]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/swapfile.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
39
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
50
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
55
56 static struct swap_list_t swap_list = {-1, -1};
57
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59
60 static DEFINE_MUTEX(swapon_mutex);
61
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
65
66 static inline unsigned char swap_count(unsigned char ent)
67 {
68 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
69 }
70
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74 {
75 swp_entry_t entry = swp_entry(si->type, offset);
76 struct page *page;
77 int ret = 0;
78
79 page = find_get_page(&swapper_space, entry.val);
80 if (!page)
81 return 0;
82 /*
83 * This function is called from scan_swap_map() and it's called
84 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 * We have to use trylock for avoiding deadlock. This is a special
86 * case and you should use try_to_free_swap() with explicit lock_page()
87 * in usual operations.
88 */
89 if (trylock_page(page)) {
90 ret = try_to_free_swap(page);
91 unlock_page(page);
92 }
93 page_cache_release(page);
94 return ret;
95 }
96
97 /*
98 * swapon tell device that all the old swap contents can be discarded,
99 * to allow the swap device to optimize its wear-levelling.
100 */
101 static int discard_swap(struct swap_info_struct *si)
102 {
103 struct swap_extent *se;
104 sector_t start_block;
105 sector_t nr_blocks;
106 int err = 0;
107
108 /* Do not discard the swap header page! */
109 se = &si->first_swap_extent;
110 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
111 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
112 if (nr_blocks) {
113 err = blkdev_issue_discard(si->bdev, start_block,
114 nr_blocks, GFP_KERNEL, 0);
115 if (err)
116 return err;
117 cond_resched();
118 }
119
120 list_for_each_entry(se, &si->first_swap_extent.list, list) {
121 start_block = se->start_block << (PAGE_SHIFT - 9);
122 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
123
124 err = blkdev_issue_discard(si->bdev, start_block,
125 nr_blocks, GFP_KERNEL, 0);
126 if (err)
127 break;
128
129 cond_resched();
130 }
131 return err; /* That will often be -EOPNOTSUPP */
132 }
133
134 /*
135 * swap allocation tell device that a cluster of swap can now be discarded,
136 * to allow the swap device to optimize its wear-levelling.
137 */
138 static void discard_swap_cluster(struct swap_info_struct *si,
139 pgoff_t start_page, pgoff_t nr_pages)
140 {
141 struct swap_extent *se = si->curr_swap_extent;
142 int found_extent = 0;
143
144 while (nr_pages) {
145 struct list_head *lh;
146
147 if (se->start_page <= start_page &&
148 start_page < se->start_page + se->nr_pages) {
149 pgoff_t offset = start_page - se->start_page;
150 sector_t start_block = se->start_block + offset;
151 sector_t nr_blocks = se->nr_pages - offset;
152
153 if (nr_blocks > nr_pages)
154 nr_blocks = nr_pages;
155 start_page += nr_blocks;
156 nr_pages -= nr_blocks;
157
158 if (!found_extent++)
159 si->curr_swap_extent = se;
160
161 start_block <<= PAGE_SHIFT - 9;
162 nr_blocks <<= PAGE_SHIFT - 9;
163 if (blkdev_issue_discard(si->bdev, start_block,
164 nr_blocks, GFP_NOIO, 0))
165 break;
166 }
167
168 lh = se->list.next;
169 se = list_entry(lh, struct swap_extent, list);
170 }
171 }
172
173 static int wait_for_discard(void *word)
174 {
175 schedule();
176 return 0;
177 }
178
179 #define SWAPFILE_CLUSTER 256
180 #define LATENCY_LIMIT 256
181
182 static unsigned long scan_swap_map(struct swap_info_struct *si,
183 unsigned char usage)
184 {
185 unsigned long offset;
186 unsigned long scan_base;
187 unsigned long last_in_cluster = 0;
188 int latency_ration = LATENCY_LIMIT;
189 int found_free_cluster = 0;
190
191 /*
192 * We try to cluster swap pages by allocating them sequentially
193 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
194 * way, however, we resort to first-free allocation, starting
195 * a new cluster. This prevents us from scattering swap pages
196 * all over the entire swap partition, so that we reduce
197 * overall disk seek times between swap pages. -- sct
198 * But we do now try to find an empty cluster. -Andrea
199 * And we let swap pages go all over an SSD partition. Hugh
200 */
201
202 si->flags += SWP_SCANNING;
203 scan_base = offset = si->cluster_next;
204
205 if (unlikely(!si->cluster_nr--)) {
206 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
207 si->cluster_nr = SWAPFILE_CLUSTER - 1;
208 goto checks;
209 }
210 if (si->flags & SWP_DISCARDABLE) {
211 /*
212 * Start range check on racing allocations, in case
213 * they overlap the cluster we eventually decide on
214 * (we scan without swap_lock to allow preemption).
215 * It's hardly conceivable that cluster_nr could be
216 * wrapped during our scan, but don't depend on it.
217 */
218 if (si->lowest_alloc)
219 goto checks;
220 si->lowest_alloc = si->max;
221 si->highest_alloc = 0;
222 }
223 spin_unlock(&swap_lock);
224
225 /*
226 * If seek is expensive, start searching for new cluster from
227 * start of partition, to minimize the span of allocated swap.
228 * But if seek is cheap, search from our current position, so
229 * that swap is allocated from all over the partition: if the
230 * Flash Translation Layer only remaps within limited zones,
231 * we don't want to wear out the first zone too quickly.
232 */
233 if (!(si->flags & SWP_SOLIDSTATE))
234 scan_base = offset = si->lowest_bit;
235 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
236
237 /* Locate the first empty (unaligned) cluster */
238 for (; last_in_cluster <= si->highest_bit; offset++) {
239 if (si->swap_map[offset])
240 last_in_cluster = offset + SWAPFILE_CLUSTER;
241 else if (offset == last_in_cluster) {
242 spin_lock(&swap_lock);
243 offset -= SWAPFILE_CLUSTER - 1;
244 si->cluster_next = offset;
245 si->cluster_nr = SWAPFILE_CLUSTER - 1;
246 found_free_cluster = 1;
247 goto checks;
248 }
249 if (unlikely(--latency_ration < 0)) {
250 cond_resched();
251 latency_ration = LATENCY_LIMIT;
252 }
253 }
254
255 offset = si->lowest_bit;
256 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
257
258 /* Locate the first empty (unaligned) cluster */
259 for (; last_in_cluster < scan_base; offset++) {
260 if (si->swap_map[offset])
261 last_in_cluster = offset + SWAPFILE_CLUSTER;
262 else if (offset == last_in_cluster) {
263 spin_lock(&swap_lock);
264 offset -= SWAPFILE_CLUSTER - 1;
265 si->cluster_next = offset;
266 si->cluster_nr = SWAPFILE_CLUSTER - 1;
267 found_free_cluster = 1;
268 goto checks;
269 }
270 if (unlikely(--latency_ration < 0)) {
271 cond_resched();
272 latency_ration = LATENCY_LIMIT;
273 }
274 }
275
276 offset = scan_base;
277 spin_lock(&swap_lock);
278 si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 si->lowest_alloc = 0;
280 }
281
282 checks:
283 if (!(si->flags & SWP_WRITEOK))
284 goto no_page;
285 if (!si->highest_bit)
286 goto no_page;
287 if (offset > si->highest_bit)
288 scan_base = offset = si->lowest_bit;
289
290 /* reuse swap entry of cache-only swap if not busy. */
291 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
292 int swap_was_freed;
293 spin_unlock(&swap_lock);
294 swap_was_freed = __try_to_reclaim_swap(si, offset);
295 spin_lock(&swap_lock);
296 /* entry was freed successfully, try to use this again */
297 if (swap_was_freed)
298 goto checks;
299 goto scan; /* check next one */
300 }
301
302 if (si->swap_map[offset])
303 goto scan;
304
305 if (offset == si->lowest_bit)
306 si->lowest_bit++;
307 if (offset == si->highest_bit)
308 si->highest_bit--;
309 si->inuse_pages++;
310 if (si->inuse_pages == si->pages) {
311 si->lowest_bit = si->max;
312 si->highest_bit = 0;
313 }
314 si->swap_map[offset] = usage;
315 si->cluster_next = offset + 1;
316 si->flags -= SWP_SCANNING;
317
318 if (si->lowest_alloc) {
319 /*
320 * Only set when SWP_DISCARDABLE, and there's a scan
321 * for a free cluster in progress or just completed.
322 */
323 if (found_free_cluster) {
324 /*
325 * To optimize wear-levelling, discard the
326 * old data of the cluster, taking care not to
327 * discard any of its pages that have already
328 * been allocated by racing tasks (offset has
329 * already stepped over any at the beginning).
330 */
331 if (offset < si->highest_alloc &&
332 si->lowest_alloc <= last_in_cluster)
333 last_in_cluster = si->lowest_alloc - 1;
334 si->flags |= SWP_DISCARDING;
335 spin_unlock(&swap_lock);
336
337 if (offset < last_in_cluster)
338 discard_swap_cluster(si, offset,
339 last_in_cluster - offset + 1);
340
341 spin_lock(&swap_lock);
342 si->lowest_alloc = 0;
343 si->flags &= ~SWP_DISCARDING;
344
345 smp_mb(); /* wake_up_bit advises this */
346 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
347
348 } else if (si->flags & SWP_DISCARDING) {
349 /*
350 * Delay using pages allocated by racing tasks
351 * until the whole discard has been issued. We
352 * could defer that delay until swap_writepage,
353 * but it's easier to keep this self-contained.
