]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/swapfile.c
UBUNTU: Ubuntu-snapdragon-4.4.0-1064.69
[mirror_ubuntu-artful-kernel.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /*
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
55 */
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
60
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
65
66 /*
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
69 */
70 PLIST_HEAD(swap_active_head);
71
72 /*
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
83 */
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
86
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
88
89 static DEFINE_MUTEX(swapon_mutex);
90
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
94
95 static inline unsigned char swap_count(unsigned char ent)
96 {
97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
98 }
99
100 /* returns 1 if swap entry is freed */
101 static int
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103 {
104 swp_entry_t entry = swp_entry(si->type, offset);
105 struct page *page;
106 int ret = 0;
107
108 page = find_get_page(swap_address_space(entry), entry.val);
109 if (!page)
110 return 0;
111 /*
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
117 */
118 if (trylock_page(page)) {
119 ret = try_to_free_swap(page);
120 unlock_page(page);
121 }
122 page_cache_release(page);
123 return ret;
124 }
125
126 /*
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
129 */
130 static int discard_swap(struct swap_info_struct *si)
131 {
132 struct swap_extent *se;
133 sector_t start_block;
134 sector_t nr_blocks;
135 int err = 0;
136
137 /* Do not discard the swap header page! */
138 se = &si->first_swap_extent;
139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 if (nr_blocks) {
142 err = blkdev_issue_discard(si->bdev, start_block,
143 nr_blocks, GFP_KERNEL, 0);
144 if (err)
145 return err;
146 cond_resched();
147 }
148
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152
153 err = blkdev_issue_discard(si->bdev, start_block,
154 nr_blocks, GFP_KERNEL, 0);
155 if (err)
156 break;
157
158 cond_resched();
159 }
160 return err; /* That will often be -EOPNOTSUPP */
161 }
162
163 /*
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
166 */
167 static void discard_swap_cluster(struct swap_info_struct *si,
168 pgoff_t start_page, pgoff_t nr_pages)
169 {
170 struct swap_extent *se = si->curr_swap_extent;
171 int found_extent = 0;
172
173 while (nr_pages) {
174 struct list_head *lh;
175
176 if (se->start_page <= start_page &&
177 start_page < se->start_page + se->nr_pages) {
178 pgoff_t offset = start_page - se->start_page;
179 sector_t start_block = se->start_block + offset;
180 sector_t nr_blocks = se->nr_pages - offset;
181
182 if (nr_blocks > nr_pages)
183 nr_blocks = nr_pages;
184 start_page += nr_blocks;
185 nr_pages -= nr_blocks;
186
187 if (!found_extent++)
188 si->curr_swap_extent = se;
189
190 start_block <<= PAGE_SHIFT - 9;
191 nr_blocks <<= PAGE_SHIFT - 9;
192 if (blkdev_issue_discard(si->bdev, start_block,
193 nr_blocks, GFP_NOIO, 0))
194 break;
195 }
196
197 lh = se->list.next;
198 se = list_entry(lh, struct swap_extent, list);
199 }
200 }
201
202 #define SWAPFILE_CLUSTER 256
203 #define LATENCY_LIMIT 256
204
205 static inline void cluster_set_flag(struct swap_cluster_info *info,
206 unsigned int flag)
207 {
208 info->flags = flag;
209 }
210
211 static inline unsigned int cluster_count(struct swap_cluster_info *info)
212 {
213 return info->data;
214 }
215
216 static inline void cluster_set_count(struct swap_cluster_info *info,
217 unsigned int c)
218 {
219 info->data = c;
220 }
221
222 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
223 unsigned int c, unsigned int f)
224 {
225 info->flags = f;
226 info->data = c;
227 }
228
229 static inline unsigned int cluster_next(struct swap_cluster_info *info)
230 {
231 return info->data;
232 }
233
234 static inline void cluster_set_next(struct swap_cluster_info *info,
235 unsigned int n)
236 {
237 info->data = n;
238 }
239
240 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
241 unsigned int n, unsigned int f)
242 {
243 info->flags = f;
244 info->data = n;
245 }
246
247 static inline bool cluster_is_free(struct swap_cluster_info *info)
248 {
249 return info->flags & CLUSTER_FLAG_FREE;
250 }
251
252 static inline bool cluster_is_null(struct swap_cluster_info *info)
253 {
254 return info->flags & CLUSTER_FLAG_NEXT_NULL;
255 }
256
257 static inline void cluster_set_null(struct swap_cluster_info *info)
258 {
259 info->flags = CLUSTER_FLAG_NEXT_NULL;
260 info->data = 0;
261 }
262
263 /* Add a cluster to discard list and schedule it to do discard */
264 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
265 unsigned int idx)
266 {
267 /*
268 * If scan_swap_map() can't find a free cluster, it will check
269 * si->swap_map directly. To make sure the discarding cluster isn't
270 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
271 * will be cleared after discard
272 */
273 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
274 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
275
276 if (cluster_is_null(&si->discard_cluster_head)) {
277 cluster_set_next_flag(&si->discard_cluster_head,
278 idx, 0);
279 cluster_set_next_flag(&si->discard_cluster_tail,
280 idx, 0);
281 } else {
282 unsigned int tail = cluster_next(&si->discard_cluster_tail);
283 cluster_set_next(&si->cluster_info[tail], idx);
284 cluster_set_next_flag(&si->discard_cluster_tail,
285 idx, 0);
286 }
287
288 schedule_work(&si->discard_work);
289 }
290
291 /*
292 * Doing discard actually. After a cluster discard is finished, the cluster
293 * will be added to free cluster list. caller should hold si->lock.
294 */
295 static void swap_do_scheduled_discard(struct swap_info_struct *si)
296 {
297 struct swap_cluster_info *info;
298 unsigned int idx;
299
300 info = si->cluster_info;
301
302 while (!cluster_is_null(&si->discard_cluster_head)) {
303 idx = cluster_next(&si->discard_cluster_head);
304
305 cluster_set_next_flag(&si->discard_cluster_head,
306 cluster_next(&info[idx]), 0);
307 if (cluster_next(&si->discard_cluster_tail) == idx) {
308 cluster_set_null(&si->discard_cluster_head);
309 cluster_set_null(&si->discard_cluster_tail);
310 }
311 spin_unlock(&si->lock);
312
313 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
314 SWAPFILE_CLUSTER);
315
316 spin_lock(&si->lock);
317 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
318 if (cluster_is_null(&si->free_cluster_head)) {
319 cluster_set_next_flag(&si->free_cluster_head,
320 idx, 0);
321 cluster_set_next_flag(&si->free_cluster_tail,
322 idx, 0);
323 } else {
324 unsigned int tail;
325
326 tail = cluster_next(&si->free_cluster_tail);
327 cluster_set_next(&info[tail], idx);
328 cluster_set_next_flag(&si->free_cluster_tail,
329 idx, 0);
330 }
331 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
332 0, SWAPFILE_CLUSTER);
333 }
334 }
335
336 static void swap_discard_work(struct work_struct *work)
337 {
338 struct swap_info_struct *si;
339
340 si = container_of(work, struct swap_info_struct, discard_work);
341
342 spin_lock(&si->lock);
343 swap_do_scheduled_discard(si);
344 spin_unlock(&si->lock);
345 }
346
347 /*
348 * The cluster corresponding to page_nr will be used. The cluster will be
349 * removed from free cluster list and its usage counter will be increased.
350 */
351 static void inc_cluster_info_page(struct swap_info_struct *p,
352 struct swap_cluster_info *cluster_info, unsigned long page_nr)
353 {
354 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
355
356 if (!cluster_info)
357 return;
358 if (cluster_is_free(&cluster_info[idx])) {
359 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
360 cluster_set_next_flag(&p->free_cluster_head,
361 cluster_next(&cluster_info[idx]), 0);
362 if (cluster_next(&p->free_cluster_tail) == idx) {
363 cluster_set_null(&p->free_cluster_tail);
364 cluster_set_null(&p->free_cluster_head);
365 }
366 cluster_set_count_flag(&cluster_info[idx], 0, 0);
367 }
368
369 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
370 cluster_set_count(&cluster_info[idx],
371 cluster_count(&cluster_info[idx]) + 1);
372 }
373
374 /*
375 * The cluster corresponding to page_nr decreases one usage. If the usage
376 * counter becomes 0, which means no page in the cluster is in using, we can
377 * optionally discard the cluster and add it to free cluster list.
378 */
379 static void dec_cluster_info_page(struct swap_info_struct *p,
380 struct swap_cluster_info *cluster_info, unsigned long page_nr)
381 {
382 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
383
384 if (!cluster_info)
385 return;
386
387 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
388 cluster_set_count(&cluster_info[idx],
389 cluster_count(&cluster_info[idx]) - 1);
390
391 if (cluster_count(&cluster_info[idx]) == 0) {
392 /*
393 * If the swap is discardable, prepare discard the cluster
394 * instead of free it immediately. The cluster will be freed
395 * after discard.
396 */
397 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
398 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
399 swap_cluster_schedule_discard(p, idx);
400 return;
401 }
402
403 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
404 if (cluster_is_null(&p->free_cluster_head)) {
405 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
406 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
407 } else {
408 unsigned int tail = cluster_next(&p->free_cluster_tail);
409 cluster_set_next(&cluster_info[tail], idx);
410 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
411 }
412 }
413 }
414
415 /*
416 * It's possible scan_swap_map() uses a free cluster in the middle of free
417 * cluster list. Avoiding such abuse to avoid list corruption.
418 */
419 static bool
420 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
421 unsigned long offset)
422 {
423 struct percpu_cluster *percpu_cluster;
424 bool conflict;
425
426 offset /= SWAPFILE_CLUSTER;
427 conflict = !cluster_is_null(&si->free_cluster_head) &&
428 offset != cluster_next(&si->free_cluster_head) &&
429 cluster_is_free(&si->cluster_info[offset]);
430
431 if (!conflict)
432 return false;
433
434 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
435 cluster_set_null(&percpu_cluster->index);
436 return true;
437 }
438
439 /*
440 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
441 * might involve allocating a new cluster for current CPU too.
