]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/swapfile.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/tlbflush.h>
43 #include <linux/swapops.h>
44 #include <linux/swap_cgroup.h>
45
46 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
47 unsigned char);
48 static void free_swap_count_continuations(struct swap_info_struct *);
49 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
50
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55 * Some modules use swappable objects and may try to swap them out under
56 * memory pressure (via the shrinker). Before doing so, they may wish to
57 * check to see if any swap space is available.
58 */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority;
63
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68
69 /*
70 * all active swap_info_structs
71 * protected with swap_lock, and ordered by priority.
72 */
73 PLIST_HEAD(swap_active_head);
74
75 /*
76 * all available (active, not full) swap_info_structs
77 * protected with swap_avail_lock, ordered by priority.
78 * This is used by get_swap_page() instead of swap_active_head
79 * because swap_active_head includes all swap_info_structs,
80 * but get_swap_page() doesn't need to look at full ones.
81 * This uses its own lock instead of swap_lock because when a
82 * swap_info_struct changes between not-full/full, it needs to
83 * add/remove itself to/from this list, but the swap_info_struct->lock
84 * is held and the locking order requires swap_lock to be taken
85 * before any swap_info_struct->lock.
86 */
87 static PLIST_HEAD(swap_avail_head);
88 static DEFINE_SPINLOCK(swap_avail_lock);
89
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91
92 static DEFINE_MUTEX(swapon_mutex);
93
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97
98 static inline unsigned char swap_count(unsigned char ent)
99 {
100 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
101 }
102
103 /* returns 1 if swap entry is freed */
104 static int
105 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
106 {
107 swp_entry_t entry = swp_entry(si->type, offset);
108 struct page *page;
109 int ret = 0;
110
111 page = find_get_page(swap_address_space(entry), swp_offset(entry));
112 if (!page)
113 return 0;
114 /*
115 * This function is called from scan_swap_map() and it's called
116 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
117 * We have to use trylock for avoiding deadlock. This is a special
118 * case and you should use try_to_free_swap() with explicit lock_page()
119 * in usual operations.
120 */
121 if (trylock_page(page)) {
122 ret = try_to_free_swap(page);
123 unlock_page(page);
124 }
125 put_page(page);
126 return ret;
127 }
128
129 /*
130 * swapon tell device that all the old swap contents can be discarded,
131 * to allow the swap device to optimize its wear-levelling.
132 */
133 static int discard_swap(struct swap_info_struct *si)
134 {
135 struct swap_extent *se;
136 sector_t start_block;
137 sector_t nr_blocks;
138 int err = 0;
139
140 /* Do not discard the swap header page! */
141 se = &si->first_swap_extent;
142 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
143 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
144 if (nr_blocks) {
145 err = blkdev_issue_discard(si->bdev, start_block,
146 nr_blocks, GFP_KERNEL, 0);
147 if (err)
148 return err;
149 cond_resched();
150 }
151
152 list_for_each_entry(se, &si->first_swap_extent.list, list) {
153 start_block = se->start_block << (PAGE_SHIFT - 9);
154 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
155
156 err = blkdev_issue_discard(si->bdev, start_block,
157 nr_blocks, GFP_KERNEL, 0);
158 if (err)
159 break;
160
161 cond_resched();
162 }
163 return err; /* That will often be -EOPNOTSUPP */
164 }
165
166 /*
167 * swap allocation tell device that a cluster of swap can now be discarded,
168 * to allow the swap device to optimize its wear-levelling.
169 */
170 static void discard_swap_cluster(struct swap_info_struct *si,
171 pgoff_t start_page, pgoff_t nr_pages)
172 {
173 struct swap_extent *se = si->curr_swap_extent;
174 int found_extent = 0;
175
176 while (nr_pages) {
177 if (se->start_page <= start_page &&
178 start_page < se->start_page + se->nr_pages) {
179 pgoff_t offset = start_page - se->start_page;
180 sector_t start_block = se->start_block + offset;
181 sector_t nr_blocks = se->nr_pages - offset;
182
183 if (nr_blocks > nr_pages)
184 nr_blocks = nr_pages;
185 start_page += nr_blocks;
186 nr_pages -= nr_blocks;
187
188 if (!found_extent++)
189 si->curr_swap_extent = se;
190
191 start_block <<= PAGE_SHIFT - 9;
192 nr_blocks <<= PAGE_SHIFT - 9;
193 if (blkdev_issue_discard(si->bdev, start_block,
194 nr_blocks, GFP_NOIO, 0))
195 break;
196 }
197
198 se = list_next_entry(se, list);
199 }
200 }
201
202 #define SWAPFILE_CLUSTER 256
203 #define LATENCY_LIMIT 256
204
205 static inline void cluster_set_flag(struct swap_cluster_info *info,
206 unsigned int flag)
207 {
208 info->flags = flag;
209 }
210
211 static inline unsigned int cluster_count(struct swap_cluster_info *info)
212 {
213 return info->data;
214 }
215
216 static inline void cluster_set_count(struct swap_cluster_info *info,
217 unsigned int c)
218 {
219 info->data = c;
220 }
221
222 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
223 unsigned int c, unsigned int f)
224 {
225 info->flags = f;
226 info->data = c;
227 }
228
229 static inline unsigned int cluster_next(struct swap_cluster_info *info)
230 {
231 return info->data;
232 }
233
234 static inline void cluster_set_next(struct swap_cluster_info *info,
235 unsigned int n)
236 {
237 info->data = n;
238 }
239
240 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
241 unsigned int n, unsigned int f)
242 {
243 info->flags = f;
244 info->data = n;
245 }
246
247 static inline bool cluster_is_free(struct swap_cluster_info *info)
248 {
249 return info->flags & CLUSTER_FLAG_FREE;
250 }
251
252 static inline bool cluster_is_null(struct swap_cluster_info *info)
253 {
254 return info->flags & CLUSTER_FLAG_NEXT_NULL;
255 }
256
257 static inline void cluster_set_null(struct swap_cluster_info *info)
258 {
259 info->flags = CLUSTER_FLAG_NEXT_NULL;
260 info->data = 0;
261 }
262
263 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
264 unsigned long offset)
265 {
266 struct swap_cluster_info *ci;
267
268 ci = si->cluster_info;
269 if (ci) {
270 ci += offset / SWAPFILE_CLUSTER;
271 spin_lock(&ci->lock);
272 }
273 return ci;
274 }
275
276 static inline void unlock_cluster(struct swap_cluster_info *ci)
277 {
278 if (ci)
279 spin_unlock(&ci->lock);
280 }
281
282 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
283 struct swap_info_struct *si,
284 unsigned long offset)
285 {
286 struct swap_cluster_info *ci;
287
288 ci = lock_cluster(si, offset);
289 if (!ci)
290 spin_lock(&si->lock);
291
292 return ci;
293 }
294
295 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
296 struct swap_cluster_info *ci)
297 {
298 if (ci)
299 unlock_cluster(ci);
300 else
301 spin_unlock(&si->lock);
302 }
303
304 static inline bool cluster_list_empty(struct swap_cluster_list *list)
305 {
306 return cluster_is_null(&list->head);
307 }
308
309 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
310 {
311 return cluster_next(&list->head);
312 }
313
314 static void cluster_list_init(struct swap_cluster_list *list)
315 {
316 cluster_set_null(&list->head);
317 cluster_set_null(&list->tail);
318 }
319
320 static void cluster_list_add_tail(struct swap_cluster_list *list,
321 struct swap_cluster_info *ci,
322 unsigned int idx)
323 {
324 if (cluster_list_empty(list)) {
325 cluster_set_next_flag(&list->head, idx, 0);
326 cluster_set_next_flag(&list->tail, idx, 0);
327 } else {
328 struct swap_cluster_info *ci_tail;
329 unsigned int tail = cluster_next(&list->tail);
330
331 /*
332 * Nested cluster lock, but both cluster locks are
333 * only acquired when we held swap_info_struct->lock
334 */
335 ci_tail = ci + tail;
336 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
337 cluster_set_next(ci_tail, idx);
338 unlock_cluster(ci_tail);
339 cluster_set_next_flag(&list->tail, idx, 0);
340 }
341 }
342
343 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
344 struct swap_cluster_info *ci)
345 {
346 unsigned int idx;
347
348 idx = cluster_next(&list->head);
349 if (cluster_next(&list->tail) == idx) {
350 cluster_set_null(&list->head);
351 cluster_set_null(&list->tail);
352 } else
353 cluster_set_next_flag(&list->head,
354 cluster_next(&ci[idx]), 0);
355
356 return idx;
357 }
358
359 /* Add a cluster to discard list and schedule it to do discard */
360 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
361 unsigned int idx)
362 {
363 /*
364 * If scan_swap_map() can't find a free cluster, it will check
365 * si->swap_map directly. To make sure the discarding cluster isn't
366 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
367 * will be cleared after discard
368 */
369 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
370 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
371
372 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
373
374 schedule_work(&si->discard_work);
375 }
376
377 /*
378 * Doing discard actually. After a cluster discard is finished, the cluster
379 * will be added to free cluster list. caller should hold si->lock.
380 */
381 static void swap_do_scheduled_discard(struct swap_info_struct *si)
382 {
383 struct swap_cluster_info *info, *ci;
384 unsigned int idx;
385
386 info = si->cluster_info;
387
388 while (!cluster_list_empty(&si->discard_clusters)) {
389 idx = cluster_list_del_first(&si->discard_clusters, info);
390 spin_unlock(&si->lock);
391
392 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
393 SWAPFILE_CLUSTER);
394
395 spin_lock(&si->lock);
396 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
397 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
398 unlock_cluster(ci);
399 cluster_list_add_tail(&si->free_clusters, info, idx);
400 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
401 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
402 0, SWAPFILE_CLUSTER);
403 unlock_cluster(ci);
404 }
405 }
406
407 static void swap_discard_work(struct work_struct *work)
408 {
409 struct swap_info_struct *si;
410
411 si = container_of(work, struct swap_info_struct, discard_work);
412
413 spin_lock(&si->lock);
414 swap_do_scheduled_discard(si);
415 spin_unlock(&si->lock);
416 }
417
418 /*
419 * The cluster corresponding to page_nr will be used. The cluster will be
420 * removed from free cluster list and its usage counter will be increased.
421 */
422 static void inc_cluster_info_page(struct swap_info_struct *p,
423 struct swap_cluster_info *cluster_info, unsigned long page_nr)
424 {
425 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
426
427 if (!cluster_info)
428 return;
429 if (cluster_is_free(&cluster_info[idx])) {
430 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
431 cluster_list_del_first(&p->free_clusters, cluster_info);
432 cluster_set_count_flag(&cluster_info[idx], 0, 0);
433 }
434
435 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
436 cluster_set_count(&cluster_info[idx],
437 cluster_count(&cluster_info[idx]) + 1);
438 }
439
440 /*
441 * The cluster corresponding to page_nr decreases one usage. If the usage
442 * counter becomes 0, which means no page in the cluster is in using, we can
443 * optionally discard the cluster and add it to free cluster list.
444 */
445 static void dec_cluster_info_page(struct swap_info_struct *p,
446 struct swap_cluster_info *cluster_info, unsigned long page_nr)
447 {
448 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
449
450 if (!cluster_info)
451 return;
452
453 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
454 cluster_set_count(&cluster_info[idx],
455 cluster_count(&cluster_info[idx]) - 1);
456
457 if (cluster_count(&cluster_info[idx]) == 0) {
458 /*
459 * If the swap is discardable, prepare discard the cluster
460 * instead of free it immediately. The cluster will be freed
461 * after discard.
462 */
463 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
464 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
465 swap_cluster_schedule_discard(p, idx);
466 return;
467 }
468
469 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
470 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
471 }
472 }
473
474 /*
475 * It's possible scan_swap_map() uses a free cluster in the middle of free
476 * cluster list. Avoiding such abuse to avoid list corruption.
477 */
478 static bool
479 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
480 unsigned long offset)
481 {
482 struct percpu_cluster *percpu_cluster;
483 bool conflict;
484
485 offset /= SWAPFILE_CLUSTER;
486 conflict = !cluster_list_empty(&si->free_clusters) &&
487 offset != cluster_list_first(&si->free_clusters) &&
488 cluster_is_free(&si->cluster_info[offset]);
489
490 if (!conflict)
491 return false;
492
493 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
494 cluster_set_null(&percpu_cluster->index);
495 return true;
496 }
497
498 /*
499 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
500 * might involve allocating a new cluster for current CPU too.
