONTINUED) {
3717 BUG_ON(count & COUNT_CONTINUED);
3718 return false; /* need to add count continuation */
3719 }
3720
3721 spin_lock(&si->cont_lock);
3722 offset &= ~PAGE_MASK;
3723 page = list_next_entry(head, lru);
3724 map = kmap_atomic(page) + offset;
3725
3726 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3727 goto init_map; /* jump over SWAP_CONT_MAX checks */
3728
3729 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3730 /*
3731 * Think of how you add 1 to 999
3732 */
3733 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3734 kunmap_atomic(map);
3735 page = list_next_entry(page, lru);
3736 BUG_ON(page == head);
3737 map = kmap_atomic(page) + offset;
3738 }
3739 if (*map == SWAP_CONT_MAX) {
3740 kunmap_atomic(map);
3741 page = list_next_entry(page, lru);
3742 if (page == head) {
3743 ret = false; /* add count continuation */
3744 goto out;
3745 }
3746 map = kmap_atomic(page) + offset;
3747 init_map: *map = 0; /* we didn't zero the page */
3748 }
3749 *map += 1;
3750 kunmap_atomic(map);
3751 while ((page = list_prev_entry(page, lru)) != head) {
3752 map = kmap_atomic(page) + offset;
3753 *map = COUNT_CONTINUED;
3754 kunmap_atomic(map);
3755 }
3756 ret = true; /* incremented */
3757
3758 } else { /* decrementing */
3759 /*
3760 * Think of how you subtract 1 from 1000
3761 */
3762 BUG_ON(count != COUNT_CONTINUED);
3763 while (*map == COUNT_CONTINUED) {
3764 kunmap_atomic(map);
3765 page = list_next_entry(page, lru);
3766 BUG_ON(page == head);
3767 map = kmap_atomic(page) + offset;
3768 }
3769 BUG_ON(*map == 0);
3770 *map -= 1;
3771 if (*map == 0)
3772 count = 0;
3773 kunmap_atomic(map);
3774 while ((page = list_prev_entry(page, lru)) != head) {
3775 map = kmap_atomic(page) + offset;
3776 *map = SWAP_CONT_MAX | count;
3777 count = COUNT_CONTINUED;
3778 kunmap_atomic(map);
3779 }
3780 ret = count == COUNT_CONTINUED;
3781 }
3782 out:
3783 spin_unlock(&si->cont_lock);
3784 return ret;
3785 }
3786
3787 /*
3788 * free_swap_count_continuations - swapoff free all the continuation pages
3789 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3790 */
3791 static void free_swap_count_continuations(struct swap_info_struct *si)
3792 {
3793 pgoff_t offset;
3794
3795 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3796 struct page *head;
3797 head = vmalloc_to_page(si->swap_map + offset);
3798 if (page_private(head)) {
3799 struct page *page, *next;
3800
3801 list_for_each_entry_safe(page, next, &head->lru, lru) {
3802 list_del(&page->lru);
3803 __free_page(page);
3804 }
3805 }
3806 }
3807 }
3808
3809 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3810 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3811 {
3812 struct swap_info_struct *si, *next;
3813 int nid = page_to_nid(page);
3814
3815 if (!(gfp_mask & __GFP_IO))
3816 return;
3817
3818 if (!blk_cgroup_congested())
3819 return;
3820
3821 /*
3822 * We've already scheduled a throttle, avoid taking the global swap
3823 * lock.
3824 */
3825 if (current->throttle_queue)
3826 return;
3827
3828 spin_lock(&swap_avail_lock);
3829 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3830 avail_lists[nid]) {
3831 if (si->bdev) {
3832 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3833 break;
3834 }
3835 }
3836 spin_unlock(&swap_avail_lock);
3837 }
3838 #endif
3839
3840 static int __init swapfile_init(void)
3841 {
3842 int nid;
3843
3844 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3845 GFP_KERNEL);
3846 if (!swap_avail_heads) {
3847 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3848 return -ENOMEM;
3849 }
3850
3851 for_each_node(nid)
3852 plist_head_init(&swap_avail_heads[nid]);
3853
3854 return 0;
3855 }
3856 subsys_initcall(swapfile_init);