]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/swapfile.c
ALSA: hda/realtek - Support HP mute led for output and input
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
63 */
64 PLIST_HEAD(swap_active_head);
65
66 /*
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
77 */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83 static DEFINE_MUTEX(swapon_mutex);
84
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
92 }
93
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98 swp_entry_t entry = swp_entry(si->type, offset);
99 struct page *page;
100 int ret = 0;
101
102 page = find_get_page(swap_address_space(entry), entry.val);
103 if (!page)
104 return 0;
105 /*
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
111 */
112 if (trylock_page(page)) {
113 ret = try_to_free_swap(page);
114 unlock_page(page);
115 }
116 page_cache_release(page);
117 return ret;
118 }
119
120 /*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126 struct swap_extent *se;
127 sector_t start_block;
128 sector_t nr_blocks;
129 int err = 0;
130
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 if (nr_blocks) {
136 err = blkdev_issue_discard(si->bdev, start_block,
137 nr_blocks, GFP_KERNEL, 0);
138 if (err)
139 return err;
140 cond_resched();
141 }
142
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147 err = blkdev_issue_discard(si->bdev, start_block,
148 nr_blocks, GFP_KERNEL, 0);
149 if (err)
150 break;
151
152 cond_resched();
153 }
154 return err; /* That will often be -EOPNOTSUPP */
155 }
156
157 /*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
163 {
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
166
167 while (nr_pages) {
168 struct list_head *lh;
169
170 if (se->start_page <= start_page &&
171 start_page < se->start_page + se->nr_pages) {
172 pgoff_t offset = start_page - se->start_page;
173 sector_t start_block = se->start_block + offset;
174 sector_t nr_blocks = se->nr_pages - offset;
175
176 if (nr_blocks > nr_pages)
177 nr_blocks = nr_pages;
178 start_page += nr_blocks;
179 nr_pages -= nr_blocks;
180
181 if (!found_extent++)
182 si->curr_swap_extent = se;
183
184 start_block <<= PAGE_SHIFT - 9;
185 nr_blocks <<= PAGE_SHIFT - 9;
186 if (blkdev_issue_discard(si->bdev, start_block,
187 nr_blocks, GFP_NOIO, 0))
188 break;
189 }
190
191 lh = se->list.next;
192 se = list_entry(lh, struct swap_extent, list);
193 }
194 }
195
196 #define SWAPFILE_CLUSTER 256
197 #define LATENCY_LIMIT 256
198
199 static inline void cluster_set_flag(struct swap_cluster_info *info,
200 unsigned int flag)
201 {
202 info->flags = flag;
203 }
204
205 static inline unsigned int cluster_count(struct swap_cluster_info *info)
206 {
207 return info->data;
208 }
209
210 static inline void cluster_set_count(struct swap_cluster_info *info,
211 unsigned int c)
212 {
213 info->data = c;
214 }
215
216 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
217 unsigned int c, unsigned int f)
218 {
219 info->flags = f;
220 info->data = c;
221 }
222
223 static inline unsigned int cluster_next(struct swap_cluster_info *info)
224 {
225 return info->data;
226 }
227
228 static inline void cluster_set_next(struct swap_cluster_info *info,
229 unsigned int n)
230 {
231 info->data = n;
232 }
233
234 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
235 unsigned int n, unsigned int f)
236 {
237 info->flags = f;
238 info->data = n;
239 }
240
241 static inline bool cluster_is_free(struct swap_cluster_info *info)
242 {
243 return info->flags & CLUSTER_FLAG_FREE;
244 }
245
246 static inline bool cluster_is_null(struct swap_cluster_info *info)
247 {
248 return info->flags & CLUSTER_FLAG_NEXT_NULL;
249 }
250
251 static inline void cluster_set_null(struct swap_cluster_info *info)
252 {
253 info->flags = CLUSTER_FLAG_NEXT_NULL;
254 info->data = 0;
255 }
256
257 /* Add a cluster to discard list and schedule it to do discard */
258 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
259 unsigned int idx)
260 {
261 /*
262 * If scan_swap_map() can't find a free cluster, it will check
263 * si->swap_map directly. To make sure the discarding cluster isn't
264 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
265 * will be cleared after discard
266 */
267 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
268 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
269
270 if (cluster_is_null(&si->discard_cluster_head)) {
271 cluster_set_next_flag(&si->discard_cluster_head,
272 idx, 0);
273 cluster_set_next_flag(&si->discard_cluster_tail,
274 idx, 0);
275 } else {
276 unsigned int tail = cluster_next(&si->discard_cluster_tail);
277 cluster_set_next(&si->cluster_info[tail], idx);
278 cluster_set_next_flag(&si->discard_cluster_tail,
279 idx, 0);
280 }
281
282 schedule_work(&si->discard_work);
283 }
284
285 /*
286 * Doing discard actually. After a cluster discard is finished, the cluster
287 * will be added to free cluster list. caller should hold si->lock.
288 */
289 static void swap_do_scheduled_discard(struct swap_info_struct *si)
290 {
291 struct swap_cluster_info *info;
292 unsigned int idx;
293
294 info = si->cluster_info;
295
296 while (!cluster_is_null(&si->discard_cluster_head)) {
297 idx = cluster_next(&si->discard_cluster_head);
298
299 cluster_set_next_flag(&si->discard_cluster_head,
300 cluster_next(&info[idx]), 0);
301 if (cluster_next(&si->discard_cluster_tail) == idx) {
302 cluster_set_null(&si->discard_cluster_head);
303 cluster_set_null(&si->discard_cluster_tail);
304 }
305 spin_unlock(&si->lock);
306
307 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
308 SWAPFILE_CLUSTER);
309
310 spin_lock(&si->lock);
311 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
312 if (cluster_is_null(&si->free_cluster_head)) {
313 cluster_set_next_flag(&si->free_cluster_head,
314 idx, 0);
315 cluster_set_next_flag(&si->free_cluster_tail,
316 idx, 0);
317 } else {
318 unsigned int tail;
319
320 tail = cluster_next(&si->free_cluster_tail);
321 cluster_set_next(&info[tail], idx);
322 cluster_set_next_flag(&si->free_cluster_tail,
323 idx, 0);
324 }
325 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
326 0, SWAPFILE_CLUSTER);
327 }
328 }
329
330 static void swap_discard_work(struct work_struct *work)
331 {
332 struct swap_info_struct *si;
333
334 si = container_of(work, struct swap_info_struct, discard_work);
335
336 spin_lock(&si->lock);
337 swap_do_scheduled_discard(si);
338 spin_unlock(&si->lock);
339 }
340
341 /*
342 * The cluster corresponding to page_nr will be used. The cluster will be
343 * removed from free cluster list and its usage counter will be increased.
344 */
345 static void inc_cluster_info_page(struct swap_info_struct *p,
346 struct swap_cluster_info *cluster_info, unsigned long page_nr)
347 {
348 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
349
350 if (!cluster_info)
351 return;
352 if (cluster_is_free(&cluster_info[idx])) {
353 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
354 cluster_set_next_flag(&p->free_cluster_head,
355 cluster_next(&cluster_info[idx]), 0);
356 if (cluster_next(&p->free_cluster_tail) == idx) {
357 cluster_set_null(&p->free_cluster_tail);
358 cluster_set_null(&p->free_cluster_head);
359 }
360 cluster_set_count_flag(&cluster_info[idx], 0, 0);
361 }
362
363 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
364 cluster_set_count(&cluster_info[idx],
365 cluster_count(&cluster_info[idx]) + 1);
366 }
367
368 /*
369 * The cluster corresponding to page_nr decreases one usage. If the usage
370 * counter becomes 0, which means no page in the cluster is in using, we can
371 * optionally discard the cluster and add it to free cluster list.
372 */
373 static void dec_cluster_info_page(struct swap_info_struct *p,
374 struct swap_cluster_info *cluster_info, unsigned long page_nr)
375 {
376 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
377
378 if (!cluster_info)
379 return;
380
381 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
382 cluster_set_count(&cluster_info[idx],
383 cluster_count(&cluster_info[idx]) - 1);
384
385 if (cluster_count(&cluster_info[idx]) == 0) {
386 /*
387 * If the swap is discardable, prepare discard the cluster
388 * instead of free it immediately. The cluster will be freed
389 * after discard.
390 */
391 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
392 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
393 swap_cluster_schedule_discard(p, idx);
394 return;
395 }
396
397 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
398 if (cluster_is_null(&p->free_cluster_head)) {
399 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
400 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
401 } else {
402 unsigned int tail = cluster_next(&p->free_cluster_tail);
403 cluster_set_next(&cluster_info[tail], idx);
404 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
405 }
406 }
407 }
408
409 /*
410 * It's possible scan_swap_map() uses a free cluster in the middle of free
411 * cluster list. Avoiding such abuse to avoid list corruption.
412 */
413 static bool
414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
415 unsigned long offset)
416 {
417 struct percpu_cluster *percpu_cluster;
418 bool conflict;
419
420 offset /= SWAPFILE_CLUSTER;
421 conflict = !cluster_is_null(&si->free_cluster_head) &&
422 offset != cluster_next(&si->free_cluster_head) &&
423 cluster_is_free(&si->cluster_info[offset]);
424
425 if (!conflict)
426 return false;
427
428 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
429 cluster_set_null(&percpu_cluster->index);
430 return true;
431 }
432
433 /*
434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
435 * might involve allocating a new cluster for current CPU too.
436 */
437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
438 unsigned long *offset, unsigned long *scan_base)
439 {
440 struct percpu_cluster *cluster;
441 bool found_free;
442 unsigned long tmp;
443
444 new_cluster:
445 cluster = this_cpu_ptr(si->percpu_cluster);
446 if (cluster_is_null(&cluster->index)) {
447 if (!cluster_is_null(&si->free_cluster_head)) {
448 cluster->index = si->free_cluster_head;
449 cluster->next = cluster_next(&cluster->index) *
450 SWAPFILE_CLUSTER;
451 } else if (!cluster_is_null(&si->discard_cluster_head)) {
452 /*
453 * we don't have free cluster but have some clusters in
454 * discarding, do discard now and reclaim them
455 */
456 swap_do_scheduled_discard(si);
457 *scan_base = *offset = si->cluster_next;
458 goto new_cluster;
459 } else
460 return;
461 }
462
463 found_free = false;
464
465 /*
466 * Other CPUs can use our cluster if they can't find a free cluster,
467 * check if there is still free entry in the cluster
468 */
469 tmp = cluster->next;
470 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
471 SWAPFILE_CLUSTER) {
472 if (!si->swap_map[tmp]) {
473 found_free = true;
474 break;
475 }
476 tmp++;
477 }
478 if (!found_free) {
479 cluster_set_null(&cluster->index);
480 goto new_cluster;
481 }
482 cluster->next = tmp + 1;
483 *offset = tmp;
484 *scan_base = tmp;
485 }
486
487 static unsigned long scan_swap_map(struct swap_info_struct *si,
488 unsigned char usage)
489 {
490 unsigned long offset;
491 unsigned long scan_base;
492 unsigned long last_in_cluster = 0;
493 int latency_ration = LATENCY_LIMIT;
494
495 /*
496 * We try to cluster swap pages by allocating them sequentially
497 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
498 * way, however, we resort to first-free allocation, starting
499 * a new cluster. This prevents us from scattering swap pages
500 * all over the entire swap partition, so that we reduce
501 * overall disk seek times between swap pages. -- sct
502 * But we do now try to find an empty cluster. -Andrea
503 * And we let swap pages go all over an SSD partition. Hugh
504 */
505
506 si->flags += SWP_SCANNING;
507 scan_base = offset = si->cluster_next;
508
509 /* SSD algorithm */
510 if (si->cluster_info) {
511 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
512 goto checks;
513 }
514
515 if (unlikely(!si->cluster_nr--)) {
516 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
517 si->cluster_nr = SWAPFILE_CLUSTER - 1;
518 goto checks;
519 }
520
521 spin_unlock(&si->lock);
522
523 /*
524 * If seek is expensive, start searching for new cluster from
525 * start of partition, to minimize the span of allocated swap.