501 */
502 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
503 unsigned long *offset, unsigned long *scan_base)
504 {
505 struct percpu_cluster *cluster;
506 struct swap_cluster_info *ci;
507 bool found_free;
508 unsigned long tmp, max;
509
510 new_cluster:
511 cluster = this_cpu_ptr(si->percpu_cluster);
512 if (cluster_is_null(&cluster->index)) {
513 if (!cluster_list_empty(&si->free_clusters)) {
514 cluster->index = si->free_clusters.head;
515 cluster->next = cluster_next(&cluster->index) *
516 SWAPFILE_CLUSTER;
517 } else if (!cluster_list_empty(&si->discard_clusters)) {
518 /*
519 * we don't have free cluster but have some clusters in
520 * discarding, do discard now and reclaim them
521 */
522 swap_do_scheduled_discard(si);
523 *scan_base = *offset = si->cluster_next;
524 goto new_cluster;
525 } else
526 return false;
527 }
528
529 found_free = false;
530
531 /*
532 * Other CPUs can use our cluster if they can't find a free cluster,
533 * check if there is still free entry in the cluster
534 */
535 tmp = cluster->next;
536 max = min_t(unsigned long, si->max,
537 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
538 if (tmp >= max) {
539 cluster_set_null(&cluster->index);
540 goto new_cluster;
541 }
542 ci = lock_cluster(si, tmp);
543 while (tmp < max) {
544 if (!si->swap_map[tmp]) {
545 found_free = true;
546 break;
547 }
548 tmp++;
549 }
550 unlock_cluster(ci);
551 if (!found_free) {
552 cluster_set_null(&cluster->index);
553 goto new_cluster;
554 }
555 cluster->next = tmp + 1;
556 *offset = tmp;
557 *scan_base = tmp;
558 return found_free;
559 }
560
561 static int scan_swap_map_slots(struct swap_info_struct *si,
562 unsigned char usage, int nr,
563 swp_entry_t slots[])
564 {
565 struct swap_cluster_info *ci;
566 unsigned long offset;
567 unsigned long scan_base;
568 unsigned long last_in_cluster = 0;
569 int latency_ration = LATENCY_LIMIT;
570 int n_ret = 0;
571
572 if (nr > SWAP_BATCH)
573 nr = SWAP_BATCH;
574
575 /*
576 * We try to cluster swap pages by allocating them sequentially
577 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
578 * way, however, we resort to first-free allocation, starting
579 * a new cluster. This prevents us from scattering swap pages
580 * all over the entire swap partition, so that we reduce
581 * overall disk seek times between swap pages. -- sct
582 * But we do now try to find an empty cluster. -Andrea
583 * And we let swap pages go all over an SSD partition. Hugh
584 */
585
586 si->flags += SWP_SCANNING;
587 scan_base = offset = si->cluster_next;
588
589 /* SSD algorithm */
590 if (si->cluster_info) {
591 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
592 goto checks;
593 else
594 goto scan;
595 }
596
597 if (unlikely(!si->cluster_nr--)) {
598 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
599 si->cluster_nr = SWAPFILE_CLUSTER - 1;
600 goto checks;
601 }
602
603 spin_unlock(&si->lock);
604
605 /*
606 * If seek is expensive, start searching for new cluster from
607 * start of partition, to minimize the span of allocated swap.
608 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
609 * case, just handled by scan_swap_map_try_ssd_cluster() above.
610 */
611 scan_base = offset = si->lowest_bit;
612 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
613
614 /* Locate the first empty (unaligned) cluster */
615 for (; last_in_cluster <= si->highest_bit; offset++) {
616 if (si->swap_map[offset])
617 last_in_cluster = offset + SWAPFILE_CLUSTER;
618 else if (offset == last_in_cluster) {
619 spin_lock(&si->lock);
620 offset -= SWAPFILE_CLUSTER - 1;
621 si->cluster_next = offset;
622 si->cluster_nr = SWAPFILE_CLUSTER - 1;
623 goto checks;
624 }
625 if (unlikely(--latency_ration < 0)) {
626 cond_resched();
627 latency_ration = LATENCY_LIMIT;
628 }
629 }
630
631 offset = scan_base;
632 spin_lock(&si->lock);
633 si->cluster_nr = SWAPFILE_CLUSTER - 1;
634 }
635
636 checks:
637 if (si->cluster_info) {
638 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
639 /* take a break if we already got some slots */
640 if (n_ret)
641 goto done;
642 if (!scan_swap_map_try_ssd_cluster(si, &offset,
643 &scan_base))
644 goto scan;
645 }
646 }
647 if (!(si->flags & SWP_WRITEOK))
648 goto no_page;
649 if (!si->highest_bit)
650 goto no_page;
651 if (offset > si->highest_bit)
652 scan_base = offset = si->lowest_bit;
653
654 ci = lock_cluster(si, offset);
655 /* reuse swap entry of cache-only swap if not busy. */
656 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
657 int swap_was_freed;
658 unlock_cluster(ci);
659 spin_unlock(&si->lock);
660 swap_was_freed = __try_to_reclaim_swap(si, offset);
661 spin_lock(&si->lock);
662 /* entry was freed successfully, try to use this again */
663 if (swap_was_freed)
664 goto checks;
665 goto scan; /* check next one */
666 }
667
668 if (si->swap_map[offset]) {
669 unlock_cluster(ci);
670 if (!n_ret)
671 goto scan;
672 else
673 goto done;
674 }
675
676 if (offset == si->lowest_bit)
677 si->lowest_bit++;
678 if (offset == si->highest_bit)
679 si->highest_bit--;
680 si->inuse_pages++;
681 if (si->inuse_pages == si->pages) {
682 si->lowest_bit = si->max;
683 si->highest_bit = 0;
684 spin_lock(&swap_avail_lock);
685 plist_del(&si->avail_list, &swap_avail_head);
686 spin_unlock(&swap_avail_lock);
687 }
688 si->swap_map[offset] = usage;
689 inc_cluster_info_page(si, si->cluster_info, offset);
690 unlock_cluster(ci);
691 si->cluster_next = offset + 1;
692 slots[n_ret++] = swp_entry(si->type, offset);
693
694 /* got enough slots or reach max slots? */
695 if ((n_ret == nr) || (offset >= si->highest_bit))
696 goto done;
697
698 /* search for next available slot */
699
700 /* time to take a break? */
701 if (unlikely(--latency_ration < 0)) {
702 if (n_ret)
703 goto done;
704 spin_unlock(&si->lock);
705 cond_resched();
706 spin_lock(&si->lock);
707 latency_ration = LATENCY_LIMIT;
708 }
709
710 /* try to get more slots in cluster */
711 if (si->cluster_info) {
712 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
713 goto checks;
714 else
715 goto done;
716 }
717 /* non-ssd case */
718 ++offset;
719
720 /* non-ssd case, still more slots in cluster? */
721 if (si->cluster_nr && !si->swap_map[offset]) {
722 --si->cluster_nr;
723 goto checks;
724 }
725
726 done:
727 si->flags -= SWP_SCANNING;
728 return n_ret;
729
730 scan:
731 spin_unlock(&si->lock);
732 while (++offset <= si->highest_bit) {
733 if (!si->swap_map[offset]) {
734 spin_lock(&si->lock);
735 goto checks;
736 }
737 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
738 spin_lock(&si->lock);
739 goto checks;
740 }
741 if (unlikely(--latency_ration < 0)) {
742 cond_resched();
743 latency_ration = LATENCY_LIMIT;
744 }
745 }
746 offset = si->lowest_bit;
747 while (offset < scan_base) {
748 if (!si->swap_map[offset]) {
749 spin_lock(&si->lock);
750 goto checks;
751 }
752 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
753 spin_lock(&si->lock);
754 goto checks;
755 }
756 if (unlikely(--latency_ration < 0)) {
757 cond_resched();
758 latency_ration = LATENCY_LIMIT;
759 }
760 offset++;
761 }
762 spin_lock(&si->lock);
763
764 no_page:
765 si->flags -= SWP_SCANNING;
766 return n_ret;
767 }
768
769 static unsigned long scan_swap_map(struct swap_info_struct *si,
770 unsigned char usage)
771 {
772 swp_entry_t entry;
773 int n_ret;
774
775 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
776
777 if (n_ret)
778 return swp_offset(entry);
779 else
780 return 0;
781
782 }
783
784 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
785 {
786 struct swap_info_struct *si, *next;
787 long avail_pgs;
788 int n_ret = 0;
789
790 avail_pgs = atomic_long_read(&nr_swap_pages);
791 if (avail_pgs <= 0)
792 goto noswap;
793
794 if (n_goal > SWAP_BATCH)
795 n_goal = SWAP_BATCH;
796
797 if (n_goal > avail_pgs)
798 n_goal = avail_pgs;
799
800 atomic_long_sub(n_goal, &nr_swap_pages);
801
802 spin_lock(&swap_avail_lock);
803
804 start_over:
805 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
806 /* requeue si to after same-priority siblings */
807 plist_requeue(&si->avail_list, &swap_avail_head);
808 spin_unlock(&swap_avail_lock);
809 spin_lock(&si->lock);
810 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
811 spin_lock(&swap_avail_lock);
812 if (plist_node_empty(&si->avail_list)) {
813 spin_unlock(&si->lock);
814 goto nextsi;
815 }
816 WARN(!si->highest_bit,
817 "swap_info %d in list but !highest_bit\n",
818 si->type);
819 WARN(!(si->flags & SWP_WRITEOK),
820 "swap_info %d in list but !SWP_WRITEOK\n",
821 si->type);
822 plist_del(&si->avail_list, &swap_avail_head);
823 spin_unlock(&si->lock);
824 goto nextsi;
825 }
826 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
827 n_goal, swp_entries);
828 spin_unlock(&si->lock);
829 if (n_ret)
830 goto check_out;
831 pr_debug("scan_swap_map of si %d failed to find offset\n",
832 si->type);
833
834 spin_lock(&swap_avail_lock);
835 nextsi:
836 /*
837 * if we got here, it's likely that si was almost full before,
838 * and since scan_swap_map() can drop the si->lock, multiple
839 * callers probably all tried to get a page from the same si
840 * and it filled up before we could get one; or, the si filled
841 * up between us dropping swap_avail_lock and taking si->lock.
842 * Since we dropped the swap_avail_lock, the swap_avail_head
843 * list may have been modified; so if next is still in the
844 * swap_avail_head list then try it, otherwise start over
845 * if we have not gotten any slots.