354 */
355 spin_unlock(&swap_lock);
356 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
357 wait_for_discard, TASK_UNINTERRUPTIBLE);
358 spin_lock(&swap_lock);
359 } else {
360 /*
361 * Note pages allocated by racing tasks while
362 * scan for a free cluster is in progress, so
363 * that its final discard can exclude them.
364 */
365 if (offset < si->lowest_alloc)
366 si->lowest_alloc = offset;
367 if (offset > si->highest_alloc)
368 si->highest_alloc = offset;
369 }
370 }
371 return offset;
372
373 scan:
374 spin_unlock(&swap_lock);
375 while (++offset <= si->highest_bit) {
376 if (!si->swap_map[offset]) {
377 spin_lock(&swap_lock);
378 goto checks;
379 }
380 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
381 spin_lock(&swap_lock);
382 goto checks;
383 }
384 if (unlikely(--latency_ration < 0)) {
385 cond_resched();
386 latency_ration = LATENCY_LIMIT;
387 }
388 }
389 offset = si->lowest_bit;
390 while (++offset < scan_base) {
391 if (!si->swap_map[offset]) {
392 spin_lock(&swap_lock);
393 goto checks;
394 }
395 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
396 spin_lock(&swap_lock);
397 goto checks;
398 }
399 if (unlikely(--latency_ration < 0)) {
400 cond_resched();
401 latency_ration = LATENCY_LIMIT;
402 }
403 }
404 spin_lock(&swap_lock);
405
406 no_page:
407 si->flags -= SWP_SCANNING;
408 return 0;
409 }
410
411 swp_entry_t get_swap_page(void)
412 {
413 struct swap_info_struct *si;
414 pgoff_t offset;
415 int type, next;
416 int wrapped = 0;
417
418 spin_lock(&swap_lock);
419 if (nr_swap_pages <= 0)
420 goto noswap;
421 nr_swap_pages--;
422
423 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
424 si = swap_info[type];
425 next = si->next;
426 if (next < 0 ||
427 (!wrapped && si->prio != swap_info[next]->prio)) {
428 next = swap_list.head;
429 wrapped++;
430 }
431
432 if (!si->highest_bit)
433 continue;
434 if (!(si->flags & SWP_WRITEOK))
435 continue;
436
437 swap_list.next = next;
438 /* This is called for allocating swap entry for cache */
439 offset = scan_swap_map(si, SWAP_HAS_CACHE);
440 if (offset) {
441 spin_unlock(&swap_lock);
442 return swp_entry(type, offset);
443 }
444 next = swap_list.next;
445 }
446
447 nr_swap_pages++;
448 noswap:
449 spin_unlock(&swap_lock);
450 return (swp_entry_t) {0};
451 }
452
453 /* The only caller of this function is now susupend routine */
454 swp_entry_t get_swap_page_of_type(int type)
455 {
456 struct swap_info_struct *si;
457 pgoff_t offset;
458
459 spin_lock(&swap_lock);
460 si = swap_info[type];
461 if (si && (si->flags & SWP_WRITEOK)) {
462 nr_swap_pages--;
463 /* This is called for allocating swap entry, not cache */
464 offset = scan_swap_map(si, 1);
465 if (offset) {
466 spin_unlock(&swap_lock);
467 return swp_entry(type, offset);
468 }
469 nr_swap_pages++;
470 }
471 spin_unlock(&swap_lock);
472 return (swp_entry_t) {0};
473 }
474
475 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
476 {
477 struct swap_info_struct *p;
478 unsigned long offset, type;
479
480 if (!entry.val)
481 goto out;
482 type = swp_type(entry);
483 if (type >= nr_swapfiles)
484 goto bad_nofile;
485 p = swap_info[type];
486 if (!(p->flags & SWP_USED))
487 goto bad_device;
488 offset = swp_offset(entry);
489 if (offset >= p->max)
490 goto bad_offset;
491 if (!p->swap_map[offset])
492 goto bad_free;
493 spin_lock(&swap_lock);
494 return p;
495
496 bad_free:
497 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
498 goto out;
499 bad_offset:
500 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
501 goto out;
502 bad_device:
503 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
504 goto out;
505 bad_nofile:
506 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
507 out:
508 return NULL;
509 }
510
511 static unsigned char swap_entry_free(struct swap_info_struct *p,
512 swp_entry_t entry, unsigned char usage)
513 {
514 unsigned long offset = swp_offset(entry);
515 unsigned char count;
516 unsigned char has_cache;
517
518 count = p->swap_map[offset];
519 has_cache = count & SWAP_HAS_CACHE;
520 count &= ~SWAP_HAS_CACHE;
521
522 if (usage == SWAP_HAS_CACHE) {
523 VM_BUG_ON(!has_cache);
524 has_cache = 0;
525 } else if (count == SWAP_MAP_SHMEM) {
526 /*
527 * Or we could insist on shmem.c using a special
528 * swap_shmem_free() and free_shmem_swap_and_cache()...
529 */
530 count = 0;
531 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
532 if (count == COUNT_CONTINUED) {
533 if (swap_count_continued(p, offset, count))
534 count = SWAP_MAP_MAX | COUNT_CONTINUED;
535 else
536 count = SWAP_MAP_MAX;
537 } else
538 count--;
539 }
540
541 if (!count)
542 mem_cgroup_uncharge_swap(entry);
543
544 usage = count | has_cache;
545 p->swap_map[offset] = usage;
546
547 /* free if no reference */
548 if (!usage) {
549 struct gendisk *disk = p->bdev->bd_disk;
550 if (offset < p->lowest_bit)
551 p->lowest_bit = offset;
552 if (offset > p->highest_bit)
553 p->highest_bit = offset;
554 if (swap_list.next >= 0 &&
555 p->prio > swap_info[swap_list.next]->prio)
556 swap_list.next = p->type;
557 nr_swap_pages++;
558 p->inuse_pages--;
559 if ((p->flags & SWP_BLKDEV) &&
560 disk->fops->swap_slot_free_notify)
561 disk->fops->swap_slot_free_notify(p->bdev, offset);
562 }
563
564 return usage;
565 }
566
567 /*
568 * Caller has made sure that the swapdevice corresponding to entry
569 * is still around or has not been recycled.
570 */
571 void swap_free(swp_entry_t entry)
572 {
573 struct swap_info_struct *p;
574
575 p = swap_info_get(entry);
576 if (p) {
577 swap_entry_free(p, entry, 1);
578 spin_unlock(&swap_lock);
579 }
580 }
581
582 /*
583 * Called after dropping swapcache to decrease refcnt to swap entries.
584 */
585 void swapcache_free(swp_entry_t entry, struct page *page)
586 {
587 struct swap_info_struct *p;
588 unsigned char count;
589
590 p = swap_info_get(entry);
591 if (p) {
592 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
593 if (page)
594 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
595 spin_unlock(&swap_lock);
596 }
597 }
598
599 /*
600 * How many references to page are currently swapped out?
601 * This does not give an exact answer when swap count is continued,
602 * but does include the high COUNT_CONTINUED flag to allow for that.
603 */
604 int page_swapcount(struct page *page)
605 {
606 int count = 0;
607 struct swap_info_struct *p;
608 swp_entry_t entry;
609
610 entry.val = page_private(page);
611 p = swap_info_get(entry);
612 if (p) {
613 count = swap_count(p->swap_map[swp_offset(entry)]);
614 spin_unlock(&swap_lock);
615 }
616 return count;
617 }
618
619 /*
620 * We can write to an anon page without COW if there are no other references
621 * to it. And as a side-effect, free up its swap: because the old content
622 * on disk will never be read, and seeking back there to write new content
623 * later would only waste time away from clustering.
624 */
625 int reuse_swap_page(struct page *page)
626 {
627 int count;
628
629 VM_BUG_ON(!PageLocked(page));
630 if (unlikely(PageKsm(page)))
631 return 0;
632 count = page_mapcount(page);
633 if (count <= 1 && PageSwapCache(page)) {
634 count += page_swapcount(page);
635 if (count == 1 && !PageWriteback(page)) {
636 delete_from_swap_cache(page);
637 SetPageDirty(page);
638 }
639 }
640 return count <= 1;
641 }
642
643 /*
644 * If swap is getting full, or if there are no more mappings of this page,
645 * then try_to_free_swap is called to free its swap space.
646 */
647 int try_to_free_swap(struct page *page)
648 {
649 VM_BUG_ON(!PageLocked(page));
650
651 if (!PageSwapCache(page))
652 return 0;
653 if (PageWriteback(page))
654 return 0;
655 if (page_swapcount(page))
656 return 0;
657
658 /*
659 * Once hibernation has begun to create its image of memory,
660 * there's a danger that one of the calls to try_to_free_swap()
661 * - most probably a call from __try_to_reclaim_swap() while
662 * hibernation is allocating its own swap pages for the image,
663 * but conceivably even a call from memory reclaim - will free
664 * the swap from a page which has already been recorded in the
665 * image as a clean swapcache page, and then reuse its swap for
666 * another page of the image. On waking from hibernation, the
667 * original page might be freed under memory pressure, then
668 * later read back in from swap, now with the wrong data.