526 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
527 * case, just handled by scan_swap_map_try_ssd_cluster() above.
528 */
529 scan_base = offset = si->lowest_bit;
530 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
531
532 /* Locate the first empty (unaligned) cluster */
533 for (; last_in_cluster <= si->highest_bit; offset++) {
534 if (si->swap_map[offset])
535 last_in_cluster = offset + SWAPFILE_CLUSTER;
536 else if (offset == last_in_cluster) {
537 spin_lock(&si->lock);
538 offset -= SWAPFILE_CLUSTER - 1;
539 si->cluster_next = offset;
540 si->cluster_nr = SWAPFILE_CLUSTER - 1;
541 goto checks;
542 }
543 if (unlikely(--latency_ration < 0)) {
544 cond_resched();
545 latency_ration = LATENCY_LIMIT;
546 }
547 }
548
549 offset = scan_base;
550 spin_lock(&si->lock);
551 si->cluster_nr = SWAPFILE_CLUSTER - 1;
552 }
553
554 checks:
555 if (si->cluster_info) {
556 while (scan_swap_map_ssd_cluster_conflict(si, offset))
557 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
558 }
559 if (!(si->flags & SWP_WRITEOK))
560 goto no_page;
561 if (!si->highest_bit)
562 goto no_page;
563 if (offset > si->highest_bit)
564 scan_base = offset = si->lowest_bit;
565
566 /* reuse swap entry of cache-only swap if not busy. */
567 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
568 int swap_was_freed;
569 spin_unlock(&si->lock);
570 swap_was_freed = __try_to_reclaim_swap(si, offset);
571 spin_lock(&si->lock);
572 /* entry was freed successfully, try to use this again */
573 if (swap_was_freed)
574 goto checks;
575 goto scan; /* check next one */
576 }
577
578 if (si->swap_map[offset])
579 goto scan;
580
581 if (offset == si->lowest_bit)
582 si->lowest_bit++;
583 if (offset == si->highest_bit)
584 si->highest_bit--;
585 si->inuse_pages++;
586 if (si->inuse_pages == si->pages) {
587 si->lowest_bit = si->max;
588 si->highest_bit = 0;
589 spin_lock(&swap_avail_lock);
590 plist_del(&si->avail_list, &swap_avail_head);
591 spin_unlock(&swap_avail_lock);
592 }
593 si->swap_map[offset] = usage;
594 inc_cluster_info_page(si, si->cluster_info, offset);
595 si->cluster_next = offset + 1;
596 si->flags -= SWP_SCANNING;
597
598 return offset;
599
600 scan:
601 spin_unlock(&si->lock);
602 while (++offset <= si->highest_bit) {
603 if (!si->swap_map[offset]) {
604 spin_lock(&si->lock);
605 goto checks;
606 }
607 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
608 spin_lock(&si->lock);
609 goto checks;
610 }
611 if (unlikely(--latency_ration < 0)) {
612 cond_resched();
613 latency_ration = LATENCY_LIMIT;
614 }
615 }
616 offset = si->lowest_bit;
617 while (offset < scan_base) {
618 if (!si->swap_map[offset]) {
619 spin_lock(&si->lock);
620 goto checks;
621 }
622 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
623 spin_lock(&si->lock);
624 goto checks;
625 }
626 if (unlikely(--latency_ration < 0)) {
627 cond_resched();
628 latency_ration = LATENCY_LIMIT;
629 }
630 offset++;
631 }
632 spin_lock(&si->lock);
633
634 no_page:
635 si->flags -= SWP_SCANNING;
636 return 0;
637 }
638
639 swp_entry_t get_swap_page(void)
640 {
641 struct swap_info_struct *si, *next;
642 pgoff_t offset;
643
644 if (atomic_long_read(&nr_swap_pages) <= 0)
645 goto noswap;
646 atomic_long_dec(&nr_swap_pages);
647
648 spin_lock(&swap_avail_lock);
649
650 start_over:
651 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
652 /* requeue si to after same-priority siblings */
653 plist_requeue(&si->avail_list, &swap_avail_head);
654 spin_unlock(&swap_avail_lock);
655 spin_lock(&si->lock);
656 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
657 spin_lock(&swap_avail_lock);
658 if (plist_node_empty(&si->avail_list)) {
659 spin_unlock(&si->lock);
660 goto nextsi;
661 }
662 WARN(!si->highest_bit,
663 "swap_info %d in list but !highest_bit\n",
664 si->type);
665 WARN(!(si->flags & SWP_WRITEOK),
666 "swap_info %d in list but !SWP_WRITEOK\n",
667 si->type);
668 plist_del(&si->avail_list, &swap_avail_head);
669 spin_unlock(&si->lock);
670 goto nextsi;
671 }
672
673 /* This is called for allocating swap entry for cache */
674 offset = scan_swap_map(si, SWAP_HAS_CACHE);
675 spin_unlock(&si->lock);
676 if (offset)
677 return swp_entry(si->type, offset);
678 pr_debug("scan_swap_map of si %d failed to find offset\n",
679 si->type);
680 spin_lock(&swap_avail_lock);
681 nextsi:
682 /*
683 * if we got here, it's likely that si was almost full before,
684 * and since scan_swap_map() can drop the si->lock, multiple
685 * callers probably all tried to get a page from the same si
686 * and it filled up before we could get one; or, the si filled
687 * up between us dropping swap_avail_lock and taking si->lock.
688 * Since we dropped the swap_avail_lock, the swap_avail_head
689 * list may have been modified; so if next is still in the
690 * swap_avail_head list then try it, otherwise start over.
691 */
692 if (plist_node_empty(&next->avail_list))
693 goto start_over;
694 }
695
696 spin_unlock(&swap_avail_lock);
697
698 atomic_long_inc(&nr_swap_pages);
699 noswap:
700 return (swp_entry_t) {0};
701 }
702
703 /* The only caller of this function is now suspend routine */
704 swp_entry_t get_swap_page_of_type(int type)
705 {
706 struct swap_info_struct *si;
707 pgoff_t offset;
708
709 si = swap_info[type];
710 spin_lock(&si->lock);
711 if (si && (si->flags & SWP_WRITEOK)) {
712 atomic_long_dec(&nr_swap_pages);
713 /* This is called for allocating swap entry, not cache */
714 offset = scan_swap_map(si, 1);
715 if (offset) {
716 spin_unlock(&si->lock);
717 return swp_entry(type, offset);
718 }
719 atomic_long_inc(&nr_swap_pages);
720 }
721 spin_unlock(&si->lock);
722 return (swp_entry_t) {0};
723 }
724
725 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
726 {
727 struct swap_info_struct *p;
728 unsigned long offset, type;
729
730 if (!entry.val)
731 goto out;
732 type = swp_type(entry);
733 if (type >= nr_swapfiles)
734 goto bad_nofile;
735 p = swap_info[type];
736 if (!(p->flags & SWP_USED))
737 goto bad_device;
738 offset = swp_offset(entry);
739 if (offset >= p->max)
740 goto bad_offset;
741 if (!p->swap_map[offset])
742 goto bad_free;
743 spin_lock(&p->lock);
744 return p;
745
746 bad_free:
747 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
748 goto out;
749 bad_offset:
750 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
751 goto out;
752 bad_device:
753 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
754 goto out;
755 bad_nofile:
756 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
757 out:
758 return NULL;
759 }
760
761 static unsigned char swap_entry_free(struct swap_info_struct *p,
762 swp_entry_t entry, unsigned char usage)
763 {
764 unsigned long offset = swp_offset(entry);
765 unsigned char count;
766 unsigned char has_cache;
767
768 count = p->swap_map[offset];
769 has_cache = count & SWAP_HAS_CACHE;
770 count &= ~SWAP_HAS_CACHE;
771
772 if (usage == SWAP_HAS_CACHE) {
773 VM_BUG_ON(!has_cache);
774 has_cache = 0;
775 } else if (count == SWAP_MAP_SHMEM) {
776 /*
777 * Or we could insist on shmem.c using a special
778 * swap_shmem_free() and free_shmem_swap_and_cache()...
779 */
780 count = 0;
781 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
782 if (count == COUNT_CONTINUED) {
783 if (swap_count_continued(p, offset, count))
784 count = SWAP_MAP_MAX | COUNT_CONTINUED;
785 else
786 count = SWAP_MAP_MAX;
787 } else
788 count--;
789 }
790
791 if (!count)
792 mem_cgroup_uncharge_swap(entry);
793
794 usage = count | has_cache;
795 p->swap_map[offset] = usage;
796
797 /* free if no reference */
798 if (!usage) {
799 dec_cluster_info_page(p, p->cluster_info, offset);
800 if (offset < p->lowest_bit)
801 p->lowest_bit = offset;
802 if (offset > p->highest_bit) {
803 bool was_full = !p->highest_bit;
804 p->highest_bit = offset;
805 if (was_full && (p->flags & SWP_WRITEOK)) {
806 spin_lock(&swap_avail_lock);
807 WARN_ON(!plist_node_empty(&p->avail_list));
808 if (plist_node_empty(&p->avail_list))
809 plist_add(&p->avail_list,
810 &swap_avail_head);
811 spin_unlock(&swap_avail_lock);
812 }
813 }
814 atomic_long_inc(&nr_swap_pages);
815 p->inuse_pages--;
816 frontswap_invalidate_page(p->type, offset);
817 if (p->flags & SWP_BLKDEV) {
818 struct gendisk *disk = p->bdev->bd_disk;
819 if (disk->fops->swap_slot_free_notify)
820 disk->fops->swap_slot_free_notify(p->bdev,
821 offset);
822 }
823 }
824
825 return usage;
826 }
827
828 /*
829 * Caller has made sure that the swap device corresponding to entry
830 * is still around or has not been recycled.