846 */
847 if (plist_node_empty(&next->avail_list))
848 goto start_over;
849 }
850
851 spin_unlock(&swap_avail_lock);
852
853 check_out:
854 if (n_ret < n_goal)
855 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
856 noswap:
857 return n_ret;
858 }
859
860 /* The only caller of this function is now suspend routine */
861 swp_entry_t get_swap_page_of_type(int type)
862 {
863 struct swap_info_struct *si;
864 pgoff_t offset;
865
866 si = swap_info[type];
867 spin_lock(&si->lock);
868 if (si && (si->flags & SWP_WRITEOK)) {
869 atomic_long_dec(&nr_swap_pages);
870 /* This is called for allocating swap entry, not cache */
871 offset = scan_swap_map(si, 1);
872 if (offset) {
873 spin_unlock(&si->lock);
874 return swp_entry(type, offset);
875 }
876 atomic_long_inc(&nr_swap_pages);
877 }
878 spin_unlock(&si->lock);
879 return (swp_entry_t) {0};
880 }
881
882 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
883 {
884 struct swap_info_struct *p;
885 unsigned long offset, type;
886
887 if (!entry.val)
888 goto out;
889 type = swp_type(entry);
890 if (type >= nr_swapfiles)
891 goto bad_nofile;
892 p = swap_info[type];
893 if (!(p->flags & SWP_USED))
894 goto bad_device;
895 offset = swp_offset(entry);
896 if (offset >= p->max)
897 goto bad_offset;
898 return p;
899
900 bad_offset:
901 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
902 goto out;
903 bad_device:
904 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
905 goto out;
906 bad_nofile:
907 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
908 out:
909 return NULL;
910 }
911
912 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
913 {
914 struct swap_info_struct *p;
915
916 p = __swap_info_get(entry);
917 if (!p)
918 goto out;
919 if (!p->swap_map[swp_offset(entry)])
920 goto bad_free;
921 return p;
922
923 bad_free:
924 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
925 goto out;
926 out:
927 return NULL;
928 }
929
930 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
931 {
932 struct swap_info_struct *p;
933
934 p = _swap_info_get(entry);
935 if (p)
936 spin_lock(&p->lock);
937 return p;
938 }
939
940 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
941 struct swap_info_struct *q)
942 {
943 struct swap_info_struct *p;
944
945 p = _swap_info_get(entry);
946
947 if (p != q) {
948 if (q != NULL)
949 spin_unlock(&q->lock);
950 if (p != NULL)
951 spin_lock(&p->lock);
952 }
953 return p;
954 }
955
956 static unsigned char __swap_entry_free(struct swap_info_struct *p,
957 swp_entry_t entry, unsigned char usage)
958 {
959 struct swap_cluster_info *ci;
960 unsigned long offset = swp_offset(entry);
961 unsigned char count;
962 unsigned char has_cache;
963
964 ci = lock_cluster_or_swap_info(p, offset);
965
966 count = p->swap_map[offset];
967
968 has_cache = count & SWAP_HAS_CACHE;
969 count &= ~SWAP_HAS_CACHE;
970
971 if (usage == SWAP_HAS_CACHE) {
972 VM_BUG_ON(!has_cache);
973 has_cache = 0;
974 } else if (count == SWAP_MAP_SHMEM) {
975 /*
976 * Or we could insist on shmem.c using a special
977 * swap_shmem_free() and free_shmem_swap_and_cache()...
978 */
979 count = 0;
980 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
981 if (count == COUNT_CONTINUED) {
982 if (swap_count_continued(p, offset, count))
983 count = SWAP_MAP_MAX | COUNT_CONTINUED;
984 else
985 count = SWAP_MAP_MAX;
986 } else
987 count--;
988 }
989
990 usage = count | has_cache;
991 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
992
993 unlock_cluster_or_swap_info(p, ci);
994
995 return usage;
996 }
997
998 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
999 {
1000 struct swap_cluster_info *ci;
1001 unsigned long offset = swp_offset(entry);
1002 unsigned char count;
1003
1004 ci = lock_cluster(p, offset);
1005 count = p->swap_map[offset];
1006 VM_BUG_ON(count != SWAP_HAS_CACHE);
1007 p->swap_map[offset] = 0;
1008 dec_cluster_info_page(p, p->cluster_info, offset);
1009 unlock_cluster(ci);
1010
1011 mem_cgroup_uncharge_swap(entry);
1012 if (offset < p->lowest_bit)
1013 p->lowest_bit = offset;
1014 if (offset > p->highest_bit) {
1015 bool was_full = !p->highest_bit;
1016
1017 p->highest_bit = offset;
1018 if (was_full && (p->flags & SWP_WRITEOK)) {
1019 spin_lock(&swap_avail_lock);
1020 WARN_ON(!plist_node_empty(&p->avail_list));
1021 if (plist_node_empty(&p->avail_list))
1022 plist_add(&p->avail_list,
1023 &swap_avail_head);
1024 spin_unlock(&swap_avail_lock);
1025 }
1026 }
1027 atomic_long_inc(&nr_swap_pages);
1028 p->inuse_pages--;
1029 frontswap_invalidate_page(p->type, offset);
1030 if (p->flags & SWP_BLKDEV) {
1031 struct gendisk *disk = p->bdev->bd_disk;
1032
1033 if (disk->fops->swap_slot_free_notify)
1034 disk->fops->swap_slot_free_notify(p->bdev,
1035 offset);
1036 }
1037 }
1038
1039 /*
1040 * Caller has made sure that the swap device corresponding to entry
1041 * is still around or has not been recycled.
1042 */
1043 void swap_free(swp_entry_t entry)
1044 {
1045 struct swap_info_struct *p;
1046
1047 p = _swap_info_get(entry);
1048 if (p) {
1049 if (!__swap_entry_free(p, entry, 1))
1050 free_swap_slot(entry);
1051 }
1052 }
1053
1054 /*
1055 * Called after dropping swapcache to decrease refcnt to swap entries.
1056 */
1057 void swapcache_free(swp_entry_t entry)
1058 {
1059 struct swap_info_struct *p;
1060
1061 p = _swap_info_get(entry);
1062 if (p) {
1063 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1064 free_swap_slot(entry);
1065 }
1066 }
1067
1068 void swapcache_free_entries(swp_entry_t *entries, int n)
1069 {
1070 struct swap_info_struct *p, *prev;
1071 int i;
1072
1073 if (n <= 0)
1074 return;
1075
1076 prev = NULL;
1077 p = NULL;
1078 for (i = 0; i < n; ++i) {
1079 p = swap_info_get_cont(entries[i], prev);
1080 if (p)
1081 swap_entry_free(p, entries[i]);
1082 else
1083 break;
1084 prev = p;
1085 }
1086 if (p)
1087 spin_unlock(&p->lock);
1088 }
1089
1090 /*
1091 * How many references to page are currently swapped out?
1092 * This does not give an exact answer when swap count is continued,
1093 * but does include the high COUNT_CONTINUED flag to allow for that.
1094 */
1095 int page_swapcount(struct page *page)
1096 {
1097 int count = 0;
1098 struct swap_info_struct *p;
1099 struct swap_cluster_info *ci;
1100 swp_entry_t entry;
1101 unsigned long offset;
1102
1103 entry.val = page_private(page);
1104 p = _swap_info_get(entry);
1105 if (p) {
1106 offset = swp_offset(entry);
1107 ci = lock_cluster_or_swap_info(p, offset);
1108 count = swap_count(p->swap_map[offset]);
1109 unlock_cluster_or_swap_info(p, ci);
1110 }
1111 return count;
1112 }
1113
1114 /*
1115 * How many references to @entry are currently swapped out?
1116 * This does not give an exact answer when swap count is continued,
1117 * but does include the high COUNT_CONTINUED flag to allow for that.
1118 */
1119 int __swp_swapcount(swp_entry_t entry)
1120 {
1121 int count = 0;
1122 pgoff_t offset;
1123 struct swap_info_struct *si;
1124 struct swap_cluster_info *ci;
1125
1126 si = __swap_info_get(entry);
1127 if (si) {
1128 offset = swp_offset(entry);
1129 ci = lock_cluster_or_swap_info(si, offset);
1130 count = swap_count(si->swap_map[offset]);
1131 unlock_cluster_or_swap_info(si, ci);
1132 }
1133 return count;
1134 }
1135
1136 /*
1137 * How many references to @entry are currently swapped out?
1138 * This considers COUNT_CONTINUED so it returns exact answer.
1139 */
1140 int swp_swapcount(swp_entry_t entry)
1141 {
1142 int count, tmp_count, n;
1143 struct swap_info_struct *p;
1144 struct swap_cluster_info *ci;
1145 struct page *page;
1146 pgoff_t offset;
1147 unsigned char *map;
1148
1149 p = _swap_info_get(entry);
1150 if (!p)
1151 return 0;
1152
1153 offset = swp_offset(entry);
1154
1155 ci = lock_cluster_or_swap_info(p, offset);
1156
1157 count = swap_count(p->swap_map[offset]);
1158 if (!(count & COUNT_CONTINUED))
1159 goto out;
1160
1161 count &= ~COUNT_CONTINUED;
1162 n = SWAP_MAP_MAX + 1;
1163
1164 page = vmalloc_to_page(p->swap_map + offset);
1165 offset &= ~PAGE_MASK;
1166 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1167
1168 do {
1169 page = list_next_entry(page, lru);
1170 map = kmap_atomic(page);
1171 tmp_count = map[offset];
1172 kunmap_atomic(map);
1173
1174 count += (tmp_count & ~COUNT_CONTINUED) * n;
1175 n *= (SWAP_CONT_MAX + 1);
1176 } while (tmp_count & COUNT_CONTINUED);
1177 out:
1178 unlock_cluster_or_swap_info(p, ci);
1179 return count;
1180 }
1181
1182 /*
1183 * We can write to an anon page without COW if there are no other references
1184 * to it. And as a side-effect, free up its swap: because the old content
1185 * on disk will never be read, and seeking back there to write new content
1186 * later would only waste time away from clustering.
1187 *
1188 * NOTE: total_mapcount should not be relied upon by the caller if
1189 * reuse_swap_page() returns false, but it may be always overwritten
1190 * (see the other implementation for CONFIG_SWAP=n).
1191 */
1192 bool reuse_swap_page(struct page *page, int *total_mapcount)
1193 {
1194 int count;
1195
1196 VM_BUG_ON_PAGE(!PageLocked(page), page);
1197 if (unlikely(PageKsm(page)))
1198 return false;
1199 count = page_trans_huge_mapcount(page, total_mapcount);
1200 if (count <= 1 && PageSwapCache(page)) {
1201 count += page_swapcount(page);
1202 if (count != 1)
1203 goto out;
1204 if (!PageWriteback(page)) {
1205 delete_from_swap_cache(page);
1206 SetPageDirty(page);
1207 } else {
1208 swp_entry_t entry;
1209 struct swap_info_struct *p;
1210
1211 entry.val = page_private(page);
1212 p = swap_info_get(entry);
1213 if (p->flags & SWP_STABLE_WRITES) {
1214 spin_unlock(&p->lock);
1215 return false;
1216 }
1217 spin_unlock(&p->lock);
1218 }
1219 }
1220 out:
1221 return count <= 1;
1222 }
1223
1224 /*
1225 * If swap is getting full, or if there are no more mappings of this page,
1226 * then try_to_free_swap is called to free its swap space.
1227 */
1228 int try_to_free_swap(struct page *page)
1229 {
1230 VM_BUG_ON_PAGE(!PageLocked(page), page);
1231
1232 if (!PageSwapCache(page))
1233 return 0;
1234 if (PageWriteback(page))
1235 return 0;
1236 if (page_swapcount(page))
1237 return 0;
1238
1239 /*
1240 * Once hibernation has begun to create its image of memory,
1241 * there's a danger that one of the calls to try_to_free_swap()
1242 * - most probably a call from __try_to_reclaim_swap() while
1243 * hibernation is allocating its own swap pages for the image,
1244 * but conceivably even a call from memory reclaim - will free
1245 * the swap from a page which has already been recorded in the
1246 * image as a clean swapcache page, and then reuse its swap for
1247 * another page of the image. On waking from hibernation, the
1248 * original page might be freed under memory pressure, then
1249 * later read back in from swap, now with the wrong data.
1250 *
1251 * Hibernation suspends storage while it is writing the image
1252 * to disk so check that here.
1253 */
1254 if (pm_suspended_storage())
1255 return 0;
1256
1257 delete_from_swap_cache(page);
1258 SetPageDirty(page);
1259 return 1;
1260 }
1261
1262 /*
1263 * Free the swap entry like above, but also try to
1264 * free the page cache entry if it is the last user.
1265 */
1266 int free_swap_and_cache(swp_entry_t entry)
1267 {
1268 struct swap_info_struct *p;
1269 struct page *page = NULL;
1270 unsigned char count;
1271
1272 if (non_swap_entry(entry))
1273 return 1;
1274
1275 p = _swap_info_get(entry);
1276 if (p) {
1277 count = __swap_entry_free(p, entry, 1);
1278 if (count == SWAP_HAS_CACHE) {
1279 page = find_get_page(swap_address_space(entry),
1280 swp_offset(entry));
1281 if (page && !trylock_page(page)) {
1282 put_page(page);
1283 page = NULL;
1284 }
1285 } else if (!count)
1286 free_swap_slot(entry);
1287 }
1288 if (page) {
1289 /*
1290 * Not mapped elsewhere, or swap space full? Free it!
1291 * Also recheck PageSwapCache now page is locked (above).
1292 */
1293 if (PageSwapCache(page) && !PageWriteback(page) &&
1294 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1295 delete_from_swap_cache(page);
1296 SetPageDirty(page);
1297 }
1298 unlock_page(page);
1299 put_page(page);
1300 }
1301 return p != NULL;
1302 }
1303
1304 #ifdef CONFIG_HIBERNATION
1305 /*
1306 * Find the swap type that corresponds to given device (if any).