669 *
670 * Hibration suspends storage while it is writing the image
671 * to disk so check that here.
672 */
673 if (pm_suspended_storage())
674 return 0;
675
676 delete_from_swap_cache(page);
677 SetPageDirty(page);
678 return 1;
679 }
680
681 /*
682 * Free the swap entry like above, but also try to
683 * free the page cache entry if it is the last user.
684 */
685 int free_swap_and_cache(swp_entry_t entry)
686 {
687 struct swap_info_struct *p;
688 struct page *page = NULL;
689
690 if (non_swap_entry(entry))
691 return 1;
692
693 p = swap_info_get(entry);
694 if (p) {
695 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
696 page = find_get_page(&swapper_space, entry.val);
697 if (page && !trylock_page(page)) {
698 page_cache_release(page);
699 page = NULL;
700 }
701 }
702 spin_unlock(&swap_lock);
703 }
704 if (page) {
705 /*
706 * Not mapped elsewhere, or swap space full? Free it!
707 * Also recheck PageSwapCache now page is locked (above).
708 */
709 if (PageSwapCache(page) && !PageWriteback(page) &&
710 (!page_mapped(page) || vm_swap_full())) {
711 delete_from_swap_cache(page);
712 SetPageDirty(page);
713 }
714 unlock_page(page);
715 page_cache_release(page);
716 }
717 return p != NULL;
718 }
719
720 #ifdef CONFIG_HIBERNATION
721 /*
722 * Find the swap type that corresponds to given device (if any).
723 *
724 * @offset - number of the PAGE_SIZE-sized block of the device, starting
725 * from 0, in which the swap header is expected to be located.
726 *
727 * This is needed for the suspend to disk (aka swsusp).
728 */
729 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
730 {
731 struct block_device *bdev = NULL;
732 int type;
733
734 if (device)
735 bdev = bdget(device);
736
737 spin_lock(&swap_lock);
738 for (type = 0; type < nr_swapfiles; type++) {
739 struct swap_info_struct *sis = swap_info[type];
740
741 if (!(sis->flags & SWP_WRITEOK))
742 continue;
743
744 if (!bdev) {
745 if (bdev_p)
746 *bdev_p = bdgrab(sis->bdev);
747
748 spin_unlock(&swap_lock);
749 return type;
750 }
751 if (bdev == sis->bdev) {
752 struct swap_extent *se = &sis->first_swap_extent;
753
754 if (se->start_block == offset) {
755 if (bdev_p)
756 *bdev_p = bdgrab(sis->bdev);
757
758 spin_unlock(&swap_lock);
759 bdput(bdev);
760 return type;
761 }
762 }
763 }
764 spin_unlock(&swap_lock);
765 if (bdev)
766 bdput(bdev);
767
768 return -ENODEV;
769 }
770
771 /*
772 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
773 * corresponding to given index in swap_info (swap type).
774 */
775 sector_t swapdev_block(int type, pgoff_t offset)
776 {
777 struct block_device *bdev;
778
779 if ((unsigned int)type >= nr_swapfiles)
780 return 0;
781 if (!(swap_info[type]->flags & SWP_WRITEOK))
782 return 0;
783 return map_swap_entry(swp_entry(type, offset), &bdev);
784 }
785
786 /*
787 * Return either the total number of swap pages of given type, or the number
788 * of free pages of that type (depending on @free)
789 *
790 * This is needed for software suspend
791 */
792 unsigned int count_swap_pages(int type, int free)
793 {
794 unsigned int n = 0;
795
796 spin_lock(&swap_lock);
797 if ((unsigned int)type < nr_swapfiles) {
798 struct swap_info_struct *sis = swap_info[type];
799
800 if (sis->flags & SWP_WRITEOK) {
801 n = sis->pages;
802 if (free)
803 n -= sis->inuse_pages;
804 }
805 }
806 spin_unlock(&swap_lock);
807 return n;
808 }
809 #endif /* CONFIG_HIBERNATION */
810
811 /*
812 * No need to decide whether this PTE shares the swap entry with others,
813 * just let do_wp_page work it out if a write is requested later - to
814 * force COW, vm_page_prot omits write permission from any private vma.
815 */
816 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
817 unsigned long addr, swp_entry_t entry, struct page *page)
818 {
819 struct mem_cgroup *memcg;
820 spinlock_t *ptl;
821 pte_t *pte;
822 int ret = 1;
823
824 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
825 GFP_KERNEL, &memcg)) {
826 ret = -ENOMEM;
827 goto out_nolock;
828 }
829
830 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
831 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
832 if (ret > 0)
833 mem_cgroup_cancel_charge_swapin(memcg);
834 ret = 0;
835 goto out;
836 }
837
838 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
839 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
840 get_page(page);
841 set_pte_at(vma->vm_mm, addr, pte,
842 pte_mkold(mk_pte(page, vma->vm_page_prot)));
843 page_add_anon_rmap(page, vma, addr);
844 mem_cgroup_commit_charge_swapin(page, memcg);
845 swap_free(entry);
846 /*
847 * Move the page to the active list so it is not
848 * immediately swapped out again after swapon.
849 */
850 activate_page(page);
851 out:
852 pte_unmap_unlock(pte, ptl);
853 out_nolock:
854 return ret;
855 }
856
857 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
858 unsigned long addr, unsigned long end,
859 swp_entry_t entry, struct page *page)
860 {
861 pte_t swp_pte = swp_entry_to_pte(entry);
862 pte_t *pte;
863 int ret = 0;
864
865 /*
866 * We don't actually need pte lock while scanning for swp_pte: since
867 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
868 * page table while we're scanning; though it could get zapped, and on
869 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
870 * of unmatched parts which look like swp_pte, so unuse_pte must
871 * recheck under pte lock. Scanning without pte lock lets it be
872 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
873 */
874 pte = pte_offset_map(pmd, addr);
875 do {
876 /*
877 * swapoff spends a _lot_ of time in this loop!
878 * Test inline before going to call unuse_pte.
879 */
880 if (unlikely(pte_same(*pte, swp_pte))) {
881 pte_unmap(pte);
882 ret = unuse_pte(vma, pmd, addr, entry, page);
883 if (ret)
884 goto out;
885 pte = pte_offset_map(pmd, addr);
886 }
887 } while (pte++, addr += PAGE_SIZE, addr != end);
888 pte_unmap(pte - 1);
889 out:
890 return ret;
891 }
892
893 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
894 unsigned long addr, unsigned long end,
895 swp_entry_t entry, struct page *page)
896 {
897 pmd_t *pmd;
898 unsigned long next;
899 int ret;
900
901 pmd = pmd_offset(pud, addr);
902 do {
903 next = pmd_addr_end(addr, end);
904 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
905 continue;
906 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
907 if (ret)
908 return ret;
909 } while (pmd++, addr = next, addr != end);
910 return 0;
911 }
912
913 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
914 unsigned long addr, unsigned long end,
915 swp_entry_t entry, struct page *page)
916 {
917 pud_t *pud;
918 unsigned long next;
919 int ret;
920
921 pud = pud_offset(pgd, addr);
922 do {
923 next = pud_addr_end(addr, end);
924 if (pud_none_or_clear_bad(pud))
925 continue;
926 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
927 if (ret)
928 return ret;
929 } while (pud++, addr = next, addr != end);
930 return 0;
931 }
932
933 static int unuse_vma(struct vm_area_struct *vma,
934 swp_entry_t entry, struct page *page)
935 {
936 pgd_t *pgd;
937 unsigned long addr, end, next;
938 int ret;
939
940 if (page_anon_vma(page)) {
941 addr = page_address_in_vma(page, vma);
942 if (addr == -EFAULT)
943 return 0;
944 else
945 end = addr + PAGE_SIZE;
946 } else {
947 addr = vma->vm_start;
948 end = vma->vm_end;
949 }
950
951 pgd = pgd_offset(vma->vm_mm, addr);
952 do {
953 next = pgd_addr_end(addr, end);
954 if (pgd_none_or_clear_bad(pgd))
955 continue;
956 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
957 if (ret)
958 return ret;
959 } while (pgd++, addr = next, addr != end);
960 return 0;
961 }
962
963 static int unuse_mm(struct mm_struct *mm,
964 swp_entry_t entry, struct page *page)
965 {
966 struct vm_area_struct *vma;
967 int ret = 0;
968
969 if (!down_read_trylock(&mm->mmap_sem)) {
970 /*
971 * Activate page so shrink_inactive_list is unlikely to unmap
972 * its ptes while lock is dropped, so swapoff can make progress.
973 */
974 activate_page(page);
975 unlock_page(page);
976 down_read(&mm->mmap_sem);
977 lock_page(page);
978 }
979 for (vma = mm->mmap; vma; vma = vma->vm_next) {
980 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
981 break;
982 }
983 up_read(&mm->mmap_sem);
984 return (ret < 0)? ret: 0;
985 }
986
987 /*
988 * Scan swap_map from current position to next entry still in use.
989 * Recycle to start on reaching the end, returning 0 when empty.
990 */
991 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
992 unsigned int prev)
993 {
994 unsigned int max = si->max;
995 unsigned int i = prev;
996 unsigned char count;
997
998 /*
999 * No need for swap_lock here: we're just looking
1000 * for whether an entry is in use, not modifying it; false
1001 * hits are okay, and sys_swapoff() has already prevented new
1002 * allocations from this area (while holding swap_lock).
