]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/swapfile.c
swap: change swap_info singly-linked list to list_head
[mirror_ubuntu-artful-kernel.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
63 */
64 LIST_HEAD(swap_list_head);
65
66 struct swap_info_struct *swap_info[MAX_SWAPFILES];
67
68 static DEFINE_MUTEX(swapon_mutex);
69
70 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
71 /* Activity counter to indicate that a swapon or swapoff has occurred */
72 static atomic_t proc_poll_event = ATOMIC_INIT(0);
73
74 static inline unsigned char swap_count(unsigned char ent)
75 {
76 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
77 }
78
79 /* returns 1 if swap entry is freed */
80 static int
81 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
82 {
83 swp_entry_t entry = swp_entry(si->type, offset);
84 struct page *page;
85 int ret = 0;
86
87 page = find_get_page(swap_address_space(entry), entry.val);
88 if (!page)
89 return 0;
90 /*
91 * This function is called from scan_swap_map() and it's called
92 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
93 * We have to use trylock for avoiding deadlock. This is a special
94 * case and you should use try_to_free_swap() with explicit lock_page()
95 * in usual operations.
96 */
97 if (trylock_page(page)) {
98 ret = try_to_free_swap(page);
99 unlock_page(page);
100 }
101 page_cache_release(page);
102 return ret;
103 }
104
105 /*
106 * swapon tell device that all the old swap contents can be discarded,
107 * to allow the swap device to optimize its wear-levelling.
108 */
109 static int discard_swap(struct swap_info_struct *si)
110 {
111 struct swap_extent *se;
112 sector_t start_block;
113 sector_t nr_blocks;
114 int err = 0;
115
116 /* Do not discard the swap header page! */
117 se = &si->first_swap_extent;
118 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
119 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
120 if (nr_blocks) {
121 err = blkdev_issue_discard(si->bdev, start_block,
122 nr_blocks, GFP_KERNEL, 0);
123 if (err)
124 return err;
125 cond_resched();
126 }
127
128 list_for_each_entry(se, &si->first_swap_extent.list, list) {
129 start_block = se->start_block << (PAGE_SHIFT - 9);
130 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
131
132 err = blkdev_issue_discard(si->bdev, start_block,
133 nr_blocks, GFP_KERNEL, 0);
134 if (err)
135 break;
136
137 cond_resched();
138 }
139 return err; /* That will often be -EOPNOTSUPP */
140 }
141
142 /*
143 * swap allocation tell device that a cluster of swap can now be discarded,
144 * to allow the swap device to optimize its wear-levelling.
145 */
146 static void discard_swap_cluster(struct swap_info_struct *si,
147 pgoff_t start_page, pgoff_t nr_pages)
148 {
149 struct swap_extent *se = si->curr_swap_extent;
150 int found_extent = 0;
151
152 while (nr_pages) {
153 struct list_head *lh;
154
155 if (se->start_page <= start_page &&
156 start_page < se->start_page + se->nr_pages) {
157 pgoff_t offset = start_page - se->start_page;
158 sector_t start_block = se->start_block + offset;
159 sector_t nr_blocks = se->nr_pages - offset;
160
161 if (nr_blocks > nr_pages)
162 nr_blocks = nr_pages;
163 start_page += nr_blocks;
164 nr_pages -= nr_blocks;
165
166 if (!found_extent++)
167 si->curr_swap_extent = se;
168
169 start_block <<= PAGE_SHIFT - 9;
170 nr_blocks <<= PAGE_SHIFT - 9;
171 if (blkdev_issue_discard(si->bdev, start_block,
172 nr_blocks, GFP_NOIO, 0))
173 break;
174 }
175
176 lh = se->list.next;
177 se = list_entry(lh, struct swap_extent, list);
178 }
179 }
180
181 #define SWAPFILE_CLUSTER 256
182 #define LATENCY_LIMIT 256
183
184 static inline void cluster_set_flag(struct swap_cluster_info *info,
185 unsigned int flag)
186 {
187 info->flags = flag;
188 }
189
190 static inline unsigned int cluster_count(struct swap_cluster_info *info)
191 {
192 return info->data;
193 }
194
195 static inline void cluster_set_count(struct swap_cluster_info *info,
196 unsigned int c)
197 {
198 info->data = c;
199 }
200
201 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
202 unsigned int c, unsigned int f)
203 {
204 info->flags = f;
205 info->data = c;
206 }
207
208 static inline unsigned int cluster_next(struct swap_cluster_info *info)
209 {
210 return info->data;
211 }
212
213 static inline void cluster_set_next(struct swap_cluster_info *info,
214 unsigned int n)
215 {
216 info->data = n;
217 }
218
219 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
220 unsigned int n, unsigned int f)
221 {
222 info->flags = f;
223 info->data = n;
224 }
225
226 static inline bool cluster_is_free(struct swap_cluster_info *info)
227 {
228 return info->flags & CLUSTER_FLAG_FREE;
229 }
230
231 static inline bool cluster_is_null(struct swap_cluster_info *info)
232 {
233 return info->flags & CLUSTER_FLAG_NEXT_NULL;
234 }
235
236 static inline void cluster_set_null(struct swap_cluster_info *info)
237 {
238 info->flags = CLUSTER_FLAG_NEXT_NULL;
239 info->data = 0;
240 }
241
242 /* Add a cluster to discard list and schedule it to do discard */
243 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
244 unsigned int idx)
245 {
246 /*
247 * If scan_swap_map() can't find a free cluster, it will check
248 * si->swap_map directly. To make sure the discarding cluster isn't
249 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
250 * will be cleared after discard
251 */
252 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
253 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
254
255 if (cluster_is_null(&si->discard_cluster_head)) {
256 cluster_set_next_flag(&si->discard_cluster_head,
257 idx, 0);
258 cluster_set_next_flag(&si->discard_cluster_tail,
259 idx, 0);
260 } else {
261 unsigned int tail = cluster_next(&si->discard_cluster_tail);
262 cluster_set_next(&si->cluster_info[tail], idx);
263 cluster_set_next_flag(&si->discard_cluster_tail,
264 idx, 0);
265 }
266
267 schedule_work(&si->discard_work);
268 }
269
270 /*
271 * Doing discard actually. After a cluster discard is finished, the cluster
272 * will be added to free cluster list. caller should hold si->lock.
273 */
274 static void swap_do_scheduled_discard(struct swap_info_struct *si)
275 {
276 struct swap_cluster_info *info;
277 unsigned int idx;
278
279 info = si->cluster_info;
280
281 while (!cluster_is_null(&si->discard_cluster_head)) {
282 idx = cluster_next(&si->discard_cluster_head);
283
284 cluster_set_next_flag(&si->discard_cluster_head,
285 cluster_next(&info[idx]), 0);
286 if (cluster_next(&si->discard_cluster_tail) == idx) {
287 cluster_set_null(&si->discard_cluster_head);
288 cluster_set_null(&si->discard_cluster_tail);
289 }
290 spin_unlock(&si->lock);
291
292 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
293 SWAPFILE_CLUSTER);
294
295 spin_lock(&si->lock);
296 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
297 if (cluster_is_null(&si->free_cluster_head)) {
298 cluster_set_next_flag(&si->free_cluster_head,
299 idx, 0);
300 cluster_set_next_flag(&si->free_cluster_tail,
301 idx, 0);
302 } else {
303 unsigned int tail;
304
305 tail = cluster_next(&si->free_cluster_tail);
306 cluster_set_next(&info[tail], idx);
307 cluster_set_next_flag(&si->free_cluster_tail,
308 idx, 0);
309 }
310 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
311 0, SWAPFILE_CLUSTER);
312 }
313 }
314
315 static void swap_discard_work(struct work_struct *work)
316 {
317 struct swap_info_struct *si;
318
319 si = container_of(work, struct swap_info_struct, discard_work);
320
321 spin_lock(&si->lock);
322 swap_do_scheduled_discard(si);
323 spin_unlock(&si->lock);
324 }
325
326 /*
327 * The cluster corresponding to page_nr will be used. The cluster will be
328 * removed from free cluster list and its usage counter will be increased.
329 */
330 static void inc_cluster_info_page(struct swap_info_struct *p,
331 struct swap_cluster_info *cluster_info, unsigned long page_nr)
332 {
333 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
334
335 if (!cluster_info)
336 return;
337 if (cluster_is_free(&cluster_info[idx])) {
338 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
339 cluster_set_next_flag(&p->free_cluster_head,
340 cluster_next(&cluster_info[idx]), 0);
341 if (cluster_next(&p->free_cluster_tail) == idx) {
342 cluster_set_null(&p->free_cluster_tail);
343 cluster_set_null(&p->free_cluster_head);
344 }
345 cluster_set_count_flag(&cluster_info[idx], 0, 0);
346 }
347
348 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
349 cluster_set_count(&cluster_info[idx],
350 cluster_count(&cluster_info[idx]) + 1);
351 }
352
353 /*
354 * The cluster corresponding to page_nr decreases one usage. If the usage
355 * counter becomes 0, which means no page in the cluster is in using, we can
356 * optionally discard the cluster and add it to free cluster list.
357 */
358 static void dec_cluster_info_page(struct swap_info_struct *p,
359 struct swap_cluster_info *cluster_info, unsigned long page_nr)
360 {
361 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
362
363 if (!cluster_info)
364 return;
365
366 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
367 cluster_set_count(&cluster_info[idx],
368 cluster_count(&cluster_info[idx]) - 1);
369
370 if (cluster_count(&cluster_info[idx]) == 0) {
371 /*
372 * If the swap is discardable, prepare discard the cluster
373 * instead of free it immediately. The cluster will be freed
374 * after discard.