1307 *
1308 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1309 * from 0, in which the swap header is expected to be located.
1310 *
1311 * This is needed for the suspend to disk (aka swsusp).
1312 */
1313 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1314 {
1315 struct block_device *bdev = NULL;
1316 int type;
1317
1318 if (device)
1319 bdev = bdget(device);
1320
1321 spin_lock(&swap_lock);
1322 for (type = 0; type < nr_swapfiles; type++) {
1323 struct swap_info_struct *sis = swap_info[type];
1324
1325 if (!(sis->flags & SWP_WRITEOK))
1326 continue;
1327
1328 if (!bdev) {
1329 if (bdev_p)
1330 *bdev_p = bdgrab(sis->bdev);
1331
1332 spin_unlock(&swap_lock);
1333 return type;
1334 }
1335 if (bdev == sis->bdev) {
1336 struct swap_extent *se = &sis->first_swap_extent;
1337
1338 if (se->start_block == offset) {
1339 if (bdev_p)
1340 *bdev_p = bdgrab(sis->bdev);
1341
1342 spin_unlock(&swap_lock);
1343 bdput(bdev);
1344 return type;
1345 }
1346 }
1347 }
1348 spin_unlock(&swap_lock);
1349 if (bdev)
1350 bdput(bdev);
1351
1352 return -ENODEV;
1353 }
1354
1355 /*
1356 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1357 * corresponding to given index in swap_info (swap type).
1358 */
1359 sector_t swapdev_block(int type, pgoff_t offset)
1360 {
1361 struct block_device *bdev;
1362
1363 if ((unsigned int)type >= nr_swapfiles)
1364 return 0;
1365 if (!(swap_info[type]->flags & SWP_WRITEOK))
1366 return 0;
1367 return map_swap_entry(swp_entry(type, offset), &bdev);
1368 }
1369
1370 /*
1371 * Return either the total number of swap pages of given type, or the number
1372 * of free pages of that type (depending on @free)
1373 *
1374 * This is needed for software suspend
1375 */
1376 unsigned int count_swap_pages(int type, int free)
1377 {
1378 unsigned int n = 0;
1379
1380 spin_lock(&swap_lock);
1381 if ((unsigned int)type < nr_swapfiles) {
1382 struct swap_info_struct *sis = swap_info[type];
1383
1384 spin_lock(&sis->lock);
1385 if (sis->flags & SWP_WRITEOK) {
1386 n = sis->pages;
1387 if (free)
1388 n -= sis->inuse_pages;
1389 }
1390 spin_unlock(&sis->lock);
1391 }
1392 spin_unlock(&swap_lock);
1393 return n;
1394 }
1395 #endif /* CONFIG_HIBERNATION */
1396
1397 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1398 {
1399 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1400 }
1401
1402 /*
1403 * No need to decide whether this PTE shares the swap entry with others,
1404 * just let do_wp_page work it out if a write is requested later - to
1405 * force COW, vm_page_prot omits write permission from any private vma.
1406 */
1407 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1408 unsigned long addr, swp_entry_t entry, struct page *page)
1409 {
1410 struct page *swapcache;
1411 struct mem_cgroup *memcg;
1412 spinlock_t *ptl;
1413 pte_t *pte;
1414 int ret = 1;
1415
1416 swapcache = page;
1417 page = ksm_might_need_to_copy(page, vma, addr);
1418 if (unlikely(!page))
1419 return -ENOMEM;
1420
1421 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1422 &memcg, false)) {
1423 ret = -ENOMEM;
1424 goto out_nolock;
1425 }
1426
1427 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1428 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1429 mem_cgroup_cancel_charge(page, memcg, false);
1430 ret = 0;
1431 goto out;
1432 }
1433
1434 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1435 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1436 get_page(page);
1437 set_pte_at(vma->vm_mm, addr, pte,
1438 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1439 if (page == swapcache) {
1440 page_add_anon_rmap(page, vma, addr, false);
1441 mem_cgroup_commit_charge(page, memcg, true, false);
1442 } else { /* ksm created a completely new copy */
1443 page_add_new_anon_rmap(page, vma, addr, false);
1444 mem_cgroup_commit_charge(page, memcg, false, false);
1445 lru_cache_add_active_or_unevictable(page, vma);
1446 }
1447 swap_free(entry);
1448 /*
1449 * Move the page to the active list so it is not
1450 * immediately swapped out again after swapon.
1451 */
1452 activate_page(page);
1453 out:
1454 pte_unmap_unlock(pte, ptl);
1455 out_nolock:
1456 if (page != swapcache) {
1457 unlock_page(page);
1458 put_page(page);
1459 }
1460 return ret;
1461 }
1462
1463 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1464 unsigned long addr, unsigned long end,
1465 swp_entry_t entry, struct page *page)
1466 {
1467 pte_t swp_pte = swp_entry_to_pte(entry);
1468 pte_t *pte;
1469 int ret = 0;
1470
1471 /*
1472 * We don't actually need pte lock while scanning for swp_pte: since
1473 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1474 * page table while we're scanning; though it could get zapped, and on
1475 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1476 * of unmatched parts which look like swp_pte, so unuse_pte must
1477 * recheck under pte lock. Scanning without pte lock lets it be
1478 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1479 */
1480 pte = pte_offset_map(pmd, addr);
1481 do {
1482 /*
1483 * swapoff spends a _lot_ of time in this loop!
1484 * Test inline before going to call unuse_pte.
1485 */
1486 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1487 pte_unmap(pte);
1488 ret = unuse_pte(vma, pmd, addr, entry, page);
1489 if (ret)
1490 goto out;
1491 pte = pte_offset_map(pmd, addr);
1492 }
1493 } while (pte++, addr += PAGE_SIZE, addr != end);
1494 pte_unmap(pte - 1);
1495 out:
1496 return ret;
1497 }
1498
1499 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1500 unsigned long addr, unsigned long end,
1501 swp_entry_t entry, struct page *page)
1502 {
1503 pmd_t *pmd;
1504 unsigned long next;
1505 int ret;
1506
1507 pmd = pmd_offset(pud, addr);
1508 do {
1509 cond_resched();
1510 next = pmd_addr_end(addr, end);
1511 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1512 continue;
1513 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1514 if (ret)
1515 return ret;
1516 } while (pmd++, addr = next, addr != end);
1517 return 0;
1518 }
1519
1520 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1521 unsigned long addr, unsigned long end,
1522 swp_entry_t entry, struct page *page)
1523 {
1524 pud_t *pud;
1525 unsigned long next;
1526 int ret;
1527
1528 pud = pud_offset(pgd, addr);
1529 do {
1530 next = pud_addr_end(addr, end);
1531 if (pud_none_or_clear_bad(pud))
1532 continue;
1533 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1534 if (ret)
1535 return ret;
1536 } while (pud++, addr = next, addr != end);
1537 return 0;
1538 }
1539
1540 static int unuse_vma(struct vm_area_struct *vma,
1541 swp_entry_t entry, struct page *page)
1542 {
1543 pgd_t *pgd;
1544 unsigned long addr, end, next;
1545 int ret;
1546
1547 if (page_anon_vma(page)) {
1548 addr = page_address_in_vma(page, vma);
1549 if (addr == -EFAULT)
1550 return 0;
1551 else
1552 end = addr + PAGE_SIZE;
1553 } else {
1554 addr = vma->vm_start;
1555 end = vma->vm_end;
1556 }
1557
1558 pgd = pgd_offset(vma->vm_mm, addr);
1559 do {
1560 next = pgd_addr_end(addr, end);
1561 if (pgd_none_or_clear_bad(pgd))
1562 continue;
1563 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1564 if (ret)
1565 return ret;
1566 } while (pgd++, addr = next, addr != end);
1567 return 0;
1568 }
1569
1570 static int unuse_mm(struct mm_struct *mm,
1571 swp_entry_t entry, struct page *page)
1572 {
1573 struct vm_area_struct *vma;
1574 int ret = 0;
1575
1576 if (!down_read_trylock(&mm->mmap_sem)) {
1577 /*
1578 * Activate page so shrink_inactive_list is unlikely to unmap
1579 * its ptes while lock is dropped, so swapoff can make progress.
1580 */
1581 activate_page(page);
1582 unlock_page(page);
1583 down_read(&mm->mmap_sem);
1584 lock_page(page);
1585 }
1586 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1587 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1588 break;
1589 cond_resched();
1590 }
1591 up_read(&mm->mmap_sem);
1592 return (ret < 0)? ret: 0;
1593 }
1594
1595 /*
1596 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1597 * from current position to next entry still in use.
1598 * Recycle to start on reaching the end, returning 0 when empty.
1599 */
1600 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1601 unsigned int prev, bool frontswap)
1602 {
1603 unsigned int max = si->max;
1604 unsigned int i = prev;
1605 unsigned char count;
1606
1607 /*
1608 * No need for swap_lock here: we're just looking
1609 * for whether an entry is in use, not modifying it; false
1610 * hits are okay, and sys_swapoff() has already prevented new
1611 * allocations from this area (while holding swap_lock).
1612 */
1613 for (;;) {
1614 if (++i >= max) {
1615 if (!prev) {
1616 i = 0;
1617 break;
1618 }
1619 /*
1620 * No entries in use at top of swap_map,
1621 * loop back to start and recheck there.
1622 */
1623 max = prev + 1;
1624 prev = 0;
1625 i = 1;
1626 }
1627 count = READ_ONCE(si->swap_map[i]);
1628 if (count && swap_count(count) != SWAP_MAP_BAD)
1629 if (!frontswap || frontswap_test(si, i))
1630 break;
1631 if ((i % LATENCY_LIMIT) == 0)
1632 cond_resched();
1633 }
1634 return i;
1635 }
1636
1637 /*
1638 * We completely avoid races by reading each swap page in advance,
1639 * and then search for the process using it. All the necessary
1640 * page table adjustments can then be made atomically.
1641 *
1642 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1643 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1644 */
1645 int try_to_unuse(unsigned int type, bool frontswap,
1646 unsigned long pages_to_unuse)
1647 {
1648 struct swap_info_struct *si = swap_info[type];
1649 struct mm_struct *start_mm;
1650 volatile unsigned char *swap_map; /* swap_map is accessed without
1651 * locking. Mark it as volatile
1652 * to prevent compiler doing
1653 * something odd.
1654 */
1655 unsigned char swcount;
1656 struct page *page;
1657 swp_entry_t entry;
1658 unsigned int i = 0;
1659 int retval = 0;
1660
1661 /*
1662 * When searching mms for an entry, a good strategy is to
1663 * start at the first mm we freed the previous entry from
1664 * (though actually we don't notice whether we or coincidence
1665 * freed the entry). Initialize this start_mm with a hold.
1666 *
1667 * A simpler strategy would be to start at the last mm we
1668 * freed the previous entry from; but that would take less
1669 * advantage of mmlist ordering, which clusters forked mms
1670 * together, child after parent. If we race with dup_mmap(), we
1671 * prefer to resolve parent before child, lest we miss entries
1672 * duplicated after we scanned child: using last mm would invert
1673 * that.
1674 */
1675 start_mm = &init_mm;
1676 mmget(&init_mm);
1677
1678 /*
1679 * Keep on scanning until all entries have gone. Usually,
1680 * one pass through swap_map is enough, but not necessarily:
1681 * there are races when an instance of an entry might be missed.
1682 */
1683 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1684 if (signal_pending(current)) {
1685 retval = -EINTR;
1686 break;
1687 }
1688
1689 /*
1690 * Get a page for the entry, using the existing swap
1691 * cache page if there is one. Otherwise, get a clean
1692 * page and read the swap into it.
1693 */
1694 swap_map = &si->swap_map[i];
1695 entry = swp_entry(type, i);
1696 page = read_swap_cache_async(entry,
1697 GFP_HIGHUSER_MOVABLE, NULL, 0);
1698 if (!page) {
1699 /*
1700 * Either swap_duplicate() failed because entry
1701 * has been freed independently, and will not be
1702 * reused since sys_swapoff() already disabled
1703 * allocation from here, or alloc_page() failed.
1704 */
1705 swcount = *swap_map;
1706 /*
1707 * We don't hold lock here, so the swap entry could be
1708 * SWAP_MAP_BAD (when the cluster is discarding).