831 */
832 void swap_free(swp_entry_t entry)
833 {
834 struct swap_info_struct *p;
835
836 p = swap_info_get(entry);
837 if (p) {
838 swap_entry_free(p, entry, 1);
839 spin_unlock(&p->lock);
840 }
841 }
842
843 /*
844 * Called after dropping swapcache to decrease refcnt to swap entries.
845 */
846 void swapcache_free(swp_entry_t entry, struct page *page)
847 {
848 struct swap_info_struct *p;
849 unsigned char count;
850
851 p = swap_info_get(entry);
852 if (p) {
853 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
854 if (page)
855 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
856 spin_unlock(&p->lock);
857 }
858 }
859
860 /*
861 * How many references to page are currently swapped out?
862 * This does not give an exact answer when swap count is continued,
863 * but does include the high COUNT_CONTINUED flag to allow for that.
864 */
865 int page_swapcount(struct page *page)
866 {
867 int count = 0;
868 struct swap_info_struct *p;
869 swp_entry_t entry;
870
871 entry.val = page_private(page);
872 p = swap_info_get(entry);
873 if (p) {
874 count = swap_count(p->swap_map[swp_offset(entry)]);
875 spin_unlock(&p->lock);
876 }
877 return count;
878 }
879
880 /*
881 * We can write to an anon page without COW if there are no other references
882 * to it. And as a side-effect, free up its swap: because the old content
883 * on disk will never be read, and seeking back there to write new content
884 * later would only waste time away from clustering.
885 */
886 int reuse_swap_page(struct page *page)
887 {
888 int count;
889
890 VM_BUG_ON_PAGE(!PageLocked(page), page);
891 if (unlikely(PageKsm(page)))
892 return 0;
893 count = page_mapcount(page);
894 if (count <= 1 && PageSwapCache(page)) {
895 count += page_swapcount(page);
896 if (count == 1 && !PageWriteback(page)) {
897 delete_from_swap_cache(page);
898 SetPageDirty(page);
899 }
900 }
901 return count <= 1;
902 }
903
904 /*
905 * If swap is getting full, or if there are no more mappings of this page,
906 * then try_to_free_swap is called to free its swap space.
907 */
908 int try_to_free_swap(struct page *page)
909 {
910 VM_BUG_ON_PAGE(!PageLocked(page), page);
911
912 if (!PageSwapCache(page))
913 return 0;
914 if (PageWriteback(page))
915 return 0;
916 if (page_swapcount(page))
917 return 0;
918
919 /*
920 * Once hibernation has begun to create its image of memory,
921 * there's a danger that one of the calls to try_to_free_swap()
922 * - most probably a call from __try_to_reclaim_swap() while
923 * hibernation is allocating its own swap pages for the image,
924 * but conceivably even a call from memory reclaim - will free
925 * the swap from a page which has already been recorded in the
926 * image as a clean swapcache page, and then reuse its swap for
927 * another page of the image. On waking from hibernation, the
928 * original page might be freed under memory pressure, then
929 * later read back in from swap, now with the wrong data.
930 *
931 * Hibernation suspends storage while it is writing the image
932 * to disk so check that here.
933 */
934 if (pm_suspended_storage())
935 return 0;
936
937 delete_from_swap_cache(page);
938 SetPageDirty(page);
939 return 1;
940 }
941
942 /*
943 * Free the swap entry like above, but also try to
944 * free the page cache entry if it is the last user.
945 */
946 int free_swap_and_cache(swp_entry_t entry)
947 {
948 struct swap_info_struct *p;
949 struct page *page = NULL;
950
951 if (non_swap_entry(entry))
952 return 1;
953
954 p = swap_info_get(entry);
955 if (p) {
956 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
957 page = find_get_page(swap_address_space(entry),
958 entry.val);
959 if (page && !trylock_page(page)) {
960 page_cache_release(page);
961 page = NULL;
962 }
963 }
964 spin_unlock(&p->lock);
965 }
966 if (page) {
967 /*
968 * Not mapped elsewhere, or swap space full? Free it!
969 * Also recheck PageSwapCache now page is locked (above).
970 */
971 if (PageSwapCache(page) && !PageWriteback(page) &&
972 (!page_mapped(page) || vm_swap_full())) {
973 delete_from_swap_cache(page);
974 SetPageDirty(page);
975 }
976 unlock_page(page);
977 page_cache_release(page);
978 }
979 return p != NULL;
980 }
981
982 #ifdef CONFIG_HIBERNATION
983 /*
984 * Find the swap type that corresponds to given device (if any).
985 *
986 * @offset - number of the PAGE_SIZE-sized block of the device, starting
987 * from 0, in which the swap header is expected to be located.
988 *
989 * This is needed for the suspend to disk (aka swsusp).
990 */
991 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
992 {
993 struct block_device *bdev = NULL;
994 int type;
995
996 if (device)
997 bdev = bdget(device);
998
999 spin_lock(&swap_lock);
1000 for (type = 0; type < nr_swapfiles; type++) {
1001 struct swap_info_struct *sis = swap_info[type];
1002
1003 if (!(sis->flags & SWP_WRITEOK))
1004 continue;
1005
1006 if (!bdev) {
1007 if (bdev_p)
1008 *bdev_p = bdgrab(sis->bdev);
1009
1010 spin_unlock(&swap_lock);
1011 return type;
1012 }
1013 if (bdev == sis->bdev) {
1014 struct swap_extent *se = &sis->first_swap_extent;
1015
1016 if (se->start_block == offset) {
1017 if (bdev_p)
1018 *bdev_p = bdgrab(sis->bdev);
1019
1020 spin_unlock(&swap_lock);
1021 bdput(bdev);
1022 return type;
1023 }
1024 }
1025 }
1026 spin_unlock(&swap_lock);
1027 if (bdev)
1028 bdput(bdev);
1029
1030 return -ENODEV;
1031 }
1032
1033 /*
1034 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1035 * corresponding to given index in swap_info (swap type).
1036 */
1037 sector_t swapdev_block(int type, pgoff_t offset)
1038 {
1039 struct block_device *bdev;
1040
1041 if ((unsigned int)type >= nr_swapfiles)
1042 return 0;
1043 if (!(swap_info[type]->flags & SWP_WRITEOK))
1044 return 0;
1045 return map_swap_entry(swp_entry(type, offset), &bdev);
1046 }
1047
1048 /*
1049 * Return either the total number of swap pages of given type, or the number
1050 * of free pages of that type (depending on @free)
1051 *
1052 * This is needed for software suspend
1053 */
1054 unsigned int count_swap_pages(int type, int free)
1055 {
1056 unsigned int n = 0;
1057
1058 spin_lock(&swap_lock);
1059 if ((unsigned int)type < nr_swapfiles) {
1060 struct swap_info_struct *sis = swap_info[type];
1061
1062 spin_lock(&sis->lock);
1063 if (sis->flags & SWP_WRITEOK) {
1064 n = sis->pages;
1065 if (free)
1066 n -= sis->inuse_pages;
1067 }
1068 spin_unlock(&sis->lock);
1069 }
1070 spin_unlock(&swap_lock);
1071 return n;
1072 }
1073 #endif /* CONFIG_HIBERNATION */
1074
1075 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1076 {
1077 #ifdef CONFIG_MEM_SOFT_DIRTY
1078 /*
1079 * When pte keeps soft dirty bit the pte generated
1080 * from swap entry does not has it, still it's same
1081 * pte from logical point of view.
1082 */
1083 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1084 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1085 #else
1086 return pte_same(pte, swp_pte);
1087 #endif
1088 }
1089
1090 /*
1091 * No need to decide whether this PTE shares the swap entry with others,
1092 * just let do_wp_page work it out if a write is requested later - to
1093 * force COW, vm_page_prot omits write permission from any private vma.
1094 */
1095 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1096 unsigned long addr, swp_entry_t entry, struct page *page)
1097 {
1098 struct page *swapcache;
1099 struct mem_cgroup *memcg;
1100 spinlock_t *ptl;
1101 pte_t *pte;
1102 int ret = 1;
1103
1104 swapcache = page;
1105 page = ksm_might_need_to_copy(page, vma, addr);
1106 if (unlikely(!page))
1107 return -ENOMEM;
1108
1109 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1110 GFP_KERNEL, &memcg)) {
1111 ret = -ENOMEM;
1112 goto out_nolock;
1113 }
1114
1115 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1116 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1117 mem_cgroup_cancel_charge_swapin(memcg);
1118 ret = 0;
1119 goto out;
1120 }
1121
1122 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1123 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1124 get_page(page);
1125 set_pte_at(vma->vm_mm, addr, pte,
1126 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1127 if (page == swapcache)
1128 page_add_anon_rmap(page, vma, addr);
1129 else /* ksm created a completely new copy */
1130 page_add_new_anon_rmap(page, vma, addr);
1131 mem_cgroup_commit_charge_swapin(page, memcg);
1132 swap_free(entry);
1133 /*
1134 * Move the page to the active list so it is not
1135 * immediately swapped out again after swapon.
1136 */
1137 activate_page(page);
1138 out:
1139 pte_unmap_unlock(pte, ptl);
1140 out_nolock:
1141 if (page != swapcache) {
1142 unlock_page(page);
1143 put_page(page);
1144 }
1145 return ret;
1146 }
1147
1148 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1149 unsigned long addr, unsigned long end,
1150 swp_entry_t entry, struct page *page)
1151 {
1152 pte_t swp_pte = swp_entry_to_pte(entry);
1153 pte_t *pte;
1154 int ret = 0;
1155
1156 /*
1157 * We don't actually need pte lock while scanning for swp_pte: since
1158 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1159 * page table while we're scanning; though it could get zapped, and on
1160 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1161 * of unmatched parts which look like swp_pte, so unuse_pte must
1162 * recheck under pte lock. Scanning without pte lock lets it be
1163 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1164 */
1165 pte = pte_offset_map(pmd, addr);
1166 do {
1167 /*
1168 * swapoff spends a _lot_ of time in this loop!
1169 * Test inline before going to call unuse_pte.