1003 */
1004 for (;;) {
1005 if (++i >= max) {
1006 if (!prev) {
1007 i = 0;
1008 break;
1009 }
1010 /*
1011 * No entries in use at top of swap_map,
1012 * loop back to start and recheck there.
1013 */
1014 max = prev + 1;
1015 prev = 0;
1016 i = 1;
1017 }
1018 count = si->swap_map[i];
1019 if (count && swap_count(count) != SWAP_MAP_BAD)
1020 break;
1021 }
1022 return i;
1023 }
1024
1025 /*
1026 * We completely avoid races by reading each swap page in advance,
1027 * and then search for the process using it. All the necessary
1028 * page table adjustments can then be made atomically.
1029 */
1030 static int try_to_unuse(unsigned int type)
1031 {
1032 struct swap_info_struct *si = swap_info[type];
1033 struct mm_struct *start_mm;
1034 unsigned char *swap_map;
1035 unsigned char swcount;
1036 struct page *page;
1037 swp_entry_t entry;
1038 unsigned int i = 0;
1039 int retval = 0;
1040
1041 /*
1042 * When searching mms for an entry, a good strategy is to
1043 * start at the first mm we freed the previous entry from
1044 * (though actually we don't notice whether we or coincidence
1045 * freed the entry). Initialize this start_mm with a hold.
1046 *
1047 * A simpler strategy would be to start at the last mm we
1048 * freed the previous entry from; but that would take less
1049 * advantage of mmlist ordering, which clusters forked mms
1050 * together, child after parent. If we race with dup_mmap(), we
1051 * prefer to resolve parent before child, lest we miss entries
1052 * duplicated after we scanned child: using last mm would invert
1053 * that.
1054 */
1055 start_mm = &init_mm;
1056 atomic_inc(&init_mm.mm_users);
1057
1058 /*
1059 * Keep on scanning until all entries have gone. Usually,
1060 * one pass through swap_map is enough, but not necessarily:
1061 * there are races when an instance of an entry might be missed.
1062 */
1063 while ((i = find_next_to_unuse(si, i)) != 0) {
1064 if (signal_pending(current)) {
1065 retval = -EINTR;
1066 break;
1067 }
1068
1069 /*
1070 * Get a page for the entry, using the existing swap
1071 * cache page if there is one. Otherwise, get a clean
1072 * page and read the swap into it.
1073 */
1074 swap_map = &si->swap_map[i];
1075 entry = swp_entry(type, i);
1076 page = read_swap_cache_async(entry,
1077 GFP_HIGHUSER_MOVABLE, NULL, 0);
1078 if (!page) {
1079 /*
1080 * Either swap_duplicate() failed because entry
1081 * has been freed independently, and will not be
1082 * reused since sys_swapoff() already disabled
1083 * allocation from here, or alloc_page() failed.
1084 */
1085 if (!*swap_map)
1086 continue;
1087 retval = -ENOMEM;
1088 break;
1089 }
1090
1091 /*
1092 * Don't hold on to start_mm if it looks like exiting.
1093 */
1094 if (atomic_read(&start_mm->mm_users) == 1) {
1095 mmput(start_mm);
1096 start_mm = &init_mm;
1097 atomic_inc(&init_mm.mm_users);
1098 }
1099
1100 /*
1101 * Wait for and lock page. When do_swap_page races with
1102 * try_to_unuse, do_swap_page can handle the fault much
1103 * faster than try_to_unuse can locate the entry. This
1104 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1105 * defer to do_swap_page in such a case - in some tests,
1106 * do_swap_page and try_to_unuse repeatedly compete.
1107 */
1108 wait_on_page_locked(page);
1109 wait_on_page_writeback(page);
1110 lock_page(page);
1111 wait_on_page_writeback(page);
1112
1113 /*
1114 * Remove all references to entry.
1115 */
1116 swcount = *swap_map;
1117 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1118 retval = shmem_unuse(entry, page);
1119 /* page has already been unlocked and released */
1120 if (retval < 0)
1121 break;
1122 continue;
1123 }
1124 if (swap_count(swcount) && start_mm != &init_mm)
1125 retval = unuse_mm(start_mm, entry, page);
1126
1127 if (swap_count(*swap_map)) {
1128 int set_start_mm = (*swap_map >= swcount);
1129 struct list_head *p = &start_mm->mmlist;
1130 struct mm_struct *new_start_mm = start_mm;
1131 struct mm_struct *prev_mm = start_mm;
1132 struct mm_struct *mm;
1133
1134 atomic_inc(&new_start_mm->mm_users);
1135 atomic_inc(&prev_mm->mm_users);
1136 spin_lock(&mmlist_lock);
1137 while (swap_count(*swap_map) && !retval &&
1138 (p = p->next) != &start_mm->mmlist) {
1139 mm = list_entry(p, struct mm_struct, mmlist);
1140 if (!atomic_inc_not_zero(&mm->mm_users))
1141 continue;
1142 spin_unlock(&mmlist_lock);
1143 mmput(prev_mm);
1144 prev_mm = mm;
1145
1146 cond_resched();
1147
1148 swcount = *swap_map;
1149 if (!swap_count(swcount)) /* any usage ? */
1150 ;
1151 else if (mm == &init_mm)
1152 set_start_mm = 1;
1153 else
1154 retval = unuse_mm(mm, entry, page);
1155
1156 if (set_start_mm && *swap_map < swcount) {
1157 mmput(new_start_mm);
1158 atomic_inc(&mm->mm_users);
1159 new_start_mm = mm;
1160 set_start_mm = 0;
1161 }
1162 spin_lock(&mmlist_lock);
1163 }
1164 spin_unlock(&mmlist_lock);
1165 mmput(prev_mm);
1166 mmput(start_mm);
1167 start_mm = new_start_mm;
1168 }
1169 if (retval) {
1170 unlock_page(page);
1171 page_cache_release(page);
1172 break;
1173 }
1174
1175 /*
1176 * If a reference remains (rare), we would like to leave
1177 * the page in the swap cache; but try_to_unmap could
1178 * then re-duplicate the entry once we drop page lock,
1179 * so we might loop indefinitely; also, that page could
1180 * not be swapped out to other storage meanwhile. So:
1181 * delete from cache even if there's another reference,
1182 * after ensuring that the data has been saved to disk -
1183 * since if the reference remains (rarer), it will be
1184 * read from disk into another page. Splitting into two
1185 * pages would be incorrect if swap supported "shared
1186 * private" pages, but they are handled by tmpfs files.
1187 *
1188 * Given how unuse_vma() targets one particular offset
1189 * in an anon_vma, once the anon_vma has been determined,
1190 * this splitting happens to be just what is needed to
1191 * handle where KSM pages have been swapped out: re-reading
1192 * is unnecessarily slow, but we can fix that later on.
1193 */
1194 if (swap_count(*swap_map) &&
1195 PageDirty(page) && PageSwapCache(page)) {
1196 struct writeback_control wbc = {
1197 .sync_mode = WB_SYNC_NONE,
1198 };
1199
1200 swap_writepage(page, &wbc);
1201 lock_page(page);
1202 wait_on_page_writeback(page);
1203 }
1204
1205 /*
1206 * It is conceivable that a racing task removed this page from
1207 * swap cache just before we acquired the page lock at the top,
1208 * or while we dropped it in unuse_mm(). The page might even
1209 * be back in swap cache on another swap area: that we must not
1210 * delete, since it may not have been written out to swap yet.
1211 */
1212 if (PageSwapCache(page) &&
1213 likely(page_private(page) == entry.val))
1214 delete_from_swap_cache(page);
1215
1216 /*
1217 * So we could skip searching mms once swap count went
1218 * to 1, we did not mark any present ptes as dirty: must
1219 * mark page dirty so shrink_page_list will preserve it.
1220 */
1221 SetPageDirty(page);
1222 unlock_page(page);
1223 page_cache_release(page);
1224
1225 /*
1226 * Make sure that we aren't completely killing
1227 * interactive performance.
1228 */
1229 cond_resched();
1230 }
1231
1232 mmput(start_mm);
1233 return retval;
1234 }
1235
1236 /*
1237 * After a successful try_to_unuse, if no swap is now in use, we know
1238 * we can empty the mmlist. swap_lock must be held on entry and exit.
1239 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1240 * added to the mmlist just after page_duplicate - before would be racy.
1241 */
1242 static void drain_mmlist(void)
1243 {
1244 struct list_head *p, *next;
1245 unsigned int type;
1246
1247 for (type = 0; type < nr_swapfiles; type++)
1248 if (swap_info[type]->inuse_pages)
1249 return;
1250 spin_lock(&mmlist_lock);
1251 list_for_each_safe(p, next, &init_mm.mmlist)
1252 list_del_init(p);
1253 spin_unlock(&mmlist_lock);
1254 }
1255
1256 /*
1257 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1258 * corresponds to page offset for the specified swap entry.
1259 * Note that the type of this function is sector_t, but it returns page offset
1260 * into the bdev, not sector offset.