375 */
376 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
377 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
378 swap_cluster_schedule_discard(p, idx);
379 return;
380 }
381
382 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
383 if (cluster_is_null(&p->free_cluster_head)) {
384 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
385 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
386 } else {
387 unsigned int tail = cluster_next(&p->free_cluster_tail);
388 cluster_set_next(&cluster_info[tail], idx);
389 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
390 }
391 }
392 }
393
394 /*
395 * It's possible scan_swap_map() uses a free cluster in the middle of free
396 * cluster list. Avoiding such abuse to avoid list corruption.
397 */
398 static bool
399 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
400 unsigned long offset)
401 {
402 struct percpu_cluster *percpu_cluster;
403 bool conflict;
404
405 offset /= SWAPFILE_CLUSTER;
406 conflict = !cluster_is_null(&si->free_cluster_head) &&
407 offset != cluster_next(&si->free_cluster_head) &&
408 cluster_is_free(&si->cluster_info[offset]);
409
410 if (!conflict)
411 return false;
412
413 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
414 cluster_set_null(&percpu_cluster->index);
415 return true;
416 }
417
418 /*
419 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
420 * might involve allocating a new cluster for current CPU too.
421 */
422 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
423 unsigned long *offset, unsigned long *scan_base)
424 {
425 struct percpu_cluster *cluster;
426 bool found_free;
427 unsigned long tmp;
428
429 new_cluster:
430 cluster = this_cpu_ptr(si->percpu_cluster);
431 if (cluster_is_null(&cluster->index)) {
432 if (!cluster_is_null(&si->free_cluster_head)) {
433 cluster->index = si->free_cluster_head;
434 cluster->next = cluster_next(&cluster->index) *
435 SWAPFILE_CLUSTER;
436 } else if (!cluster_is_null(&si->discard_cluster_head)) {
437 /*
438 * we don't have free cluster but have some clusters in
439 * discarding, do discard now and reclaim them
440 */
441 swap_do_scheduled_discard(si);
442 *scan_base = *offset = si->cluster_next;
443 goto new_cluster;
444 } else
445 return;
446 }
447
448 found_free = false;
449
450 /*
451 * Other CPUs can use our cluster if they can't find a free cluster,
452 * check if there is still free entry in the cluster
453 */
454 tmp = cluster->next;
455 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
456 SWAPFILE_CLUSTER) {
457 if (!si->swap_map[tmp]) {
458 found_free = true;
459 break;
460 }
461 tmp++;
462 }
463 if (!found_free) {
464 cluster_set_null(&cluster->index);
465 goto new_cluster;
466 }
467 cluster->next = tmp + 1;
468 *offset = tmp;
469 *scan_base = tmp;
470 }
471
472 static unsigned long scan_swap_map(struct swap_info_struct *si,
473 unsigned char usage)
474 {
475 unsigned long offset;
476 unsigned long scan_base;
477 unsigned long last_in_cluster = 0;
478 int latency_ration = LATENCY_LIMIT;
479
480 /*
481 * We try to cluster swap pages by allocating them sequentially
482 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
483 * way, however, we resort to first-free allocation, starting
484 * a new cluster. This prevents us from scattering swap pages
485 * all over the entire swap partition, so that we reduce
486 * overall disk seek times between swap pages. -- sct
487 * But we do now try to find an empty cluster. -Andrea
488 * And we let swap pages go all over an SSD partition. Hugh
489 */
490
491 si->flags += SWP_SCANNING;
492 scan_base = offset = si->cluster_next;
493
494 /* SSD algorithm */
495 if (si->cluster_info) {
496 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
497 goto checks;
498 }
499
500 if (unlikely(!si->cluster_nr--)) {
501 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
502 si->cluster_nr = SWAPFILE_CLUSTER - 1;
503 goto checks;
504 }
505
506 spin_unlock(&si->lock);
507
508 /*
509 * If seek is expensive, start searching for new cluster from
510 * start of partition, to minimize the span of allocated swap.
511 * But if seek is cheap, search from our current position, so
512 * that swap is allocated from all over the partition: if the
513 * Flash Translation Layer only remaps within limited zones,
514 * we don't want to wear out the first zone too quickly.
515 */
516 if (!(si->flags & SWP_SOLIDSTATE))
517 scan_base = offset = si->lowest_bit;
518 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
519
520 /* Locate the first empty (unaligned) cluster */
521 for (; last_in_cluster <= si->highest_bit; offset++) {
522 if (si->swap_map[offset])
523 last_in_cluster = offset + SWAPFILE_CLUSTER;
524 else if (offset == last_in_cluster) {
525 spin_lock(&si->lock);
526 offset -= SWAPFILE_CLUSTER - 1;
527 si->cluster_next = offset;
528 si->cluster_nr = SWAPFILE_CLUSTER - 1;
529 goto checks;
530 }
531 if (unlikely(--latency_ration < 0)) {
532 cond_resched();
533 latency_ration = LATENCY_LIMIT;
534 }
535 }
536
537 offset = si->lowest_bit;
538 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
539
540 /* Locate the first empty (unaligned) cluster */
541 for (; last_in_cluster < scan_base; offset++) {
542 if (si->swap_map[offset])
543 last_in_cluster = offset + SWAPFILE_CLUSTER;
544 else if (offset == last_in_cluster) {
545 spin_lock(&si->lock);
546 offset -= SWAPFILE_CLUSTER - 1;
547 si->cluster_next = offset;
548 si->cluster_nr = SWAPFILE_CLUSTER - 1;
549 goto checks;
550 }
551 if (unlikely(--latency_ration < 0)) {
552 cond_resched();
553 latency_ration = LATENCY_LIMIT;
554 }
555 }
556
557 offset = scan_base;
558 spin_lock(&si->lock);
559 si->cluster_nr = SWAPFILE_CLUSTER - 1;
560 }
561
562 checks:
563 if (si->cluster_info) {
564 while (scan_swap_map_ssd_cluster_conflict(si, offset))
565 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
566 }
567 if (!(si->flags & SWP_WRITEOK))
568 goto no_page;
569 if (!si->highest_bit)
570 goto no_page;
571 if (offset > si->highest_bit)
572 scan_base = offset = si->lowest_bit;
573
574 /* reuse swap entry of cache-only swap if not busy. */
575 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
576 int swap_was_freed;
577 spin_unlock(&si->lock);
578 swap_was_freed = __try_to_reclaim_swap(si, offset);
579 spin_lock(&si->lock);
580 /* entry was freed successfully, try to use this again */
581 if (swap_was_freed)
582 goto checks;
583 goto scan; /* check next one */
584 }
585
586 if (si->swap_map[offset])
587 goto scan;
588
589 if (offset == si->lowest_bit)
590 si->lowest_bit++;
591 if (offset == si->highest_bit)
592 si->highest_bit--;
593 si->inuse_pages++;
594 if (si->inuse_pages == si->pages) {
595 si->lowest_bit = si->max;
596 si->highest_bit = 0;
597 }
598 si->swap_map[offset] = usage;
599 inc_cluster_info_page(si, si->cluster_info, offset);
600 si->cluster_next = offset + 1;
601 si->flags -= SWP_SCANNING;
602
603 return offset;
604
605 scan:
606 spin_unlock(&si->lock);
607 while (++offset <= si->highest_bit) {
608 if (!si->swap_map[offset]) {
609 spin_lock(&si->lock);
610 goto checks;
611 }
612 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
613 spin_lock(&si->lock);
614 goto checks;
615 }
616 if (unlikely(--latency_ration < 0)) {
617 cond_resched();
618 latency_ration = LATENCY_LIMIT;
619 }
620 }
621 offset = si->lowest_bit;
622 while (offset < scan_base) {
623 if (!si->swap_map[offset]) {
624 spin_lock(&si->lock);
625 goto checks;
626 }
627 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
628 spin_lock(&si->lock);
629 goto checks;
630 }
631 if (unlikely(--latency_ration < 0)) {
632 cond_resched();
633 latency_ration = LATENCY_LIMIT;
634 }
635 offset++;
636 }
637 spin_lock(&si->lock);
638
639 no_page:
640 si->flags -= SWP_SCANNING;
641 return 0;
642 }
643
644 swp_entry_t get_swap_page(void)
645 {
646 struct swap_info_struct *si, *next;
647 pgoff_t offset;
648 struct list_head *tmp;
649
650 spin_lock(&swap_lock);
651 if (atomic_long_read(&nr_swap_pages) <= 0)
652 goto noswap;
653 atomic_long_dec(&nr_swap_pages);
654
655 list_for_each(tmp, &swap_list_head) {
656 si = list_entry(tmp, typeof(*si), list);
657 spin_lock(&si->lock);
658 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
659 spin_unlock(&si->lock);
660 continue;
661 }
662
663 /*
664 * rotate the current swap_info that we're going to use
665 * to after any other swap_info that have the same prio,
666 * so that all equal-priority swap_info get used equally
667 */
668 next = si;
669 list_for_each_entry_continue(next, &swap_list_head, list) {
670 if (si->prio != next->prio)
671 break;
672 list_rotate_left(&si->list);
673 next = si;
674 }
675
676 spin_unlock(&swap_lock);
677 /* This is called for allocating swap entry for cache */
678 offset = scan_swap_map(si, SWAP_HAS_CACHE);
679 spin_unlock(&si->lock);
680 if (offset)
681 return swp_entry(si->type, offset);
682 spin_lock(&swap_lock);
683 /*
684 * if we got here, it's likely that si was almost full before,
685 * and since scan_swap_map() can drop the si->lock, multiple
686 * callers probably all tried to get a page from the same si
687 * and it filled up before we could get one. So we need to
688 * try again. Since we dropped the swap_lock, there may now
689 * be non-full higher priority swap_infos, and this si may have
690 * even been removed from the list (although very unlikely).