1170 */
1171 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1172 pte_unmap(pte);
1173 ret = unuse_pte(vma, pmd, addr, entry, page);
1174 if (ret)
1175 goto out;
1176 pte = pte_offset_map(pmd, addr);
1177 }
1178 } while (pte++, addr += PAGE_SIZE, addr != end);
1179 pte_unmap(pte - 1);
1180 out:
1181 return ret;
1182 }
1183
1184 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1185 unsigned long addr, unsigned long end,
1186 swp_entry_t entry, struct page *page)
1187 {
1188 pmd_t *pmd;
1189 unsigned long next;
1190 int ret;
1191
1192 pmd = pmd_offset(pud, addr);
1193 do {
1194 next = pmd_addr_end(addr, end);
1195 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1196 continue;
1197 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1198 if (ret)
1199 return ret;
1200 } while (pmd++, addr = next, addr != end);
1201 return 0;
1202 }
1203
1204 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1205 unsigned long addr, unsigned long end,
1206 swp_entry_t entry, struct page *page)
1207 {
1208 pud_t *pud;
1209 unsigned long next;
1210 int ret;
1211
1212 pud = pud_offset(pgd, addr);
1213 do {
1214 next = pud_addr_end(addr, end);
1215 if (pud_none_or_clear_bad(pud))
1216 continue;
1217 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1218 if (ret)
1219 return ret;
1220 } while (pud++, addr = next, addr != end);
1221 return 0;
1222 }
1223
1224 static int unuse_vma(struct vm_area_struct *vma,
1225 swp_entry_t entry, struct page *page)
1226 {
1227 pgd_t *pgd;
1228 unsigned long addr, end, next;
1229 int ret;
1230
1231 if (page_anon_vma(page)) {
1232 addr = page_address_in_vma(page, vma);
1233 if (addr == -EFAULT)
1234 return 0;
1235 else
1236 end = addr + PAGE_SIZE;
1237 } else {
1238 addr = vma->vm_start;
1239 end = vma->vm_end;
1240 }
1241
1242 pgd = pgd_offset(vma->vm_mm, addr);
1243 do {
1244 next = pgd_addr_end(addr, end);
1245 if (pgd_none_or_clear_bad(pgd))
1246 continue;
1247 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1248 if (ret)
1249 return ret;
1250 } while (pgd++, addr = next, addr != end);
1251 return 0;
1252 }
1253
1254 static int unuse_mm(struct mm_struct *mm,
1255 swp_entry_t entry, struct page *page)
1256 {
1257 struct vm_area_struct *vma;
1258 int ret = 0;
1259
1260 if (!down_read_trylock(&mm->mmap_sem)) {
1261 /*
1262 * Activate page so shrink_inactive_list is unlikely to unmap
1263 * its ptes while lock is dropped, so swapoff can make progress.
1264 */
1265 activate_page(page);
1266 unlock_page(page);
1267 down_read(&mm->mmap_sem);
1268 lock_page(page);
1269 }
1270 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1271 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1272 break;
1273 }
1274 up_read(&mm->mmap_sem);
1275 return (ret < 0)? ret: 0;
1276 }
1277
1278 /*
1279 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1280 * from current position to next entry still in use.
1281 * Recycle to start on reaching the end, returning 0 when empty.
1282 */
1283 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1284 unsigned int prev, bool frontswap)
1285 {
1286 unsigned int max = si->max;
1287 unsigned int i = prev;
1288 unsigned char count;
1289
1290 /*
1291 * No need for swap_lock here: we're just looking
1292 * for whether an entry is in use, not modifying it; false
1293 * hits are okay, and sys_swapoff() has already prevented new
1294 * allocations from this area (while holding swap_lock).
1295 */
1296 for (;;) {
1297 if (++i >= max) {
1298 if (!prev) {
1299 i = 0;
1300 break;
1301 }
1302 /*
1303 * No entries in use at top of swap_map,
1304 * loop back to start and recheck there.
1305 */
1306 max = prev + 1;
1307 prev = 0;
1308 i = 1;
1309 }
1310 if (frontswap) {
1311 if (frontswap_test(si, i))
1312 break;
1313 else
1314 continue;
1315 }
1316 count = ACCESS_ONCE(si->swap_map[i]);
1317 if (count && swap_count(count) != SWAP_MAP_BAD)
1318 break;
1319 }
1320 return i;
1321 }
1322
1323 /*
1324 * We completely avoid races by reading each swap page in advance,
1325 * and then search for the process using it. All the necessary
1326 * page table adjustments can then be made atomically.
1327 *
1328 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1329 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1330 */
1331 int try_to_unuse(unsigned int type, bool frontswap,
1332 unsigned long pages_to_unuse)
1333 {
1334 struct swap_info_struct *si = swap_info[type];
1335 struct mm_struct *start_mm;
1336 volatile unsigned char *swap_map; /* swap_map is accessed without
1337 * locking. Mark it as volatile
1338 * to prevent compiler doing
1339 * something odd.
1340 */
1341 unsigned char swcount;
1342 struct page *page;
1343 swp_entry_t entry;
1344 unsigned int i = 0;
1345 int retval = 0;
1346
1347 /*
1348 * When searching mms for an entry, a good strategy is to
1349 * start at the first mm we freed the previous entry from
1350 * (though actually we don't notice whether we or coincidence
1351 * freed the entry). Initialize this start_mm with a hold.
1352 *
1353 * A simpler strategy would be to start at the last mm we
1354 * freed the previous entry from; but that would take less
1355 * advantage of mmlist ordering, which clusters forked mms
1356 * together, child after parent. If we race with dup_mmap(), we
1357 * prefer to resolve parent before child, lest we miss entries
1358 * duplicated after we scanned child: using last mm would invert
1359 * that.
1360 */
1361 start_mm = &init_mm;
1362 atomic_inc(&init_mm.mm_users);
1363
1364 /*
1365 * Keep on scanning until all entries have gone. Usually,
1366 * one pass through swap_map is enough, but not necessarily:
1367 * there are races when an instance of an entry might be missed.
1368 */
1369 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1370 if (signal_pending(current)) {
1371 retval = -EINTR;
1372 break;
1373 }
1374
1375 /*
1376 * Get a page for the entry, using the existing swap
1377 * cache page if there is one. Otherwise, get a clean
1378 * page and read the swap into it.
1379 */
1380 swap_map = &si->swap_map[i];
1381 entry = swp_entry(type, i);
1382 page = read_swap_cache_async(entry,
1383 GFP_HIGHUSER_MOVABLE, NULL, 0);
1384 if (!page) {
1385 /*
1386 * Either swap_duplicate() failed because entry
1387 * has been freed independently, and will not be
1388 * reused since sys_swapoff() already disabled
1389 * allocation from here, or alloc_page() failed.
1390 */
1391 swcount = *swap_map;
1392 /*
1393 * We don't hold lock here, so the swap entry could be
1394 * SWAP_MAP_BAD (when the cluster is discarding).
1395 * Instead of fail out, We can just skip the swap
1396 * entry because swapoff will wait for discarding
1397 * finish anyway.
1398 */
1399 if (!swcount || swcount == SWAP_MAP_BAD)
1400 continue;
1401 retval = -ENOMEM;
1402 break;
1403 }
1404
1405 /*
1406 * Don't hold on to start_mm if it looks like exiting.
1407 */
1408 if (atomic_read(&start_mm->mm_users) == 1) {
1409 mmput(start_mm);
1410 start_mm = &init_mm;
1411 atomic_inc(&init_mm.mm_users);
1412 }
1413
1414 /*
1415 * Wait for and lock page. When do_swap_page races with
1416 * try_to_unuse, do_swap_page can handle the fault much
1417 * faster than try_to_unuse can locate the entry. This
1418 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1419 * defer to do_swap_page in such a case - in some tests,
1420 * do_swap_page and try_to_unuse repeatedly compete.
1421 */
1422 wait_on_page_locked(page);
1423 wait_on_page_writeback(page);
1424 lock_page(page);
1425 wait_on_page_writeback(page);
1426
1427 /*
1428 * Remove all references to entry.
1429 */
1430 swcount = *swap_map;
1431 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1432 retval = shmem_unuse(entry, page);
1433 /* page has already been unlocked and released */
1434 if (retval < 0)
1435 break;
1436 continue;
1437 }
1438 if (swap_count(swcount) && start_mm != &init_mm)
1439 retval = unuse_mm(start_mm, entry, page);
1440
1441 if (swap_count(*swap_map)) {
1442 int set_start_mm = (*swap_map >= swcount);
1443 struct list_head *p = &start_mm->mmlist;
1444 struct mm_struct *new_start_mm = start_mm;
1445 struct mm_struct *prev_mm = start_mm;
1446 struct mm_struct *mm;
1447
1448 atomic_inc(&new_start_mm->mm_users);
1449 atomic_inc(&prev_mm->mm_users);
1450 spin_lock(&mmlist_lock);
1451 while (swap_count(*swap_map) && !retval &&
1452 (p = p->next) != &start_mm->mmlist) {
1453 mm = list_entry(p, struct mm_struct, mmlist);
1454 if (!atomic_inc_not_zero(&mm->mm_users))
1455 continue;
1456 spin_unlock(&mmlist_lock);
1457 mmput(prev_mm);
1458 prev_mm = mm;
1459
1460 cond_resched();
1461
1462 swcount = *swap_map;
1463 if (!swap_count(swcount)) /* any usage ? */
1464 ;
1465 else if (mm == &init_mm)
1466 set_start_mm = 1;
1467 else
1468 retval = unuse_mm(mm, entry, page);
1469
1470 if (set_start_mm && *swap_map < swcount) {
1471 mmput(new_start_mm);
1472 atomic_inc(&mm->mm_users);
1473 new_start_mm = mm;
1474 set_start_mm = 0;
1475 }
1476 spin_lock(&mmlist_lock);
1477 }
1478 spin_unlock(&mmlist_lock);
1479 mmput(prev_mm);
1480 mmput(start_mm);
1481 start_mm = new_start_mm;
1482 }
1483 if (retval) {
1484 unlock_page(page);
1485 page_cache_release(page);
1486 break;
1487 }
1488
1489 /*
1490 * If a reference remains (rare), we would like to leave
1491 * the page in the swap cache; but try_to_unmap could
1492 * then re-duplicate the entry once we drop page lock,
1493 * so we might loop indefinitely; also, that page could
1494 * not be swapped out to other storage meanwhile. So:
1495 * delete from cache even if there's another reference,
1496 * after ensuring that the data has been saved to disk -
1497 * since if the reference remains (rarer), it will be
1498 * read from disk into another page. Splitting into two
1499 * pages would be incorrect if swap supported "shared
1500 * private" pages, but they are handled by tmpfs files.
1501 *
1502 * Given how unuse_vma() targets one particular offset
1503 * in an anon_vma, once the anon_vma has been determined,
1504 * this splitting happens to be just what is needed to
1505 * handle where KSM pages have been swapped out: re-reading
1506 * is unnecessarily slow, but we can fix that later on.
1507 */
1508 if (swap_count(*swap_map) &&
1509 PageDirty(page) && PageSwapCache(page)) {
1510 struct writeback_control wbc = {
1511 .sync_mode = WB_SYNC_NONE,
1512 };
1513
1514 swap_writepage(page, &wbc);
1515 lock_page(page);
1516 wait_on_page_writeback(page);
1517 }
1518
1519 /*
1520 * It is conceivable that a racing task removed this page from
1521 * swap cache just before we acquired the page lock at the top,
1522 * or while we dropped it in unuse_mm(). The page might even
1523 * be back in swap cache on another swap area: that we must not
1524 * delete, since it may not have been written out to swap yet.
1525 */
1526 if (PageSwapCache(page) &&
1527 likely(page_private(page) == entry.val))
1528 delete_from_swap_cache(page);
1529
1530 /*
1531 * So we could skip searching mms once swap count went
1532 * to 1, we did not mark any present ptes as dirty: must
1533 * mark page dirty so shrink_page_list will preserve it.