1261 */
1262 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1263 {
1264 struct swap_info_struct *sis;
1265 struct swap_extent *start_se;
1266 struct swap_extent *se;
1267 pgoff_t offset;
1268
1269 sis = swap_info[swp_type(entry)];
1270 *bdev = sis->bdev;
1271
1272 offset = swp_offset(entry);
1273 start_se = sis->curr_swap_extent;
1274 se = start_se;
1275
1276 for ( ; ; ) {
1277 struct list_head *lh;
1278
1279 if (se->start_page <= offset &&
1280 offset < (se->start_page + se->nr_pages)) {
1281 return se->start_block + (offset - se->start_page);
1282 }
1283 lh = se->list.next;
1284 se = list_entry(lh, struct swap_extent, list);
1285 sis->curr_swap_extent = se;
1286 BUG_ON(se == start_se); /* It *must* be present */
1287 }
1288 }
1289
1290 /*
1291 * Returns the page offset into bdev for the specified page's swap entry.
1292 */
1293 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1294 {
1295 swp_entry_t entry;
1296 entry.val = page_private(page);
1297 return map_swap_entry(entry, bdev);
1298 }
1299
1300 /*
1301 * Free all of a swapdev's extent information
1302 */
1303 static void destroy_swap_extents(struct swap_info_struct *sis)
1304 {
1305 while (!list_empty(&sis->first_swap_extent.list)) {
1306 struct swap_extent *se;
1307
1308 se = list_entry(sis->first_swap_extent.list.next,
1309 struct swap_extent, list);
1310 list_del(&se->list);
1311 kfree(se);
1312 }
1313 }
1314
1315 /*
1316 * Add a block range (and the corresponding page range) into this swapdev's
1317 * extent list. The extent list is kept sorted in page order.
1318 *
1319 * This function rather assumes that it is called in ascending page order.
1320 */
1321 static int
1322 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1323 unsigned long nr_pages, sector_t start_block)
1324 {
1325 struct swap_extent *se;
1326 struct swap_extent *new_se;
1327 struct list_head *lh;
1328
1329 if (start_page == 0) {
1330 se = &sis->first_swap_extent;
1331 sis->curr_swap_extent = se;
1332 se->start_page = 0;
1333 se->nr_pages = nr_pages;
1334 se->start_block = start_block;
1335 return 1;
1336 } else {
1337 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1338 se = list_entry(lh, struct swap_extent, list);
1339 BUG_ON(se->start_page + se->nr_pages != start_page);
1340 if (se->start_block + se->nr_pages == start_block) {
1341 /* Merge it */
1342 se->nr_pages += nr_pages;
1343 return 0;
1344 }
1345 }
1346
1347 /*
1348 * No merge. Insert a new extent, preserving ordering.
1349 */
1350 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1351 if (new_se == NULL)
1352 return -ENOMEM;
1353 new_se->start_page = start_page;
1354 new_se->nr_pages = nr_pages;
1355 new_se->start_block = start_block;
1356
1357 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1358 return 1;
1359 }
1360
1361 /*
1362 * A `swap extent' is a simple thing which maps a contiguous range of pages
1363 * onto a contiguous range of disk blocks. An ordered list of swap extents
1364 * is built at swapon time and is then used at swap_writepage/swap_readpage
1365 * time for locating where on disk a page belongs.
1366 *
1367 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1368 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1369 * swap files identically.
1370 *
1371 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1372 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1373 * swapfiles are handled *identically* after swapon time.
1374 *
1375 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1376 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1377 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1378 * requirements, they are simply tossed out - we will never use those blocks
1379 * for swapping.
1380 *
1381 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1382 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1383 * which will scribble on the fs.
1384 *
1385 * The amount of disk space which a single swap extent represents varies.
1386 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1387 * extents in the list. To avoid much list walking, we cache the previous
1388 * search location in `curr_swap_extent', and start new searches from there.
1389 * This is extremely effective. The average number of iterations in
1390 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1391 */
1392 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1393 {
1394 struct inode *inode;
1395 unsigned blocks_per_page;
1396 unsigned long page_no;
1397 unsigned blkbits;
1398 sector_t probe_block;
1399 sector_t last_block;
1400 sector_t lowest_block = -1;
1401 sector_t highest_block = 0;
1402 int nr_extents = 0;
1403 int ret;
1404
1405 inode = sis->swap_file->f_mapping->host;
1406 if (S_ISBLK(inode->i_mode)) {
1407 ret = add_swap_extent(sis, 0, sis->max, 0);
1408 *span = sis->pages;
1409 goto out;
1410 }
1411
1412 blkbits = inode->i_blkbits;
1413 blocks_per_page = PAGE_SIZE >> blkbits;
1414
1415 /*
1416 * Map all the blocks into the extent list. This code doesn't try
1417 * to be very smart.
1418 */
1419 probe_block = 0;
1420 page_no = 0;
1421 last_block = i_size_read(inode) >> blkbits;
1422 while ((probe_block + blocks_per_page) <= last_block &&
1423 page_no < sis->max) {
1424 unsigned block_in_page;
1425 sector_t first_block;
1426
1427 first_block = bmap(inode, probe_block);
1428 if (first_block == 0)
1429 goto bad_bmap;
1430
1431 /*
1432 * It must be PAGE_SIZE aligned on-disk
1433 */
1434 if (first_block & (blocks_per_page - 1)) {
1435 probe_block++;
1436 goto reprobe;
1437 }
1438
1439 for (block_in_page = 1; block_in_page < blocks_per_page;
1440 block_in_page++) {
1441 sector_t block;
1442
1443 block = bmap(inode, probe_block + block_in_page);
1444 if (block == 0)
1445 goto bad_bmap;
1446 if (block != first_block + block_in_page) {
1447 /* Discontiguity */
1448 probe_block++;
1449 goto reprobe;
1450 }
1451 }
1452
1453 first_block >>= (PAGE_SHIFT - blkbits);
1454 if (page_no) { /* exclude the header page */
1455 if (first_block < lowest_block)
1456 lowest_block = first_block;
1457 if (first_block > highest_block)
1458 highest_block = first_block;
1459 }
1460
1461 /*
1462 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1463 */
1464 ret = add_swap_extent(sis, page_no, 1, first_block);
1465 if (ret < 0)
1466 goto out;
1467 nr_extents += ret;
1468 page_no++;
1469 probe_block += blocks_per_page;
1470 reprobe:
1471 continue;
1472 }
1473 ret = nr_extents;
1474 *span = 1 + highest_block - lowest_block;
1475 if (page_no == 0)
1476 page_no = 1; /* force Empty message */
1477 sis->max = page_no;
1478 sis->pages = page_no - 1;
1479 sis->highest_bit = page_no - 1;
1480 out:
1481 return ret;
1482 bad_bmap:
1483 printk(KERN_ERR "swapon: swapfile has holes\n");
1484 ret = -EINVAL;
1485 goto out;
1486 }
1487
1488 static void enable_swap_info(struct swap_info_struct *p, int prio,
1489 unsigned char *swap_map)
1490 {
1491 int i, prev;
1492
1493 spin_lock(&swap_lock);
1494 if (prio >= 0)
1495 p->prio = prio;
1496 else
1497 p->prio = --least_priority;
1498 p->swap_map = swap_map;
1499 p->flags |= SWP_WRITEOK;
1500 nr_swap_pages += p->pages;
1501 total_swap_pages += p->pages;
1502
1503 /* insert swap space into swap_list: */
1504 prev = -1;
1505 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1506 if (p->prio >= swap_info[i]->prio)
1507 break;
1508 prev = i;
1509 }
1510 p->next = i;
1511 if (prev < 0)
1512 swap_list.head = swap_list.next = p->type;
1513 else
1514 swap_info[prev]->next = p->type;
1515 spin_unlock(&swap_lock);
1516 }
1517
1518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1519 {
1520 struct swap_info_struct *p = NULL;
1521 unsigned char *swap_map;
1522 struct file *swap_file, *victim;
1523 struct address_space *mapping;
1524 struct inode *inode;
1525 char *pathname;
1526 int oom_score_adj;
1527 int i, type, prev;
1528 int err;
1529
1530 if (!capable(CAP_SYS_ADMIN))
1531 return -EPERM;
1532
1533 BUG_ON(!current->mm);
1534
1535 pathname = getname(specialfile);
1536 err = PTR_ERR(pathname);
1537 if (IS_ERR(pathname))
1538 goto out;
1539
1540 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1541 putname(pathname);
1542 err = PTR_ERR(victim);
1543 if (IS_ERR(victim))
1544 goto out;
1545
1546 mapping = victim->f_mapping;
1547 prev = -1;
1548 spin_lock(&swap_lock);
1549 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1550 p = swap_info[type];
1551 if (p->flags & SWP_WRITEOK) {
1552 if (p->swap_file->f_mapping == mapping)
1553 break;
1554 }
1555 prev = type;
1556 }
1557 if (type < 0) {
1558 err = -EINVAL;
1559 spin_unlock(&swap_lock);
1560 goto out_dput;
1561 }
1562 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1563 vm_unacct_memory(p->pages);
1564 else {
1565 err = -ENOMEM;
1566 spin_unlock(&swap_lock);
1567 goto out_dput;
1568 }
1569 if (prev < 0)
1570 swap_list.head = p->next;
1571 else
1572 swap_info[prev]->next = p->next;
1573 if (type == swap_list.next) {
1574 /* just pick something that's safe... */
1575 swap_list.next = swap_list.head;
1576 }
1577 if (p->prio < 0) {
1578 for (i = p->next; i >= 0; i = swap_info[i]->next)
1579 swap_info[i]->prio = p->prio--;
1580 least_priority++;
1581 }
1582 nr_swap_pages -= p->pages;
1583 total_swap_pages -= p->pages;
1584 p->flags &= ~SWP_WRITEOK;
1585 spin_unlock(&swap_lock);
1586
1587 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1588 err = try_to_unuse(type);
1589 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1590
1591 if (err) {
1592 /*
1593 * reading p->prio and p->swap_map outside the lock is
1594 * safe here because only sys_swapon and sys_swapoff
1595 * change them, and there can be no other sys_swapon or
1596 * sys_swapoff for this swap_info_struct at this point.