691 * Let's start over.
692 */
693 tmp = &swap_list_head;
694 }
695
696 atomic_long_inc(&nr_swap_pages);
697 noswap:
698 spin_unlock(&swap_lock);
699 return (swp_entry_t) {0};
700 }
701
702 /* The only caller of this function is now suspend routine */
703 swp_entry_t get_swap_page_of_type(int type)
704 {
705 struct swap_info_struct *si;
706 pgoff_t offset;
707
708 si = swap_info[type];
709 spin_lock(&si->lock);
710 if (si && (si->flags & SWP_WRITEOK)) {
711 atomic_long_dec(&nr_swap_pages);
712 /* This is called for allocating swap entry, not cache */
713 offset = scan_swap_map(si, 1);
714 if (offset) {
715 spin_unlock(&si->lock);
716 return swp_entry(type, offset);
717 }
718 atomic_long_inc(&nr_swap_pages);
719 }
720 spin_unlock(&si->lock);
721 return (swp_entry_t) {0};
722 }
723
724 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
725 {
726 struct swap_info_struct *p;
727 unsigned long offset, type;
728
729 if (!entry.val)
730 goto out;
731 type = swp_type(entry);
732 if (type >= nr_swapfiles)
733 goto bad_nofile;
734 p = swap_info[type];
735 if (!(p->flags & SWP_USED))
736 goto bad_device;
737 offset = swp_offset(entry);
738 if (offset >= p->max)
739 goto bad_offset;
740 if (!p->swap_map[offset])
741 goto bad_free;
742 spin_lock(&p->lock);
743 return p;
744
745 bad_free:
746 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
747 goto out;
748 bad_offset:
749 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
750 goto out;
751 bad_device:
752 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
753 goto out;
754 bad_nofile:
755 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
756 out:
757 return NULL;
758 }
759
760 static unsigned char swap_entry_free(struct swap_info_struct *p,
761 swp_entry_t entry, unsigned char usage)
762 {
763 unsigned long offset = swp_offset(entry);
764 unsigned char count;
765 unsigned char has_cache;
766
767 count = p->swap_map[offset];
768 has_cache = count & SWAP_HAS_CACHE;
769 count &= ~SWAP_HAS_CACHE;
770
771 if (usage == SWAP_HAS_CACHE) {
772 VM_BUG_ON(!has_cache);
773 has_cache = 0;
774 } else if (count == SWAP_MAP_SHMEM) {
775 /*
776 * Or we could insist on shmem.c using a special
777 * swap_shmem_free() and free_shmem_swap_and_cache()...
778 */
779 count = 0;
780 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
781 if (count == COUNT_CONTINUED) {
782 if (swap_count_continued(p, offset, count))
783 count = SWAP_MAP_MAX | COUNT_CONTINUED;
784 else
785 count = SWAP_MAP_MAX;
786 } else
787 count--;
788 }
789
790 if (!count)
791 mem_cgroup_uncharge_swap(entry);
792
793 usage = count | has_cache;
794 p->swap_map[offset] = usage;
795
796 /* free if no reference */
797 if (!usage) {
798 dec_cluster_info_page(p, p->cluster_info, offset);
799 if (offset < p->lowest_bit)
800 p->lowest_bit = offset;
801 if (offset > p->highest_bit)
802 p->highest_bit = offset;
803 atomic_long_inc(&nr_swap_pages);
804 p->inuse_pages--;
805 frontswap_invalidate_page(p->type, offset);
806 if (p->flags & SWP_BLKDEV) {
807 struct gendisk *disk = p->bdev->bd_disk;
808 if (disk->fops->swap_slot_free_notify)
809 disk->fops->swap_slot_free_notify(p->bdev,
810 offset);
811 }
812 }
813
814 return usage;
815 }
816
817 /*
818 * Caller has made sure that the swap device corresponding to entry
819 * is still around or has not been recycled.
820 */
821 void swap_free(swp_entry_t entry)
822 {
823 struct swap_info_struct *p;
824
825 p = swap_info_get(entry);
826 if (p) {
827 swap_entry_free(p, entry, 1);
828 spin_unlock(&p->lock);
829 }
830 }
831
832 /*
833 * Called after dropping swapcache to decrease refcnt to swap entries.
834 */
835 void swapcache_free(swp_entry_t entry, struct page *page)
836 {
837 struct swap_info_struct *p;
838 unsigned char count;
839
840 p = swap_info_get(entry);
841 if (p) {
842 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
843 if (page)
844 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
845 spin_unlock(&p->lock);
846 }
847 }
848
849 /*
850 * How many references to page are currently swapped out?
851 * This does not give an exact answer when swap count is continued,
852 * but does include the high COUNT_CONTINUED flag to allow for that.
853 */
854 int page_swapcount(struct page *page)
855 {
856 int count = 0;
857 struct swap_info_struct *p;
858 swp_entry_t entry;
859
860 entry.val = page_private(page);
861 p = swap_info_get(entry);
862 if (p) {
863 count = swap_count(p->swap_map[swp_offset(entry)]);
864 spin_unlock(&p->lock);
865 }
866 return count;
867 }
868
869 /*
870 * We can write to an anon page without COW if there are no other references
871 * to it. And as a side-effect, free up its swap: because the old content
872 * on disk will never be read, and seeking back there to write new content
873 * later would only waste time away from clustering.
874 */
875 int reuse_swap_page(struct page *page)
876 {
877 int count;
878
879 VM_BUG_ON_PAGE(!PageLocked(page), page);
880 if (unlikely(PageKsm(page)))
881 return 0;
882 count = page_mapcount(page);
883 if (count <= 1 && PageSwapCache(page)) {
884 count += page_swapcount(page);
885 if (count == 1 && !PageWriteback(page)) {
886 delete_from_swap_cache(page);
887 SetPageDirty(page);
888 }
889 }
890 return count <= 1;
891 }
892
893 /*
894 * If swap is getting full, or if there are no more mappings of this page,
895 * then try_to_free_swap is called to free its swap space.
896 */
897 int try_to_free_swap(struct page *page)
898 {
899 VM_BUG_ON_PAGE(!PageLocked(page), page);
900
901 if (!PageSwapCache(page))
902 return 0;
903 if (PageWriteback(page))
904 return 0;
905 if (page_swapcount(page))
906 return 0;
907
908 /*
909 * Once hibernation has begun to create its image of memory,
910 * there's a danger that one of the calls to try_to_free_swap()
911 * - most probably a call from __try_to_reclaim_swap() while
912 * hibernation is allocating its own swap pages for the image,
913 * but conceivably even a call from memory reclaim - will free
914 * the swap from a page which has already been recorded in the
915 * image as a clean swapcache page, and then reuse its swap for
916 * another page of the image. On waking from hibernation, the
917 * original page might be freed under memory pressure, then
918 * later read back in from swap, now with the wrong data.
919 *
920 * Hibernation suspends storage while it is writing the image
921 * to disk so check that here.
922 */
923 if (pm_suspended_storage())
924 return 0;
925
926 delete_from_swap_cache(page);
927 SetPageDirty(page);
928 return 1;
929 }
930
931 /*
932 * Free the swap entry like above, but also try to
933 * free the page cache entry if it is the last user.
934 */
935 int free_swap_and_cache(swp_entry_t entry)
936 {
937 struct swap_info_struct *p;
938 struct page *page = NULL;
939
940 if (non_swap_entry(entry))
941 return 1;
942
943 p = swap_info_get(entry);
944 if (p) {
945 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
946 page = find_get_page(swap_address_space(entry),
947 entry.val);
948 if (page && !trylock_page(page)) {
949 page_cache_release(page);
950 page = NULL;
951 }
952 }
953 spin_unlock(&p->lock);
954 }
955 if (page) {
956 /*
957 * Not mapped elsewhere, or swap space full? Free it!
958 * Also recheck PageSwapCache now page is locked (above).
959 */
960 if (PageSwapCache(page) && !PageWriteback(page) &&
961 (!page_mapped(page) || vm_swap_full())) {
962 delete_from_swap_cache(page);
963 SetPageDirty(page);
964 }
965 unlock_page(page);
966 page_cache_release(page);
967 }
968 return p != NULL;
969 }
970
971 #ifdef CONFIG_HIBERNATION
972 /*
973 * Find the swap type that corresponds to given device (if any).
974 *
975 * @offset - number of the PAGE_SIZE-sized block of the device, starting
976 * from 0, in which the swap header is expected to be located.
977 *
978 * This is needed for the suspend to disk (aka swsusp).
979 */
980 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
981 {
982 struct block_device *bdev = NULL;
983 int type;
984
985 if (device)
986 bdev = bdget(device);
987
988 spin_lock(&swap_lock);
989 for (type = 0; type < nr_swapfiles; type++) {
990 struct swap_info_struct *sis = swap_info[type];
991
992 if (!(sis->flags & SWP_WRITEOK))
993 continue;
994
995 if (!bdev) {
996 if (bdev_p)
997 *bdev_p = bdgrab(sis->bdev);
998
999 spin_unlock(&swap_lock);
1000 return type;
1001 }
1002 if (bdev == sis->bdev) {
1003 struct swap_extent *se = &sis->first_swap_extent;
1004
1005 if (se->start_block == offset) {
1006 if (bdev_p)
1007 *bdev_p = bdgrab(sis->bdev);
1008
1009 spin_unlock(&swap_lock);
1010 bdput(bdev);
1011 return type;
1012 }
1013 }
1014 }
1015 spin_unlock(&swap_lock);
1016 if (bdev)
1017 bdput(bdev);
1018
1019 return -ENODEV;
1020 }
1021
1022 /*
1023 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1024 * corresponding to given index in swap_info (swap type).