442 */
443 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
444 unsigned long *offset, unsigned long *scan_base)
445 {
446 struct percpu_cluster *cluster;
447 bool found_free;
448 unsigned long tmp;
449
450 new_cluster:
451 cluster = this_cpu_ptr(si->percpu_cluster);
452 if (cluster_is_null(&cluster->index)) {
453 if (!cluster_is_null(&si->free_cluster_head)) {
454 cluster->index = si->free_cluster_head;
455 cluster->next = cluster_next(&cluster->index) *
456 SWAPFILE_CLUSTER;
457 } else if (!cluster_is_null(&si->discard_cluster_head)) {
458 /*
459 * we don't have free cluster but have some clusters in
460 * discarding, do discard now and reclaim them
461 */
462 swap_do_scheduled_discard(si);
463 *scan_base = *offset = si->cluster_next;
464 goto new_cluster;
465 } else
466 return;
467 }
468
469 found_free = false;
470
471 /*
472 * Other CPUs can use our cluster if they can't find a free cluster,
473 * check if there is still free entry in the cluster
474 */
475 tmp = cluster->next;
476 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
477 SWAPFILE_CLUSTER) {
478 if (!si->swap_map[tmp]) {
479 found_free = true;
480 break;
481 }
482 tmp++;
483 }
484 if (!found_free) {
485 cluster_set_null(&cluster->index);
486 goto new_cluster;
487 }
488 cluster->next = tmp + 1;
489 *offset = tmp;
490 *scan_base = tmp;
491 }
492
493 static unsigned long scan_swap_map(struct swap_info_struct *si,
494 unsigned char usage)
495 {
496 unsigned long offset;
497 unsigned long scan_base;
498 unsigned long last_in_cluster = 0;
499 int latency_ration = LATENCY_LIMIT;
500
501 /*
502 * We try to cluster swap pages by allocating them sequentially
503 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
504 * way, however, we resort to first-free allocation, starting
505 * a new cluster. This prevents us from scattering swap pages
506 * all over the entire swap partition, so that we reduce
507 * overall disk seek times between swap pages. -- sct
508 * But we do now try to find an empty cluster. -Andrea
509 * And we let swap pages go all over an SSD partition. Hugh
510 */
511
512 si->flags += SWP_SCANNING;
513 scan_base = offset = si->cluster_next;
514
515 /* SSD algorithm */
516 if (si->cluster_info) {
517 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
518 goto checks;
519 }
520
521 if (unlikely(!si->cluster_nr--)) {
522 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
523 si->cluster_nr = SWAPFILE_CLUSTER - 1;
524 goto checks;
525 }
526
527 spin_unlock(&si->lock);
528
529 /*
530 * If seek is expensive, start searching for new cluster from
531 * start of partition, to minimize the span of allocated swap.
532 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
533 * case, just handled by scan_swap_map_try_ssd_cluster() above.
534 */
535 scan_base = offset = si->lowest_bit;
536 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
537
538 /* Locate the first empty (unaligned) cluster */
539 for (; last_in_cluster <= si->highest_bit; offset++) {
540 if (si->swap_map[offset])
541 last_in_cluster = offset + SWAPFILE_CLUSTER;
542 else if (offset == last_in_cluster) {
543 spin_lock(&si->lock);
544 offset -= SWAPFILE_CLUSTER - 1;
545 si->cluster_next = offset;
546 si->cluster_nr = SWAPFILE_CLUSTER - 1;
547 goto checks;
548 }
549 if (unlikely(--latency_ration < 0)) {
550 cond_resched();
551 latency_ration = LATENCY_LIMIT;
552 }
553 }
554
555 offset = scan_base;
556 spin_lock(&si->lock);
557 si->cluster_nr = SWAPFILE_CLUSTER - 1;
558 }
559
560 checks:
561 if (si->cluster_info) {
562 while (scan_swap_map_ssd_cluster_conflict(si, offset))
563 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
564 }
565 if (!(si->flags & SWP_WRITEOK))
566 goto no_page;
567 if (!si->highest_bit)
568 goto no_page;
569 if (offset > si->highest_bit)
570 scan_base = offset = si->lowest_bit;
571
572 /* reuse swap entry of cache-only swap if not busy. */
573 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
574 int swap_was_freed;
575 spin_unlock(&si->lock);
576 swap_was_freed = __try_to_reclaim_swap(si, offset);
577 spin_lock(&si->lock);
578 /* entry was freed successfully, try to use this again */
579 if (swap_was_freed)
580 goto checks;
581 goto scan; /* check next one */
582 }
583
584 if (si->swap_map[offset])
585 goto scan;
586
587 if (offset == si->lowest_bit)
588 si->lowest_bit++;
589 if (offset == si->highest_bit)
590 si->highest_bit--;
591 si->inuse_pages++;
592 if (si->inuse_pages == si->pages) {
593 si->lowest_bit = si->max;
594 si->highest_bit = 0;
595 spin_lock(&swap_avail_lock);
596 plist_del(&si->avail_list, &swap_avail_head);
597 spin_unlock(&swap_avail_lock);
598 }
599 si->swap_map[offset] = usage;
600 inc_cluster_info_page(si, si->cluster_info, offset);
601 si->cluster_next = offset + 1;
602 si->flags -= SWP_SCANNING;
603
604 return offset;
605
606 scan:
607 spin_unlock(&si->lock);
608 while (++offset <= si->highest_bit) {
609 if (!si->swap_map[offset]) {
610 spin_lock(&si->lock);
611 goto checks;
612 }
613 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
614 spin_lock(&si->lock);
615 goto checks;
616 }
617 if (unlikely(--latency_ration < 0)) {
618 cond_resched();
619 latency_ration = LATENCY_LIMIT;
620 }
621 }
622 offset = si->lowest_bit;
623 while (offset < scan_base) {
624 if (!si->swap_map[offset]) {
625 spin_lock(&si->lock);
626 goto checks;
627 }
628 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
629 spin_lock(&si->lock);
630 goto checks;
631 }
632 if (unlikely(--latency_ration < 0)) {
633 cond_resched();
634 latency_ration = LATENCY_LIMIT;
635 }
636 offset++;
637 }
638 spin_lock(&si->lock);
639
640 no_page:
641 si->flags -= SWP_SCANNING;
642 return 0;
643 }
644
645 swp_entry_t get_swap_page(void)
646 {
647 struct swap_info_struct *si, *next;
648 pgoff_t offset;
649
650 if (atomic_long_read(&nr_swap_pages) <= 0)
651 goto noswap;
652 atomic_long_dec(&nr_swap_pages);
653
654 spin_lock(&swap_avail_lock);
655
656 start_over:
657 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
658 /* requeue si to after same-priority siblings */
659 plist_requeue(&si->avail_list, &swap_avail_head);
660 spin_unlock(&swap_avail_lock);
661 spin_lock(&si->lock);
662 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
663 spin_lock(&swap_avail_lock);
664 if (plist_node_empty(&si->avail_list)) {
665 spin_unlock(&si->lock);
666 goto nextsi;
667 }
668 WARN(!si->highest_bit,
669 "swap_info %d in list but !highest_bit\n",
670 si->type);
671 WARN(!(si->flags & SWP_WRITEOK),
672 "swap_info %d in list but !SWP_WRITEOK\n",
673 si->type);
674 plist_del(&si->avail_list, &swap_avail_head);
675 spin_unlock(&si->lock);
676 goto nextsi;
677 }
678
679 /* This is called for allocating swap entry for cache */
680 offset = scan_swap_map(si, SWAP_HAS_CACHE);
681 spin_unlock(&si->lock);
682 if (offset)
683 return swp_entry(si->type, offset);
684 pr_debug("scan_swap_map of si %d failed to find offset\n",
685 si->type);
686 spin_lock(&swap_avail_lock);
687 nextsi:
688 /*
689 * if we got here, it's likely that si was almost full before,
690 * and since scan_swap_map() can drop the si->lock, multiple
691 * callers probably all tried to get a page from the same si
692 * and it filled up before we could get one; or, the si filled
693 * up between us dropping swap_avail_lock and taking si->lock.
694 * Since we dropped the swap_avail_lock, the swap_avail_head
695 * list may have been modified; so if next is still in the
696 * swap_avail_head list then try it, otherwise start over.
697 */
698 if (plist_node_empty(&next->avail_list))
699 goto start_over;
700 }
701
702 spin_unlock(&swap_avail_lock);
703
704 atomic_long_inc(&nr_swap_pages);
705 noswap:
706 return (swp_entry_t) {0};
707 }
708
709 /* The only caller of this function is now suspend routine */
710 swp_entry_t get_swap_page_of_type(int type)
711 {
712 struct swap_info_struct *si;
713 pgoff_t offset;
714
715 si = swap_info[type];
716 spin_lock(&si->lock);
717 if (si && (si->flags & SWP_WRITEOK)) {
718 atomic_long_dec(&nr_swap_pages);
719 /* This is called for allocating swap entry, not cache */
720 offset = scan_swap_map(si, 1);
721 if (offset) {
722 spin_unlock(&si->lock);
723 return swp_entry(type, offset);
724 }
725 atomic_long_inc(&nr_swap_pages);
726 }
727 spin_unlock(&si->lock);
728 return (swp_entry_t) {0};
729 }
730
731 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
732 {
733 struct swap_info_struct *p;
734 unsigned long offset, type;
735
736 if (!entry.val)
737 goto out;
738 type = swp_type(entry);
739 if (type >= nr_swapfiles)
740 goto bad_nofile;
741 p = swap_info[type];
742 if (!(p->flags & SWP_USED))
743 goto bad_device;
744 offset = swp_offset(entry);
745 if (offset >= p->max)
746 goto bad_offset;
747 if (!p->swap_map[offset])
748 goto bad_free;
749 spin_lock(&p->lock);
750 return p;
751
752 bad_free:
753 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
754 goto out;
755 bad_offset:
756 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
757 goto out;
758 bad_device:
759 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
760 goto out;
761 bad_nofile:
762 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
763 out:
764 return NULL;
765 }
766
767 static unsigned char swap_entry_free(struct swap_info_struct *p,
768 swp_entry_t entry, unsigned char usage)
769 {
770 unsigned long offset = swp_offset(entry);
771 unsigned char count;
772 unsigned char has_cache;
773
774 count = p->swap_map[offset];
775 has_cache = count & SWAP_HAS_CACHE;
776 count &= ~SWAP_HAS_CACHE;
777
778 if (usage == SWAP_HAS_CACHE) {
779 VM_BUG_ON(!has_cache);
780 has_cache = 0;
781 } else if (count == SWAP_MAP_SHMEM) {
782 /*
783 * Or we could insist on shmem.c using a special
784 * swap_shmem_free() and free_shmem_swap_and_cache()...
785 */
786 count = 0;
787 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
788 if (count == COUNT_CONTINUED) {
789 if (swap_count_continued(p, offset, count))
790 count = SWAP_MAP_MAX | COUNT_CONTINUED;
791 else
792 count = SWAP_MAP_MAX;
793 } else
794 count--;
795 }
796
797 if (!count)
798 mem_cgroup_uncharge_swap(entry);
799
800 usage = count | has_cache;
801 p->swap_map[offset] = usage;
802
803 /* free if no reference */
804 if (!usage) {
805 dec_cluster_info_page(p, p->cluster_info, offset);
806 if (offset < p->lowest_bit)
807 p->lowest_bit = offset;
808 if (offset > p->highest_bit) {
809 bool was_full = !p->highest_bit;
810 p->highest_bit = offset;
811 if (was_full && (p->flags & SWP_WRITEOK)) {
812 spin_lock(&swap_avail_lock);
813 WARN_ON(!plist_node_empty(&p->avail_list));
814 if (plist_node_empty(&p->avail_list))
815 plist_add(&p->avail_list,
816 &swap_avail_head);
817 spin_unlock(&swap_avail_lock);
818 }
819 }
820 atomic_long_inc(&nr_swap_pages);
821 p->inuse_pages--;
822 frontswap_invalidate_page(p->type, offset);
823 if (p->flags & SWP_BLKDEV) {
824 struct gendisk *disk = p->bdev->bd_disk;
825 if (disk->fops->swap_slot_free_notify)
826 disk->fops->swap_slot_free_notify(p->bdev,
827 offset);
828 }
829 }
830
831 return usage;
832 }
833
834 /*
835 * Caller has made sure that the swap device corresponding to entry
836 * is still around or has not been recycled.