1597 */
1598 /* re-insert swap space back into swap_list */
1599 enable_swap_info(p, p->prio, p->swap_map);
1600 goto out_dput;
1601 }
1602
1603 destroy_swap_extents(p);
1604 if (p->flags & SWP_CONTINUED)
1605 free_swap_count_continuations(p);
1606
1607 mutex_lock(&swapon_mutex);
1608 spin_lock(&swap_lock);
1609 drain_mmlist();
1610
1611 /* wait for anyone still in scan_swap_map */
1612 p->highest_bit = 0; /* cuts scans short */
1613 while (p->flags >= SWP_SCANNING) {
1614 spin_unlock(&swap_lock);
1615 schedule_timeout_uninterruptible(1);
1616 spin_lock(&swap_lock);
1617 }
1618
1619 swap_file = p->swap_file;
1620 p->swap_file = NULL;
1621 p->max = 0;
1622 swap_map = p->swap_map;
1623 p->swap_map = NULL;
1624 p->flags = 0;
1625 spin_unlock(&swap_lock);
1626 mutex_unlock(&swapon_mutex);
1627 vfree(swap_map);
1628 /* Destroy swap account informatin */
1629 swap_cgroup_swapoff(type);
1630
1631 inode = mapping->host;
1632 if (S_ISBLK(inode->i_mode)) {
1633 struct block_device *bdev = I_BDEV(inode);
1634 set_blocksize(bdev, p->old_block_size);
1635 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1636 } else {
1637 mutex_lock(&inode->i_mutex);
1638 inode->i_flags &= ~S_SWAPFILE;
1639 mutex_unlock(&inode->i_mutex);
1640 }
1641 filp_close(swap_file, NULL);
1642 err = 0;
1643 atomic_inc(&proc_poll_event);
1644 wake_up_interruptible(&proc_poll_wait);
1645
1646 out_dput:
1647 filp_close(victim, NULL);
1648 out:
1649 return err;
1650 }
1651
1652 #ifdef CONFIG_PROC_FS
1653 static unsigned swaps_poll(struct file *file, poll_table *wait)
1654 {
1655 struct seq_file *seq = file->private_data;
1656
1657 poll_wait(file, &proc_poll_wait, wait);
1658
1659 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1660 seq->poll_event = atomic_read(&proc_poll_event);
1661 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1662 }
1663
1664 return POLLIN | POLLRDNORM;
1665 }
1666
1667 /* iterator */
1668 static void *swap_start(struct seq_file *swap, loff_t *pos)
1669 {
1670 struct swap_info_struct *si;
1671 int type;
1672 loff_t l = *pos;
1673
1674 mutex_lock(&swapon_mutex);
1675
1676 if (!l)
1677 return SEQ_START_TOKEN;
1678
1679 for (type = 0; type < nr_swapfiles; type++) {
1680 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1681 si = swap_info[type];
1682 if (!(si->flags & SWP_USED) || !si->swap_map)
1683 continue;
1684 if (!--l)
1685 return si;
1686 }
1687
1688 return NULL;
1689 }
1690
1691 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1692 {
1693 struct swap_info_struct *si = v;
1694 int type;
1695
1696 if (v == SEQ_START_TOKEN)
1697 type = 0;
1698 else
1699 type = si->type + 1;
1700
1701 for (; type < nr_swapfiles; type++) {
1702 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1703 si = swap_info[type];
1704 if (!(si->flags & SWP_USED) || !si->swap_map)
1705 continue;
1706 ++*pos;
1707 return si;
1708 }
1709
1710 return NULL;
1711 }
1712
1713 static void swap_stop(struct seq_file *swap, void *v)
1714 {
1715 mutex_unlock(&swapon_mutex);
1716 }
1717
1718 static int swap_show(struct seq_file *swap, void *v)
1719 {
1720 struct swap_info_struct *si = v;
1721 struct file *file;
1722 int len;
1723
1724 if (si == SEQ_START_TOKEN) {
1725 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1726 return 0;
1727 }
1728
1729 file = si->swap_file;
1730 len = seq_path(swap, &file->f_path, " \t\n\\");
1731 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1732 len < 40 ? 40 - len : 1, " ",
1733 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1734 "partition" : "file\t",
1735 si->pages << (PAGE_SHIFT - 10),
1736 si->inuse_pages << (PAGE_SHIFT - 10),
1737 si->prio);
1738 return 0;
1739 }
1740
1741 static const struct seq_operations swaps_op = {
1742 .start = swap_start,
1743 .next = swap_next,
1744 .stop = swap_stop,
1745 .show = swap_show
1746 };
1747
1748 static int swaps_open(struct inode *inode, struct file *file)
1749 {
1750 struct seq_file *seq;
1751 int ret;
1752
1753 ret = seq_open(file, &swaps_op);
1754 if (ret)
1755 return ret;
1756
1757 seq = file->private_data;
1758 seq->poll_event = atomic_read(&proc_poll_event);
1759 return 0;
1760 }
1761
1762 static const struct file_operations proc_swaps_operations = {
1763 .open = swaps_open,
1764 .read = seq_read,
1765 .llseek = seq_lseek,
1766 .release = seq_release,
1767 .poll = swaps_poll,
1768 };
1769
1770 static int __init procswaps_init(void)
1771 {
1772 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1773 return 0;
1774 }
1775 __initcall(procswaps_init);
1776 #endif /* CONFIG_PROC_FS */
1777
1778 #ifdef MAX_SWAPFILES_CHECK
1779 static int __init max_swapfiles_check(void)
1780 {
1781 MAX_SWAPFILES_CHECK();
1782 return 0;
1783 }
1784 late_initcall(max_swapfiles_check);
1785 #endif
1786
1787 static struct swap_info_struct *alloc_swap_info(void)
1788 {
1789 struct swap_info_struct *p;
1790 unsigned int type;
1791
1792 p = kzalloc(sizeof(*p), GFP_KERNEL);
1793 if (!p)
1794 return ERR_PTR(-ENOMEM);
1795
1796 spin_lock(&swap_lock);
1797 for (type = 0; type < nr_swapfiles; type++) {
1798 if (!(swap_info[type]->flags & SWP_USED))
1799 break;
1800 }
1801 if (type >= MAX_SWAPFILES) {
1802 spin_unlock(&swap_lock);
1803 kfree(p);
1804 return ERR_PTR(-EPERM);
1805 }
1806 if (type >= nr_swapfiles) {
1807 p->type = type;
1808 swap_info[type] = p;
1809 /*
1810 * Write swap_info[type] before nr_swapfiles, in case a
1811 * racing procfs swap_start() or swap_next() is reading them.
1812 * (We never shrink nr_swapfiles, we never free this entry.)
1813 */
1814 smp_wmb();
1815 nr_swapfiles++;
1816 } else {
1817 kfree(p);
1818 p = swap_info[type];
1819 /*
1820 * Do not memset this entry: a racing procfs swap_next()
1821 * would be relying on p->type to remain valid.
1822 */
1823 }
1824 INIT_LIST_HEAD(&p->first_swap_extent.list);
1825 p->flags = SWP_USED;
1826 p->next = -1;
1827 spin_unlock(&swap_lock);
1828
1829 return p;
1830 }
1831
1832 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1833 {
1834 int error;
1835
1836 if (S_ISBLK(inode->i_mode)) {
1837 p->bdev = bdgrab(I_BDEV(inode));
1838 error = blkdev_get(p->bdev,
1839 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1840 sys_swapon);
1841 if (error < 0) {
1842 p->bdev = NULL;
1843 return -EINVAL;
1844 }
1845 p->old_block_size = block_size(p->bdev);
1846 error = set_blocksize(p->bdev, PAGE_SIZE);
1847 if (error < 0)
1848 return error;
1849 p->flags |= SWP_BLKDEV;
1850 } else if (S_ISREG(inode->i_mode)) {
1851 p->bdev = inode->i_sb->s_bdev;
1852 mutex_lock(&inode->i_mutex);
1853 if (IS_SWAPFILE(inode))
1854 return -EBUSY;
1855 } else
1856 return -EINVAL;
1857
1858 return 0;
1859 }
1860
1861 static unsigned long read_swap_header(struct swap_info_struct *p,
1862 union swap_header *swap_header,
1863 struct inode *inode)
1864 {
1865 int i;
1866 unsigned long maxpages;
1867 unsigned long swapfilepages;
1868
1869 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1870 printk(KERN_ERR "Unable to find swap-space signature\n");
1871 return 0;
1872 }
1873
1874 /* swap partition endianess hack... */
1875 if (swab32(swap_header->info.version) == 1) {
1876 swab32s(&swap_header->info.version);
1877 swab32s(&swap_header->info.last_page);
1878 swab32s(&swap_header->info.nr_badpages);
1879 for (i = 0; i < swap_header->info.nr_badpages; i++)
1880 swab32s(&swap_header->info.badpages[i]);
1881 }
1882 /* Check the swap header's sub-version */
1883 if (swap_header->info.version != 1) {
1884 printk(KERN_WARNING
1885 "Unable to handle swap header version %d\n",
1886 swap_header->info.version);
1887 return 0;
1888 }
1889
1890 p->lowest_bit = 1;
1891 p->cluster_next = 1;
1892 p->cluster_nr = 0;
1893
1894 /*
1895 * Find out how many pages are allowed for a single swap
1896 * device. There are three limiting factors: 1) the number
1897 * of bits for the swap offset in the swp_entry_t type, and
1898 * 2) the number of bits in the swap pte as defined by the
1899 * the different architectures, and 3) the number of free bits
1900 * in an exceptional radix_tree entry. In order to find the
1901 * largest possible bit mask, a swap entry with swap type 0
1902 * and swap offset ~0UL is created, encoded to a swap pte,
1903 * decoded to a swp_entry_t again, and finally the swap
1904 * offset is extracted. This will mask all the bits from
1905 * the initial ~0UL mask that can't be encoded in either
1906 * the swp_entry_t or the architecture definition of a
1907 * swap pte. Then the same is done for a radix_tree entry.