1025 */
1026 sector_t swapdev_block(int type, pgoff_t offset)
1027 {
1028 struct block_device *bdev;
1029
1030 if ((unsigned int)type >= nr_swapfiles)
1031 return 0;
1032 if (!(swap_info[type]->flags & SWP_WRITEOK))
1033 return 0;
1034 return map_swap_entry(swp_entry(type, offset), &bdev);
1035 }
1036
1037 /*
1038 * Return either the total number of swap pages of given type, or the number
1039 * of free pages of that type (depending on @free)
1040 *
1041 * This is needed for software suspend
1042 */
1043 unsigned int count_swap_pages(int type, int free)
1044 {
1045 unsigned int n = 0;
1046
1047 spin_lock(&swap_lock);
1048 if ((unsigned int)type < nr_swapfiles) {
1049 struct swap_info_struct *sis = swap_info[type];
1050
1051 spin_lock(&sis->lock);
1052 if (sis->flags & SWP_WRITEOK) {
1053 n = sis->pages;
1054 if (free)
1055 n -= sis->inuse_pages;
1056 }
1057 spin_unlock(&sis->lock);
1058 }
1059 spin_unlock(&swap_lock);
1060 return n;
1061 }
1062 #endif /* CONFIG_HIBERNATION */
1063
1064 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1065 {
1066 #ifdef CONFIG_MEM_SOFT_DIRTY
1067 /*
1068 * When pte keeps soft dirty bit the pte generated
1069 * from swap entry does not has it, still it's same
1070 * pte from logical point of view.
1071 */
1072 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1073 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1074 #else
1075 return pte_same(pte, swp_pte);
1076 #endif
1077 }
1078
1079 /*
1080 * No need to decide whether this PTE shares the swap entry with others,
1081 * just let do_wp_page work it out if a write is requested later - to
1082 * force COW, vm_page_prot omits write permission from any private vma.
1083 */
1084 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1085 unsigned long addr, swp_entry_t entry, struct page *page)
1086 {
1087 struct page *swapcache;
1088 struct mem_cgroup *memcg;
1089 spinlock_t *ptl;
1090 pte_t *pte;
1091 int ret = 1;
1092
1093 swapcache = page;
1094 page = ksm_might_need_to_copy(page, vma, addr);
1095 if (unlikely(!page))
1096 return -ENOMEM;
1097
1098 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1099 GFP_KERNEL, &memcg)) {
1100 ret = -ENOMEM;
1101 goto out_nolock;
1102 }
1103
1104 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1105 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1106 mem_cgroup_cancel_charge_swapin(memcg);
1107 ret = 0;
1108 goto out;
1109 }
1110
1111 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1112 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1113 get_page(page);
1114 set_pte_at(vma->vm_mm, addr, pte,
1115 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1116 if (page == swapcache)
1117 page_add_anon_rmap(page, vma, addr);
1118 else /* ksm created a completely new copy */
1119 page_add_new_anon_rmap(page, vma, addr);
1120 mem_cgroup_commit_charge_swapin(page, memcg);
1121 swap_free(entry);
1122 /*
1123 * Move the page to the active list so it is not
1124 * immediately swapped out again after swapon.
1125 */
1126 activate_page(page);
1127 out:
1128 pte_unmap_unlock(pte, ptl);
1129 out_nolock:
1130 if (page != swapcache) {
1131 unlock_page(page);
1132 put_page(page);
1133 }
1134 return ret;
1135 }
1136
1137 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1138 unsigned long addr, unsigned long end,
1139 swp_entry_t entry, struct page *page)
1140 {
1141 pte_t swp_pte = swp_entry_to_pte(entry);
1142 pte_t *pte;
1143 int ret = 0;
1144
1145 /*
1146 * We don't actually need pte lock while scanning for swp_pte: since
1147 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1148 * page table while we're scanning; though it could get zapped, and on
1149 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1150 * of unmatched parts which look like swp_pte, so unuse_pte must
1151 * recheck under pte lock. Scanning without pte lock lets it be
1152 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1153 */
1154 pte = pte_offset_map(pmd, addr);
1155 do {
1156 /*
1157 * swapoff spends a _lot_ of time in this loop!
1158 * Test inline before going to call unuse_pte.
1159 */
1160 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1161 pte_unmap(pte);
1162 ret = unuse_pte(vma, pmd, addr, entry, page);
1163 if (ret)
1164 goto out;
1165 pte = pte_offset_map(pmd, addr);
1166 }
1167 } while (pte++, addr += PAGE_SIZE, addr != end);
1168 pte_unmap(pte - 1);
1169 out:
1170 return ret;
1171 }
1172
1173 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1174 unsigned long addr, unsigned long end,
1175 swp_entry_t entry, struct page *page)
1176 {
1177 pmd_t *pmd;
1178 unsigned long next;
1179 int ret;
1180
1181 pmd = pmd_offset(pud, addr);
1182 do {
1183 next = pmd_addr_end(addr, end);
1184 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1185 continue;
1186 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1187 if (ret)
1188 return ret;
1189 } while (pmd++, addr = next, addr != end);
1190 return 0;
1191 }
1192
1193 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1194 unsigned long addr, unsigned long end,
1195 swp_entry_t entry, struct page *page)
1196 {
1197 pud_t *pud;
1198 unsigned long next;
1199 int ret;
1200
1201 pud = pud_offset(pgd, addr);
1202 do {
1203 next = pud_addr_end(addr, end);
1204 if (pud_none_or_clear_bad(pud))
1205 continue;
1206 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1207 if (ret)
1208 return ret;
1209 } while (pud++, addr = next, addr != end);
1210 return 0;
1211 }
1212
1213 static int unuse_vma(struct vm_area_struct *vma,
1214 swp_entry_t entry, struct page *page)
1215 {
1216 pgd_t *pgd;
1217 unsigned long addr, end, next;
1218 int ret;
1219
1220 if (page_anon_vma(page)) {
1221 addr = page_address_in_vma(page, vma);
1222 if (addr == -EFAULT)
1223 return 0;
1224 else
1225 end = addr + PAGE_SIZE;
1226 } else {
1227 addr = vma->vm_start;
1228 end = vma->vm_end;
1229 }
1230
1231 pgd = pgd_offset(vma->vm_mm, addr);
1232 do {
1233 next = pgd_addr_end(addr, end);
1234 if (pgd_none_or_clear_bad(pgd))
1235 continue;
1236 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1237 if (ret)
1238 return ret;
1239 } while (pgd++, addr = next, addr != end);
1240 return 0;
1241 }
1242
1243 static int unuse_mm(struct mm_struct *mm,
1244 swp_entry_t entry, struct page *page)
1245 {
1246 struct vm_area_struct *vma;
1247 int ret = 0;
1248
1249 if (!down_read_trylock(&mm->mmap_sem)) {
1250 /*
1251 * Activate page so shrink_inactive_list is unlikely to unmap
1252 * its ptes while lock is dropped, so swapoff can make progress.
1253 */
1254 activate_page(page);
1255 unlock_page(page);
1256 down_read(&mm->mmap_sem);
1257 lock_page(page);
1258 }
1259 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1260 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1261 break;
1262 }
1263 up_read(&mm->mmap_sem);
1264 return (ret < 0)? ret: 0;
1265 }
1266
1267 /*
1268 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1269 * from current position to next entry still in use.
1270 * Recycle to start on reaching the end, returning 0 when empty.
1271 */
1272 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1273 unsigned int prev, bool frontswap)
1274 {
1275 unsigned int max = si->max;
1276 unsigned int i = prev;
1277 unsigned char count;
1278
1279 /*
1280 * No need for swap_lock here: we're just looking
1281 * for whether an entry is in use, not modifying it; false
1282 * hits are okay, and sys_swapoff() has already prevented new
1283 * allocations from this area (while holding swap_lock).
1284 */
1285 for (;;) {
1286 if (++i >= max) {
1287 if (!prev) {
1288 i = 0;
1289 break;
1290 }
1291 /*
1292 * No entries in use at top of swap_map,
1293 * loop back to start and recheck there.
1294 */
1295 max = prev + 1;
1296 prev = 0;
1297 i = 1;
1298 }
1299 if (frontswap) {
1300 if (frontswap_test(si, i))
1301 break;
1302 else
1303 continue;
1304 }
1305 count = ACCESS_ONCE(si->swap_map[i]);
1306 if (count && swap_count(count) != SWAP_MAP_BAD)
1307 break;
1308 }
1309 return i;
1310 }
1311
1312 /*
1313 * We completely avoid races by reading each swap page in advance,
1314 * and then search for the process using it. All the necessary
1315 * page table adjustments can then be made atomically.
1316 *
1317 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1318 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1319 */
1320 int try_to_unuse(unsigned int type, bool frontswap,
1321 unsigned long pages_to_unuse)
1322 {
1323 struct swap_info_struct *si = swap_info[type];
1324 struct mm_struct *start_mm;
1325 volatile unsigned char *swap_map; /* swap_map is accessed without
1326 * locking. Mark it as volatile
1327 * to prevent compiler doing
1328 * something odd.
1329 */
1330 unsigned char swcount;
1331 struct page *page;
1332 swp_entry_t entry;
1333 unsigned int i = 0;
1334 int retval = 0;
1335
1336 /*
1337 * When searching mms for an entry, a good strategy is to
1338 * start at the first mm we freed the previous entry from
1339 * (though actually we don't notice whether we or coincidence
1340 * freed the entry). Initialize this start_mm with a hold.