1709 * Instead of fail out, We can just skip the swap
1710 * entry because swapoff will wait for discarding
1711 * finish anyway.
1712 */
1713 if (!swcount || swcount == SWAP_MAP_BAD)
1714 continue;
1715 retval = -ENOMEM;
1716 break;
1717 }
1718
1719 /*
1720 * Don't hold on to start_mm if it looks like exiting.
1721 */
1722 if (atomic_read(&start_mm->mm_users) == 1) {
1723 mmput(start_mm);
1724 start_mm = &init_mm;
1725 mmget(&init_mm);
1726 }
1727
1728 /*
1729 * Wait for and lock page. When do_swap_page races with
1730 * try_to_unuse, do_swap_page can handle the fault much
1731 * faster than try_to_unuse can locate the entry. This
1732 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1733 * defer to do_swap_page in such a case - in some tests,
1734 * do_swap_page and try_to_unuse repeatedly compete.
1735 */
1736 wait_on_page_locked(page);
1737 wait_on_page_writeback(page);
1738 lock_page(page);
1739 wait_on_page_writeback(page);
1740
1741 /*
1742 * Remove all references to entry.
1743 */
1744 swcount = *swap_map;
1745 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1746 retval = shmem_unuse(entry, page);
1747 /* page has already been unlocked and released */
1748 if (retval < 0)
1749 break;
1750 continue;
1751 }
1752 if (swap_count(swcount) && start_mm != &init_mm)
1753 retval = unuse_mm(start_mm, entry, page);
1754
1755 if (swap_count(*swap_map)) {
1756 int set_start_mm = (*swap_map >= swcount);
1757 struct list_head *p = &start_mm->mmlist;
1758 struct mm_struct *new_start_mm = start_mm;
1759 struct mm_struct *prev_mm = start_mm;
1760 struct mm_struct *mm;
1761
1762 mmget(new_start_mm);
1763 mmget(prev_mm);
1764 spin_lock(&mmlist_lock);
1765 while (swap_count(*swap_map) && !retval &&
1766 (p = p->next) != &start_mm->mmlist) {
1767 mm = list_entry(p, struct mm_struct, mmlist);
1768 if (!mmget_not_zero(mm))
1769 continue;
1770 spin_unlock(&mmlist_lock);
1771 mmput(prev_mm);
1772 prev_mm = mm;
1773
1774 cond_resched();
1775
1776 swcount = *swap_map;
1777 if (!swap_count(swcount)) /* any usage ? */
1778 ;
1779 else if (mm == &init_mm)
1780 set_start_mm = 1;
1781 else
1782 retval = unuse_mm(mm, entry, page);
1783
1784 if (set_start_mm && *swap_map < swcount) {
1785 mmput(new_start_mm);
1786 mmget(mm);
1787 new_start_mm = mm;
1788 set_start_mm = 0;
1789 }
1790 spin_lock(&mmlist_lock);
1791 }
1792 spin_unlock(&mmlist_lock);
1793 mmput(prev_mm);
1794 mmput(start_mm);
1795 start_mm = new_start_mm;
1796 }
1797 if (retval) {
1798 unlock_page(page);
1799 put_page(page);
1800 break;
1801 }
1802
1803 /*
1804 * If a reference remains (rare), we would like to leave
1805 * the page in the swap cache; but try_to_unmap could
1806 * then re-duplicate the entry once we drop page lock,
1807 * so we might loop indefinitely; also, that page could
1808 * not be swapped out to other storage meanwhile. So:
1809 * delete from cache even if there's another reference,
1810 * after ensuring that the data has been saved to disk -
1811 * since if the reference remains (rarer), it will be
1812 * read from disk into another page. Splitting into two
1813 * pages would be incorrect if swap supported "shared
1814 * private" pages, but they are handled by tmpfs files.
1815 *
1816 * Given how unuse_vma() targets one particular offset
1817 * in an anon_vma, once the anon_vma has been determined,
1818 * this splitting happens to be just what is needed to
1819 * handle where KSM pages have been swapped out: re-reading
1820 * is unnecessarily slow, but we can fix that later on.
1821 */
1822 if (swap_count(*swap_map) &&
1823 PageDirty(page) && PageSwapCache(page)) {
1824 struct writeback_control wbc = {
1825 .sync_mode = WB_SYNC_NONE,
1826 };
1827
1828 swap_writepage(page, &wbc);
1829 lock_page(page);
1830 wait_on_page_writeback(page);
1831 }
1832
1833 /*
1834 * It is conceivable that a racing task removed this page from
1835 * swap cache just before we acquired the page lock at the top,
1836 * or while we dropped it in unuse_mm(). The page might even
1837 * be back in swap cache on another swap area: that we must not
1838 * delete, since it may not have been written out to swap yet.
1839 */
1840 if (PageSwapCache(page) &&
1841 likely(page_private(page) == entry.val))
1842 delete_from_swap_cache(page);
1843
1844 /*
1845 * So we could skip searching mms once swap count went
1846 * to 1, we did not mark any present ptes as dirty: must
1847 * mark page dirty so shrink_page_list will preserve it.
1848 */
1849 SetPageDirty(page);
1850 unlock_page(page);
1851 put_page(page);
1852
1853 /*
1854 * Make sure that we aren't completely killing
1855 * interactive performance.
1856 */
1857 cond_resched();
1858 if (frontswap && pages_to_unuse > 0) {
1859 if (!--pages_to_unuse)
1860 break;
1861 }
1862 }
1863
1864 mmput(start_mm);
1865 return retval;
1866 }
1867
1868 /*
1869 * After a successful try_to_unuse, if no swap is now in use, we know
1870 * we can empty the mmlist. swap_lock must be held on entry and exit.
1871 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1872 * added to the mmlist just after page_duplicate - before would be racy.
1873 */
1874 static void drain_mmlist(void)
1875 {
1876 struct list_head *p, *next;
1877 unsigned int type;
1878
1879 for (type = 0; type < nr_swapfiles; type++)
1880 if (swap_info[type]->inuse_pages)
1881 return;
1882 spin_lock(&mmlist_lock);
1883 list_for_each_safe(p, next, &init_mm.mmlist)
1884 list_del_init(p);
1885 spin_unlock(&mmlist_lock);
1886 }
1887
1888 /*
1889 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1890 * corresponds to page offset for the specified swap entry.
1891 * Note that the type of this function is sector_t, but it returns page offset
1892 * into the bdev, not sector offset.
1893 */
1894 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1895 {
1896 struct swap_info_struct *sis;
1897 struct swap_extent *start_se;
1898 struct swap_extent *se;
1899 pgoff_t offset;
1900
1901 sis = swap_info[swp_type(entry)];
1902 *bdev = sis->bdev;
1903
1904 offset = swp_offset(entry);
1905 start_se = sis->curr_swap_extent;
1906 se = start_se;
1907
1908 for ( ; ; ) {
1909 if (se->start_page <= offset &&
1910 offset < (se->start_page + se->nr_pages)) {
1911 return se->start_block + (offset - se->start_page);
1912 }
1913 se = list_next_entry(se, list);
1914 sis->curr_swap_extent = se;
1915 BUG_ON(se == start_se); /* It *must* be present */
1916 }
1917 }
1918
1919 /*
1920 * Returns the page offset into bdev for the specified page's swap entry.
1921 */
1922 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1923 {
1924 swp_entry_t entry;
1925 entry.val = page_private(page);
1926 return map_swap_entry(entry, bdev);
1927 }
1928
1929 /*
1930 * Free all of a swapdev's extent information
1931 */
1932 static void destroy_swap_extents(struct swap_info_struct *sis)
1933 {
1934 while (!list_empty(&sis->first_swap_extent.list)) {
1935 struct swap_extent *se;
1936
1937 se = list_first_entry(&sis->first_swap_extent.list,
1938 struct swap_extent, list);
1939 list_del(&se->list);
1940 kfree(se);
1941 }
1942
1943 if (sis->flags & SWP_FILE) {
1944 struct file *swap_file = sis->swap_file;
1945 struct address_space *mapping = swap_file->f_mapping;
1946
1947 sis->flags &= ~SWP_FILE;
1948 mapping->a_ops->swap_deactivate(swap_file);
1949 }
1950 }
1951
1952 /*
1953 * Add a block range (and the corresponding page range) into this swapdev's
1954 * extent list. The extent list is kept sorted in page order.
1955 *
1956 * This function rather assumes that it is called in ascending page order.
1957 */
1958 int
1959 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1960 unsigned long nr_pages, sector_t start_block)
1961 {
1962 struct swap_extent *se;
1963 struct swap_extent *new_se;
1964 struct list_head *lh;
1965
1966 if (start_page == 0) {
1967 se = &sis->first_swap_extent;
1968 sis->curr_swap_extent = se;
1969 se->start_page = 0;
1970 se->nr_pages = nr_pages;
1971 se->start_block = start_block;
1972 return 1;
1973 } else {
1974 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1975 se = list_entry(lh, struct swap_extent, list);
1976 BUG_ON(se->start_page + se->nr_pages != start_page);
1977 if (se->start_block + se->nr_pages == start_block) {
1978 /* Merge it */
1979 se->nr_pages += nr_pages;
1980 return 0;
1981 }
1982 }
1983
1984 /*
1985 * No merge. Insert a new extent, preserving ordering.
1986 */
1987 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1988 if (new_se == NULL)
1989 return -ENOMEM;
1990 new_se->start_page = start_page;
1991 new_se->nr_pages = nr_pages;
1992 new_se->start_block = start_block;
1993
1994 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1995 return 1;
1996 }
1997
1998 /*
1999 * A `swap extent' is a simple thing which maps a contiguous range of pages
2000 * onto a contiguous range of disk blocks. An ordered list of swap extents
2001 * is built at swapon time and is then used at swap_writepage/swap_readpage
2002 * time for locating where on disk a page belongs.
2003 *
2004 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2005 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2006 * swap files identically.
2007 *
2008 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2009 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2010 * swapfiles are handled *identically* after swapon time.
2011 *
2012 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2013 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2014 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2015 * requirements, they are simply tossed out - we will never use those blocks
2016 * for swapping.
2017 *
2018 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2019 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2020 * which will scribble on the fs.
2021 *
2022 * The amount of disk space which a single swap extent represents varies.
2023 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2024 * extents in the list. To avoid much list walking, we cache the previous
2025 * search location in `curr_swap_extent', and start new searches from there.
2026 * This is extremely effective. The average number of iterations in
2027 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2028 */
2029 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2030 {
2031 struct file *swap_file = sis->swap_file;
2032 struct address_space *mapping = swap_file->f_mapping;
2033 struct inode *inode = mapping->host;
2034 int ret;
2035
2036 if (S_ISBLK(inode->i_mode)) {
2037 ret = add_swap_extent(sis, 0, sis->max, 0);
2038 *span = sis->pages;
2039 return ret;
2040 }
2041
2042 if (mapping->a_ops->swap_activate) {
2043 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2044 if (!ret) {
2045 sis->flags |= SWP_FILE;
2046 ret = add_swap_extent(sis, 0, sis->max, 0);
2047 *span = sis->pages;
2048 }
2049 return ret;
2050 }
2051
2052 return generic_swapfile_activate(sis, swap_file, span);
2053 }
2054
2055 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2056 unsigned char *swap_map,
2057 struct swap_cluster_info *cluster_info)
2058 {
2059 if (prio >= 0)
2060 p->prio = prio;
2061 else
2062 p->prio = --least_priority;
2063 /*
2064 * the plist prio is negated because plist ordering is
2065 * low-to-high, while swap ordering is high-to-low
2066 */
2067 p->list.prio = -p->prio;
2068 p->avail_list.prio = -p->prio;
2069 p->swap_map = swap_map;
2070 p->cluster_info = cluster_info;
2071 p->flags |= SWP_WRITEOK;
2072 atomic_long_add(p->pages, &nr_swap_pages);
2073 total_swap_pages += p->pages;
2074
2075 assert_spin_locked(&swap_lock);
2076 /*
2077 * both lists are plists, and thus priority ordered.
2078 * swap_active_head needs to be priority ordered for swapoff(),
2079 * which on removal of any swap_info_struct with an auto-assigned
2080 * (i.e. negative) priority increments the auto-assigned priority
2081 * of any lower-priority swap_info_structs.