1534 */
1535 SetPageDirty(page);
1536 unlock_page(page);
1537 page_cache_release(page);
1538
1539 /*
1540 * Make sure that we aren't completely killing
1541 * interactive performance.
1542 */
1543 cond_resched();
1544 if (frontswap && pages_to_unuse > 0) {
1545 if (!--pages_to_unuse)
1546 break;
1547 }
1548 }
1549
1550 mmput(start_mm);
1551 return retval;
1552 }
1553
1554 /*
1555 * After a successful try_to_unuse, if no swap is now in use, we know
1556 * we can empty the mmlist. swap_lock must be held on entry and exit.
1557 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1558 * added to the mmlist just after page_duplicate - before would be racy.
1559 */
1560 static void drain_mmlist(void)
1561 {
1562 struct list_head *p, *next;
1563 unsigned int type;
1564
1565 for (type = 0; type < nr_swapfiles; type++)
1566 if (swap_info[type]->inuse_pages)
1567 return;
1568 spin_lock(&mmlist_lock);
1569 list_for_each_safe(p, next, &init_mm.mmlist)
1570 list_del_init(p);
1571 spin_unlock(&mmlist_lock);
1572 }
1573
1574 /*
1575 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1576 * corresponds to page offset for the specified swap entry.
1577 * Note that the type of this function is sector_t, but it returns page offset
1578 * into the bdev, not sector offset.
1579 */
1580 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1581 {
1582 struct swap_info_struct *sis;
1583 struct swap_extent *start_se;
1584 struct swap_extent *se;
1585 pgoff_t offset;
1586
1587 sis = swap_info[swp_type(entry)];
1588 *bdev = sis->bdev;
1589
1590 offset = swp_offset(entry);
1591 start_se = sis->curr_swap_extent;
1592 se = start_se;
1593
1594 for ( ; ; ) {
1595 struct list_head *lh;
1596
1597 if (se->start_page <= offset &&
1598 offset < (se->start_page + se->nr_pages)) {
1599 return se->start_block + (offset - se->start_page);
1600 }
1601 lh = se->list.next;
1602 se = list_entry(lh, struct swap_extent, list);
1603 sis->curr_swap_extent = se;
1604 BUG_ON(se == start_se); /* It *must* be present */
1605 }
1606 }
1607
1608 /*
1609 * Returns the page offset into bdev for the specified page's swap entry.
1610 */
1611 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1612 {
1613 swp_entry_t entry;
1614 entry.val = page_private(page);
1615 return map_swap_entry(entry, bdev);
1616 }
1617
1618 /*
1619 * Free all of a swapdev's extent information
1620 */
1621 static void destroy_swap_extents(struct swap_info_struct *sis)
1622 {
1623 while (!list_empty(&sis->first_swap_extent.list)) {
1624 struct swap_extent *se;
1625
1626 se = list_entry(sis->first_swap_extent.list.next,
1627 struct swap_extent, list);
1628 list_del(&se->list);
1629 kfree(se);
1630 }
1631
1632 if (sis->flags & SWP_FILE) {
1633 struct file *swap_file = sis->swap_file;
1634 struct address_space *mapping = swap_file->f_mapping;
1635
1636 sis->flags &= ~SWP_FILE;
1637 mapping->a_ops->swap_deactivate(swap_file);
1638 }
1639 }
1640
1641 /*
1642 * Add a block range (and the corresponding page range) into this swapdev's
1643 * extent list. The extent list is kept sorted in page order.
1644 *
1645 * This function rather assumes that it is called in ascending page order.
1646 */
1647 int
1648 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1649 unsigned long nr_pages, sector_t start_block)
1650 {
1651 struct swap_extent *se;
1652 struct swap_extent *new_se;
1653 struct list_head *lh;
1654
1655 if (start_page == 0) {
1656 se = &sis->first_swap_extent;
1657 sis->curr_swap_extent = se;
1658 se->start_page = 0;
1659 se->nr_pages = nr_pages;
1660 se->start_block = start_block;
1661 return 1;
1662 } else {
1663 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1664 se = list_entry(lh, struct swap_extent, list);
1665 BUG_ON(se->start_page + se->nr_pages != start_page);
1666 if (se->start_block + se->nr_pages == start_block) {
1667 /* Merge it */
1668 se->nr_pages += nr_pages;
1669 return 0;
1670 }
1671 }
1672
1673 /*
1674 * No merge. Insert a new extent, preserving ordering.
1675 */
1676 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1677 if (new_se == NULL)
1678 return -ENOMEM;
1679 new_se->start_page = start_page;
1680 new_se->nr_pages = nr_pages;
1681 new_se->start_block = start_block;
1682
1683 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1684 return 1;
1685 }
1686
1687 /*
1688 * A `swap extent' is a simple thing which maps a contiguous range of pages
1689 * onto a contiguous range of disk blocks. An ordered list of swap extents
1690 * is built at swapon time and is then used at swap_writepage/swap_readpage
1691 * time for locating where on disk a page belongs.
1692 *
1693 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1694 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1695 * swap files identically.
1696 *
1697 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1698 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1699 * swapfiles are handled *identically* after swapon time.
1700 *
1701 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1702 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1703 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1704 * requirements, they are simply tossed out - we will never use those blocks
1705 * for swapping.
1706 *
1707 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1708 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1709 * which will scribble on the fs.
1710 *
1711 * The amount of disk space which a single swap extent represents varies.
1712 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1713 * extents in the list. To avoid much list walking, we cache the previous
1714 * search location in `curr_swap_extent', and start new searches from there.
1715 * This is extremely effective. The average number of iterations in
1716 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1717 */
1718 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1719 {
1720 struct file *swap_file = sis->swap_file;
1721 struct address_space *mapping = swap_file->f_mapping;
1722 struct inode *inode = mapping->host;
1723 int ret;
1724
1725 if (S_ISBLK(inode->i_mode)) {
1726 ret = add_swap_extent(sis, 0, sis->max, 0);
1727 *span = sis->pages;
1728 return ret;
1729 }
1730
1731 if (mapping->a_ops->swap_activate) {
1732 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1733 if (!ret) {
1734 sis->flags |= SWP_FILE;
1735 ret = add_swap_extent(sis, 0, sis->max, 0);
1736 *span = sis->pages;
1737 }
1738 return ret;
1739 }
1740
1741 return generic_swapfile_activate(sis, swap_file, span);
1742 }
1743
1744 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1745 unsigned char *swap_map,
1746 struct swap_cluster_info *cluster_info)
1747 {
1748 if (prio >= 0)
1749 p->prio = prio;
1750 else
1751 p->prio = --least_priority;
1752 /*
1753 * the plist prio is negated because plist ordering is
1754 * low-to-high, while swap ordering is high-to-low
1755 */
1756 p->list.prio = -p->prio;
1757 p->avail_list.prio = -p->prio;
1758 p->swap_map = swap_map;
1759 p->cluster_info = cluster_info;
1760 p->flags |= SWP_WRITEOK;
1761 atomic_long_add(p->pages, &nr_swap_pages);
1762 total_swap_pages += p->pages;
1763
1764 assert_spin_locked(&swap_lock);
1765 /*
1766 * both lists are plists, and thus priority ordered.
1767 * swap_active_head needs to be priority ordered for swapoff(),
1768 * which on removal of any swap_info_struct with an auto-assigned
1769 * (i.e. negative) priority increments the auto-assigned priority
1770 * of any lower-priority swap_info_structs.
1771 * swap_avail_head needs to be priority ordered for get_swap_page(),
1772 * which allocates swap pages from the highest available priority
1773 * swap_info_struct.
1774 */
1775 plist_add(&p->list, &swap_active_head);
1776 spin_lock(&swap_avail_lock);
1777 plist_add(&p->avail_list, &swap_avail_head);
1778 spin_unlock(&swap_avail_lock);
1779 }
1780
1781 static void enable_swap_info(struct swap_info_struct *p, int prio,
1782 unsigned char *swap_map,
1783 struct swap_cluster_info *cluster_info,
1784 unsigned long *frontswap_map)
1785 {
1786 frontswap_init(p->type, frontswap_map);
1787 spin_lock(&swap_lock);
1788 spin_lock(&p->lock);
1789 _enable_swap_info(p, prio, swap_map, cluster_info);
1790 spin_unlock(&p->lock);
1791 spin_unlock(&swap_lock);
1792 }
1793
1794 static void reinsert_swap_info(struct swap_info_struct *p)
1795 {
1796 spin_lock(&swap_lock);
1797 spin_lock(&p->lock);
1798 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1799 spin_unlock(&p->lock);
1800 spin_unlock(&swap_lock);
1801 }
1802
1803 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1804 {
1805 struct swap_info_struct *p = NULL;
1806 unsigned char *swap_map;
1807 struct swap_cluster_info *cluster_info;
1808 unsigned long *frontswap_map;
1809 struct file *swap_file, *victim;
1810 struct address_space *mapping;
1811 struct inode *inode;
1812 struct filename *pathname;
1813 int err, found = 0;
1814 unsigned int old_block_size;
1815
1816 if (!capable(CAP_SYS_ADMIN))
1817 return -EPERM;
1818
1819 BUG_ON(!current->mm);
1820
1821 pathname = getname(specialfile);
1822 if (IS_ERR(pathname))
1823 return PTR_ERR(pathname);
1824
1825 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1826 err = PTR_ERR(victim);
1827 if (IS_ERR(victim))
1828 goto out;
1829
1830 mapping = victim->f_mapping;
1831 spin_lock(&swap_lock);
1832 plist_for_each_entry(p, &swap_active_head, list) {
1833 if (p->flags & SWP_WRITEOK) {
1834 if (p->swap_file->f_mapping == mapping) {
1835 found = 1;
1836 break;
1837 }
1838 }
1839 }
1840 if (!found) {
1841 err = -EINVAL;
1842 spin_unlock(&swap_lock);
1843 goto out_dput;
1844 }
1845 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1846 vm_unacct_memory(p->pages);
1847 else {
1848 err = -ENOMEM;
1849 spin_unlock(&swap_lock);
1850 goto out_dput;
1851 }
1852 spin_lock(&swap_avail_lock);
1853 plist_del(&p->avail_list, &swap_avail_head);
1854 spin_unlock(&swap_avail_lock);
1855 spin_lock(&p->lock);
1856 if (p->prio < 0) {
1857 struct swap_info_struct *si = p;
1858
1859 plist_for_each_entry_continue(si, &swap_active_head, list) {
1860 si->prio++;
1861 si->list.prio--;
1862 si->avail_list.prio--;
1863 }
1864 least_priority++;
1865 }
1866 plist_del(&p->list, &swap_active_head);
1867 atomic_long_sub(p->pages, &nr_swap_pages);
1868 total_swap_pages -= p->pages;
1869 p->flags &= ~SWP_WRITEOK;
1870 spin_unlock(&p->lock);
1871 spin_unlock(&swap_lock);
1872
1873 set_current_oom_origin();
1874 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1875 clear_current_oom_origin();
1876
1877 if (err) {
1878 /* re-insert swap space back into swap_list */
1879 reinsert_swap_info(p);
1880 goto out_dput;
1881 }
1882
1883 flush_work(&p->discard_work);
1884
1885 destroy_swap_extents(p);
1886 if (p->flags & SWP_CONTINUED)
1887 free_swap_count_continuations(p);
1888
1889 mutex_lock(&swapon_mutex);
1890 spin_lock(&swap_lock);
1891 spin_lock(&p->lock);
1892 drain_mmlist();
1893
1894 /* wait for anyone still in scan_swap_map */
1895 p->highest_bit = 0; /* cuts scans short */
1896 while (p->flags >= SWP_SCANNING) {
1897 spin_unlock(&p->lock);
1898 spin_unlock(&swap_lock);
1899 schedule_timeout_uninterruptible(1);
1900 spin_lock(&swap_lock);
1901 spin_lock(&p->lock);
1902 }
1903
1904 swap_file = p->swap_file;
1905 old_block_size = p->old_block_size;
1906 p->swap_file = NULL;
1907 p->max = 0;
1908 swap_map = p->swap_map;
1909 p->swap_map = NULL;
1910 cluster_info = p->cluster_info;
1911 p->cluster_info = NULL;
1912 frontswap_map = frontswap_map_get(p);
1913 spin_unlock(&p->lock);
1914 spin_unlock(&swap_lock);
1915 frontswap_invalidate_area(p->type);
1916 frontswap_map_set(p, NULL);
1917 mutex_unlock(&swapon_mutex);
1918 free_percpu(p->percpu_cluster);
1919 p->percpu_cluster = NULL;
1920 vfree(swap_map);
1921 vfree(cluster_info);
1922 vfree(frontswap_map);
1923 /* Destroy swap account information */
1924 swap_cgroup_swapoff(p->type);
1925
1926 inode = mapping->host;
1927 if (S_ISBLK(inode->i_mode)) {
1928 struct block_device *bdev = I_BDEV(inode);
1929 set_blocksize(bdev, old_block_size);
1930 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1931 } else {
1932 mutex_lock(&inode->i_mutex);
1933 inode->i_flags &= ~S_SWAPFILE;
1934 mutex_unlock(&inode->i_mutex);
1935 }
1936 filp_close(swap_file, NULL);
1937
1938 /*
1939 * Clear the SWP_USED flag after all resources are freed so that swapon
1940 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1941 * not hold p->lock after we cleared its SWP_WRITEOK.