837 */
838 void swap_free(swp_entry_t entry)
839 {
840 struct swap_info_struct *p;
841
842 p = swap_info_get(entry);
843 if (p) {
844 swap_entry_free(p, entry, 1);
845 spin_unlock(&p->lock);
846 }
847 }
848
849 /*
850 * Called after dropping swapcache to decrease refcnt to swap entries.
851 */
852 void swapcache_free(swp_entry_t entry)
853 {
854 struct swap_info_struct *p;
855
856 p = swap_info_get(entry);
857 if (p) {
858 swap_entry_free(p, entry, SWAP_HAS_CACHE);
859 spin_unlock(&p->lock);
860 }
861 }
862
863 /*
864 * How many references to page are currently swapped out?
865 * This does not give an exact answer when swap count is continued,
866 * but does include the high COUNT_CONTINUED flag to allow for that.
867 */
868 int page_swapcount(struct page *page)
869 {
870 int count = 0;
871 struct swap_info_struct *p;
872 swp_entry_t entry;
873
874 entry.val = page_private(page);
875 p = swap_info_get(entry);
876 if (p) {
877 count = swap_count(p->swap_map[swp_offset(entry)]);
878 spin_unlock(&p->lock);
879 }
880 return count;
881 }
882
883 /*
884 * How many references to @entry are currently swapped out?
885 * This considers COUNT_CONTINUED so it returns exact answer.
886 */
887 int swp_swapcount(swp_entry_t entry)
888 {
889 int count, tmp_count, n;
890 struct swap_info_struct *p;
891 struct page *page;
892 pgoff_t offset;
893 unsigned char *map;
894
895 p = swap_info_get(entry);
896 if (!p)
897 return 0;
898
899 count = swap_count(p->swap_map[swp_offset(entry)]);
900 if (!(count & COUNT_CONTINUED))
901 goto out;
902
903 count &= ~COUNT_CONTINUED;
904 n = SWAP_MAP_MAX + 1;
905
906 offset = swp_offset(entry);
907 page = vmalloc_to_page(p->swap_map + offset);
908 offset &= ~PAGE_MASK;
909 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
910
911 do {
912 page = list_entry(page->lru.next, struct page, lru);
913 map = kmap_atomic(page);
914 tmp_count = map[offset];
915 kunmap_atomic(map);
916
917 count += (tmp_count & ~COUNT_CONTINUED) * n;
918 n *= (SWAP_CONT_MAX + 1);
919 } while (tmp_count & COUNT_CONTINUED);
920 out:
921 spin_unlock(&p->lock);
922 return count;
923 }
924
925 /*
926 * We can write to an anon page without COW if there are no other references
927 * to it. And as a side-effect, free up its swap: because the old content
928 * on disk will never be read, and seeking back there to write new content
929 * later would only waste time away from clustering.
930 */
931 int reuse_swap_page(struct page *page)
932 {
933 int count;
934
935 VM_BUG_ON_PAGE(!PageLocked(page), page);
936 if (unlikely(PageKsm(page)))
937 return 0;
938 count = page_mapcount(page);
939 if (count <= 1 && PageSwapCache(page)) {
940 count += page_swapcount(page);
941 if (count == 1 && !PageWriteback(page)) {
942 delete_from_swap_cache(page);
943 SetPageDirty(page);
944 }
945 }
946 return count <= 1;
947 }
948
949 /*
950 * If swap is getting full, or if there are no more mappings of this page,
951 * then try_to_free_swap is called to free its swap space.
952 */
953 int try_to_free_swap(struct page *page)
954 {
955 VM_BUG_ON_PAGE(!PageLocked(page), page);
956
957 if (!PageSwapCache(page))
958 return 0;
959 if (PageWriteback(page))
960 return 0;
961 if (page_swapcount(page))
962 return 0;
963
964 /*
965 * Once hibernation has begun to create its image of memory,
966 * there's a danger that one of the calls to try_to_free_swap()
967 * - most probably a call from __try_to_reclaim_swap() while
968 * hibernation is allocating its own swap pages for the image,
969 * but conceivably even a call from memory reclaim - will free
970 * the swap from a page which has already been recorded in the
971 * image as a clean swapcache page, and then reuse its swap for
972 * another page of the image. On waking from hibernation, the
973 * original page might be freed under memory pressure, then
974 * later read back in from swap, now with the wrong data.
975 *
976 * Hibernation suspends storage while it is writing the image
977 * to disk so check that here.
978 */
979 if (pm_suspended_storage())
980 return 0;
981
982 delete_from_swap_cache(page);
983 SetPageDirty(page);
984 return 1;
985 }
986
987 /*
988 * Free the swap entry like above, but also try to
989 * free the page cache entry if it is the last user.
990 */
991 int free_swap_and_cache(swp_entry_t entry)
992 {
993 struct swap_info_struct *p;
994 struct page *page = NULL;
995
996 if (non_swap_entry(entry))
997 return 1;
998
999 p = swap_info_get(entry);
1000 if (p) {
1001 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
1002 page = find_get_page(swap_address_space(entry),
1003 entry.val);
1004 if (page && !trylock_page(page)) {
1005 page_cache_release(page);
1006 page = NULL;
1007 }
1008 }
1009 spin_unlock(&p->lock);
1010 }
1011 if (page) {
1012 /*
1013 * Not mapped elsewhere, or swap space full? Free it!
1014 * Also recheck PageSwapCache now page is locked (above).
1015 */
1016 if (PageSwapCache(page) && !PageWriteback(page) &&
1017 (!page_mapped(page) || vm_swap_full())) {
1018 delete_from_swap_cache(page);
1019 SetPageDirty(page);
1020 }
1021 unlock_page(page);
1022 page_cache_release(page);
1023 }
1024 return p != NULL;
1025 }
1026
1027 #ifdef CONFIG_HIBERNATION
1028 /*
1029 * Find the swap type that corresponds to given device (if any).
1030 *
1031 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1032 * from 0, in which the swap header is expected to be located.
1033 *
1034 * This is needed for the suspend to disk (aka swsusp).
1035 */
1036 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1037 {
1038 struct block_device *bdev = NULL;
1039 int type;
1040
1041 if (device)
1042 bdev = bdget(device);
1043
1044 spin_lock(&swap_lock);
1045 for (type = 0; type < nr_swapfiles; type++) {
1046 struct swap_info_struct *sis = swap_info[type];
1047
1048 if (!(sis->flags & SWP_WRITEOK))
1049 continue;
1050
1051 if (!bdev) {
1052 if (bdev_p)
1053 *bdev_p = bdgrab(sis->bdev);
1054
1055 spin_unlock(&swap_lock);
1056 return type;
1057 }
1058 if (bdev == sis->bdev) {
1059 struct swap_extent *se = &sis->first_swap_extent;
1060
1061 if (se->start_block == offset) {
1062 if (bdev_p)
1063 *bdev_p = bdgrab(sis->bdev);
1064
1065 spin_unlock(&swap_lock);
1066 bdput(bdev);
1067 return type;
1068 }
1069 }
1070 }
1071 spin_unlock(&swap_lock);
1072 if (bdev)
1073 bdput(bdev);
1074
1075 return -ENODEV;
1076 }
1077
1078 /*
1079 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1080 * corresponding to given index in swap_info (swap type).
1081 */
1082 sector_t swapdev_block(int type, pgoff_t offset)
1083 {
1084 struct block_device *bdev;
1085
1086 if ((unsigned int)type >= nr_swapfiles)
1087 return 0;
1088 if (!(swap_info[type]->flags & SWP_WRITEOK))
1089 return 0;
1090 return map_swap_entry(swp_entry(type, offset), &bdev);
1091 }
1092
1093 /*
1094 * Return either the total number of swap pages of given type, or the number
1095 * of free pages of that type (depending on @free)
1096 *
1097 * This is needed for software suspend
1098 */
1099 unsigned int count_swap_pages(int type, int free)
1100 {
1101 unsigned int n = 0;
1102
1103 spin_lock(&swap_lock);
1104 if ((unsigned int)type < nr_swapfiles) {
1105 struct swap_info_struct *sis = swap_info[type];
1106
1107 spin_lock(&sis->lock);
1108 if (sis->flags & SWP_WRITEOK) {
1109 n = sis->pages;
1110 if (free)
1111 n -= sis->inuse_pages;
1112 }
1113 spin_unlock(&sis->lock);
1114 }
1115 spin_unlock(&swap_lock);
1116 return n;
1117 }
1118 #endif /* CONFIG_HIBERNATION */
1119
1120 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1121 {
1122 #ifdef CONFIG_MEM_SOFT_DIRTY
1123 /*
1124 * When pte keeps soft dirty bit the pte generated
1125 * from swap entry does not has it, still it's same
1126 * pte from logical point of view.
1127 */
1128 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1129 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1130 #else
1131 return pte_same(pte, swp_pte);
1132 #endif
1133 }
1134
1135 /*
1136 * No need to decide whether this PTE shares the swap entry with others,
1137 * just let do_wp_page work it out if a write is requested later - to
1138 * force COW, vm_page_prot omits write permission from any private vma.
1139 */
1140 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1141 unsigned long addr, swp_entry_t entry, struct page *page)
1142 {
1143 struct page *swapcache;
1144 struct mem_cgroup *memcg;
1145 spinlock_t *ptl;
1146 pte_t *pte;
1147 int ret = 1;
1148
1149 swapcache = page;
1150 page = ksm_might_need_to_copy(page, vma, addr);
1151 if (unlikely(!page))
1152 return -ENOMEM;
1153
1154 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg)) {
1155 ret = -ENOMEM;
1156 goto out_nolock;
1157 }
1158
1159 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1160 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1161 mem_cgroup_cancel_charge(page, memcg);
1162 ret = 0;
1163 goto out;
1164 }
1165
1166 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1167 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1168 get_page(page);
1169 set_pte_at(vma->vm_mm, addr, pte,
1170 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1171 if (page == swapcache) {
1172 page_add_anon_rmap(page, vma, addr);
1173 mem_cgroup_commit_charge(page, memcg, true);
1174 } else { /* ksm created a completely new copy */
1175 page_add_new_anon_rmap(page, vma, addr);
1176 mem_cgroup_commit_charge(page, memcg, false);
1177 lru_cache_add_active_or_unevictable(page, vma);
1178 }
1179 swap_free(entry);
1180 /*
1181 * Move the page to the active list so it is not
1182 * immediately swapped out again after swapon.
1183 */
1184 activate_page(page);
1185 out:
1186 pte_unmap_unlock(pte, ptl);
1187 out_nolock:
1188 if (page != swapcache) {
1189 unlock_page(page);
1190 put_page(page);
1191 }
1192 return ret;
1193 }
1194
1195 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1196 unsigned long addr, unsigned long end,
1197 swp_entry_t entry, struct page *page)
1198 {
1199 pte_t swp_pte = swp_entry_to_pte(entry);
1200 pte_t *pte;
1201 int ret = 0;
1202
1203 /*
1204 * We don't actually need pte lock while scanning for swp_pte: since
1205 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1206 * page table while we're scanning; though it could get zapped, and on
1207 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1208 * of unmatched parts which look like swp_pte, so unuse_pte must
1209 * recheck under pte lock. Scanning without pte lock lets it be
1210 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1211 */
1212 pte = pte_offset_map(pmd, addr);
1213 do {
1214 /*
1215 * swapoff spends a _lot_ of time in this loop!