1908 */
1909 maxpages = swp_offset(pte_to_swp_entry(
1910 swp_entry_to_pte(swp_entry(0, ~0UL))));
1911 maxpages = swp_offset(radix_to_swp_entry(
1912 swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1913
1914 if (maxpages > swap_header->info.last_page) {
1915 maxpages = swap_header->info.last_page + 1;
1916 /* p->max is an unsigned int: don't overflow it */
1917 if ((unsigned int)maxpages == 0)
1918 maxpages = UINT_MAX;
1919 }
1920 p->highest_bit = maxpages - 1;
1921
1922 if (!maxpages)
1923 return 0;
1924 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1925 if (swapfilepages && maxpages > swapfilepages) {
1926 printk(KERN_WARNING
1927 "Swap area shorter than signature indicates\n");
1928 return 0;
1929 }
1930 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1931 return 0;
1932 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1933 return 0;
1934
1935 return maxpages;
1936 }
1937
1938 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1939 union swap_header *swap_header,
1940 unsigned char *swap_map,
1941 unsigned long maxpages,
1942 sector_t *span)
1943 {
1944 int i;
1945 unsigned int nr_good_pages;
1946 int nr_extents;
1947
1948 nr_good_pages = maxpages - 1; /* omit header page */
1949
1950 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1951 unsigned int page_nr = swap_header->info.badpages[i];
1952 if (page_nr == 0 || page_nr > swap_header->info.last_page)
1953 return -EINVAL;
1954 if (page_nr < maxpages) {
1955 swap_map[page_nr] = SWAP_MAP_BAD;
1956 nr_good_pages--;
1957 }
1958 }
1959
1960 if (nr_good_pages) {
1961 swap_map[0] = SWAP_MAP_BAD;
1962 p->max = maxpages;
1963 p->pages = nr_good_pages;
1964 nr_extents = setup_swap_extents(p, span);
1965 if (nr_extents < 0)
1966 return nr_extents;
1967 nr_good_pages = p->pages;
1968 }
1969 if (!nr_good_pages) {
1970 printk(KERN_WARNING "Empty swap-file\n");
1971 return -EINVAL;
1972 }
1973
1974 return nr_extents;
1975 }
1976
1977 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1978 {
1979 struct swap_info_struct *p;
1980 char *name;
1981 struct file *swap_file = NULL;
1982 struct address_space *mapping;
1983 int i;
1984 int prio;
1985 int error;
1986 union swap_header *swap_header;
1987 int nr_extents;
1988 sector_t span;
1989 unsigned long maxpages;
1990 unsigned char *swap_map = NULL;
1991 struct page *page = NULL;
1992 struct inode *inode = NULL;
1993
1994 if (swap_flags & ~SWAP_FLAGS_VALID)
1995 return -EINVAL;
1996
1997 if (!capable(CAP_SYS_ADMIN))
1998 return -EPERM;
1999
2000 p = alloc_swap_info();
2001 if (IS_ERR(p))
2002 return PTR_ERR(p);
2003
2004 name = getname(specialfile);
2005 if (IS_ERR(name)) {
2006 error = PTR_ERR(name);
2007 name = NULL;
2008 goto bad_swap;
2009 }
2010 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2011 if (IS_ERR(swap_file)) {
2012 error = PTR_ERR(swap_file);
2013 swap_file = NULL;
2014 goto bad_swap;
2015 }
2016
2017 p->swap_file = swap_file;
2018 mapping = swap_file->f_mapping;
2019
2020 for (i = 0; i < nr_swapfiles; i++) {
2021 struct swap_info_struct *q = swap_info[i];
2022
2023 if (q == p || !q->swap_file)
2024 continue;
2025 if (mapping == q->swap_file->f_mapping) {
2026 error = -EBUSY;
2027 goto bad_swap;
2028 }
2029 }
2030
2031 inode = mapping->host;
2032 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2033 error = claim_swapfile(p, inode);
2034 if (unlikely(error))
2035 goto bad_swap;
2036
2037 /*
2038 * Read the swap header.
2039 */
2040 if (!mapping->a_ops->readpage) {
2041 error = -EINVAL;
2042 goto bad_swap;
2043 }
2044 page = read_mapping_page(mapping, 0, swap_file);
2045 if (IS_ERR(page)) {
2046 error = PTR_ERR(page);
2047 goto bad_swap;
2048 }
2049 swap_header = kmap(page);
2050
2051 maxpages = read_swap_header(p, swap_header, inode);
2052 if (unlikely(!maxpages)) {
2053 error = -EINVAL;
2054 goto bad_swap;
2055 }
2056
2057 /* OK, set up the swap map and apply the bad block list */
2058 swap_map = vzalloc(maxpages);
2059 if (!swap_map) {
2060 error = -ENOMEM;
2061 goto bad_swap;
2062 }
2063
2064 error = swap_cgroup_swapon(p->type, maxpages);
2065 if (error)
2066 goto bad_swap;
2067
2068 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2069 maxpages, &span);
2070 if (unlikely(nr_extents < 0)) {
2071 error = nr_extents;
2072 goto bad_swap;
2073 }
2074
2075 if (p->bdev) {
2076 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2077 p->flags |= SWP_SOLIDSTATE;
2078 p->cluster_next = 1 + (random32() % p->highest_bit);
2079 }
2080 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2081 p->flags |= SWP_DISCARDABLE;
2082 }
2083
2084 mutex_lock(&swapon_mutex);
2085 prio = -1;
2086 if (swap_flags & SWAP_FLAG_PREFER)
2087 prio =
2088 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2089 enable_swap_info(p, prio, swap_map);
2090
2091 printk(KERN_INFO "Adding %uk swap on %s. "
2092 "Priority:%d extents:%d across:%lluk %s%s\n",
2093 p->pages<<(PAGE_SHIFT-10), name, p->prio,
2094 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2095 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2096 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2097
2098 mutex_unlock(&swapon_mutex);
2099 atomic_inc(&proc_poll_event);
2100 wake_up_interruptible(&proc_poll_wait);
2101
2102 if (S_ISREG(inode->i_mode))
2103 inode->i_flags |= S_SWAPFILE;
2104 error = 0;
2105 goto out;
2106 bad_swap:
2107 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2108 set_blocksize(p->bdev, p->old_block_size);
2109 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2110 }
2111 destroy_swap_extents(p);
2112 swap_cgroup_swapoff(p->type);
2113 spin_lock(&swap_lock);
2114 p->swap_file = NULL;
2115 p->flags = 0;
2116 spin_unlock(&swap_lock);
2117 vfree(swap_map);
2118 if (swap_file) {
2119 if (inode && S_ISREG(inode->i_mode)) {
2120 mutex_unlock(&inode->i_mutex);
2121 inode = NULL;
2122 }
2123 filp_close(swap_file, NULL);
2124 }
2125 out:
2126 if (page && !IS_ERR(page)) {
2127 kunmap(page);
2128 page_cache_release(page);
2129 }
2130 if (name)
2131 putname(name);
2132 if (inode && S_ISREG(inode->i_mode))
2133 mutex_unlock(&inode->i_mutex);
2134 return error;
2135 }
2136
2137 void si_swapinfo(struct sysinfo *val)
2138 {
2139 unsigned int type;
2140 unsigned long nr_to_be_unused = 0;
2141
2142 spin_lock(&swap_lock);
2143 for (type = 0; type < nr_swapfiles; type++) {
2144 struct swap_info_struct *si = swap_info[type];
2145
2146 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2147 nr_to_be_unused += si->inuse_pages;
2148 }
2149 val->freeswap = nr_swap_pages + nr_to_be_unused;
2150 val->totalswap = total_swap_pages + nr_to_be_unused;
2151 spin_unlock(&swap_lock);
2152 }
2153
2154 /*
2155 * Verify that a swap entry is valid and increment its swap map count.
2156 *
2157 * Returns error code in following case.