1942 */
1943 spin_lock(&swap_lock);
1944 p->flags = 0;
1945 spin_unlock(&swap_lock);
1946
1947 err = 0;
1948 atomic_inc(&proc_poll_event);
1949 wake_up_interruptible(&proc_poll_wait);
1950
1951 out_dput:
1952 filp_close(victim, NULL);
1953 out:
1954 putname(pathname);
1955 return err;
1956 }
1957
1958 #ifdef CONFIG_PROC_FS
1959 static unsigned swaps_poll(struct file *file, poll_table *wait)
1960 {
1961 struct seq_file *seq = file->private_data;
1962
1963 poll_wait(file, &proc_poll_wait, wait);
1964
1965 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1966 seq->poll_event = atomic_read(&proc_poll_event);
1967 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1968 }
1969
1970 return POLLIN | POLLRDNORM;
1971 }
1972
1973 /* iterator */
1974 static void *swap_start(struct seq_file *swap, loff_t *pos)
1975 {
1976 struct swap_info_struct *si;
1977 int type;
1978 loff_t l = *pos;
1979
1980 mutex_lock(&swapon_mutex);
1981
1982 if (!l)
1983 return SEQ_START_TOKEN;
1984
1985 for (type = 0; type < nr_swapfiles; type++) {
1986 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1987 si = swap_info[type];
1988 if (!(si->flags & SWP_USED) || !si->swap_map)
1989 continue;
1990 if (!--l)
1991 return si;
1992 }
1993
1994 return NULL;
1995 }
1996
1997 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1998 {
1999 struct swap_info_struct *si = v;
2000 int type;
2001
2002 if (v == SEQ_START_TOKEN)
2003 type = 0;
2004 else
2005 type = si->type + 1;
2006
2007 for (; type < nr_swapfiles; type++) {
2008 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2009 si = swap_info[type];
2010 if (!(si->flags & SWP_USED) || !si->swap_map)
2011 continue;
2012 ++*pos;
2013 return si;
2014 }
2015
2016 return NULL;
2017 }
2018
2019 static void swap_stop(struct seq_file *swap, void *v)
2020 {
2021 mutex_unlock(&swapon_mutex);
2022 }
2023
2024 static int swap_show(struct seq_file *swap, void *v)
2025 {
2026 struct swap_info_struct *si = v;
2027 struct file *file;
2028 int len;
2029
2030 if (si == SEQ_START_TOKEN) {
2031 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2032 return 0;
2033 }
2034
2035 file = si->swap_file;
2036 len = seq_path(swap, &file->f_path, " \t\n\\");
2037 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2038 len < 40 ? 40 - len : 1, " ",
2039 S_ISBLK(file_inode(file)->i_mode) ?
2040 "partition" : "file\t",
2041 si->pages << (PAGE_SHIFT - 10),
2042 si->inuse_pages << (PAGE_SHIFT - 10),
2043 si->prio);
2044 return 0;
2045 }
2046
2047 static const struct seq_operations swaps_op = {
2048 .start = swap_start,
2049 .next = swap_next,
2050 .stop = swap_stop,
2051 .show = swap_show
2052 };
2053
2054 static int swaps_open(struct inode *inode, struct file *file)
2055 {
2056 struct seq_file *seq;
2057 int ret;
2058
2059 ret = seq_open(file, &swaps_op);
2060 if (ret)
2061 return ret;
2062
2063 seq = file->private_data;
2064 seq->poll_event = atomic_read(&proc_poll_event);
2065 return 0;
2066 }
2067
2068 static const struct file_operations proc_swaps_operations = {
2069 .open = swaps_open,
2070 .read = seq_read,
2071 .llseek = seq_lseek,
2072 .release = seq_release,
2073 .poll = swaps_poll,
2074 };
2075
2076 static int __init procswaps_init(void)
2077 {
2078 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2079 return 0;
2080 }
2081 __initcall(procswaps_init);
2082 #endif /* CONFIG_PROC_FS */
2083
2084 #ifdef MAX_SWAPFILES_CHECK
2085 static int __init max_swapfiles_check(void)
2086 {
2087 MAX_SWAPFILES_CHECK();
2088 return 0;
2089 }
2090 late_initcall(max_swapfiles_check);
2091 #endif
2092
2093 static struct swap_info_struct *alloc_swap_info(void)
2094 {
2095 struct swap_info_struct *p;
2096 unsigned int type;
2097
2098 p = kzalloc(sizeof(*p), GFP_KERNEL);
2099 if (!p)
2100 return ERR_PTR(-ENOMEM);
2101
2102 spin_lock(&swap_lock);
2103 for (type = 0; type < nr_swapfiles; type++) {
2104 if (!(swap_info[type]->flags & SWP_USED))
2105 break;
2106 }
2107 if (type >= MAX_SWAPFILES) {
2108 spin_unlock(&swap_lock);
2109 kfree(p);
2110 return ERR_PTR(-EPERM);
2111 }
2112 if (type >= nr_swapfiles) {
2113 p->type = type;
2114 swap_info[type] = p;
2115 /*
2116 * Write swap_info[type] before nr_swapfiles, in case a
2117 * racing procfs swap_start() or swap_next() is reading them.
2118 * (We never shrink nr_swapfiles, we never free this entry.)
2119 */
2120 smp_wmb();
2121 nr_swapfiles++;
2122 } else {
2123 kfree(p);
2124 p = swap_info[type];
2125 /*
2126 * Do not memset this entry: a racing procfs swap_next()
2127 * would be relying on p->type to remain valid.
2128 */
2129 }
2130 INIT_LIST_HEAD(&p->first_swap_extent.list);
2131 plist_node_init(&p->list, 0);
2132 plist_node_init(&p->avail_list, 0);
2133 p->flags = SWP_USED;
2134 spin_unlock(&swap_lock);
2135 spin_lock_init(&p->lock);
2136
2137 return p;
2138 }
2139
2140 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2141 {
2142 int error;
2143
2144 if (S_ISBLK(inode->i_mode)) {
2145 p->bdev = bdgrab(I_BDEV(inode));
2146 error = blkdev_get(p->bdev,
2147 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2148 sys_swapon);
2149 if (error < 0) {
2150 p->bdev = NULL;
2151 return -EINVAL;
2152 }
2153 p->old_block_size = block_size(p->bdev);
2154 error = set_blocksize(p->bdev, PAGE_SIZE);
2155 if (error < 0)
2156 return error;
2157 p->flags |= SWP_BLKDEV;
2158 } else if (S_ISREG(inode->i_mode)) {
2159 p->bdev = inode->i_sb->s_bdev;
2160 mutex_lock(&inode->i_mutex);
2161 if (IS_SWAPFILE(inode))
2162 return -EBUSY;
2163 } else
2164 return -EINVAL;
2165
2166 return 0;
2167 }
2168
2169 static unsigned long read_swap_header(struct swap_info_struct *p,
2170 union swap_header *swap_header,
2171 struct inode *inode)
2172 {
2173 int i;
2174 unsigned long maxpages;
2175 unsigned long swapfilepages;
2176 unsigned long last_page;
2177
2178 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2179 pr_err("Unable to find swap-space signature\n");
2180 return 0;
2181 }
2182
2183 /* swap partition endianess hack... */
2184 if (swab32(swap_header->info.version) == 1) {
2185 swab32s(&swap_header->info.version);
2186 swab32s(&swap_header->info.last_page);
2187 swab32s(&swap_header->info.nr_badpages);
2188 for (i = 0; i < swap_header->info.nr_badpages; i++)
2189 swab32s(&swap_header->info.badpages[i]);
2190 }
2191 /* Check the swap header's sub-version */
2192 if (swap_header->info.version != 1) {
2193 pr_warn("Unable to handle swap header version %d\n",
2194 swap_header->info.version);
2195 return 0;
2196 }
2197
2198 p->lowest_bit = 1;
2199 p->cluster_next = 1;
2200 p->cluster_nr = 0;
2201
2202 /*
2203 * Find out how many pages are allowed for a single swap
2204 * device. There are two limiting factors: 1) the number
2205 * of bits for the swap offset in the swp_entry_t type, and
2206 * 2) the number of bits in the swap pte as defined by the
2207 * different architectures. In order to find the
2208 * largest possible bit mask, a swap entry with swap type 0
2209 * and swap offset ~0UL is created, encoded to a swap pte,
2210 * decoded to a swp_entry_t again, and finally the swap
2211 * offset is extracted. This will mask all the bits from
2212 * the initial ~0UL mask that can't be encoded in either
2213 * the swp_entry_t or the architecture definition of a
2214 * swap pte.