1341 *
1342 * A simpler strategy would be to start at the last mm we
1343 * freed the previous entry from; but that would take less
1344 * advantage of mmlist ordering, which clusters forked mms
1345 * together, child after parent. If we race with dup_mmap(), we
1346 * prefer to resolve parent before child, lest we miss entries
1347 * duplicated after we scanned child: using last mm would invert
1348 * that.
1349 */
1350 start_mm = &init_mm;
1351 atomic_inc(&init_mm.mm_users);
1352
1353 /*
1354 * Keep on scanning until all entries have gone. Usually,
1355 * one pass through swap_map is enough, but not necessarily:
1356 * there are races when an instance of an entry might be missed.
1357 */
1358 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1359 if (signal_pending(current)) {
1360 retval = -EINTR;
1361 break;
1362 }
1363
1364 /*
1365 * Get a page for the entry, using the existing swap
1366 * cache page if there is one. Otherwise, get a clean
1367 * page and read the swap into it.
1368 */
1369 swap_map = &si->swap_map[i];
1370 entry = swp_entry(type, i);
1371 page = read_swap_cache_async(entry,
1372 GFP_HIGHUSER_MOVABLE, NULL, 0);
1373 if (!page) {
1374 /*
1375 * Either swap_duplicate() failed because entry
1376 * has been freed independently, and will not be
1377 * reused since sys_swapoff() already disabled
1378 * allocation from here, or alloc_page() failed.
1379 */
1380 swcount = *swap_map;
1381 /*
1382 * We don't hold lock here, so the swap entry could be
1383 * SWAP_MAP_BAD (when the cluster is discarding).
1384 * Instead of fail out, We can just skip the swap
1385 * entry because swapoff will wait for discarding
1386 * finish anyway.
1387 */
1388 if (!swcount || swcount == SWAP_MAP_BAD)
1389 continue;
1390 retval = -ENOMEM;
1391 break;
1392 }
1393
1394 /*
1395 * Don't hold on to start_mm if it looks like exiting.
1396 */
1397 if (atomic_read(&start_mm->mm_users) == 1) {
1398 mmput(start_mm);
1399 start_mm = &init_mm;
1400 atomic_inc(&init_mm.mm_users);
1401 }
1402
1403 /*
1404 * Wait for and lock page. When do_swap_page races with
1405 * try_to_unuse, do_swap_page can handle the fault much
1406 * faster than try_to_unuse can locate the entry. This
1407 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1408 * defer to do_swap_page in such a case - in some tests,
1409 * do_swap_page and try_to_unuse repeatedly compete.
1410 */
1411 wait_on_page_locked(page);
1412 wait_on_page_writeback(page);
1413 lock_page(page);
1414 wait_on_page_writeback(page);
1415
1416 /*
1417 * Remove all references to entry.
1418 */
1419 swcount = *swap_map;
1420 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1421 retval = shmem_unuse(entry, page);
1422 /* page has already been unlocked and released */
1423 if (retval < 0)
1424 break;
1425 continue;
1426 }
1427 if (swap_count(swcount) && start_mm != &init_mm)
1428 retval = unuse_mm(start_mm, entry, page);
1429
1430 if (swap_count(*swap_map)) {
1431 int set_start_mm = (*swap_map >= swcount);
1432 struct list_head *p = &start_mm->mmlist;
1433 struct mm_struct *new_start_mm = start_mm;
1434 struct mm_struct *prev_mm = start_mm;
1435 struct mm_struct *mm;
1436
1437 atomic_inc(&new_start_mm->mm_users);
1438 atomic_inc(&prev_mm->mm_users);
1439 spin_lock(&mmlist_lock);
1440 while (swap_count(*swap_map) && !retval &&
1441 (p = p->next) != &start_mm->mmlist) {
1442 mm = list_entry(p, struct mm_struct, mmlist);
1443 if (!atomic_inc_not_zero(&mm->mm_users))
1444 continue;
1445 spin_unlock(&mmlist_lock);
1446 mmput(prev_mm);
1447 prev_mm = mm;
1448
1449 cond_resched();
1450
1451 swcount = *swap_map;
1452 if (!swap_count(swcount)) /* any usage ? */
1453 ;
1454 else if (mm == &init_mm)
1455 set_start_mm = 1;
1456 else
1457 retval = unuse_mm(mm, entry, page);
1458
1459 if (set_start_mm && *swap_map < swcount) {
1460 mmput(new_start_mm);
1461 atomic_inc(&mm->mm_users);
1462 new_start_mm = mm;
1463 set_start_mm = 0;
1464 }
1465 spin_lock(&mmlist_lock);
1466 }
1467 spin_unlock(&mmlist_lock);
1468 mmput(prev_mm);
1469 mmput(start_mm);
1470 start_mm = new_start_mm;
1471 }
1472 if (retval) {
1473 unlock_page(page);
1474 page_cache_release(page);
1475 break;
1476 }
1477
1478 /*
1479 * If a reference remains (rare), we would like to leave
1480 * the page in the swap cache; but try_to_unmap could
1481 * then re-duplicate the entry once we drop page lock,
1482 * so we might loop indefinitely; also, that page could
1483 * not be swapped out to other storage meanwhile. So:
1484 * delete from cache even if there's another reference,
1485 * after ensuring that the data has been saved to disk -
1486 * since if the reference remains (rarer), it will be
1487 * read from disk into another page. Splitting into two
1488 * pages would be incorrect if swap supported "shared
1489 * private" pages, but they are handled by tmpfs files.
1490 *
1491 * Given how unuse_vma() targets one particular offset
1492 * in an anon_vma, once the anon_vma has been determined,
1493 * this splitting happens to be just what is needed to
1494 * handle where KSM pages have been swapped out: re-reading
1495 * is unnecessarily slow, but we can fix that later on.
1496 */
1497 if (swap_count(*swap_map) &&
1498 PageDirty(page) && PageSwapCache(page)) {
1499 struct writeback_control wbc = {
1500 .sync_mode = WB_SYNC_NONE,
1501 };
1502
1503 swap_writepage(page, &wbc);
1504 lock_page(page);
1505 wait_on_page_writeback(page);
1506 }
1507
1508 /*
1509 * It is conceivable that a racing task removed this page from
1510 * swap cache just before we acquired the page lock at the top,
1511 * or while we dropped it in unuse_mm(). The page might even
1512 * be back in swap cache on another swap area: that we must not
1513 * delete, since it may not have been written out to swap yet.
1514 */
1515 if (PageSwapCache(page) &&
1516 likely(page_private(page) == entry.val))
1517 delete_from_swap_cache(page);
1518
1519 /*
1520 * So we could skip searching mms once swap count went
1521 * to 1, we did not mark any present ptes as dirty: must
1522 * mark page dirty so shrink_page_list will preserve it.
1523 */
1524 SetPageDirty(page);
1525 unlock_page(page);
1526 page_cache_release(page);
1527
1528 /*
1529 * Make sure that we aren't completely killing
1530 * interactive performance.
1531 */
1532 cond_resched();
1533 if (frontswap && pages_to_unuse > 0) {
1534 if (!--pages_to_unuse)
1535 break;
1536 }
1537 }
1538
1539 mmput(start_mm);
1540 return retval;
1541 }
1542
1543 /*
1544 * After a successful try_to_unuse, if no swap is now in use, we know
1545 * we can empty the mmlist. swap_lock must be held on entry and exit.
1546 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1547 * added to the mmlist just after page_duplicate - before would be racy.
1548 */
1549 static void drain_mmlist(void)
1550 {
1551 struct list_head *p, *next;
1552 unsigned int type;
1553
1554 for (type = 0; type < nr_swapfiles; type++)
1555 if (swap_info[type]->inuse_pages)
1556 return;
1557 spin_lock(&mmlist_lock);
1558 list_for_each_safe(p, next, &init_mm.mmlist)
1559 list_del_init(p);
1560 spin_unlock(&mmlist_lock);
1561 }
1562
1563 /*
1564 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1565 * corresponds to page offset for the specified swap entry.
1566 * Note that the type of this function is sector_t, but it returns page offset
1567 * into the bdev, not sector offset.
1568 */
1569 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1570 {
1571 struct swap_info_struct *sis;
1572 struct swap_extent *start_se;
1573 struct swap_extent *se;
1574 pgoff_t offset;
1575
1576 sis = swap_info[swp_type(entry)];
1577 *bdev = sis->bdev;
1578
1579 offset = swp_offset(entry);
1580 start_se = sis->curr_swap_extent;
1581 se = start_se;
1582
1583 for ( ; ; ) {
1584 struct list_head *lh;
1585
1586 if (se->start_page <= offset &&
1587 offset < (se->start_page + se->nr_pages)) {
1588 return se->start_block + (offset - se->start_page);
1589 }
1590 lh = se->list.next;
1591 se = list_entry(lh, struct swap_extent, list);
1592 sis->curr_swap_extent = se;
1593 BUG_ON(se == start_se); /* It *must* be present */
1594 }
1595 }
1596
1597 /*
1598 * Returns the page offset into bdev for the specified page's swap entry.