1216 * Test inline before going to call unuse_pte.
1217 */
1218 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1219 pte_unmap(pte);
1220 ret = unuse_pte(vma, pmd, addr, entry, page);
1221 if (ret)
1222 goto out;
1223 pte = pte_offset_map(pmd, addr);
1224 }
1225 } while (pte++, addr += PAGE_SIZE, addr != end);
1226 pte_unmap(pte - 1);
1227 out:
1228 return ret;
1229 }
1230
1231 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1232 unsigned long addr, unsigned long end,
1233 swp_entry_t entry, struct page *page)
1234 {
1235 pmd_t *pmd;
1236 unsigned long next;
1237 int ret;
1238
1239 pmd = pmd_offset(pud, addr);
1240 do {
1241 next = pmd_addr_end(addr, end);
1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243 continue;
1244 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1245 if (ret)
1246 return ret;
1247 } while (pmd++, addr = next, addr != end);
1248 return 0;
1249 }
1250
1251 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1252 unsigned long addr, unsigned long end,
1253 swp_entry_t entry, struct page *page)
1254 {
1255 pud_t *pud;
1256 unsigned long next;
1257 int ret;
1258
1259 pud = pud_offset(pgd, addr);
1260 do {
1261 next = pud_addr_end(addr, end);
1262 if (pud_none_or_clear_bad(pud))
1263 continue;
1264 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1265 if (ret)
1266 return ret;
1267 } while (pud++, addr = next, addr != end);
1268 return 0;
1269 }
1270
1271 static int unuse_vma(struct vm_area_struct *vma,
1272 swp_entry_t entry, struct page *page)
1273 {
1274 pgd_t *pgd;
1275 unsigned long addr, end, next;
1276 int ret;
1277
1278 if (page_anon_vma(page)) {
1279 addr = page_address_in_vma(page, vma);
1280 if (addr == -EFAULT)
1281 return 0;
1282 else
1283 end = addr + PAGE_SIZE;
1284 } else {
1285 addr = vma->vm_start;
1286 end = vma->vm_end;
1287 }
1288
1289 pgd = pgd_offset(vma->vm_mm, addr);
1290 do {
1291 next = pgd_addr_end(addr, end);
1292 if (pgd_none_or_clear_bad(pgd))
1293 continue;
1294 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1295 if (ret)
1296 return ret;
1297 } while (pgd++, addr = next, addr != end);
1298 return 0;
1299 }
1300
1301 static int unuse_mm(struct mm_struct *mm,
1302 swp_entry_t entry, struct page *page)
1303 {
1304 struct vm_area_struct *vma;
1305 int ret = 0;
1306
1307 if (!down_read_trylock(&mm->mmap_sem)) {
1308 /*
1309 * Activate page so shrink_inactive_list is unlikely to unmap
1310 * its ptes while lock is dropped, so swapoff can make progress.
1311 */
1312 activate_page(page);
1313 unlock_page(page);
1314 down_read(&mm->mmap_sem);
1315 lock_page(page);
1316 }
1317 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1318 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1319 break;
1320 }
1321 up_read(&mm->mmap_sem);
1322 return (ret < 0)? ret: 0;
1323 }
1324
1325 /*
1326 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1327 * from current position to next entry still in use.
1328 * Recycle to start on reaching the end, returning 0 when empty.
1329 */
1330 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1331 unsigned int prev, bool frontswap)
1332 {
1333 unsigned int max = si->max;
1334 unsigned int i = prev;
1335 unsigned char count;
1336
1337 /*
1338 * No need for swap_lock here: we're just looking
1339 * for whether an entry is in use, not modifying it; false
1340 * hits are okay, and sys_swapoff() has already prevented new
1341 * allocations from this area (while holding swap_lock).
1342 */
1343 for (;;) {
1344 if (++i >= max) {
1345 if (!prev) {
1346 i = 0;
1347 break;
1348 }
1349 /*
1350 * No entries in use at top of swap_map,
1351 * loop back to start and recheck there.
1352 */
1353 max = prev + 1;
1354 prev = 0;
1355 i = 1;
1356 }
1357 if (frontswap) {
1358 if (frontswap_test(si, i))
1359 break;
1360 else
1361 continue;
1362 }
1363 count = READ_ONCE(si->swap_map[i]);
1364 if (count && swap_count(count) != SWAP_MAP_BAD)
1365 break;
1366 }
1367 return i;
1368 }
1369
1370 /*
1371 * We completely avoid races by reading each swap page in advance,
1372 * and then search for the process using it. All the necessary
1373 * page table adjustments can then be made atomically.
1374 *
1375 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1376 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1377 */
1378 int try_to_unuse(unsigned int type, bool frontswap,
1379 unsigned long pages_to_unuse)
1380 {
1381 struct swap_info_struct *si = swap_info[type];
1382 struct mm_struct *start_mm;
1383 volatile unsigned char *swap_map; /* swap_map is accessed without
1384 * locking. Mark it as volatile
1385 * to prevent compiler doing
1386 * something odd.
1387 */
1388 unsigned char swcount;
1389 struct page *page;
1390 swp_entry_t entry;
1391 unsigned int i = 0;
1392 int retval = 0;
1393
1394 /*
1395 * When searching mms for an entry, a good strategy is to
1396 * start at the first mm we freed the previous entry from
1397 * (though actually we don't notice whether we or coincidence
1398 * freed the entry). Initialize this start_mm with a hold.
1399 *
1400 * A simpler strategy would be to start at the last mm we
1401 * freed the previous entry from; but that would take less
1402 * advantage of mmlist ordering, which clusters forked mms
1403 * together, child after parent. If we race with dup_mmap(), we
1404 * prefer to resolve parent before child, lest we miss entries
1405 * duplicated after we scanned child: using last mm would invert
1406 * that.
1407 */
1408 start_mm = &init_mm;
1409 atomic_inc(&init_mm.mm_users);
1410
1411 /*
1412 * Keep on scanning until all entries have gone. Usually,
1413 * one pass through swap_map is enough, but not necessarily:
1414 * there are races when an instance of an entry might be missed.
1415 */
1416 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1417 if (signal_pending(current)) {
1418 retval = -EINTR;
1419 break;
1420 }
1421
1422 /*
1423 * Get a page for the entry, using the existing swap
1424 * cache page if there is one. Otherwise, get a clean
1425 * page and read the swap into it.
1426 */
1427 swap_map = &si->swap_map[i];
1428 entry = swp_entry(type, i);
1429 page = read_swap_cache_async(entry,
1430 GFP_HIGHUSER_MOVABLE, NULL, 0);
1431 if (!page) {
1432 /*
1433 * Either swap_duplicate() failed because entry
1434 * has been freed independently, and will not be
1435 * reused since sys_swapoff() already disabled
1436 * allocation from here, or alloc_page() failed.
1437 */
1438 swcount = *swap_map;
1439 /*
1440 * We don't hold lock here, so the swap entry could be
1441 * SWAP_MAP_BAD (when the cluster is discarding).
1442 * Instead of fail out, We can just skip the swap
1443 * entry because swapoff will wait for discarding
1444 * finish anyway.
1445 */
1446 if (!swcount || swcount == SWAP_MAP_BAD)
1447 continue;
1448 retval = -ENOMEM;
1449 break;
1450 }
1451
1452 /*
1453 * Don't hold on to start_mm if it looks like exiting.
1454 */
1455 if (atomic_read(&start_mm->mm_users) == 1) {
1456 mmput(start_mm);
1457 start_mm = &init_mm;
1458 atomic_inc(&init_mm.mm_users);
1459 }
1460
1461 /*
1462 * Wait for and lock page. When do_swap_page races with
1463 * try_to_unuse, do_swap_page can handle the fault much
1464 * faster than try_to_unuse can locate the entry. This
1465 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1466 * defer to do_swap_page in such a case - in some tests,
1467 * do_swap_page and try_to_unuse repeatedly compete.
1468 */
1469 wait_on_page_locked(page);
1470 wait_on_page_writeback(page);
1471 lock_page(page);
1472 wait_on_page_writeback(page);
1473
1474 /*
1475 * Remove all references to entry.
1476 */
1477 swcount = *swap_map;
1478 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1479 retval = shmem_unuse(entry, page);
1480 /* page has already been unlocked and released */
1481 if (retval < 0)
1482 break;
1483 continue;
1484 }
1485 if (swap_count(swcount) && start_mm != &init_mm)
1486 retval = unuse_mm(start_mm, entry, page);
1487
1488 if (swap_count(*swap_map)) {
1489 int set_start_mm = (*swap_map >= swcount);
1490 struct list_head *p = &start_mm->mmlist;
1491 struct mm_struct *new_start_mm = start_mm;
1492 struct mm_struct *prev_mm = start_mm;
1493 struct mm_struct *mm;
1494
1495 atomic_inc(&new_start_mm->mm_users);
1496 atomic_inc(&prev_mm->mm_users);
1497 spin_lock(&mmlist_lock);
1498 while (swap_count(*swap_map) && !retval &&
1499 (p = p->next) != &start_mm->mmlist) {
1500 mm = list_entry(p, struct mm_struct, mmlist);
1501 if (!atomic_inc_not_zero(&mm->mm_users))
1502 continue;
1503 spin_unlock(&mmlist_lock);
1504 mmput(prev_mm);
1505 prev_mm = mm;
1506
1507 cond_resched();
1508
1509 swcount = *swap_map;
1510 if (!swap_count(swcount)) /* any usage ? */
1511 ;
1512 else if (mm == &init_mm)
1513 set_start_mm = 1;
1514 else
1515 retval = unuse_mm(mm, entry, page);
1516
1517 if (set_start_mm && *swap_map < swcount) {
1518 mmput(new_start_mm);
1519 atomic_inc(&mm->mm_users);
1520 new_start_mm = mm;
1521 set_start_mm = 0;
1522 }
1523 spin_lock(&mmlist_lock);
1524 }
1525 spin_unlock(&mmlist_lock);
1526 mmput(prev_mm);
1527 mmput(start_mm);
1528 start_mm = new_start_mm;
1529 }
1530 if (retval) {
1531 unlock_page(page);
1532 page_cache_release(page);
1533 break;
1534 }
1535
1536 /*
1537 * If a reference remains (rare), we would like to leave
1538 * the page in the swap cache; but try_to_unmap could
1539 * then re-duplicate the entry once we drop page lock,
1540 * so we might loop indefinitely; also, that page could
1541 * not be swapped out to other storage meanwhile. So:
1542 * delete from cache even if there's another reference,
1543 * after ensuring that the data has been saved to disk -
1544 * since if the reference remains (rarer), it will be
1545 * read from disk into another page. Splitting into two
1546 * pages would be incorrect if swap supported "shared
1547 * private" pages, but they are handled by tmpfs files.