2215 */
2216 maxpages = swp_offset(pte_to_swp_entry(
2217 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2218 last_page = swap_header->info.last_page;
2219 if (last_page > maxpages) {
2220 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2221 maxpages << (PAGE_SHIFT - 10),
2222 last_page << (PAGE_SHIFT - 10));
2223 }
2224 if (maxpages > last_page) {
2225 maxpages = last_page + 1;
2226 /* p->max is an unsigned int: don't overflow it */
2227 if ((unsigned int)maxpages == 0)
2228 maxpages = UINT_MAX;
2229 }
2230 p->highest_bit = maxpages - 1;
2231
2232 if (!maxpages)
2233 return 0;
2234 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2235 if (swapfilepages && maxpages > swapfilepages) {
2236 pr_warn("Swap area shorter than signature indicates\n");
2237 return 0;
2238 }
2239 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2240 return 0;
2241 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2242 return 0;
2243
2244 return maxpages;
2245 }
2246
2247 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2248 union swap_header *swap_header,
2249 unsigned char *swap_map,
2250 struct swap_cluster_info *cluster_info,
2251 unsigned long maxpages,
2252 sector_t *span)
2253 {
2254 int i;
2255 unsigned int nr_good_pages;
2256 int nr_extents;
2257 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2258 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2259
2260 nr_good_pages = maxpages - 1; /* omit header page */
2261
2262 cluster_set_null(&p->free_cluster_head);
2263 cluster_set_null(&p->free_cluster_tail);
2264 cluster_set_null(&p->discard_cluster_head);
2265 cluster_set_null(&p->discard_cluster_tail);
2266
2267 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2268 unsigned int page_nr = swap_header->info.badpages[i];
2269 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2270 return -EINVAL;
2271 if (page_nr < maxpages) {
2272 swap_map[page_nr] = SWAP_MAP_BAD;
2273 nr_good_pages--;
2274 /*
2275 * Haven't marked the cluster free yet, no list
2276 * operation involved
2277 */
2278 inc_cluster_info_page(p, cluster_info, page_nr);
2279 }
2280 }
2281
2282 /* Haven't marked the cluster free yet, no list operation involved */
2283 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2284 inc_cluster_info_page(p, cluster_info, i);
2285
2286 if (nr_good_pages) {
2287 swap_map[0] = SWAP_MAP_BAD;
2288 /*
2289 * Not mark the cluster free yet, no list
2290 * operation involved
2291 */
2292 inc_cluster_info_page(p, cluster_info, 0);
2293 p->max = maxpages;
2294 p->pages = nr_good_pages;
2295 nr_extents = setup_swap_extents(p, span);
2296 if (nr_extents < 0)
2297 return nr_extents;
2298 nr_good_pages = p->pages;
2299 }
2300 if (!nr_good_pages) {
2301 pr_warn("Empty swap-file\n");
2302 return -EINVAL;
2303 }
2304
2305 if (!cluster_info)
2306 return nr_extents;
2307
2308 for (i = 0; i < nr_clusters; i++) {
2309 if (!cluster_count(&cluster_info[idx])) {
2310 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2311 if (cluster_is_null(&p->free_cluster_head)) {
2312 cluster_set_next_flag(&p->free_cluster_head,
2313 idx, 0);
2314 cluster_set_next_flag(&p->free_cluster_tail,
2315 idx, 0);
2316 } else {
2317 unsigned int tail;
2318
2319 tail = cluster_next(&p->free_cluster_tail);
2320 cluster_set_next(&cluster_info[tail], idx);
2321 cluster_set_next_flag(&p->free_cluster_tail,
2322 idx, 0);
2323 }
2324 }
2325 idx++;
2326 if (idx == nr_clusters)
2327 idx = 0;
2328 }
2329 return nr_extents;
2330 }
2331
2332 /*
2333 * Helper to sys_swapon determining if a given swap
2334 * backing device queue supports DISCARD operations.
2335 */
2336 static bool swap_discardable(struct swap_info_struct *si)
2337 {
2338 struct request_queue *q = bdev_get_queue(si->bdev);
2339
2340 if (!q || !blk_queue_discard(q))
2341 return false;
2342
2343 return true;
2344 }
2345
2346 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2347 {
2348 struct swap_info_struct *p;
2349 struct filename *name;
2350 struct file *swap_file = NULL;
2351 struct address_space *mapping;
2352 int i;
2353 int prio;
2354 int error;
2355 union swap_header *swap_header;
2356 int nr_extents;
2357 sector_t span;
2358 unsigned long maxpages;
2359 unsigned char *swap_map = NULL;
2360 struct swap_cluster_info *cluster_info = NULL;
2361 unsigned long *frontswap_map = NULL;
2362 struct page *page = NULL;
2363 struct inode *inode = NULL;
2364
2365 if (swap_flags & ~SWAP_FLAGS_VALID)
2366 return -EINVAL;
2367
2368 if (!capable(CAP_SYS_ADMIN))
2369 return -EPERM;
2370
2371 p = alloc_swap_info();
2372 if (IS_ERR(p))
2373 return PTR_ERR(p);
2374
2375 INIT_WORK(&p->discard_work, swap_discard_work);
2376
2377 name = getname(specialfile);
2378 if (IS_ERR(name)) {
2379 error = PTR_ERR(name);
2380 name = NULL;
2381 goto bad_swap;
2382 }
2383 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2384 if (IS_ERR(swap_file)) {
2385 error = PTR_ERR(swap_file);
2386 swap_file = NULL;
2387 goto bad_swap;
2388 }
2389
2390 p->swap_file = swap_file;
2391 mapping = swap_file->f_mapping;
2392
2393 for (i = 0; i < nr_swapfiles; i++) {
2394 struct swap_info_struct *q = swap_info[i];
2395
2396 if (q == p || !q->swap_file)
2397 continue;
2398 if (mapping == q->swap_file->f_mapping) {
2399 error = -EBUSY;
2400 goto bad_swap;
2401 }
2402 }
2403
2404 inode = mapping->host;
2405 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2406 error = claim_swapfile(p, inode);
2407 if (unlikely(error))
2408 goto bad_swap;
2409
2410 /*
2411 * Read the swap header.
2412 */
2413 if (!mapping->a_ops->readpage) {
2414 error = -EINVAL;
2415 goto bad_swap;
2416 }
2417 page = read_mapping_page(mapping, 0, swap_file);
2418 if (IS_ERR(page)) {
2419 error = PTR_ERR(page);
2420 goto bad_swap;
2421 }
2422 swap_header = kmap(page);
2423
2424 maxpages = read_swap_header(p, swap_header, inode);
2425 if (unlikely(!maxpages)) {
2426 error = -EINVAL;
2427 goto bad_swap;
2428 }
2429
2430 /* OK, set up the swap map and apply the bad block list */
2431 swap_map = vzalloc(maxpages);
2432 if (!swap_map) {
2433 error = -ENOMEM;
2434 goto bad_swap;
2435 }
2436 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2437 p->flags |= SWP_SOLIDSTATE;
2438 /*
2439 * select a random position to start with to help wear leveling
2440 * SSD
2441 */
2442 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2443
2444 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2445 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2446 if (!cluster_info) {
2447 error = -ENOMEM;
2448 goto bad_swap;
2449 }
2450 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2451 if (!p->percpu_cluster) {
2452 error = -ENOMEM;
2453 goto bad_swap;
2454 }
2455 for_each_possible_cpu(i) {
2456 struct percpu_cluster *cluster;
2457 cluster = per_cpu_ptr(p->percpu_cluster, i);
2458 cluster_set_null(&cluster->index);
2459 }
2460 }
2461
2462 error = swap_cgroup_swapon(p->type, maxpages);
2463 if (error)
2464 goto bad_swap;
2465
2466 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2467 cluster_info, maxpages, &span);
2468 if (unlikely(nr_extents < 0)) {
2469 error = nr_extents;
2470 goto bad_swap;
2471 }
2472 /* frontswap enabled? set up bit-per-page map for frontswap */
2473 if (frontswap_enabled)
2474 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2475
2476 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2477 /*
2478 * When discard is enabled for swap with no particular
2479 * policy flagged, we set all swap discard flags here in
2480 * order to sustain backward compatibility with older
2481 * swapon(8) releases.
2482 */
2483 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2484 SWP_PAGE_DISCARD);
2485
2486 /*
2487 * By flagging sys_swapon, a sysadmin can tell us to
2488 * either do single-time area discards only, or to just
2489 * perform discards for released swap page-clusters.
2490 * Now it's time to adjust the p->flags accordingly.
2491 */
2492 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2493 p->flags &= ~SWP_PAGE_DISCARD;
2494 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2495 p->flags &= ~SWP_AREA_DISCARD;
2496
2497 /* issue a swapon-time discard if it's still required */
2498 if (p->flags & SWP_AREA_DISCARD) {
2499 int err = discard_swap(p);
2500 if (unlikely(err))
2501 pr_err("swapon: discard_swap(%p): %d\n",
2502 p, err);
2503 }
2504 }
2505
2506 mutex_lock(&swapon_mutex);
2507 prio = -1;
2508 if (swap_flags & SWAP_FLAG_PREFER)
2509 prio =
2510 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2511 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2512
2513 pr_info("Adding %uk swap on %s. "
2514 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2515 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2516 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2517 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2518 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2519 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2520 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2521 (frontswap_map) ? "FS" : "");
2522
2523 mutex_unlock(&swapon_mutex);
2524 atomic_inc(&proc_poll_event);
2525 wake_up_interruptible(&proc_poll_wait);
2526
2527 if (S_ISREG(inode->i_mode))
2528 inode->i_flags |= S_SWAPFILE;
2529 error = 0;
2530 goto out;
2531 bad_swap:
2532 free_percpu(p->percpu_cluster);
2533 p->percpu_cluster = NULL;
2534 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2535 set_blocksize(p->bdev, p->old_block_size);
2536 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2537 }
2538 destroy_swap_extents(p);
2539 swap_cgroup_swapoff(p->type);
2540 spin_lock(&swap_lock);
2541 p->swap_file = NULL;
2542 p->flags = 0;
2543 spin_unlock(&swap_lock);
2544 vfree(swap_map);
2545 vfree(cluster_info);
2546 if (swap_file) {
2547 if (inode && S_ISREG(inode->i_mode)) {
2548 mutex_unlock(&inode->i_mutex);
2549 inode = NULL;
2550 }
2551 filp_close(swap_file, NULL);
2552 }
2553 out:
2554 if (page && !IS_ERR(page)) {
2555 kunmap(page);
2556 page_cache_release(page);
2557 }
2558 if (name)
2559 putname(name);
2560 if (inode && S_ISREG(inode->i_mode))
2561 mutex_unlock(&inode->i_mutex);
2562 return error;
2563 }
2564
2565 void si_swapinfo(struct sysinfo *val)
2566 {
2567 unsigned int type;
2568 unsigned long nr_to_be_unused = 0;
2569
2570 spin_lock(&swap_lock);
2571 for (type = 0; type < nr_swapfiles; type++) {
2572 struct swap_info_struct *si = swap_info[type];
2573
2574 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2575 nr_to_be_unused += si->inuse_pages;
2576 }
2577 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2578 val->totalswap = total_swap_pages + nr_to_be_unused;
2579 spin_unlock(&swap_lock);
2580 }
2581
2582 /*
2583 * Verify that a swap entry is valid and increment its swap map count.