2082 * swap_avail_head needs to be priority ordered for get_swap_page(),
2083 * which allocates swap pages from the highest available priority
2084 * swap_info_struct.
2085 */
2086 plist_add(&p->list, &swap_active_head);
2087 spin_lock(&swap_avail_lock);
2088 plist_add(&p->avail_list, &swap_avail_head);
2089 spin_unlock(&swap_avail_lock);
2090 }
2091
2092 static void enable_swap_info(struct swap_info_struct *p, int prio,
2093 unsigned char *swap_map,
2094 struct swap_cluster_info *cluster_info,
2095 unsigned long *frontswap_map)
2096 {
2097 frontswap_init(p->type, frontswap_map);
2098 spin_lock(&swap_lock);
2099 spin_lock(&p->lock);
2100 _enable_swap_info(p, prio, swap_map, cluster_info);
2101 spin_unlock(&p->lock);
2102 spin_unlock(&swap_lock);
2103 }
2104
2105 static void reinsert_swap_info(struct swap_info_struct *p)
2106 {
2107 spin_lock(&swap_lock);
2108 spin_lock(&p->lock);
2109 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2110 spin_unlock(&p->lock);
2111 spin_unlock(&swap_lock);
2112 }
2113
2114 bool has_usable_swap(void)
2115 {
2116 bool ret = true;
2117
2118 spin_lock(&swap_lock);
2119 if (plist_head_empty(&swap_active_head))
2120 ret = false;
2121 spin_unlock(&swap_lock);
2122 return ret;
2123 }
2124
2125 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2126 {
2127 struct swap_info_struct *p = NULL;
2128 unsigned char *swap_map;
2129 struct swap_cluster_info *cluster_info;
2130 unsigned long *frontswap_map;
2131 struct file *swap_file, *victim;
2132 struct address_space *mapping;
2133 struct inode *inode;
2134 struct filename *pathname;
2135 int err, found = 0;
2136 unsigned int old_block_size;
2137
2138 if (!capable(CAP_SYS_ADMIN))
2139 return -EPERM;
2140
2141 BUG_ON(!current->mm);
2142
2143 pathname = getname(specialfile);
2144 if (IS_ERR(pathname))
2145 return PTR_ERR(pathname);
2146
2147 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2148 err = PTR_ERR(victim);
2149 if (IS_ERR(victim))
2150 goto out;
2151
2152 mapping = victim->f_mapping;
2153 spin_lock(&swap_lock);
2154 plist_for_each_entry(p, &swap_active_head, list) {
2155 if (p->flags & SWP_WRITEOK) {
2156 if (p->swap_file->f_mapping == mapping) {
2157 found = 1;
2158 break;
2159 }
2160 }
2161 }
2162 if (!found) {
2163 err = -EINVAL;
2164 spin_unlock(&swap_lock);
2165 goto out_dput;
2166 }
2167 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2168 vm_unacct_memory(p->pages);
2169 else {
2170 err = -ENOMEM;
2171 spin_unlock(&swap_lock);
2172 goto out_dput;
2173 }
2174 spin_lock(&swap_avail_lock);
2175 plist_del(&p->avail_list, &swap_avail_head);
2176 spin_unlock(&swap_avail_lock);
2177 spin_lock(&p->lock);
2178 if (p->prio < 0) {
2179 struct swap_info_struct *si = p;
2180
2181 plist_for_each_entry_continue(si, &swap_active_head, list) {
2182 si->prio++;
2183 si->list.prio--;
2184 si->avail_list.prio--;
2185 }
2186 least_priority++;
2187 }
2188 plist_del(&p->list, &swap_active_head);
2189 atomic_long_sub(p->pages, &nr_swap_pages);
2190 total_swap_pages -= p->pages;
2191 p->flags &= ~SWP_WRITEOK;
2192 spin_unlock(&p->lock);
2193 spin_unlock(&swap_lock);
2194
2195 disable_swap_slots_cache_lock();
2196
2197 set_current_oom_origin();
2198 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2199 clear_current_oom_origin();
2200
2201 if (err) {
2202 /* re-insert swap space back into swap_list */
2203 reinsert_swap_info(p);
2204 reenable_swap_slots_cache_unlock();
2205 goto out_dput;
2206 }
2207
2208 reenable_swap_slots_cache_unlock();
2209
2210 flush_work(&p->discard_work);
2211
2212 destroy_swap_extents(p);
2213 if (p->flags & SWP_CONTINUED)
2214 free_swap_count_continuations(p);
2215
2216 mutex_lock(&swapon_mutex);
2217 spin_lock(&swap_lock);
2218 spin_lock(&p->lock);
2219 drain_mmlist();
2220
2221 /* wait for anyone still in scan_swap_map */
2222 p->highest_bit = 0; /* cuts scans short */
2223 while (p->flags >= SWP_SCANNING) {
2224 spin_unlock(&p->lock);
2225 spin_unlock(&swap_lock);
2226 schedule_timeout_uninterruptible(1);
2227 spin_lock(&swap_lock);
2228 spin_lock(&p->lock);
2229 }
2230
2231 swap_file = p->swap_file;
2232 old_block_size = p->old_block_size;
2233 p->swap_file = NULL;
2234 p->max = 0;
2235 swap_map = p->swap_map;
2236 p->swap_map = NULL;
2237 cluster_info = p->cluster_info;
2238 p->cluster_info = NULL;
2239 frontswap_map = frontswap_map_get(p);
2240 spin_unlock(&p->lock);
2241 spin_unlock(&swap_lock);
2242 frontswap_invalidate_area(p->type);
2243 frontswap_map_set(p, NULL);
2244 mutex_unlock(&swapon_mutex);
2245 free_percpu(p->percpu_cluster);
2246 p->percpu_cluster = NULL;
2247 vfree(swap_map);
2248 vfree(cluster_info);
2249 vfree(frontswap_map);
2250 /* Destroy swap account information */
2251 swap_cgroup_swapoff(p->type);
2252 exit_swap_address_space(p->type);
2253
2254 inode = mapping->host;
2255 if (S_ISBLK(inode->i_mode)) {
2256 struct block_device *bdev = I_BDEV(inode);
2257 set_blocksize(bdev, old_block_size);
2258 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2259 } else {
2260 inode_lock(inode);
2261 inode->i_flags &= ~S_SWAPFILE;
2262 inode_unlock(inode);
2263 }
2264 filp_close(swap_file, NULL);
2265
2266 /*
2267 * Clear the SWP_USED flag after all resources are freed so that swapon
2268 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2269 * not hold p->lock after we cleared its SWP_WRITEOK.
2270 */
2271 spin_lock(&swap_lock);
2272 p->flags = 0;
2273 spin_unlock(&swap_lock);
2274
2275 err = 0;
2276 atomic_inc(&proc_poll_event);
2277 wake_up_interruptible(&proc_poll_wait);
2278
2279 out_dput:
2280 filp_close(victim, NULL);
2281 out:
2282 putname(pathname);
2283 return err;
2284 }
2285
2286 #ifdef CONFIG_PROC_FS
2287 static unsigned swaps_poll(struct file *file, poll_table *wait)
2288 {
2289 struct seq_file *seq = file->private_data;
2290
2291 poll_wait(file, &proc_poll_wait, wait);
2292
2293 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2294 seq->poll_event = atomic_read(&proc_poll_event);
2295 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2296 }
2297
2298 return POLLIN | POLLRDNORM;
2299 }
2300
2301 /* iterator */
2302 static void *swap_start(struct seq_file *swap, loff_t *pos)
2303 {
2304 struct swap_info_struct *si;
2305 int type;
2306 loff_t l = *pos;
2307
2308 mutex_lock(&swapon_mutex);
2309
2310 if (!l)
2311 return SEQ_START_TOKEN;
2312
2313 for (type = 0; type < nr_swapfiles; type++) {
2314 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2315 si = swap_info[type];
2316 if (!(si->flags & SWP_USED) || !si->swap_map)
2317 continue;
2318 if (!--l)
2319 return si;
2320 }
2321
2322 return NULL;
2323 }
2324
2325 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2326 {
2327 struct swap_info_struct *si = v;
2328 int type;
2329
2330 if (v == SEQ_START_TOKEN)
2331 type = 0;
2332 else
2333 type = si->type + 1;
2334
2335 for (; type < nr_swapfiles; type++) {
2336 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2337 si = swap_info[type];
2338 if (!(si->flags & SWP_USED) || !si->swap_map)
2339 continue;
2340 ++*pos;
2341 return si;
2342 }
2343
2344 return NULL;
2345 }
2346
2347 static void swap_stop(struct seq_file *swap, void *v)
2348 {
2349 mutex_unlock(&swapon_mutex);
2350 }
2351
2352 static int swap_show(struct seq_file *swap, void *v)
2353 {
2354 struct swap_info_struct *si = v;
2355 struct file *file;
2356 int len;
2357
2358 if (si == SEQ_START_TOKEN) {
2359 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2360 return 0;
2361 }
2362
2363 file = si->swap_file;
2364 len = seq_file_path(swap, file, " \t\n\\");
2365 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2366 len < 40 ? 40 - len : 1, " ",
2367 S_ISBLK(file_inode(file)->i_mode) ?
2368 "partition" : "file\t",
2369 si->pages << (PAGE_SHIFT - 10),
2370 si->inuse_pages << (PAGE_SHIFT - 10),
2371 si->prio);
2372 return 0;
2373 }
2374
2375 static const struct seq_operations swaps_op = {
2376 .start = swap_start,
2377 .next = swap_next,
2378 .stop = swap_stop,
2379 .show = swap_show
2380 };
2381
2382 static int swaps_open(struct inode *inode, struct file *file)
2383 {
2384 struct seq_file *seq;
2385 int ret;
2386
2387 ret = seq_open(file, &swaps_op);
2388 if (ret)
2389 return ret;
2390
2391 seq = file->private_data;
2392 seq->poll_event = atomic_read(&proc_poll_event);
2393 return 0;
2394 }
2395
2396 static const struct file_operations proc_swaps_operations = {
2397 .open = swaps_open,
2398 .read = seq_read,
2399 .llseek = seq_lseek,
2400 .release = seq_release,
2401 .poll = swaps_poll,
2402 };
2403
2404 static int __init procswaps_init(void)
2405 {
2406 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2407 return 0;
2408 }
2409 __initcall(procswaps_init);
2410 #endif /* CONFIG_PROC_FS */
2411
2412 #ifdef MAX_SWAPFILES_CHECK
2413 static int __init max_swapfiles_check(void)
2414 {
2415 MAX_SWAPFILES_CHECK();
2416 return 0;
2417 }
2418 late_initcall(max_swapfiles_check);
2419 #endif
2420
2421 static struct swap_info_struct *alloc_swap_info(void)
2422 {
2423 struct swap_info_struct *p;
2424 unsigned int type;
2425
2426 p = kzalloc(sizeof(*p), GFP_KERNEL);
2427 if (!p)
2428 return ERR_PTR(-ENOMEM);
2429
2430 spin_lock(&swap_lock);
2431 for (type = 0; type < nr_swapfiles; type++) {
2432 if (!(swap_info[type]->flags & SWP_USED))
2433 break;
2434 }
2435 if (type >= MAX_SWAPFILES) {
2436 spin_unlock(&swap_lock);
2437 kfree(p);
2438 return ERR_PTR(-EPERM);
2439 }
2440 if (type >= nr_swapfiles) {
2441 p->type = type;
2442 swap_info[type] = p;
2443 /*
2444 * Write swap_info[type] before nr_swapfiles, in case a
2445 * racing procfs swap_start() or swap_next() is reading them.
2446 * (We never shrink nr_swapfiles, we never free this entry.)
2447 */
2448 smp_wmb();
2449 nr_swapfiles++;
2450 } else {
2451 kfree(p);
2452 p = swap_info[type];
2453 /*
2454 * Do not memset this entry: a racing procfs swap_next()
2455 * would be relying on p->type to remain valid.