1599 */
1600 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1601 {
1602 swp_entry_t entry;
1603 entry.val = page_private(page);
1604 return map_swap_entry(entry, bdev);
1605 }
1606
1607 /*
1608 * Free all of a swapdev's extent information
1609 */
1610 static void destroy_swap_extents(struct swap_info_struct *sis)
1611 {
1612 while (!list_empty(&sis->first_swap_extent.list)) {
1613 struct swap_extent *se;
1614
1615 se = list_entry(sis->first_swap_extent.list.next,
1616 struct swap_extent, list);
1617 list_del(&se->list);
1618 kfree(se);
1619 }
1620
1621 if (sis->flags & SWP_FILE) {
1622 struct file *swap_file = sis->swap_file;
1623 struct address_space *mapping = swap_file->f_mapping;
1624
1625 sis->flags &= ~SWP_FILE;
1626 mapping->a_ops->swap_deactivate(swap_file);
1627 }
1628 }
1629
1630 /*
1631 * Add a block range (and the corresponding page range) into this swapdev's
1632 * extent list. The extent list is kept sorted in page order.
1633 *
1634 * This function rather assumes that it is called in ascending page order.
1635 */
1636 int
1637 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1638 unsigned long nr_pages, sector_t start_block)
1639 {
1640 struct swap_extent *se;
1641 struct swap_extent *new_se;
1642 struct list_head *lh;
1643
1644 if (start_page == 0) {
1645 se = &sis->first_swap_extent;
1646 sis->curr_swap_extent = se;
1647 se->start_page = 0;
1648 se->nr_pages = nr_pages;
1649 se->start_block = start_block;
1650 return 1;
1651 } else {
1652 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1653 se = list_entry(lh, struct swap_extent, list);
1654 BUG_ON(se->start_page + se->nr_pages != start_page);
1655 if (se->start_block + se->nr_pages == start_block) {
1656 /* Merge it */
1657 se->nr_pages += nr_pages;
1658 return 0;
1659 }
1660 }
1661
1662 /*
1663 * No merge. Insert a new extent, preserving ordering.
1664 */
1665 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1666 if (new_se == NULL)
1667 return -ENOMEM;
1668 new_se->start_page = start_page;
1669 new_se->nr_pages = nr_pages;
1670 new_se->start_block = start_block;
1671
1672 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1673 return 1;
1674 }
1675
1676 /*
1677 * A `swap extent' is a simple thing which maps a contiguous range of pages
1678 * onto a contiguous range of disk blocks. An ordered list of swap extents
1679 * is built at swapon time and is then used at swap_writepage/swap_readpage
1680 * time for locating where on disk a page belongs.
1681 *
1682 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1683 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1684 * swap files identically.
1685 *
1686 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1687 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1688 * swapfiles are handled *identically* after swapon time.
1689 *
1690 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1691 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1692 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1693 * requirements, they are simply tossed out - we will never use those blocks
1694 * for swapping.
1695 *
1696 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1697 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1698 * which will scribble on the fs.
1699 *
1700 * The amount of disk space which a single swap extent represents varies.
1701 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1702 * extents in the list. To avoid much list walking, we cache the previous
1703 * search location in `curr_swap_extent', and start new searches from there.
1704 * This is extremely effective. The average number of iterations in
1705 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1706 */
1707 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1708 {
1709 struct file *swap_file = sis->swap_file;
1710 struct address_space *mapping = swap_file->f_mapping;
1711 struct inode *inode = mapping->host;
1712 int ret;
1713
1714 if (S_ISBLK(inode->i_mode)) {
1715 ret = add_swap_extent(sis, 0, sis->max, 0);
1716 *span = sis->pages;
1717 return ret;
1718 }
1719
1720 if (mapping->a_ops->swap_activate) {
1721 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1722 if (!ret) {
1723 sis->flags |= SWP_FILE;
1724 ret = add_swap_extent(sis, 0, sis->max, 0);
1725 *span = sis->pages;
1726 }
1727 return ret;
1728 }
1729
1730 return generic_swapfile_activate(sis, swap_file, span);
1731 }
1732
1733 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1734 unsigned char *swap_map,
1735 struct swap_cluster_info *cluster_info)
1736 {
1737 struct swap_info_struct *si;
1738
1739 if (prio >= 0)
1740 p->prio = prio;
1741 else
1742 p->prio = --least_priority;
1743 p->swap_map = swap_map;
1744 p->cluster_info = cluster_info;
1745 p->flags |= SWP_WRITEOK;
1746 atomic_long_add(p->pages, &nr_swap_pages);
1747 total_swap_pages += p->pages;
1748
1749 assert_spin_locked(&swap_lock);
1750 BUG_ON(!list_empty(&p->list));
1751 /*
1752 * insert into swap list; the list is in priority order,
1753 * so that get_swap_page() can get a page from the highest
1754 * priority swap_info_struct with available page(s), and
1755 * swapoff can adjust the auto-assigned (i.e. negative) prio
1756 * values for any lower-priority swap_info_structs when
1757 * removing a negative-prio swap_info_struct
1758 */
1759 list_for_each_entry(si, &swap_list_head, list) {
1760 if (p->prio >= si->prio) {
1761 list_add_tail(&p->list, &si->list);
1762 return;
1763 }
1764 }
1765 /*
1766 * this covers two cases:
1767 * 1) p->prio is less than all existing prio
1768 * 2) the swap list is empty
1769 */
1770 list_add_tail(&p->list, &swap_list_head);
1771 }
1772
1773 static void enable_swap_info(struct swap_info_struct *p, int prio,
1774 unsigned char *swap_map,
1775 struct swap_cluster_info *cluster_info,
1776 unsigned long *frontswap_map)
1777 {
1778 frontswap_init(p->type, frontswap_map);
1779 spin_lock(&swap_lock);
1780 spin_lock(&p->lock);
1781 _enable_swap_info(p, prio, swap_map, cluster_info);
1782 spin_unlock(&p->lock);
1783 spin_unlock(&swap_lock);
1784 }
1785
1786 static void reinsert_swap_info(struct swap_info_struct *p)
1787 {
1788 spin_lock(&swap_lock);
1789 spin_lock(&p->lock);
1790 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1791 spin_unlock(&p->lock);
1792 spin_unlock(&swap_lock);
1793 }
1794
1795 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1796 {
1797 struct swap_info_struct *p = NULL;
1798 unsigned char *swap_map;
1799 struct swap_cluster_info *cluster_info;
1800 unsigned long *frontswap_map;
1801 struct file *swap_file, *victim;
1802 struct address_space *mapping;
1803 struct inode *inode;
1804 struct filename *pathname;
1805 int err, found = 0;
1806 unsigned int old_block_size;
1807
1808 if (!capable(CAP_SYS_ADMIN))
1809 return -EPERM;
1810
1811 BUG_ON(!current->mm);
1812
1813 pathname = getname(specialfile);
1814 if (IS_ERR(pathname))
1815 return PTR_ERR(pathname);
1816
1817 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1818 err = PTR_ERR(victim);
1819 if (IS_ERR(victim))
1820 goto out;
1821
1822 mapping = victim->f_mapping;
1823 spin_lock(&swap_lock);
1824 list_for_each_entry(p, &swap_list_head, list) {
1825 if (p->flags & SWP_WRITEOK) {
1826 if (p->swap_file->f_mapping == mapping) {
1827 found = 1;
1828 break;
1829 }
1830 }
1831 }
1832 if (!found) {
1833 err = -EINVAL;
1834 spin_unlock(&swap_lock);
1835 goto out_dput;
1836 }
1837 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1838 vm_unacct_memory(p->pages);
1839 else {
1840 err = -ENOMEM;
1841 spin_unlock(&swap_lock);
1842 goto out_dput;
1843 }
1844 spin_lock(&p->lock);
1845 if (p->prio < 0) {
1846 struct swap_info_struct *si = p;
1847
1848 list_for_each_entry_continue(si, &swap_list_head, list) {
1849 si->prio++;
1850 }
1851 least_priority++;
1852 }
1853 list_del_init(&p->list);
1854 atomic_long_sub(p->pages, &nr_swap_pages);
1855 total_swap_pages -= p->pages;
1856 p->flags &= ~SWP_WRITEOK;
1857 spin_unlock(&p->lock);
1858 spin_unlock(&swap_lock);
1859
1860 set_current_oom_origin();
1861 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1862 clear_current_oom_origin();
1863
1864 if (err) {
1865 /* re-insert swap space back into swap_list */
1866 reinsert_swap_info(p);
1867 goto out_dput;
1868 }
1869
1870 flush_work(&p->discard_work);
1871
1872 destroy_swap_extents(p);
1873 if (p->flags & SWP_CONTINUED)
1874 free_swap_count_continuations(p);
1875
1876 mutex_lock(&swapon_mutex);
1877 spin_lock(&swap_lock);
1878 spin_lock(&p->lock);
1879 drain_mmlist();
1880
1881 /* wait for anyone still in scan_swap_map */
1882 p->highest_bit = 0; /* cuts scans short */
1883 while (p->flags >= SWP_SCANNING) {
1884 spin_unlock(&p->lock);
1885 spin_unlock(&swap_lock);
1886 schedule_timeout_uninterruptible(1);
1887 spin_lock(&swap_lock);
1888 spin_lock(&p->lock);
1889 }
1890
1891 swap_file = p->swap_file;
1892 old_block_size = p->old_block_size;
1893 p->swap_file = NULL;
1894 p->max = 0;
1895 swap_map = p->swap_map;
1896 p->swap_map = NULL;
1897 cluster_info = p->cluster_info;
1898 p->cluster_info = NULL;
1899 frontswap_map = frontswap_map_get(p);
1900 spin_unlock(&p->lock);
1901 spin_unlock(&swap_lock);
1902 frontswap_invalidate_area(p->type);
1903 frontswap_map_set(p, NULL);
1904 mutex_unlock(&swapon_mutex);
1905 free_percpu(p->percpu_cluster);
1906 p->percpu_cluster = NULL;
1907 vfree(swap_map);
1908 vfree(cluster_info);
1909 vfree(frontswap_map);
1910 /* Destroy swap account information */
1911 swap_cgroup_swapoff(p->type);
1912
1913 inode = mapping->host;
1914 if (S_ISBLK(inode->i_mode)) {
1915 struct block_device *bdev = I_BDEV(inode);
1916 set_blocksize(bdev, old_block_size);
1917 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1918 } else {
1919 mutex_lock(&inode->i_mutex);
1920 inode->i_flags &= ~S_SWAPFILE;
1921 mutex_unlock(&inode->i_mutex);
1922 }
1923 filp_close(swap_file, NULL);
1924
1925 /*
1926 * Clear the SWP_USED flag after all resources are freed so that swapon
1927 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1928 * not hold p->lock after we cleared its SWP_WRITEOK.