2158 * - success -> 0
2159 * - swp_entry is invalid -> EINVAL
2160 * - swp_entry is migration entry -> EINVAL
2161 * - swap-cache reference is requested but there is already one. -> EEXIST
2162 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2163 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2164 */
2165 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2166 {
2167 struct swap_info_struct *p;
2168 unsigned long offset, type;
2169 unsigned char count;
2170 unsigned char has_cache;
2171 int err = -EINVAL;
2172
2173 if (non_swap_entry(entry))
2174 goto out;
2175
2176 type = swp_type(entry);
2177 if (type >= nr_swapfiles)
2178 goto bad_file;
2179 p = swap_info[type];
2180 offset = swp_offset(entry);
2181
2182 spin_lock(&swap_lock);
2183 if (unlikely(offset >= p->max))
2184 goto unlock_out;
2185
2186 count = p->swap_map[offset];
2187 has_cache = count & SWAP_HAS_CACHE;
2188 count &= ~SWAP_HAS_CACHE;
2189 err = 0;
2190
2191 if (usage == SWAP_HAS_CACHE) {
2192
2193 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2194 if (!has_cache && count)
2195 has_cache = SWAP_HAS_CACHE;
2196 else if (has_cache) /* someone else added cache */
2197 err = -EEXIST;
2198 else /* no users remaining */
2199 err = -ENOENT;
2200
2201 } else if (count || has_cache) {
2202
2203 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2204 count += usage;
2205 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2206 err = -EINVAL;
2207 else if (swap_count_continued(p, offset, count))
2208 count = COUNT_CONTINUED;
2209 else
2210 err = -ENOMEM;
2211 } else
2212 err = -ENOENT; /* unused swap entry */
2213
2214 p->swap_map[offset] = count | has_cache;
2215
2216 unlock_out:
2217 spin_unlock(&swap_lock);
2218 out:
2219 return err;
2220
2221 bad_file:
2222 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2223 goto out;
2224 }
2225
2226 /*
2227 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2228 * (in which case its reference count is never incremented).
2229 */
2230 void swap_shmem_alloc(swp_entry_t entry)
2231 {
2232 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2233 }
2234
2235 /*
2236 * Increase reference count of swap entry by 1.
2237 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2238 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2239 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2240 * might occur if a page table entry has got corrupted.
2241 */
2242 int swap_duplicate(swp_entry_t entry)
2243 {
2244 int err = 0;
2245
2246 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2247 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2248 return err;
2249 }
2250
2251 /*
2252 * @entry: swap entry for which we allocate swap cache.
2253 *
2254 * Called when allocating swap cache for existing swap entry,
2255 * This can return error codes. Returns 0 at success.
2256 * -EBUSY means there is a swap cache.
2257 * Note: return code is different from swap_duplicate().
2258 */
2259 int swapcache_prepare(swp_entry_t entry)
2260 {
2261 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2262 }
2263
2264 /*
2265 * add_swap_count_continuation - called when a swap count is duplicated
2266 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2267 * page of the original vmalloc'ed swap_map, to hold the continuation count
2268 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2269 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2270 *
2271 * These continuation pages are seldom referenced: the common paths all work
2272 * on the original swap_map, only referring to a continuation page when the
2273 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2274 *
2275 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2276 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2277 * can be called after dropping locks.
2278 */
2279 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2280 {
2281 struct swap_info_struct *si;
2282 struct page *head;
2283 struct page *page;
2284 struct page *list_page;
2285 pgoff_t offset;
2286 unsigned char count;
2287
2288 /*
2289 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2290 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2291 */
2292 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2293
2294 si = swap_info_get(entry);
2295 if (!si) {
2296 /*
2297 * An acceptable race has occurred since the failing
2298 * __swap_duplicate(): the swap entry has been freed,
2299 * perhaps even the whole swap_map cleared for swapoff.
2300 */
2301 goto outer;
2302 }
2303
2304 offset = swp_offset(entry);
2305 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2306
2307 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2308 /*
2309 * The higher the swap count, the more likely it is that tasks
2310 * will race to add swap count continuation: we need to avoid
2311 * over-provisioning.
2312 */
2313 goto out;
2314 }
2315
2316 if (!page) {
2317 spin_unlock(&swap_lock);
2318 return -ENOMEM;
2319 }
2320
2321 /*
2322 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2323 * no architecture is using highmem pages for kernel pagetables: so it
2324 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2325 */
2326 head = vmalloc_to_page(si->swap_map + offset);
2327 offset &= ~PAGE_MASK;
2328
2329 /*
2330 * Page allocation does not initialize the page's lru field,
2331 * but it does always reset its private field.
2332 */
2333 if (!page_private(head)) {
2334 BUG_ON(count & COUNT_CONTINUED);
2335 INIT_LIST_HEAD(&head->lru);
2336 set_page_private(head, SWP_CONTINUED);
2337 si->flags |= SWP_CONTINUED;
2338 }
2339
2340 list_for_each_entry(list_page, &head->lru, lru) {
2341 unsigned char *map;
2342
2343 /*
2344 * If the previous map said no continuation, but we've found
2345 * a continuation page, free our allocation and use this one.
2346 */
2347 if (!(count & COUNT_CONTINUED))
2348 goto out;
2349
2350 map = kmap_atomic(list_page) + offset;
2351 count = *map;
2352 kunmap_atomic(map);
2353
2354 /*
2355 * If this continuation count now has some space in it,
2356 * free our allocation and use this one.
2357 */
2358 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2359 goto out;
2360 }
2361
2362 list_add_tail(&page->lru, &head->lru);
2363 page = NULL; /* now it's attached, don't free it */
2364 out:
2365 spin_unlock(&swap_lock);
2366 outer:
2367 if (page)
2368 __free_page(page);
2369 return 0;
2370 }
2371
2372 /*
2373 * swap_count_continued - when the original swap_map count is incremented
2374 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2375 * into, carry if so, or else fail until a new continuation page is allocated;
2376 * when the original swap_map count is decremented from 0 with continuation,
2377 * borrow from the continuation and report whether it still holds more.
2378 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2379 */
2380 static bool swap_count_continued(struct swap_info_struct *si,
2381 pgoff_t offset, unsigned char count)
2382 {
2383 struct page *head;
2384 struct page *page;
2385 unsigned char *map;
2386
2387 head = vmalloc_to_page(si->swap_map + offset);
2388 if (page_private(head) != SWP_CONTINUED) {
2389 BUG_ON(count & COUNT_CONTINUED);
2390 return false; /* need to add count continuation */
2391 }
2392
2393 offset &= ~PAGE_MASK;
2394 page = list_entry(head->lru.next, struct page, lru);
2395 map = kmap_atomic(page) + offset;
2396
2397 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2398 goto init_map; /* jump over SWAP_CONT_MAX checks */
2399
2400 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2401 /*
2402 * Think of how you add 1 to 999
2403 */
2404 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2405 kunmap_atomic(map);
2406 page = list_entry(page->lru.next, struct page, lru);
2407 BUG_ON(page == head);
2408 map = kmap_atomic(page) + offset;
2409 }
2410 if (*map == SWAP_CONT_MAX) {
2411 kunmap_atomic(map);
2412 page = list_entry(page->lru.next, struct page, lru);
2413 if (page == head)
2414 return false; /* add count continuation */
2415 map = kmap_atomic(page) + offset;
2416 init_map: *map = 0; /* we didn't zero the page */
2417 }
2418 *map += 1;
2419 kunmap_atomic(map);
2420 page = list_entry(page->lru.prev, struct page, lru);
2421 while (page != head) {
2422 map = kmap_atomic(page) + offset;
2423 *map = COUNT_CONTINUED;
2424 kunmap_atomic(map);
2425 page = list_entry(page->lru.prev, struct page, lru);
2426 }
2427 return true; /* incremented */
2428
2429 } else { /* decrementing */
2430 /*
2431 * Think of how you subtract 1 from 1000
2432 */
2433 BUG_ON(count != COUNT_CONTINUED);
2434 while (*map == COUNT_CONTINUED) {
2435 kunmap_atomic(map);
2436 page = list_entry(page->lru.next, struct page, lru);
2437 BUG_ON(page == head);
2438 map = kmap_atomic(page) + offset;
2439 }
2440 BUG_ON(*map == 0);
2441 *map -= 1;
2442 if (*map == 0)
2443 count = 0;
2444 kunmap_atomic(map);
2445 page = list_entry(page->lru.prev, struct page, lru);
2446 while (page != head) {
2447 map = kmap_atomic(page) + offset;
2448 *map = SWAP_CONT_MAX | count;
2449 count = COUNT_CONTINUED;
2450 kunmap_atomic(map);
2451 page = list_entry(page->lru.prev, struct page, lru);
2452 }
2453 return count == COUNT_CONTINUED;
2454 }
2455 }
2456
2457 /*
2458 * free_swap_count_continuations - swapoff free all the continuation pages
2459 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2460 */
2461 static void free_swap_count_continuations(struct swap_info_struct *si)
2462 {
2463 pgoff_t offset;
2464
2465 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2466 struct page *head;
2467 head = vmalloc_to_page(si->swap_map + offset);
2468 if (page_private(head)) {
2469 struct list_head *this, *next;
2470 list_for_each_safe(this, next, &head->lru) {
2471 struct page *page;
2472 page = list_entry(this, struct page, lru);
2473 list_del(this);
2474 __free_page(page);
2475 }
2476 }
2477 }
2478 }