1548 *
1549 * Given how unuse_vma() targets one particular offset
1550 * in an anon_vma, once the anon_vma has been determined,
1551 * this splitting happens to be just what is needed to
1552 * handle where KSM pages have been swapped out: re-reading
1553 * is unnecessarily slow, but we can fix that later on.
1554 */
1555 if (swap_count(*swap_map) &&
1556 PageDirty(page) && PageSwapCache(page)) {
1557 struct writeback_control wbc = {
1558 .sync_mode = WB_SYNC_NONE,
1559 };
1560
1561 swap_writepage(page, &wbc);
1562 lock_page(page);
1563 wait_on_page_writeback(page);
1564 }
1565
1566 /*
1567 * It is conceivable that a racing task removed this page from
1568 * swap cache just before we acquired the page lock at the top,
1569 * or while we dropped it in unuse_mm(). The page might even
1570 * be back in swap cache on another swap area: that we must not
1571 * delete, since it may not have been written out to swap yet.
1572 */
1573 if (PageSwapCache(page) &&
1574 likely(page_private(page) == entry.val))
1575 delete_from_swap_cache(page);
1576
1577 /*
1578 * So we could skip searching mms once swap count went
1579 * to 1, we did not mark any present ptes as dirty: must
1580 * mark page dirty so shrink_page_list will preserve it.
1581 */
1582 SetPageDirty(page);
1583 unlock_page(page);
1584 page_cache_release(page);
1585
1586 /*
1587 * Make sure that we aren't completely killing
1588 * interactive performance.
1589 */
1590 cond_resched();
1591 if (frontswap && pages_to_unuse > 0) {
1592 if (!--pages_to_unuse)
1593 break;
1594 }
1595 }
1596
1597 mmput(start_mm);
1598 return retval;
1599 }
1600
1601 /*
1602 * After a successful try_to_unuse, if no swap is now in use, we know
1603 * we can empty the mmlist. swap_lock must be held on entry and exit.
1604 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1605 * added to the mmlist just after page_duplicate - before would be racy.
1606 */
1607 static void drain_mmlist(void)
1608 {
1609 struct list_head *p, *next;
1610 unsigned int type;
1611
1612 for (type = 0; type < nr_swapfiles; type++)
1613 if (swap_info[type]->inuse_pages)
1614 return;
1615 spin_lock(&mmlist_lock);
1616 list_for_each_safe(p, next, &init_mm.mmlist)
1617 list_del_init(p);
1618 spin_unlock(&mmlist_lock);
1619 }
1620
1621 /*
1622 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1623 * corresponds to page offset for the specified swap entry.
1624 * Note that the type of this function is sector_t, but it returns page offset
1625 * into the bdev, not sector offset.
1626 */
1627 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1628 {
1629 struct swap_info_struct *sis;
1630 struct swap_extent *start_se;
1631 struct swap_extent *se;
1632 pgoff_t offset;
1633
1634 sis = swap_info[swp_type(entry)];
1635 *bdev = sis->bdev;
1636
1637 offset = swp_offset(entry);
1638 start_se = sis->curr_swap_extent;
1639 se = start_se;
1640
1641 for ( ; ; ) {
1642 struct list_head *lh;
1643
1644 if (se->start_page <= offset &&
1645 offset < (se->start_page + se->nr_pages)) {
1646 return se->start_block + (offset - se->start_page);
1647 }
1648 lh = se->list.next;
1649 se = list_entry(lh, struct swap_extent, list);
1650 sis->curr_swap_extent = se;
1651 BUG_ON(se == start_se); /* It *must* be present */
1652 }
1653 }
1654
1655 /*
1656 * Returns the page offset into bdev for the specified page's swap entry.
1657 */
1658 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1659 {
1660 swp_entry_t entry;
1661 entry.val = page_private(page);
1662 return map_swap_entry(entry, bdev);
1663 }
1664
1665 /*
1666 * Free all of a swapdev's extent information
1667 */
1668 static void destroy_swap_extents(struct swap_info_struct *sis)
1669 {
1670 while (!list_empty(&sis->first_swap_extent.list)) {
1671 struct swap_extent *se;
1672
1673 se = list_entry(sis->first_swap_extent.list.next,
1674 struct swap_extent, list);
1675 list_del(&se->list);
1676 kfree(se);
1677 }
1678
1679 if (sis->flags & SWP_FILE) {
1680 struct file *swap_file = sis->swap_file;
1681 struct address_space *mapping = swap_file->f_mapping;
1682
1683 sis->flags &= ~SWP_FILE;
1684 mapping->a_ops->swap_deactivate(swap_file);
1685 }
1686 }
1687
1688 /*
1689 * Add a block range (and the corresponding page range) into this swapdev's
1690 * extent list. The extent list is kept sorted in page order.
1691 *
1692 * This function rather assumes that it is called in ascending page order.
1693 */
1694 int
1695 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1696 unsigned long nr_pages, sector_t start_block)
1697 {
1698 struct swap_extent *se;
1699 struct swap_extent *new_se;
1700 struct list_head *lh;
1701
1702 if (start_page == 0) {
1703 se = &sis->first_swap_extent;
1704 sis->curr_swap_extent = se;
1705 se->start_page = 0;
1706 se->nr_pages = nr_pages;
1707 se->start_block = start_block;
1708 return 1;
1709 } else {
1710 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1711 se = list_entry(lh, struct swap_extent, list);
1712 BUG_ON(se->start_page + se->nr_pages != start_page);
1713 if (se->start_block + se->nr_pages == start_block) {
1714 /* Merge it */
1715 se->nr_pages += nr_pages;
1716 return 0;
1717 }
1718 }
1719
1720 /*
1721 * No merge. Insert a new extent, preserving ordering.
1722 */
1723 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1724 if (new_se == NULL)
1725 return -ENOMEM;
1726 new_se->start_page = start_page;
1727 new_se->nr_pages = nr_pages;
1728 new_se->start_block = start_block;
1729
1730 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1731 return 1;
1732 }
1733
1734 /*
1735 * A `swap extent' is a simple thing which maps a contiguous range of pages
1736 * onto a contiguous range of disk blocks. An ordered list of swap extents
1737 * is built at swapon time and is then used at swap_writepage/swap_readpage
1738 * time for locating where on disk a page belongs.
1739 *
1740 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1741 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1742 * swap files identically.
1743 *
1744 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1745 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1746 * swapfiles are handled *identically* after swapon time.
1747 *
1748 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1749 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1750 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1751 * requirements, they are simply tossed out - we will never use those blocks
1752 * for swapping.
1753 *
1754 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1755 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1756 * which will scribble on the fs.
1757 *
1758 * The amount of disk space which a single swap extent represents varies.
1759 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1760 * extents in the list. To avoid much list walking, we cache the previous
1761 * search location in `curr_swap_extent', and start new searches from there.
1762 * This is extremely effective. The average number of iterations in
1763 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1764 */
1765 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1766 {
1767 struct file *swap_file = sis->swap_file;
1768 struct address_space *mapping = swap_file->f_mapping;
1769 struct inode *inode = mapping->host;
1770 int ret;
1771
1772 if (S_ISBLK(inode->i_mode)) {
1773 ret = add_swap_extent(sis, 0, sis->max, 0);
1774 *span = sis->pages;
1775 return ret;
1776 }
1777
1778 if (mapping->a_ops->swap_activate) {
1779 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1780 if (!ret) {
1781 sis->flags |= SWP_FILE;
1782 ret = add_swap_extent(sis, 0, sis->max, 0);
1783 *span = sis->pages;
1784 }
1785 return ret;
1786 }
1787
1788 return generic_swapfile_activate(sis, swap_file, span);
1789 }
1790
1791 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1792 unsigned char *swap_map,
1793 struct swap_cluster_info *cluster_info)
1794 {
1795 if (prio >= 0)
1796 p->prio = prio;
1797 else
1798 p->prio = --least_priority;
1799 /*
1800 * the plist prio is negated because plist ordering is
1801 * low-to-high, while swap ordering is high-to-low
1802 */
1803 p->list.prio = -p->prio;
1804 p->avail_list.prio = -p->prio;
1805 p->swap_map = swap_map;
1806 p->cluster_info = cluster_info;
1807 p->flags |= SWP_WRITEOK;
1808 atomic_long_add(p->pages, &nr_swap_pages);
1809 total_swap_pages += p->pages;
1810
1811 assert_spin_locked(&swap_lock);
1812 /*
1813 * both lists are plists, and thus priority ordered.
1814 * swap_active_head needs to be priority ordered for swapoff(),
1815 * which on removal of any swap_info_struct with an auto-assigned
1816 * (i.e. negative) priority increments the auto-assigned priority
1817 * of any lower-priority swap_info_structs.
1818 * swap_avail_head needs to be priority ordered for get_swap_page(),
1819 * which allocates swap pages from the highest available priority
1820 * swap_info_struct.