1929 */
1930 spin_lock(&swap_lock);
1931 p->flags = 0;
1932 spin_unlock(&swap_lock);
1933
1934 err = 0;
1935 atomic_inc(&proc_poll_event);
1936 wake_up_interruptible(&proc_poll_wait);
1937
1938 out_dput:
1939 filp_close(victim, NULL);
1940 out:
1941 putname(pathname);
1942 return err;
1943 }
1944
1945 #ifdef CONFIG_PROC_FS
1946 static unsigned swaps_poll(struct file *file, poll_table *wait)
1947 {
1948 struct seq_file *seq = file->private_data;
1949
1950 poll_wait(file, &proc_poll_wait, wait);
1951
1952 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1953 seq->poll_event = atomic_read(&proc_poll_event);
1954 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1955 }
1956
1957 return POLLIN | POLLRDNORM;
1958 }
1959
1960 /* iterator */
1961 static void *swap_start(struct seq_file *swap, loff_t *pos)
1962 {
1963 struct swap_info_struct *si;
1964 int type;
1965 loff_t l = *pos;
1966
1967 mutex_lock(&swapon_mutex);
1968
1969 if (!l)
1970 return SEQ_START_TOKEN;
1971
1972 for (type = 0; type < nr_swapfiles; type++) {
1973 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1974 si = swap_info[type];
1975 if (!(si->flags & SWP_USED) || !si->swap_map)
1976 continue;
1977 if (!--l)
1978 return si;
1979 }
1980
1981 return NULL;
1982 }
1983
1984 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1985 {
1986 struct swap_info_struct *si = v;
1987 int type;
1988
1989 if (v == SEQ_START_TOKEN)
1990 type = 0;
1991 else
1992 type = si->type + 1;
1993
1994 for (; type < nr_swapfiles; type++) {
1995 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1996 si = swap_info[type];
1997 if (!(si->flags & SWP_USED) || !si->swap_map)
1998 continue;
1999 ++*pos;
2000 return si;
2001 }
2002
2003 return NULL;
2004 }
2005
2006 static void swap_stop(struct seq_file *swap, void *v)
2007 {
2008 mutex_unlock(&swapon_mutex);
2009 }
2010
2011 static int swap_show(struct seq_file *swap, void *v)
2012 {
2013 struct swap_info_struct *si = v;
2014 struct file *file;
2015 int len;
2016
2017 if (si == SEQ_START_TOKEN) {
2018 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2019 return 0;
2020 }
2021
2022 file = si->swap_file;
2023 len = seq_path(swap, &file->f_path, " \t\n\\");
2024 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2025 len < 40 ? 40 - len : 1, " ",
2026 S_ISBLK(file_inode(file)->i_mode) ?
2027 "partition" : "file\t",
2028 si->pages << (PAGE_SHIFT - 10),
2029 si->inuse_pages << (PAGE_SHIFT - 10),
2030 si->prio);
2031 return 0;
2032 }
2033
2034 static const struct seq_operations swaps_op = {
2035 .start = swap_start,
2036 .next = swap_next,
2037 .stop = swap_stop,
2038 .show = swap_show
2039 };
2040
2041 static int swaps_open(struct inode *inode, struct file *file)
2042 {
2043 struct seq_file *seq;
2044 int ret;
2045
2046 ret = seq_open(file, &swaps_op);
2047 if (ret)
2048 return ret;
2049
2050 seq = file->private_data;
2051 seq->poll_event = atomic_read(&proc_poll_event);
2052 return 0;
2053 }
2054
2055 static const struct file_operations proc_swaps_operations = {
2056 .open = swaps_open,
2057 .read = seq_read,
2058 .llseek = seq_lseek,
2059 .release = seq_release,
2060 .poll = swaps_poll,
2061 };
2062
2063 static int __init procswaps_init(void)
2064 {
2065 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2066 return 0;
2067 }
2068 __initcall(procswaps_init);
2069 #endif /* CONFIG_PROC_FS */
2070
2071 #ifdef MAX_SWAPFILES_CHECK
2072 static int __init max_swapfiles_check(void)
2073 {
2074 MAX_SWAPFILES_CHECK();
2075 return 0;
2076 }
2077 late_initcall(max_swapfiles_check);
2078 #endif
2079
2080 static struct swap_info_struct *alloc_swap_info(void)
2081 {
2082 struct swap_info_struct *p;
2083 unsigned int type;
2084
2085 p = kzalloc(sizeof(*p), GFP_KERNEL);
2086 if (!p)
2087 return ERR_PTR(-ENOMEM);
2088
2089 spin_lock(&swap_lock);
2090 for (type = 0; type < nr_swapfiles; type++) {
2091 if (!(swap_info[type]->flags & SWP_USED))
2092 break;
2093 }
2094 if (type >= MAX_SWAPFILES) {
2095 spin_unlock(&swap_lock);
2096 kfree(p);
2097 return ERR_PTR(-EPERM);
2098 }
2099 if (type >= nr_swapfiles) {
2100 p->type = type;
2101 swap_info[type] = p;
2102 /*
2103 * Write swap_info[type] before nr_swapfiles, in case a
2104 * racing procfs swap_start() or swap_next() is reading them.
2105 * (We never shrink nr_swapfiles, we never free this entry.)
2106 */
2107 smp_wmb();
2108 nr_swapfiles++;
2109 } else {
2110 kfree(p);
2111 p = swap_info[type];
2112 /*
2113 * Do not memset this entry: a racing procfs swap_next()
2114 * would be relying on p->type to remain valid.
2115 */
2116 }
2117 INIT_LIST_HEAD(&p->first_swap_extent.list);
2118 INIT_LIST_HEAD(&p->list);
2119 p->flags = SWP_USED;
2120 spin_unlock(&swap_lock);
2121 spin_lock_init(&p->lock);
2122
2123 return p;
2124 }
2125
2126 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2127 {
2128 int error;
2129
2130 if (S_ISBLK(inode->i_mode)) {
2131 p->bdev = bdgrab(I_BDEV(inode));
2132 error = blkdev_get(p->bdev,
2133 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2134 sys_swapon);
2135 if (error < 0) {
2136 p->bdev = NULL;
2137 return -EINVAL;
2138 }
2139 p->old_block_size = block_size(p->bdev);
2140 error = set_blocksize(p->bdev, PAGE_SIZE);
2141 if (error < 0)
2142 return error;
2143 p->flags |= SWP_BLKDEV;
2144 } else if (S_ISREG(inode->i_mode)) {
2145 p->bdev = inode->i_sb->s_bdev;
2146 mutex_lock(&inode->i_mutex);
2147 if (IS_SWAPFILE(inode))
2148 return -EBUSY;
2149 } else
2150 return -EINVAL;
2151
2152 return 0;
2153 }
2154
2155 static unsigned long read_swap_header(struct swap_info_struct *p,
2156 union swap_header *swap_header,
2157 struct inode *inode)
2158 {
2159 int i;
2160 unsigned long maxpages;
2161 unsigned long swapfilepages;
2162 unsigned long last_page;
2163
2164 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2165 pr_err("Unable to find swap-space signature\n");
2166 return 0;
2167 }
2168
2169 /* swap partition endianess hack... */
2170 if (swab32(swap_header->info.version) == 1) {
2171 swab32s(&swap_header->info.version);
2172 swab32s(&swap_header->info.last_page);
2173 swab32s(&swap_header->info.nr_badpages);
2174 for (i = 0; i < swap_header->info.nr_badpages; i++)
2175 swab32s(&swap_header->info.badpages[i]);
2176 }
2177 /* Check the swap header's sub-version */
2178 if (swap_header->info.version != 1) {
2179 pr_warn("Unable to handle swap header version %d\n",
2180 swap_header->info.version);
2181 return 0;
2182 }
2183
2184 p->lowest_bit = 1;
2185 p->cluster_next = 1;
2186 p->cluster_nr = 0;
2187
2188 /*
2189 * Find out how many pages are allowed for a single swap
2190 * device. There are two limiting factors: 1) the number
2191 * of bits for the swap offset in the swp_entry_t type, and
2192 * 2) the number of bits in the swap pte as defined by the
2193 * different architectures. In order to find the
2194 * largest possible bit mask, a swap entry with swap type 0
2195 * and swap offset ~0UL is created, encoded to a swap pte,
2196 * decoded to a swp_entry_t again, and finally the swap
2197 * offset is extracted. This will mask all the bits from
2198 * the initial ~0UL mask that can't be encoded in either
2199 * the swp_entry_t or the architecture definition of a
2200 * swap pte.