2584 *
2585 * Returns error code in following case.
2586 * - success -> 0
2587 * - swp_entry is invalid -> EINVAL
2588 * - swp_entry is migration entry -> EINVAL
2589 * - swap-cache reference is requested but there is already one. -> EEXIST
2590 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2591 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2592 */
2593 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2594 {
2595 struct swap_info_struct *p;
2596 unsigned long offset, type;
2597 unsigned char count;
2598 unsigned char has_cache;
2599 int err = -EINVAL;
2600
2601 if (non_swap_entry(entry))
2602 goto out;
2603
2604 type = swp_type(entry);
2605 if (type >= nr_swapfiles)
2606 goto bad_file;
2607 p = swap_info[type];
2608 offset = swp_offset(entry);
2609
2610 spin_lock(&p->lock);
2611 if (unlikely(offset >= p->max))
2612 goto unlock_out;
2613
2614 count = p->swap_map[offset];
2615
2616 /*
2617 * swapin_readahead() doesn't check if a swap entry is valid, so the
2618 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2619 */
2620 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2621 err = -ENOENT;
2622 goto unlock_out;
2623 }
2624
2625 has_cache = count & SWAP_HAS_CACHE;
2626 count &= ~SWAP_HAS_CACHE;
2627 err = 0;
2628
2629 if (usage == SWAP_HAS_CACHE) {
2630
2631 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2632 if (!has_cache && count)
2633 has_cache = SWAP_HAS_CACHE;
2634 else if (has_cache) /* someone else added cache */
2635 err = -EEXIST;
2636 else /* no users remaining */
2637 err = -ENOENT;
2638
2639 } else if (count || has_cache) {
2640
2641 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2642 count += usage;
2643 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2644 err = -EINVAL;
2645 else if (swap_count_continued(p, offset, count))
2646 count = COUNT_CONTINUED;
2647 else
2648 err = -ENOMEM;
2649 } else
2650 err = -ENOENT; /* unused swap entry */
2651
2652 p->swap_map[offset] = count | has_cache;
2653
2654 unlock_out:
2655 spin_unlock(&p->lock);
2656 out:
2657 return err;
2658
2659 bad_file:
2660 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2661 goto out;
2662 }
2663
2664 /*
2665 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2666 * (in which case its reference count is never incremented).
2667 */
2668 void swap_shmem_alloc(swp_entry_t entry)
2669 {
2670 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2671 }
2672
2673 /*
2674 * Increase reference count of swap entry by 1.
2675 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2676 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2677 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2678 * might occur if a page table entry has got corrupted.
2679 */
2680 int swap_duplicate(swp_entry_t entry)
2681 {
2682 int err = 0;
2683
2684 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2685 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2686 return err;
2687 }
2688
2689 /*
2690 * @entry: swap entry for which we allocate swap cache.
2691 *
2692 * Called when allocating swap cache for existing swap entry,
2693 * This can return error codes. Returns 0 at success.
2694 * -EBUSY means there is a swap cache.
2695 * Note: return code is different from swap_duplicate().
2696 */
2697 int swapcache_prepare(swp_entry_t entry)
2698 {
2699 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2700 }
2701
2702 struct swap_info_struct *page_swap_info(struct page *page)
2703 {
2704 swp_entry_t swap = { .val = page_private(page) };
2705 BUG_ON(!PageSwapCache(page));
2706 return swap_info[swp_type(swap)];
2707 }
2708
2709 /*
2710 * out-of-line __page_file_ methods to avoid include hell.
2711 */
2712 struct address_space *__page_file_mapping(struct page *page)
2713 {
2714 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2715 return page_swap_info(page)->swap_file->f_mapping;
2716 }
2717 EXPORT_SYMBOL_GPL(__page_file_mapping);
2718
2719 pgoff_t __page_file_index(struct page *page)
2720 {
2721 swp_entry_t swap = { .val = page_private(page) };
2722 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2723 return swp_offset(swap);
2724 }
2725 EXPORT_SYMBOL_GPL(__page_file_index);
2726
2727 /*
2728 * add_swap_count_continuation - called when a swap count is duplicated
2729 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2730 * page of the original vmalloc'ed swap_map, to hold the continuation count
2731 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2732 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2733 *
2734 * These continuation pages are seldom referenced: the common paths all work
2735 * on the original swap_map, only referring to a continuation page when the
2736 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2737 *
2738 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2739 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2740 * can be called after dropping locks.
2741 */
2742 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2743 {
2744 struct swap_info_struct *si;
2745 struct page *head;
2746 struct page *page;
2747 struct page *list_page;
2748 pgoff_t offset;
2749 unsigned char count;
2750
2751 /*
2752 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2753 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2754 */
2755 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2756
2757 si = swap_info_get(entry);
2758 if (!si) {
2759 /*
2760 * An acceptable race has occurred since the failing
2761 * __swap_duplicate(): the swap entry has been freed,
2762 * perhaps even the whole swap_map cleared for swapoff.
2763 */
2764 goto outer;
2765 }
2766
2767 offset = swp_offset(entry);
2768 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2769
2770 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2771 /*
2772 * The higher the swap count, the more likely it is that tasks
2773 * will race to add swap count continuation: we need to avoid
2774 * over-provisioning.
2775 */
2776 goto out;
2777 }
2778
2779 if (!page) {
2780 spin_unlock(&si->lock);
2781 return -ENOMEM;
2782 }
2783
2784 /*
2785 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2786 * no architecture is using highmem pages for kernel page tables: so it
2787 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2788 */
2789 head = vmalloc_to_page(si->swap_map + offset);
2790 offset &= ~PAGE_MASK;
2791
2792 /*
2793 * Page allocation does not initialize the page's lru field,
2794 * but it does always reset its private field.
2795 */
2796 if (!page_private(head)) {
2797 BUG_ON(count & COUNT_CONTINUED);
2798 INIT_LIST_HEAD(&head->lru);
2799 set_page_private(head, SWP_CONTINUED);
2800 si->flags |= SWP_CONTINUED;
2801 }
2802
2803 list_for_each_entry(list_page, &head->lru, lru) {
2804 unsigned char *map;
2805
2806 /*
2807 * If the previous map said no continuation, but we've found
2808 * a continuation page, free our allocation and use this one.
2809 */
2810 if (!(count & COUNT_CONTINUED))
2811 goto out;
2812
2813 map = kmap_atomic(list_page) + offset;
2814 count = *map;
2815 kunmap_atomic(map);
2816
2817 /*
2818 * If this continuation count now has some space in it,
2819 * free our allocation and use this one.
2820 */
2821 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2822 goto out;
2823 }
2824
2825 list_add_tail(&page->lru, &head->lru);
2826 page = NULL; /* now it's attached, don't free it */
2827 out:
2828 spin_unlock(&si->lock);
2829 outer:
2830 if (page)
2831 __free_page(page);
2832 return 0;
2833 }
2834
2835 /*
2836 * swap_count_continued - when the original swap_map count is incremented
2837 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2838 * into, carry if so, or else fail until a new continuation page is allocated;
2839 * when the original swap_map count is decremented from 0 with continuation,
2840 * borrow from the continuation and report whether it still holds more.
2841 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2842 */
2843 static bool swap_count_continued(struct swap_info_struct *si,
2844 pgoff_t offset, unsigned char count)
2845 {
2846 struct page *head;
2847 struct page *page;
2848 unsigned char *map;
2849
2850 head = vmalloc_to_page(si->swap_map + offset);
2851 if (page_private(head) != SWP_CONTINUED) {
2852 BUG_ON(count & COUNT_CONTINUED);
2853 return false; /* need to add count continuation */
2854 }
2855
2856 offset &= ~PAGE_MASK;
2857 page = list_entry(head->lru.next, struct page, lru);
2858 map = kmap_atomic(page) + offset;
2859
2860 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2861 goto init_map; /* jump over SWAP_CONT_MAX checks */
2862
2863 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2864 /*
2865 * Think of how you add 1 to 999
2866 */
2867 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2868 kunmap_atomic(map);
2869 page = list_entry(page->lru.next, struct page, lru);
2870 BUG_ON(page == head);
2871 map = kmap_atomic(page) + offset;
2872 }
2873 if (*map == SWAP_CONT_MAX) {
2874 kunmap_atomic(map);
2875 page = list_entry(page->lru.next, struct page, lru);
2876 if (page == head)
2877 return false; /* add count continuation */
2878 map = kmap_atomic(page) + offset;
2879 init_map: *map = 0; /* we didn't zero the page */
2880 }
2881 *map += 1;
2882 kunmap_atomic(map);
2883 page = list_entry(page->lru.prev, struct page, lru);
2884 while (page != head) {
2885 map = kmap_atomic(page) + offset;
2886 *map = COUNT_CONTINUED;
2887 kunmap_atomic(map);
2888 page = list_entry(page->lru.prev, struct page, lru);
2889 }
2890 return true; /* incremented */
2891
2892 } else { /* decrementing */
2893 /*
2894 * Think of how you subtract 1 from 1000
2895 */
2896 BUG_ON(count != COUNT_CONTINUED);
2897 while (*map == COUNT_CONTINUED) {
2898 kunmap_atomic(map);
2899 page = list_entry(page->lru.next, struct page, lru);
2900 BUG_ON(page == head);
2901 map = kmap_atomic(page) + offset;
2902 }
2903 BUG_ON(*map == 0);
2904 *map -= 1;
2905 if (*map == 0)
2906 count = 0;
2907 kunmap_atomic(map);
2908 page = list_entry(page->lru.prev, struct page, lru);
2909 while (page != head) {
2910 map = kmap_atomic(page) + offset;
2911 *map = SWAP_CONT_MAX | count;
2912 count = COUNT_CONTINUED;
2913 kunmap_atomic(map);
2914 page = list_entry(page->lru.prev, struct page, lru);
2915 }
2916 return count == COUNT_CONTINUED;
2917 }
2918 }
2919
2920 /*
2921 * free_swap_count_continuations - swapoff free all the continuation pages
2922 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2923 */
2924 static void free_swap_count_continuations(struct swap_info_struct *si)
2925 {
2926 pgoff_t offset;
2927
2928 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2929 struct page *head;
2930 head = vmalloc_to_page(si->swap_map + offset);
2931 if (page_private(head)) {
2932 struct list_head *this, *next;
2933 list_for_each_safe(this, next, &head->lru) {
2934 struct page *page;
2935 page = list_entry(this, struct page, lru);
2936 list_del(this);
2937 __free_page(page);
2938 }
2939 }
2940 }
2941 }