1821 */
1822 plist_add(&p->list, &swap_active_head);
1823 spin_lock(&swap_avail_lock);
1824 plist_add(&p->avail_list, &swap_avail_head);
1825 spin_unlock(&swap_avail_lock);
1826 }
1827
1828 static void enable_swap_info(struct swap_info_struct *p, int prio,
1829 unsigned char *swap_map,
1830 struct swap_cluster_info *cluster_info,
1831 unsigned long *frontswap_map)
1832 {
1833 frontswap_init(p->type, frontswap_map);
1834 spin_lock(&swap_lock);
1835 spin_lock(&p->lock);
1836 _enable_swap_info(p, prio, swap_map, cluster_info);
1837 spin_unlock(&p->lock);
1838 spin_unlock(&swap_lock);
1839 }
1840
1841 static void reinsert_swap_info(struct swap_info_struct *p)
1842 {
1843 spin_lock(&swap_lock);
1844 spin_lock(&p->lock);
1845 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1846 spin_unlock(&p->lock);
1847 spin_unlock(&swap_lock);
1848 }
1849
1850 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1851 {
1852 struct swap_info_struct *p = NULL;
1853 unsigned char *swap_map;
1854 struct swap_cluster_info *cluster_info;
1855 unsigned long *frontswap_map;
1856 struct file *swap_file, *victim;
1857 struct address_space *mapping;
1858 struct inode *inode;
1859 struct filename *pathname;
1860 int err, found = 0;
1861 unsigned int old_block_size;
1862
1863 if (!capable(CAP_SYS_ADMIN))
1864 return -EPERM;
1865
1866 BUG_ON(!current->mm);
1867
1868 pathname = getname(specialfile);
1869 if (IS_ERR(pathname))
1870 return PTR_ERR(pathname);
1871
1872 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1873 err = PTR_ERR(victim);
1874 if (IS_ERR(victim))
1875 goto out;
1876
1877 mapping = victim->f_mapping;
1878 spin_lock(&swap_lock);
1879 plist_for_each_entry(p, &swap_active_head, list) {
1880 if (p->flags & SWP_WRITEOK) {
1881 if (p->swap_file->f_mapping == mapping) {
1882 found = 1;
1883 break;
1884 }
1885 }
1886 }
1887 if (!found) {
1888 err = -EINVAL;
1889 spin_unlock(&swap_lock);
1890 goto out_dput;
1891 }
1892 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1893 vm_unacct_memory(p->pages);
1894 else {
1895 err = -ENOMEM;
1896 spin_unlock(&swap_lock);
1897 goto out_dput;
1898 }
1899 spin_lock(&swap_avail_lock);
1900 plist_del(&p->avail_list, &swap_avail_head);
1901 spin_unlock(&swap_avail_lock);
1902 spin_lock(&p->lock);
1903 if (p->prio < 0) {
1904 struct swap_info_struct *si = p;
1905
1906 plist_for_each_entry_continue(si, &swap_active_head, list) {
1907 si->prio++;
1908 si->list.prio--;
1909 si->avail_list.prio--;
1910 }
1911 least_priority++;
1912 }
1913 plist_del(&p->list, &swap_active_head);
1914 atomic_long_sub(p->pages, &nr_swap_pages);
1915 total_swap_pages -= p->pages;
1916 p->flags &= ~SWP_WRITEOK;
1917 spin_unlock(&p->lock);
1918 spin_unlock(&swap_lock);
1919
1920 set_current_oom_origin();
1921 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1922 clear_current_oom_origin();
1923
1924 if (err) {
1925 /* re-insert swap space back into swap_list */
1926 reinsert_swap_info(p);
1927 goto out_dput;
1928 }
1929
1930 flush_work(&p->discard_work);
1931
1932 destroy_swap_extents(p);
1933 if (p->flags & SWP_CONTINUED)
1934 free_swap_count_continuations(p);
1935
1936 mutex_lock(&swapon_mutex);
1937 spin_lock(&swap_lock);
1938 spin_lock(&p->lock);
1939 drain_mmlist();
1940
1941 /* wait for anyone still in scan_swap_map */
1942 p->highest_bit = 0; /* cuts scans short */
1943 while (p->flags >= SWP_SCANNING) {
1944 spin_unlock(&p->lock);
1945 spin_unlock(&swap_lock);
1946 schedule_timeout_uninterruptible(1);
1947 spin_lock(&swap_lock);
1948 spin_lock(&p->lock);
1949 }
1950
1951 swap_file = p->swap_file;
1952 old_block_size = p->old_block_size;
1953 p->swap_file = NULL;
1954 p->max = 0;
1955 swap_map = p->swap_map;
1956 p->swap_map = NULL;
1957 cluster_info = p->cluster_info;
1958 p->cluster_info = NULL;
1959 frontswap_map = frontswap_map_get(p);
1960 spin_unlock(&p->lock);
1961 spin_unlock(&swap_lock);
1962 frontswap_invalidate_area(p->type);
1963 frontswap_map_set(p, NULL);
1964 mutex_unlock(&swapon_mutex);
1965 free_percpu(p->percpu_cluster);
1966 p->percpu_cluster = NULL;
1967 vfree(swap_map);
1968 vfree(cluster_info);
1969 vfree(frontswap_map);
1970 /* Destroy swap account information */
1971 swap_cgroup_swapoff(p->type);
1972
1973 inode = mapping->host;
1974 if (S_ISBLK(inode->i_mode)) {
1975 struct block_device *bdev = I_BDEV(inode);
1976 set_blocksize(bdev, old_block_size);
1977 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1978 } else {
1979 mutex_lock(&inode->i_mutex);
1980 inode->i_flags &= ~S_SWAPFILE;
1981 mutex_unlock(&inode->i_mutex);
1982 }
1983 filp_close(swap_file, NULL);
1984
1985 /*
1986 * Clear the SWP_USED flag after all resources are freed so that swapon
1987 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1988 * not hold p->lock after we cleared its SWP_WRITEOK.
1989 */
1990 spin_lock(&swap_lock);
1991 p->flags = 0;
1992 spin_unlock(&swap_lock);
1993
1994 err = 0;
1995 atomic_inc(&proc_poll_event);
1996 wake_up_interruptible(&proc_poll_wait);
1997
1998 out_dput:
1999 filp_close(victim, NULL);
2000 out:
2001 putname(pathname);
2002 return err;
2003 }
2004
2005 #ifdef CONFIG_PROC_FS
2006 static unsigned swaps_poll(struct file *file, poll_table *wait)
2007 {
2008 struct seq_file *seq = file->private_data;
2009
2010 poll_wait(file, &proc_poll_wait, wait);
2011
2012 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2013 seq->poll_event = atomic_read(&proc_poll_event);
2014 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2015 }
2016
2017 return POLLIN | POLLRDNORM;
2018 }
2019
2020 /* iterator */
2021 static void *swap_start(struct seq_file *swap, loff_t *pos)
2022 {
2023 struct swap_info_struct *si;
2024 int type;
2025 loff_t l = *pos;
2026
2027 mutex_lock(&swapon_mutex);
2028
2029 if (!l)
2030 return SEQ_START_TOKEN;
2031
2032 for (type = 0; type < nr_swapfiles; type++) {
2033 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2034 si = swap_info[type];
2035 if (!(si->flags & SWP_USED) || !si->swap_map)
2036 continue;
2037 if (!--l)
2038 return si;
2039 }
2040
2041 return NULL;
2042 }
2043
2044 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2045 {
2046 struct swap_info_struct *si = v;
2047 int type;
2048
2049 if (v == SEQ_START_TOKEN)
2050 type = 0;
2051 else
2052 type = si->type + 1;
2053
2054 for (; type < nr_swapfiles; type++) {
2055 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2056 si = swap_info[type];
2057 if (!(si->flags & SWP_USED) || !si->swap_map)
2058 continue;
2059 ++*pos;
2060 return si;
2061 }
2062
2063 return NULL;
2064 }
2065
2066 static void swap_stop(struct seq_file *swap, void *v)
2067 {
2068 mutex_unlock(&swapon_mutex);
2069 }
2070
2071 static int swap_show(struct seq_file *swap, void *v)
2072 {
2073 struct swap_info_struct *si = v;
2074 struct file *file;
2075 int len;
2076
2077 if (si == SEQ_START_TOKEN) {
2078 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2079 return 0;
2080 }
2081
2082 file = si->swap_file;
2083 len = seq_file_path(swap, file, " \t\n\\");
2084 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2085 len < 40 ? 40 - len : 1, " ",
2086 S_ISBLK(file_inode(file)->i_mode) ?
2087 "partition" : "file\t",
2088 si->pages << (PAGE_SHIFT - 10),
2089 si->inuse_pages << (PAGE_SHIFT - 10),
2090 si->prio);
2091 return 0;
2092 }
2093
2094 static const struct seq_operations swaps_op = {
2095 .start = swap_start,
2096 .next = swap_next,
2097 .stop = swap_stop,
2098 .show = swap_show
2099 };
2100
2101 static int swaps_open(struct inode *inode, struct file *file)
2102 {
2103 struct seq_file *seq;
2104 int ret;
2105
2106 ret = seq_open(file, &swaps_op);
2107 if (ret)
2108 return ret;
2109
2110 seq = file->private_data;
2111 seq->poll_event = atomic_read(&proc_poll_event);
2112 return 0;
2113 }
2114
2115 static const struct file_operations proc_swaps_operations = {
2116 .open = swaps_open,
2117 .read = seq_read,
2118 .llseek = seq_lseek,
2119 .release = seq_release,
2120 .poll = swaps_poll,
2121 };
2122
2123 static int __init procswaps_init(void)
2124 {
2125 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2126 return 0;
2127 }
2128 __initcall(procswaps_init);
2129 #endif /* CONFIG_PROC_FS */
2130
2131 #ifdef MAX_SWAPFILES_CHECK
2132 static int __init max_swapfiles_check(void)
2133 {
2134 MAX_SWAPFILES_CHECK();
2135 return 0;
2136 }
2137 late_initcall(max_swapfiles_check);
2138 #endif
2139
2140 static struct swap_info_struct *alloc_swap_info(void)
2141 {
2142 struct swap_info_struct *p;
2143 unsigned int type;
2144
2145 p = kzalloc(sizeof(*p), GFP_KERNEL);
2146 if (!p)
2147 return ERR_PTR(-ENOMEM);
2148
2149 spin_lock(&swap_lock);
2150 for (type = 0; type < nr_swapfiles; type++) {
2151 if (!(swap_info[type]->flags & SWP_USED))
2152 break;
2153 }
2154 if (type >= MAX_SWAPFILES) {
2155 spin_unlock(&swap_lock);
2156 kfree(p);
2157 return ERR_PTR(-EPERM);
2158 }
2159 if (type >= nr_swapfiles) {
2160 p->type = type;
2161 swap_info[type] = p;
2162 /*
2163 * Write swap_info[type] before nr_swapfiles, in case a
2164 * racing procfs swap_start() or swap_next() is reading them.
2165 * (We never shrink nr_swapfiles, we never free this entry.)
2166 */
2167 smp_wmb();
2168 nr_swapfiles++;
2169 } else {
2170 kfree(p);
2171 p = swap_info[type];
2172 /*
2173 * Do not memset this entry: a racing procfs swap_next()
2174 * would be relying on p->type to remain valid.
2175 */
2176 }
2177 INIT_LIST_HEAD(&p->first_swap_extent.list);
2178 plist_node_init(&p->list, 0);
2179 plist_node_init(&p->avail_list, 0);
2180 p->flags = SWP_USED;
2181 spin_unlock(&swap_lock);
2182 spin_lock_init(&p->lock);
2183
2184 return p;
2185 }
2186
2187 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2188 {
2189 int error;
2190
2191 if (S_ISBLK(inode->i_mode)) {
2192 p->bdev = bdgrab(I_BDEV(inode));
2193 error = blkdev_get(p->bdev,
2194 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2195 if (error < 0) {
2196 p->bdev = NULL;
2197 return error;
2198 }
2199 p->old_block_size = block_size(p->bdev);
2200 error = set_blocksize(p->bdev, PAGE_SIZE);
2201 if (error < 0)
2202 return error;
2203 p->flags |= SWP_BLKDEV;
2204 } else if (S_ISREG(inode->i_mode)) {
2205 p->bdev = inode->i_sb->s_bdev;
2206 mutex_lock(&inode->i_mutex);
2207 if (IS_SWAPFILE(inode))
2208 return -EBUSY;
2209 } else
2210 return -EINVAL;
2211
2212 return 0;
2213 }
2214
2215 static unsigned long read_swap_header(struct swap_info_struct *p,
2216 union swap_header *swap_header,
2217 struct inode *inode)
2218 {
2219 int i;
2220 unsigned long maxpages;
2221 unsigned long swapfilepages;
2222 unsigned long last_page;
2223
2224 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2225 pr_err("Unable to find swap-space signature\n");
2226 return 0;
2227 }
2228
2229 /* swap partition endianess hack... */
2230 if (swab32(swap_header->info.version) == 1) {
2231 swab32s(&swap_header->info.version);
2232 swab32s(&swap_header->info.last_page);
2233 swab32s(&swap_header->info.nr_badpages);
2234 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2235 return 0;
2236 for (i = 0; i < swap_header->info.nr_badpages; i++)
2237 swab32s(&swap_header->info.badpages[i]);
2238 }
2239 /* Check the swap header's sub-version */
2240 if (swap_header->info.version != 1) {
2241 pr_warn("Unable to handle swap header version %d\n",
2242 swap_header->info.version);
2243 return 0;
2244 }
2245
2246 p->lowest_bit = 1;
2247 p->cluster_next = 1;
2248 p->cluster_nr = 0;
2249
2250 /*
2251 * Find out how many pages are allowed for a single swap
2252 * device. There are two limiting factors: 1) the number
2253 * of bits for the swap offset in the swp_entry_t type, and
2254 * 2) the number of bits in the swap pte as defined by the
2255 * different architectures. In order to find the
2256 * largest possible bit mask, a swap entry with swap type 0
2257 * and swap offset ~0UL is created, encoded to a swap pte,
2258 * decoded to a swp_entry_t again, and finally the swap
2259 * offset is extracted. This will mask all the bits from
2260 * the initial ~0UL mask that can't be encoded in either
2261 * the swp_entry_t or the architecture definition of a
2262 * swap pte.