2456 */
2457 }
2458 INIT_LIST_HEAD(&p->first_swap_extent.list);
2459 plist_node_init(&p->list, 0);
2460 plist_node_init(&p->avail_list, 0);
2461 p->flags = SWP_USED;
2462 spin_unlock(&swap_lock);
2463 spin_lock_init(&p->lock);
2464
2465 return p;
2466 }
2467
2468 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2469 {
2470 int error;
2471
2472 if (S_ISBLK(inode->i_mode)) {
2473 p->bdev = bdgrab(I_BDEV(inode));
2474 error = blkdev_get(p->bdev,
2475 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2476 if (error < 0) {
2477 p->bdev = NULL;
2478 return error;
2479 }
2480 p->old_block_size = block_size(p->bdev);
2481 error = set_blocksize(p->bdev, PAGE_SIZE);
2482 if (error < 0)
2483 return error;
2484 p->flags |= SWP_BLKDEV;
2485 } else if (S_ISREG(inode->i_mode)) {
2486 p->bdev = inode->i_sb->s_bdev;
2487 inode_lock(inode);
2488 if (IS_SWAPFILE(inode))
2489 return -EBUSY;
2490 } else
2491 return -EINVAL;
2492
2493 return 0;
2494 }
2495
2496 static unsigned long read_swap_header(struct swap_info_struct *p,
2497 union swap_header *swap_header,
2498 struct inode *inode)
2499 {
2500 int i;
2501 unsigned long maxpages;
2502 unsigned long swapfilepages;
2503 unsigned long last_page;
2504
2505 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2506 pr_err("Unable to find swap-space signature\n");
2507 return 0;
2508 }
2509
2510 /* swap partition endianess hack... */
2511 if (swab32(swap_header->info.version) == 1) {
2512 swab32s(&swap_header->info.version);
2513 swab32s(&swap_header->info.last_page);
2514 swab32s(&swap_header->info.nr_badpages);
2515 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2516 return 0;
2517 for (i = 0; i < swap_header->info.nr_badpages; i++)
2518 swab32s(&swap_header->info.badpages[i]);
2519 }
2520 /* Check the swap header's sub-version */
2521 if (swap_header->info.version != 1) {
2522 pr_warn("Unable to handle swap header version %d\n",
2523 swap_header->info.version);
2524 return 0;
2525 }
2526
2527 p->lowest_bit = 1;
2528 p->cluster_next = 1;
2529 p->cluster_nr = 0;
2530
2531 /*
2532 * Find out how many pages are allowed for a single swap
2533 * device. There are two limiting factors: 1) the number
2534 * of bits for the swap offset in the swp_entry_t type, and
2535 * 2) the number of bits in the swap pte as defined by the
2536 * different architectures. In order to find the
2537 * largest possible bit mask, a swap entry with swap type 0
2538 * and swap offset ~0UL is created, encoded to a swap pte,
2539 * decoded to a swp_entry_t again, and finally the swap
2540 * offset is extracted. This will mask all the bits from
2541 * the initial ~0UL mask that can't be encoded in either
2542 * the swp_entry_t or the architecture definition of a
2543 * swap pte.
2544 */
2545 maxpages = swp_offset(pte_to_swp_entry(
2546 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2547 last_page = swap_header->info.last_page;
2548 if (last_page > maxpages) {
2549 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2550 maxpages << (PAGE_SHIFT - 10),
2551 last_page << (PAGE_SHIFT - 10));
2552 }
2553 if (maxpages > last_page) {
2554 maxpages = last_page + 1;
2555 /* p->max is an unsigned int: don't overflow it */
2556 if ((unsigned int)maxpages == 0)
2557 maxpages = UINT_MAX;
2558 }
2559 p->highest_bit = maxpages - 1;
2560
2561 if (!maxpages)
2562 return 0;
2563 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2564 if (swapfilepages && maxpages > swapfilepages) {
2565 pr_warn("Swap area shorter than signature indicates\n");
2566 return 0;
2567 }
2568 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2569 return 0;
2570 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2571 return 0;
2572
2573 return maxpages;
2574 }
2575
2576 #define SWAP_CLUSTER_INFO_COLS \
2577 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2578 #define SWAP_CLUSTER_SPACE_COLS \
2579 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2580 #define SWAP_CLUSTER_COLS \
2581 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2582
2583 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2584 union swap_header *swap_header,
2585 unsigned char *swap_map,
2586 struct swap_cluster_info *cluster_info,
2587 unsigned long maxpages,
2588 sector_t *span)
2589 {
2590 unsigned int j, k;
2591 unsigned int nr_good_pages;
2592 int nr_extents;
2593 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2594 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2595 unsigned long i, idx;
2596
2597 nr_good_pages = maxpages - 1; /* omit header page */
2598
2599 cluster_list_init(&p->free_clusters);
2600 cluster_list_init(&p->discard_clusters);
2601
2602 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2603 unsigned int page_nr = swap_header->info.badpages[i];
2604 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2605 return -EINVAL;
2606 if (page_nr < maxpages) {
2607 swap_map[page_nr] = SWAP_MAP_BAD;
2608 nr_good_pages--;
2609 /*
2610 * Haven't marked the cluster free yet, no list
2611 * operation involved
2612 */
2613 inc_cluster_info_page(p, cluster_info, page_nr);
2614 }
2615 }
2616
2617 /* Haven't marked the cluster free yet, no list operation involved */
2618 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2619 inc_cluster_info_page(p, cluster_info, i);
2620
2621 if (nr_good_pages) {
2622 swap_map[0] = SWAP_MAP_BAD;
2623 /*
2624 * Not mark the cluster free yet, no list
2625 * operation involved
2626 */
2627 inc_cluster_info_page(p, cluster_info, 0);
2628 p->max = maxpages;
2629 p->pages = nr_good_pages;
2630 nr_extents = setup_swap_extents(p, span);
2631 if (nr_extents < 0)
2632 return nr_extents;
2633 nr_good_pages = p->pages;
2634 }
2635 if (!nr_good_pages) {
2636 pr_warn("Empty swap-file\n");
2637 return -EINVAL;
2638 }
2639
2640 if (!cluster_info)
2641 return nr_extents;
2642
2643
2644 /*
2645 * Reduce false cache line sharing between cluster_info and
2646 * sharing same address space.
2647 */
2648 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2649 j = (k + col) % SWAP_CLUSTER_COLS;
2650 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2651 idx = i * SWAP_CLUSTER_COLS + j;
2652 if (idx >= nr_clusters)
2653 continue;
2654 if (cluster_count(&cluster_info[idx]))
2655 continue;
2656 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2657 cluster_list_add_tail(&p->free_clusters, cluster_info,
2658 idx);
2659 }
2660 }
2661 return nr_extents;
2662 }
2663
2664 /*
2665 * Helper to sys_swapon determining if a given swap
2666 * backing device queue supports DISCARD operations.
2667 */
2668 static bool swap_discardable(struct swap_info_struct *si)
2669 {
2670 struct request_queue *q = bdev_get_queue(si->bdev);
2671
2672 if (!q || !blk_queue_discard(q))
2673 return false;
2674
2675 return true;
2676 }
2677
2678 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2679 {
2680 struct swap_info_struct *p;
2681 struct filename *name;
2682 struct file *swap_file = NULL;
2683 struct address_space *mapping;
2684 int prio;
2685 int error;
2686 union swap_header *swap_header;
2687 int nr_extents;
2688 sector_t span;
2689 unsigned long maxpages;
2690 unsigned char *swap_map = NULL;
2691 struct swap_cluster_info *cluster_info = NULL;
2692 unsigned long *frontswap_map = NULL;
2693 struct page *page = NULL;
2694 struct inode *inode = NULL;
2695
2696 if (swap_flags & ~SWAP_FLAGS_VALID)
2697 return -EINVAL;
2698
2699 if (!capable(CAP_SYS_ADMIN))
2700 return -EPERM;
2701
2702 p = alloc_swap_info();
2703 if (IS_ERR(p))
2704 return PTR_ERR(p);
2705
2706 INIT_WORK(&p->discard_work, swap_discard_work);
2707
2708 name = getname(specialfile);
2709 if (IS_ERR(name)) {
2710 error = PTR_ERR(name);
2711 name = NULL;
2712 goto bad_swap;
2713 }
2714 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2715 if (IS_ERR(swap_file)) {
2716 error = PTR_ERR(swap_file);
2717 swap_file = NULL;
2718 goto bad_swap;
2719 }
2720
2721 p->swap_file = swap_file;
2722 mapping = swap_file->f_mapping;
2723 inode = mapping->host;
2724
2725 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2726 error = claim_swapfile(p, inode);
2727 if (unlikely(error))
2728 goto bad_swap;
2729
2730 /*
2731 * Read the swap header.
2732 */
2733 if (!mapping->a_ops->readpage) {
2734 error = -EINVAL;
2735 goto bad_swap;
2736 }
2737 page = read_mapping_page(mapping, 0, swap_file);
2738 if (IS_ERR(page)) {
2739 error = PTR_ERR(page);
2740 goto bad_swap;
2741 }
2742 swap_header = kmap(page);
2743
2744 maxpages = read_swap_header(p, swap_header, inode);
2745 if (unlikely(!maxpages)) {
2746 error = -EINVAL;
2747 goto bad_swap;
2748 }
2749
2750 /* OK, set up the swap map and apply the bad block list */
2751 swap_map = vzalloc(maxpages);
2752 if (!swap_map) {
2753 error = -ENOMEM;
2754 goto bad_swap;
2755 }
2756
2757 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2758 p->flags |= SWP_STABLE_WRITES;
2759
2760 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2761 int cpu;
2762 unsigned long ci, nr_cluster;
2763
2764 p->flags |= SWP_SOLIDSTATE;
2765 /*
2766 * select a random position to start with to help wear leveling
2767 * SSD
2768 */
2769 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2770 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2771
2772 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2773 if (!cluster_info) {
2774 error = -ENOMEM;
2775 goto bad_swap;
2776 }
2777
2778 for (ci = 0; ci < nr_cluster; ci++)
2779 spin_lock_init(&((cluster_info + ci)->lock));
2780
2781 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2782 if (!p->percpu_cluster) {
2783 error = -ENOMEM;
2784 goto bad_swap;
2785 }
2786 for_each_possible_cpu(cpu) {
2787 struct percpu_cluster *cluster;
2788 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2789 cluster_set_null(&cluster->index);
2790 }
2791 }
2792
2793 error = swap_cgroup_swapon(p->type, maxpages);
2794 if (error)
2795 goto bad_swap;
2796
2797 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2798 cluster_info, maxpages, &span);
2799 if (unlikely(nr_extents < 0)) {
2800 error = nr_extents;
2801 goto bad_swap;
2802 }
2803 /* frontswap enabled? set up bit-per-page map for frontswap */
2804 if (IS_ENABLED(CONFIG_FRONTSWAP))
2805 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2806
2807 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2808 /*
2809 * When discard is enabled for swap with no particular
2810 * policy flagged, we set all swap discard flags here in
2811 * order to sustain backward compatibility with older
2812 * swapon(8) releases.
2813 */
2814 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2815 SWP_PAGE_DISCARD);
2816
2817 /*
2818 * By flagging sys_swapon, a sysadmin can tell us to
2819 * either do single-time area discards only, or to just
2820 * perform discards for released swap page-clusters.
2821 * Now it's time to adjust the p->flags accordingly.