2263 */
2264 maxpages = swp_offset(pte_to_swp_entry(
2265 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2266 last_page = swap_header->info.last_page;
2267 if (last_page > maxpages) {
2268 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2269 maxpages << (PAGE_SHIFT - 10),
2270 last_page << (PAGE_SHIFT - 10));
2271 }
2272 if (maxpages > last_page) {
2273 maxpages = last_page + 1;
2274 /* p->max is an unsigned int: don't overflow it */
2275 if ((unsigned int)maxpages == 0)
2276 maxpages = UINT_MAX;
2277 }
2278 p->highest_bit = maxpages - 1;
2279
2280 if (!maxpages)
2281 return 0;
2282 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2283 if (swapfilepages && maxpages > swapfilepages) {
2284 pr_warn("Swap area shorter than signature indicates\n");
2285 return 0;
2286 }
2287 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2288 return 0;
2289 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2290 return 0;
2291
2292 return maxpages;
2293 }
2294
2295 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2296 union swap_header *swap_header,
2297 unsigned char *swap_map,
2298 struct swap_cluster_info *cluster_info,
2299 unsigned long maxpages,
2300 sector_t *span)
2301 {
2302 int i;
2303 unsigned int nr_good_pages;
2304 int nr_extents;
2305 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2306 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2307
2308 nr_good_pages = maxpages - 1; /* omit header page */
2309
2310 cluster_set_null(&p->free_cluster_head);
2311 cluster_set_null(&p->free_cluster_tail);
2312 cluster_set_null(&p->discard_cluster_head);
2313 cluster_set_null(&p->discard_cluster_tail);
2314
2315 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2316 unsigned int page_nr = swap_header->info.badpages[i];
2317 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2318 return -EINVAL;
2319 if (page_nr < maxpages) {
2320 swap_map[page_nr] = SWAP_MAP_BAD;
2321 nr_good_pages--;
2322 /*
2323 * Haven't marked the cluster free yet, no list
2324 * operation involved
2325 */
2326 inc_cluster_info_page(p, cluster_info, page_nr);
2327 }
2328 }
2329
2330 /* Haven't marked the cluster free yet, no list operation involved */
2331 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2332 inc_cluster_info_page(p, cluster_info, i);
2333
2334 if (nr_good_pages) {
2335 swap_map[0] = SWAP_MAP_BAD;
2336 /*
2337 * Not mark the cluster free yet, no list
2338 * operation involved
2339 */
2340 inc_cluster_info_page(p, cluster_info, 0);
2341 p->max = maxpages;
2342 p->pages = nr_good_pages;
2343 nr_extents = setup_swap_extents(p, span);
2344 if (nr_extents < 0)
2345 return nr_extents;
2346 nr_good_pages = p->pages;
2347 }
2348 if (!nr_good_pages) {
2349 pr_warn("Empty swap-file\n");
2350 return -EINVAL;
2351 }
2352
2353 if (!cluster_info)
2354 return nr_extents;
2355
2356 for (i = 0; i < nr_clusters; i++) {
2357 if (!cluster_count(&cluster_info[idx])) {
2358 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2359 if (cluster_is_null(&p->free_cluster_head)) {
2360 cluster_set_next_flag(&p->free_cluster_head,
2361 idx, 0);
2362 cluster_set_next_flag(&p->free_cluster_tail,
2363 idx, 0);
2364 } else {
2365 unsigned int tail;
2366
2367 tail = cluster_next(&p->free_cluster_tail);
2368 cluster_set_next(&cluster_info[tail], idx);
2369 cluster_set_next_flag(&p->free_cluster_tail,
2370 idx, 0);
2371 }
2372 }
2373 idx++;
2374 if (idx == nr_clusters)
2375 idx = 0;
2376 }
2377 return nr_extents;
2378 }
2379
2380 /*
2381 * Helper to sys_swapon determining if a given swap
2382 * backing device queue supports DISCARD operations.
2383 */
2384 static bool swap_discardable(struct swap_info_struct *si)
2385 {
2386 struct request_queue *q = bdev_get_queue(si->bdev);
2387
2388 if (!q || !blk_queue_discard(q))
2389 return false;
2390
2391 return true;
2392 }
2393
2394 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2395 {
2396 struct swap_info_struct *p;
2397 struct filename *name;
2398 struct file *swap_file = NULL;
2399 struct address_space *mapping;
2400 int prio;
2401 int error;
2402 union swap_header *swap_header;
2403 int nr_extents;
2404 sector_t span;
2405 unsigned long maxpages;
2406 unsigned char *swap_map = NULL;
2407 struct swap_cluster_info *cluster_info = NULL;
2408 unsigned long *frontswap_map = NULL;
2409 struct page *page = NULL;
2410 struct inode *inode = NULL;
2411
2412 if (swap_flags & ~SWAP_FLAGS_VALID)
2413 return -EINVAL;
2414
2415 if (!capable(CAP_SYS_ADMIN))
2416 return -EPERM;
2417
2418 p = alloc_swap_info();
2419 if (IS_ERR(p))
2420 return PTR_ERR(p);
2421
2422 INIT_WORK(&p->discard_work, swap_discard_work);
2423
2424 name = getname(specialfile);
2425 if (IS_ERR(name)) {
2426 error = PTR_ERR(name);
2427 name = NULL;
2428 goto bad_swap;
2429 }
2430 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2431 if (IS_ERR(swap_file)) {
2432 error = PTR_ERR(swap_file);
2433 swap_file = NULL;
2434 goto bad_swap;
2435 }
2436
2437 p->swap_file = swap_file;
2438 mapping = swap_file->f_mapping;
2439 inode = mapping->host;
2440
2441 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2442 error = claim_swapfile(p, inode);
2443 if (unlikely(error))
2444 goto bad_swap;
2445
2446 /*
2447 * Read the swap header.
2448 */
2449 if (!mapping->a_ops->readpage) {
2450 error = -EINVAL;
2451 goto bad_swap;
2452 }
2453 page = read_mapping_page(mapping, 0, swap_file);
2454 if (IS_ERR(page)) {
2455 error = PTR_ERR(page);
2456 goto bad_swap;
2457 }
2458 swap_header = kmap(page);
2459
2460 maxpages = read_swap_header(p, swap_header, inode);
2461 if (unlikely(!maxpages)) {
2462 error = -EINVAL;
2463 goto bad_swap;
2464 }
2465
2466 /* OK, set up the swap map and apply the bad block list */
2467 swap_map = vzalloc(maxpages);
2468 if (!swap_map) {
2469 error = -ENOMEM;
2470 goto bad_swap;
2471 }
2472 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2473 int cpu;
2474
2475 p->flags |= SWP_SOLIDSTATE;
2476 /*
2477 * select a random position to start with to help wear leveling
2478 * SSD
2479 */
2480 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2481
2482 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2483 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2484 if (!cluster_info) {
2485 error = -ENOMEM;
2486 goto bad_swap;
2487 }
2488 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2489 if (!p->percpu_cluster) {
2490 error = -ENOMEM;
2491 goto bad_swap;
2492 }
2493 for_each_possible_cpu(cpu) {
2494 struct percpu_cluster *cluster;
2495 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2496 cluster_set_null(&cluster->index);
2497 }
2498 }
2499
2500 error = swap_cgroup_swapon(p->type, maxpages);
2501 if (error)
2502 goto bad_swap;
2503
2504 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2505 cluster_info, maxpages, &span);
2506 if (unlikely(nr_extents < 0)) {
2507 error = nr_extents;
2508 goto bad_swap;
2509 }
2510 /* frontswap enabled? set up bit-per-page map for frontswap */
2511 if (frontswap_enabled)
2512 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2513
2514 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2515 /*
2516 * When discard is enabled for swap with no particular
2517 * policy flagged, we set all swap discard flags here in
2518 * order to sustain backward compatibility with older
2519 * swapon(8) releases.
2520 */
2521 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2522 SWP_PAGE_DISCARD);
2523
2524 /*
2525 * By flagging sys_swapon, a sysadmin can tell us to
2526 * either do single-time area discards only, or to just
2527 * perform discards for released swap page-clusters.
2528 * Now it's time to adjust the p->flags accordingly.
2529 */
2530 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2531 p->flags &= ~SWP_PAGE_DISCARD;
2532 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2533 p->flags &= ~SWP_AREA_DISCARD;
2534
2535 /* issue a swapon-time discard if it's still required */
2536 if (p->flags & SWP_AREA_DISCARD) {
2537 int err = discard_swap(p);
2538 if (unlikely(err))
2539 pr_err("swapon: discard_swap(%p): %d\n",
2540 p, err);
2541 }
2542 }
2543
2544 mutex_lock(&swapon_mutex);
2545 prio = -1;
2546 if (swap_flags & SWAP_FLAG_PREFER)
2547 prio =
2548 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2549 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2550
2551 pr_info("Adding %uk swap on %s. "
2552 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2553 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2554 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2555 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2556 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2557 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2558 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2559 (frontswap_map) ? "FS" : "");
2560
2561 mutex_unlock(&swapon_mutex);
2562 atomic_inc(&proc_poll_event);
2563 wake_up_interruptible(&proc_poll_wait);
2564
2565 if (S_ISREG(inode->i_mode))
2566 inode->i_flags |= S_SWAPFILE;
2567 error = 0;
2568 goto out;
2569 bad_swap:
2570 free_percpu(p->percpu_cluster);
2571 p->percpu_cluster = NULL;
2572 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2573 set_blocksize(p->bdev, p->old_block_size);
2574 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2575 }
2576 destroy_swap_extents(p);
2577 swap_cgroup_swapoff(p->type);
2578 spin_lock(&swap_lock);
2579 p->swap_file = NULL;
2580 p->flags = 0;
2581 spin_unlock(&swap_lock);
2582 vfree(swap_map);
2583 vfree(cluster_info);
2584 if (swap_file) {
2585 if (inode && S_ISREG(inode->i_mode)) {
2586 mutex_unlock(&inode->i_mutex);
2587 inode = NULL;
2588 }
2589 filp_close(swap_file, NULL);
2590 }
2591 out:
2592 if (page && !IS_ERR(page)) {
2593 kunmap(page);
2594 page_cache_release(page);
2595 }
2596 if (name)
2597 putname(name);
2598 if (inode && S_ISREG(inode->i_mode))
2599 mutex_unlock(&inode->i_mutex);
2600 return error;
2601 }
2602
2603 void si_swapinfo(struct sysinfo *val)
2604 {
2605 unsigned int type;
2606 unsigned long nr_to_be_unused = 0;
2607
2608 spin_lock(&swap_lock);
2609 for (type = 0; type < nr_swapfiles; type++) {
2610 struct swap_info_struct *si = swap_info[type];
2611
2612 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2613 nr_to_be_unused += si->inuse_pages;
2614 }
2615 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2616 val->totalswap = total_swap_pages + nr_to_be_unused;
2617 spin_unlock(&swap_lock);
2618 }
2619
2620 /*
2621 * Verify that a swap entry is valid and increment its swap map count.
2622 *
2623 * Returns error code in following case.
2624 * - success -> 0
2625 * - swp_entry is invalid -> EINVAL
2626 * - swp_entry is migration entry -> EINVAL
2627 * - swap-cache reference is requested but there is already one. -> EEXIST
2628 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2629 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2630 */
2631 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2632 {
2633 struct swap_info_struct *p;
2634 unsigned long offset, type;
2635 unsigned char count;
2636 unsigned char has_cache;
2637 int err = -EINVAL;
2638
2639 if (non_swap_entry(entry))
2640 goto out;
2641
2642 type = swp_type(entry);
2643 if (type >= nr_swapfiles)
2644 goto bad_file;
2645 p = swap_info[type];
2646 offset = swp_offset(entry);
2647
2648 spin_lock(&p->lock);
2649 if (unlikely(offset >= p->max))
2650 goto unlock_out;
2651
2652 count = p->swap_map[offset];
2653
2654 /*
2655 * swapin_readahead() doesn't check if a swap entry is valid, so the
2656 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2657 */
2658 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2659 err = -ENOENT;
2660 goto unlock_out;
2661 }
2662
2663 has_cache = count & SWAP_HAS_CACHE;
2664 count &= ~SWAP_HAS_CACHE;
2665 err = 0;
2666
2667 if (usage == SWAP_HAS_CACHE) {
2668
2669 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2670 if (!has_cache && count)
2671 has_cache = SWAP_HAS_CACHE;
2672 else if (has_cache) /* someone else added cache */
2673 err = -EEXIST;
2674 else /* no users remaining */
2675 err = -ENOENT;
2676
2677 } else if (count || has_cache) {
2678
2679 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2680 count += usage;
2681 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2682 err = -EINVAL;
2683 else if (swap_count_continued(p, offset, count))
2684 count = COUNT_CONTINUED;
2685 else
2686 err = -ENOMEM;
2687 } else
2688 err = -ENOENT; /* unused swap entry */
2689
2690 p->swap_map[offset] = count | has_cache;
2691
2692 unlock_out:
2693 spin_unlock(&p->lock);
2694 out:
2695 return err;
2696
2697 bad_file:
2698 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2699 goto out;
2700 }
2701
2702 /*
2703 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2704 * (in which case its reference count is never incremented).
2705 */
2706 void swap_shmem_alloc(swp_entry_t entry)
2707 {
2708 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2709 }
2710
2711 /*
2712 * Increase reference count of swap entry by 1.
2713 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2714 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2715 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2716 * might occur if a page table entry has got corrupted.
2717 */
2718 int swap_duplicate(swp_entry_t entry)
2719 {
2720 int err = 0;
2721
2722 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2723 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2724 return err;
2725 }
2726
2727 /*
2728 * @entry: swap entry for which we allocate swap cache.
2729 *
2730 * Called when allocating swap cache for existing swap entry,
2731 * This can return error codes. Returns 0 at success.
2732 * -EBUSY means there is a swap cache.
2733 * Note: return code is different from swap_duplicate().
2734 */
2735 int swapcache_prepare(swp_entry_t entry)
2736 {
2737 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2738 }
2739
2740 struct swap_info_struct *page_swap_info(struct page *page)
2741 {
2742 swp_entry_t swap = { .val = page_private(page) };
2743 BUG_ON(!PageSwapCache(page));
2744 return swap_info[swp_type(swap)];
2745 }
2746
2747 /*
2748 * out-of-line __page_file_ methods to avoid include hell.
2749 */
2750 struct address_space *__page_file_mapping(struct page *page)
2751 {
2752 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2753 return page_swap_info(page)->swap_file->f_mapping;
2754 }
2755 EXPORT_SYMBOL_GPL(__page_file_mapping);
2756
2757 pgoff_t __page_file_index(struct page *page)
2758 {
2759 swp_entry_t swap = { .val = page_private(page) };
2760 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2761 return swp_offset(swap);
2762 }
2763 EXPORT_SYMBOL_GPL(__page_file_index);
2764
2765 /*
2766 * add_swap_count_continuation - called when a swap count is duplicated
2767 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2768 * page of the original vmalloc'ed swap_map, to hold the continuation count
2769 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2770 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2771 *
2772 * These continuation pages are seldom referenced: the common paths all work
2773 * on the original swap_map, only referring to a continuation page when the
2774 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2775 *
2776 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2777 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2778 * can be called after dropping locks.
2779 */
2780 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2781 {
2782 struct swap_info_struct *si;
2783 struct page *head;
2784 struct page *page;
2785 struct page *list_page;
2786 pgoff_t offset;
2787 unsigned char count;
2788
2789 /*
2790 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2791 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2792 */
2793 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2794
2795 si = swap_info_get(entry);
2796 if (!si) {
2797 /*
2798 * An acceptable race has occurred since the failing
2799 * __swap_duplicate(): the swap entry has been freed,
2800 * perhaps even the whole swap_map cleared for swapoff.
2801 */
2802 goto outer;
2803 }
2804
2805 offset = swp_offset(entry);
2806 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2807
2808 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2809 /*
2810 * The higher the swap count, the more likely it is that tasks
2811 * will race to add swap count continuation: we need to avoid
2812 * over-provisioning.
2813 */
2814 goto out;
2815 }
2816
2817 if (!page) {
2818 spin_unlock(&si->lock);
2819 return -ENOMEM;
2820 }
2821
2822 /*
2823 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2824 * no architecture is using highmem pages for kernel page tables: so it
2825 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2826 */
2827 head = vmalloc_to_page(si->swap_map + offset);
2828 offset &= ~PAGE_MASK;
2829
2830 /*
2831 * Page allocation does not initialize the page's lru field,
2832 * but it does always reset its private field.
2833 */
2834 if (!page_private(head)) {
2835 BUG_ON(count & COUNT_CONTINUED);
2836 INIT_LIST_HEAD(&head->lru);
2837 set_page_private(head, SWP_CONTINUED);
2838 si->flags |= SWP_CONTINUED;
2839 }
2840
2841 list_for_each_entry(list_page, &head->lru, lru) {
2842 unsigned char *map;
2843
2844 /*
2845 * If the previous map said no continuation, but we've found
2846 * a continuation page, free our allocation and use this one.
2847 */
2848 if (!(count & COUNT_CONTINUED))
2849 goto out;
2850
2851 map = kmap_atomic(list_page) + offset;
2852 count = *map;
2853 kunmap_atomic(map);
2854
2855 /*
2856 * If this continuation count now has some space in it,
2857 * free our allocation and use this one.
2858 */
2859 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2860 goto out;
2861 }
2862
2863 list_add_tail(&page->lru, &head->lru);
2864 page = NULL; /* now it's attached, don't free it */
2865 out:
2866 spin_unlock(&si->lock);
2867 outer:
2868 if (page)
2869 __free_page(page);
2870 return 0;
2871 }
2872
2873 /*
2874 * swap_count_continued - when the original swap_map count is incremented
2875 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2876 * into, carry if so, or else fail until a new continuation page is allocated;
2877 * when the original swap_map count is decremented from 0 with continuation,
2878 * borrow from the continuation and report whether it still holds more.
2879 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2880 */
2881 static bool swap_count_continued(struct swap_info_struct *si,
2882 pgoff_t offset, unsigned char count)
2883 {
2884 struct page *head;
2885 struct page *page;
2886 unsigned char *map;
2887
2888 head = vmalloc_to_page(si->swap_map + offset);
2889 if (page_private(head) != SWP_CONTINUED) {
2890 BUG_ON(count & COUNT_CONTINUED);
2891 return false; /* need to add count continuation */
2892 }
2893
2894 offset &= ~PAGE_MASK;
2895 page = list_entry(head->lru.next, struct page, lru);
2896 map = kmap_atomic(page) + offset;
2897
2898 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2899 goto init_map; /* jump over SWAP_CONT_MAX checks */
2900
2901 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2902 /*
2903 * Think of how you add 1 to 999
2904 */
2905 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2906 kunmap_atomic(map);
2907 page = list_entry(page->lru.next, struct page, lru);
2908 BUG_ON(page == head);
2909 map = kmap_atomic(page) + offset;
2910 }
2911 if (*map == SWAP_CONT_MAX) {
2912 kunmap_atomic(map);
2913 page = list_entry(page->lru.next, struct page, lru);
2914 if (page == head)
2915 return false; /* add count continuation */
2916 map = kmap_atomic(page) + offset;
2917 init_map: *map = 0; /* we didn't zero the page */
2918 }
2919 *map += 1;
2920 kunmap_atomic(map);
2921 page = list_entry(page->lru.prev, struct page, lru);
2922 while (page != head) {
2923 map = kmap_atomic(page) + offset;
2924 *map = COUNT_CONTINUED;
2925 kunmap_atomic(map);
2926 page = list_entry(page->lru.prev, struct page, lru);
2927 }
2928 return true; /* incremented */
2929
2930 } else { /* decrementing */
2931 /*
2932 * Think of how you subtract 1 from 1000
2933 */
2934 BUG_ON(count != COUNT_CONTINUED);
2935 while (*map == COUNT_CONTINUED) {
2936 kunmap_atomic(map);
2937 page = list_entry(page->lru.next, struct page, lru);
2938 BUG_ON(page == head);
2939 map = kmap_atomic(page) + offset;
2940 }
2941 BUG_ON(*map == 0);
2942 *map -= 1;
2943 if (*map == 0)
2944 count = 0;
2945 kunmap_atomic(map);
2946 page = list_entry(page->lru.prev, struct page, lru);
2947 while (page != head) {
2948 map = kmap_atomic(page) + offset;
2949 *map = SWAP_CONT_MAX | count;
2950 count = COUNT_CONTINUED;
2951 kunmap_atomic(map);
2952 page = list_entry(page->lru.prev, struct page, lru);
2953 }
2954 return count == COUNT_CONTINUED;
2955 }
2956 }
2957
2958 /*
2959 * free_swap_count_continuations - swapoff free all the continuation pages
2960 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2961 */
2962 static void free_swap_count_continuations(struct swap_info_struct *si)
2963 {
2964 pgoff_t offset;
2965
2966 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2967 struct page *head;
2968 head = vmalloc_to_page(si->swap_map + offset);
2969 if (page_private(head)) {
2970 struct list_head *this, *next;
2971 list_for_each_safe(this, next, &head->lru) {
2972 struct page *page;
2973 page = list_entry(this, struct page, lru);
2974 list_del(this);
2975 __free_page(page);
2976 }
2977 }
2978 }
2979 }