2822 */
2823 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2824 p->flags &= ~SWP_PAGE_DISCARD;
2825 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2826 p->flags &= ~SWP_AREA_DISCARD;
2827
2828 /* issue a swapon-time discard if it's still required */
2829 if (p->flags & SWP_AREA_DISCARD) {
2830 int err = discard_swap(p);
2831 if (unlikely(err))
2832 pr_err("swapon: discard_swap(%p): %d\n",
2833 p, err);
2834 }
2835 }
2836
2837 error = init_swap_address_space(p->type, maxpages);
2838 if (error)
2839 goto bad_swap;
2840
2841 mutex_lock(&swapon_mutex);
2842 prio = -1;
2843 if (swap_flags & SWAP_FLAG_PREFER)
2844 prio =
2845 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2846 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2847
2848 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2849 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2850 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2851 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2852 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2853 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2854 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2855 (frontswap_map) ? "FS" : "");
2856
2857 mutex_unlock(&swapon_mutex);
2858 atomic_inc(&proc_poll_event);
2859 wake_up_interruptible(&proc_poll_wait);
2860
2861 if (S_ISREG(inode->i_mode))
2862 inode->i_flags |= S_SWAPFILE;
2863 error = 0;
2864 goto out;
2865 bad_swap:
2866 free_percpu(p->percpu_cluster);
2867 p->percpu_cluster = NULL;
2868 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2869 set_blocksize(p->bdev, p->old_block_size);
2870 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2871 }
2872 destroy_swap_extents(p);
2873 swap_cgroup_swapoff(p->type);
2874 spin_lock(&swap_lock);
2875 p->swap_file = NULL;
2876 p->flags = 0;
2877 spin_unlock(&swap_lock);
2878 vfree(swap_map);
2879 vfree(cluster_info);
2880 if (swap_file) {
2881 if (inode && S_ISREG(inode->i_mode)) {
2882 inode_unlock(inode);
2883 inode = NULL;
2884 }
2885 filp_close(swap_file, NULL);
2886 }
2887 out:
2888 if (page && !IS_ERR(page)) {
2889 kunmap(page);
2890 put_page(page);
2891 }
2892 if (name)
2893 putname(name);
2894 if (inode && S_ISREG(inode->i_mode))
2895 inode_unlock(inode);
2896 if (!error)
2897 enable_swap_slots_cache();
2898 return error;
2899 }
2900
2901 void si_swapinfo(struct sysinfo *val)
2902 {
2903 unsigned int type;
2904 unsigned long nr_to_be_unused = 0;
2905
2906 spin_lock(&swap_lock);
2907 for (type = 0; type < nr_swapfiles; type++) {
2908 struct swap_info_struct *si = swap_info[type];
2909
2910 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2911 nr_to_be_unused += si->inuse_pages;
2912 }
2913 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2914 val->totalswap = total_swap_pages + nr_to_be_unused;
2915 spin_unlock(&swap_lock);
2916 }
2917
2918 /*
2919 * Verify that a swap entry is valid and increment its swap map count.
2920 *
2921 * Returns error code in following case.
2922 * - success -> 0
2923 * - swp_entry is invalid -> EINVAL
2924 * - swp_entry is migration entry -> EINVAL
2925 * - swap-cache reference is requested but there is already one. -> EEXIST
2926 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2927 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2928 */
2929 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2930 {
2931 struct swap_info_struct *p;
2932 struct swap_cluster_info *ci;
2933 unsigned long offset, type;
2934 unsigned char count;
2935 unsigned char has_cache;
2936 int err = -EINVAL;
2937
2938 if (non_swap_entry(entry))
2939 goto out;
2940
2941 type = swp_type(entry);
2942 if (type >= nr_swapfiles)
2943 goto bad_file;
2944 p = swap_info[type];
2945 offset = swp_offset(entry);
2946 if (unlikely(offset >= p->max))
2947 goto out;
2948
2949 ci = lock_cluster_or_swap_info(p, offset);
2950
2951 count = p->swap_map[offset];
2952
2953 /*
2954 * swapin_readahead() doesn't check if a swap entry is valid, so the
2955 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2956 */
2957 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2958 err = -ENOENT;
2959 goto unlock_out;
2960 }
2961
2962 has_cache = count & SWAP_HAS_CACHE;
2963 count &= ~SWAP_HAS_CACHE;
2964 err = 0;
2965
2966 if (usage == SWAP_HAS_CACHE) {
2967
2968 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2969 if (!has_cache && count)
2970 has_cache = SWAP_HAS_CACHE;
2971 else if (has_cache) /* someone else added cache */
2972 err = -EEXIST;
2973 else /* no users remaining */
2974 err = -ENOENT;
2975
2976 } else if (count || has_cache) {
2977
2978 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2979 count += usage;
2980 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2981 err = -EINVAL;
2982 else if (swap_count_continued(p, offset, count))
2983 count = COUNT_CONTINUED;
2984 else
2985 err = -ENOMEM;
2986 } else
2987 err = -ENOENT; /* unused swap entry */
2988
2989 p->swap_map[offset] = count | has_cache;
2990
2991 unlock_out:
2992 unlock_cluster_or_swap_info(p, ci);
2993 out:
2994 return err;
2995
2996 bad_file:
2997 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2998 goto out;
2999 }
3000
3001 /*
3002 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3003 * (in which case its reference count is never incremented).
3004 */
3005 void swap_shmem_alloc(swp_entry_t entry)
3006 {
3007 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3008 }
3009
3010 /*
3011 * Increase reference count of swap entry by 1.
3012 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3013 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3014 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3015 * might occur if a page table entry has got corrupted.
3016 */
3017 int swap_duplicate(swp_entry_t entry)
3018 {
3019 int err = 0;
3020
3021 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3022 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3023 return err;
3024 }
3025
3026 /*
3027 * @entry: swap entry for which we allocate swap cache.
3028 *
3029 * Called when allocating swap cache for existing swap entry,
3030 * This can return error codes. Returns 0 at success.
3031 * -EBUSY means there is a swap cache.
3032 * Note: return code is different from swap_duplicate().
3033 */
3034 int swapcache_prepare(swp_entry_t entry)
3035 {
3036 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3037 }
3038
3039 struct swap_info_struct *page_swap_info(struct page *page)
3040 {
3041 swp_entry_t swap = { .val = page_private(page) };
3042 return swap_info[swp_type(swap)];
3043 }
3044
3045 /*
3046 * out-of-line __page_file_ methods to avoid include hell.
3047 */
3048 struct address_space *__page_file_mapping(struct page *page)
3049 {
3050 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3051 return page_swap_info(page)->swap_file->f_mapping;
3052 }
3053 EXPORT_SYMBOL_GPL(__page_file_mapping);
3054
3055 pgoff_t __page_file_index(struct page *page)
3056 {
3057 swp_entry_t swap = { .val = page_private(page) };
3058 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3059 return swp_offset(swap);
3060 }
3061 EXPORT_SYMBOL_GPL(__page_file_index);
3062
3063 /*
3064 * add_swap_count_continuation - called when a swap count is duplicated
3065 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3066 * page of the original vmalloc'ed swap_map, to hold the continuation count
3067 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3068 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3069 *
3070 * These continuation pages are seldom referenced: the common paths all work
3071 * on the original swap_map, only referring to a continuation page when the
3072 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3073 *
3074 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3075 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3076 * can be called after dropping locks.
3077 */
3078 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3079 {
3080 struct swap_info_struct *si;
3081 struct swap_cluster_info *ci;
3082 struct page *head;
3083 struct page *page;
3084 struct page *list_page;
3085 pgoff_t offset;
3086 unsigned char count;
3087
3088 /*
3089 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3090 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3091 */
3092 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3093
3094 si = swap_info_get(entry);
3095 if (!si) {
3096 /*
3097 * An acceptable race has occurred since the failing
3098 * __swap_duplicate(): the swap entry has been freed,
3099 * perhaps even the whole swap_map cleared for swapoff.
3100 */
3101 goto outer;
3102 }
3103
3104 offset = swp_offset(entry);
3105
3106 ci = lock_cluster(si, offset);
3107
3108 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3109
3110 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3111 /*
3112 * The higher the swap count, the more likely it is that tasks
3113 * will race to add swap count continuation: we need to avoid
3114 * over-provisioning.
3115 */
3116 goto out;
3117 }
3118
3119 if (!page) {
3120 unlock_cluster(ci);
3121 spin_unlock(&si->lock);
3122 return -ENOMEM;
3123 }
3124
3125 /*
3126 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3127 * no architecture is using highmem pages for kernel page tables: so it
3128 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3129 */
3130 head = vmalloc_to_page(si->swap_map + offset);
3131 offset &= ~PAGE_MASK;
3132
3133 /*
3134 * Page allocation does not initialize the page's lru field,
3135 * but it does always reset its private field.
3136 */
3137 if (!page_private(head)) {
3138 BUG_ON(count & COUNT_CONTINUED);
3139 INIT_LIST_HEAD(&head->lru);
3140 set_page_private(head, SWP_CONTINUED);
3141 si->flags |= SWP_CONTINUED;
3142 }
3143
3144 list_for_each_entry(list_page, &head->lru, lru) {
3145 unsigned char *map;
3146
3147 /*
3148 * If the previous map said no continuation, but we've found
3149 * a continuation page, free our allocation and use this one.
3150 */
3151 if (!(count & COUNT_CONTINUED))
3152 goto out;
3153
3154 map = kmap_atomic(list_page) + offset;
3155 count = *map;
3156 kunmap_atomic(map);
3157
3158 /*
3159 * If this continuation count now has some space in it,
3160 * free our allocation and use this one.
3161 */
3162 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3163 goto out;
3164 }
3165
3166 list_add_tail(&page->lru, &head->lru);
3167 page = NULL; /* now it's attached, don't free it */
3168 out:
3169 unlock_cluster(ci);
3170 spin_unlock(&si->lock);
3171 outer:
3172 if (page)
3173 __free_page(page);
3174 return 0;
3175 }
3176
3177 /*
3178 * swap_count_continued - when the original swap_map count is incremented
3179 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3180 * into, carry if so, or else fail until a new continuation page is allocated;
3181 * when the original swap_map count is decremented from 0 with continuation,
3182 * borrow from the continuation and report whether it still holds more.
3183 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3184 * lock.
3185 */
3186 static bool swap_count_continued(struct swap_info_struct *si,
3187 pgoff_t offset, unsigned char count)
3188 {
3189 struct page *head;
3190 struct page *page;
3191 unsigned char *map;
3192
3193 head = vmalloc_to_page(si->swap_map + offset);
3194 if (page_private(head) != SWP_CONTINUED) {
3195 BUG_ON(count & COUNT_CONTINUED);
3196 return false; /* need to add count continuation */
3197 }
3198
3199 offset &= ~PAGE_MASK;
3200 page = list_entry(head->lru.next, struct page, lru);
3201 map = kmap_atomic(page) + offset;
3202
3203 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3204 goto init_map; /* jump over SWAP_CONT_MAX checks */
3205
3206 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3207 /*
3208 * Think of how you add 1 to 999
3209 */
3210 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3211 kunmap_atomic(map);
3212 page = list_entry(page->lru.next, struct page, lru);
3213 BUG_ON(page == head);
3214 map = kmap_atomic(page) + offset;
3215 }
3216 if (*map == SWAP_CONT_MAX) {
3217 kunmap_atomic(map);
3218 page = list_entry(page->lru.next, struct page, lru);
3219 if (page == head)
3220 return false; /* add count continuation */
3221 map = kmap_atomic(page) + offset;
3222 init_map: *map = 0; /* we didn't zero the page */
3223 }
3224 *map += 1;
3225 kunmap_atomic(map);
3226 page = list_entry(page->lru.prev, struct page, lru);
3227 while (page != head) {
3228 map = kmap_atomic(page) + offset;
3229 *map = COUNT_CONTINUED;
3230 kunmap_atomic(map);
3231 page = list_entry(page->lru.prev, struct page, lru);
3232 }
3233 return true; /* incremented */
3234
3235 } else { /* decrementing */
3236 /*
3237 * Think of how you subtract 1 from 1000
3238 */
3239 BUG_ON(count != COUNT_CONTINUED);
3240 while (*map == COUNT_CONTINUED) {
3241 kunmap_atomic(map);
3242 page = list_entry(page->lru.next, struct page, lru);
3243 BUG_ON(page == head);
3244 map = kmap_atomic(page) + offset;
3245 }
3246 BUG_ON(*map == 0);
3247 *map -= 1;
3248 if (*map == 0)
3249 count = 0;
3250 kunmap_atomic(map);
3251 page = list_entry(page->lru.prev, struct page, lru);
3252 while (page != head) {
3253 map = kmap_atomic(page) + offset;
3254 *map = SWAP_CONT_MAX | count;
3255 count = COUNT_CONTINUED;
3256 kunmap_atomic(map);
3257 page = list_entry(page->lru.prev, struct page, lru);
3258 }
3259 return count == COUNT_CONTINUED;
3260 }
3261 }
3262
3263 /*
3264 * free_swap_count_continuations - swapoff free all the continuation pages
3265 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3266 */
3267 static void free_swap_count_continuations(struct swap_info_struct *si)
3268 {
3269 pgoff_t offset;
3270
3271 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3272 struct page *head;
3273 head = vmalloc_to_page(si->swap_map + offset);
3274 if (page_private(head)) {
3275 struct page *page, *next;
3276
3277 list_for_each_entry_safe(page, next, &head->lru, lru) {
3278 list_del(&page->lru);
3279 __free_page(page);
3280 }
3281 }
3282 }
3283 }