2201 */
2202 maxpages = swp_offset(pte_to_swp_entry(
2203 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2204 last_page = swap_header->info.last_page;
2205 if (last_page > maxpages) {
2206 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2207 maxpages << (PAGE_SHIFT - 10),
2208 last_page << (PAGE_SHIFT - 10));
2209 }
2210 if (maxpages > last_page) {
2211 maxpages = last_page + 1;
2212 /* p->max is an unsigned int: don't overflow it */
2213 if ((unsigned int)maxpages == 0)
2214 maxpages = UINT_MAX;
2215 }
2216 p->highest_bit = maxpages - 1;
2217
2218 if (!maxpages)
2219 return 0;
2220 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2221 if (swapfilepages && maxpages > swapfilepages) {
2222 pr_warn("Swap area shorter than signature indicates\n");
2223 return 0;
2224 }
2225 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2226 return 0;
2227 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2228 return 0;
2229
2230 return maxpages;
2231 }
2232
2233 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2234 union swap_header *swap_header,
2235 unsigned char *swap_map,
2236 struct swap_cluster_info *cluster_info,
2237 unsigned long maxpages,
2238 sector_t *span)
2239 {
2240 int i;
2241 unsigned int nr_good_pages;
2242 int nr_extents;
2243 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2244 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2245
2246 nr_good_pages = maxpages - 1; /* omit header page */
2247
2248 cluster_set_null(&p->free_cluster_head);
2249 cluster_set_null(&p->free_cluster_tail);
2250 cluster_set_null(&p->discard_cluster_head);
2251 cluster_set_null(&p->discard_cluster_tail);
2252
2253 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2254 unsigned int page_nr = swap_header->info.badpages[i];
2255 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2256 return -EINVAL;
2257 if (page_nr < maxpages) {
2258 swap_map[page_nr] = SWAP_MAP_BAD;
2259 nr_good_pages--;
2260 /*
2261 * Haven't marked the cluster free yet, no list
2262 * operation involved
2263 */
2264 inc_cluster_info_page(p, cluster_info, page_nr);
2265 }
2266 }
2267
2268 /* Haven't marked the cluster free yet, no list operation involved */
2269 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2270 inc_cluster_info_page(p, cluster_info, i);
2271
2272 if (nr_good_pages) {
2273 swap_map[0] = SWAP_MAP_BAD;
2274 /*
2275 * Not mark the cluster free yet, no list
2276 * operation involved
2277 */
2278 inc_cluster_info_page(p, cluster_info, 0);
2279 p->max = maxpages;
2280 p->pages = nr_good_pages;
2281 nr_extents = setup_swap_extents(p, span);
2282 if (nr_extents < 0)
2283 return nr_extents;
2284 nr_good_pages = p->pages;
2285 }
2286 if (!nr_good_pages) {
2287 pr_warn("Empty swap-file\n");
2288 return -EINVAL;
2289 }
2290
2291 if (!cluster_info)
2292 return nr_extents;
2293
2294 for (i = 0; i < nr_clusters; i++) {
2295 if (!cluster_count(&cluster_info[idx])) {
2296 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2297 if (cluster_is_null(&p->free_cluster_head)) {
2298 cluster_set_next_flag(&p->free_cluster_head,
2299 idx, 0);
2300 cluster_set_next_flag(&p->free_cluster_tail,
2301 idx, 0);
2302 } else {
2303 unsigned int tail;
2304
2305 tail = cluster_next(&p->free_cluster_tail);
2306 cluster_set_next(&cluster_info[tail], idx);
2307 cluster_set_next_flag(&p->free_cluster_tail,
2308 idx, 0);
2309 }
2310 }
2311 idx++;
2312 if (idx == nr_clusters)
2313 idx = 0;
2314 }
2315 return nr_extents;
2316 }
2317
2318 /*
2319 * Helper to sys_swapon determining if a given swap
2320 * backing device queue supports DISCARD operations.
2321 */
2322 static bool swap_discardable(struct swap_info_struct *si)
2323 {
2324 struct request_queue *q = bdev_get_queue(si->bdev);
2325
2326 if (!q || !blk_queue_discard(q))
2327 return false;
2328
2329 return true;
2330 }
2331
2332 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2333 {
2334 struct swap_info_struct *p;
2335 struct filename *name;
2336 struct file *swap_file = NULL;
2337 struct address_space *mapping;
2338 int i;
2339 int prio;
2340 int error;
2341 union swap_header *swap_header;
2342 int nr_extents;
2343 sector_t span;
2344 unsigned long maxpages;
2345 unsigned char *swap_map = NULL;
2346 struct swap_cluster_info *cluster_info = NULL;
2347 unsigned long *frontswap_map = NULL;
2348 struct page *page = NULL;
2349 struct inode *inode = NULL;
2350
2351 if (swap_flags & ~SWAP_FLAGS_VALID)
2352 return -EINVAL;
2353
2354 if (!capable(CAP_SYS_ADMIN))
2355 return -EPERM;
2356
2357 p = alloc_swap_info();
2358 if (IS_ERR(p))
2359 return PTR_ERR(p);
2360
2361 INIT_WORK(&p->discard_work, swap_discard_work);
2362
2363 name = getname(specialfile);
2364 if (IS_ERR(name)) {
2365 error = PTR_ERR(name);
2366 name = NULL;
2367 goto bad_swap;
2368 }
2369 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2370 if (IS_ERR(swap_file)) {
2371 error = PTR_ERR(swap_file);
2372 swap_file = NULL;
2373 goto bad_swap;
2374 }
2375
2376 p->swap_file = swap_file;
2377 mapping = swap_file->f_mapping;
2378
2379 for (i = 0; i < nr_swapfiles; i++) {
2380 struct swap_info_struct *q = swap_info[i];
2381
2382 if (q == p || !q->swap_file)
2383 continue;
2384 if (mapping == q->swap_file->f_mapping) {
2385 error = -EBUSY;
2386 goto bad_swap;
2387 }
2388 }
2389
2390 inode = mapping->host;
2391 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2392 error = claim_swapfile(p, inode);
2393 if (unlikely(error))
2394 goto bad_swap;
2395
2396 /*
2397 * Read the swap header.
2398 */
2399 if (!mapping->a_ops->readpage) {
2400 error = -EINVAL;
2401 goto bad_swap;
2402 }
2403 page = read_mapping_page(mapping, 0, swap_file);
2404 if (IS_ERR(page)) {
2405 error = PTR_ERR(page);
2406 goto bad_swap;
2407 }
2408 swap_header = kmap(page);
2409
2410 maxpages = read_swap_header(p, swap_header, inode);
2411 if (unlikely(!maxpages)) {
2412 error = -EINVAL;
2413 goto bad_swap;
2414 }
2415
2416 /* OK, set up the swap map and apply the bad block list */
2417 swap_map = vzalloc(maxpages);
2418 if (!swap_map) {
2419 error = -ENOMEM;
2420 goto bad_swap;
2421 }
2422 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2423 p->flags |= SWP_SOLIDSTATE;
2424 /*
2425 * select a random position to start with to help wear leveling
2426 * SSD
2427 */
2428 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2429
2430 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2431 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2432 if (!cluster_info) {
2433 error = -ENOMEM;
2434 goto bad_swap;
2435 }
2436 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2437 if (!p->percpu_cluster) {
2438 error = -ENOMEM;
2439 goto bad_swap;
2440 }
2441 for_each_possible_cpu(i) {
2442 struct percpu_cluster *cluster;
2443 cluster = per_cpu_ptr(p->percpu_cluster, i);
2444 cluster_set_null(&cluster->index);
2445 }
2446 }
2447
2448 error = swap_cgroup_swapon(p->type, maxpages);
2449 if (error)
2450 goto bad_swap;
2451
2452 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2453 cluster_info, maxpages, &span);
2454 if (unlikely(nr_extents < 0)) {
2455 error = nr_extents;
2456 goto bad_swap;
2457 }
2458 /* frontswap enabled? set up bit-per-page map for frontswap */
2459 if (frontswap_enabled)
2460 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2461
2462 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2463 /*
2464 * When discard is enabled for swap with no particular
2465 * policy flagged, we set all swap discard flags here in
2466 * order to sustain backward compatibility with older
2467 * swapon(8) releases.
2468 */
2469 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2470 SWP_PAGE_DISCARD);
2471
2472 /*
2473 * By flagging sys_swapon, a sysadmin can tell us to
2474 * either do single-time area discards only, or to just
2475 * perform discards for released swap page-clusters.
2476 * Now it's time to adjust the p->flags accordingly.
2477 */
2478 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2479 p->flags &= ~SWP_PAGE_DISCARD;
2480 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2481 p->flags &= ~SWP_AREA_DISCARD;
2482
2483 /* issue a swapon-time discard if it's still required */
2484 if (p->flags & SWP_AREA_DISCARD) {
2485 int err = discard_swap(p);
2486 if (unlikely(err))
2487 pr_err("swapon: discard_swap(%p): %d\n",
2488 p, err);
2489 }
2490 }
2491
2492 mutex_lock(&swapon_mutex);
2493 prio = -1;
2494 if (swap_flags & SWAP_FLAG_PREFER)
2495 prio =
2496 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2497 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2498
2499 pr_info("Adding %uk swap on %s. "
2500 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2501 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2502 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2503 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2504 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2505 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2506 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2507 (frontswap_map) ? "FS" : "");
2508
2509 mutex_unlock(&swapon_mutex);
2510 atomic_inc(&proc_poll_event);
2511 wake_up_interruptible(&proc_poll_wait);
2512
2513 if (S_ISREG(inode->i_mode))
2514 inode->i_flags |= S_SWAPFILE;
2515 error = 0;
2516 goto out;
2517 bad_swap:
2518 free_percpu(p->percpu_cluster);
2519 p->percpu_cluster = NULL;
2520 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2521 set_blocksize(p->bdev, p->old_block_size);
2522 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2523 }
2524 destroy_swap_extents(p);
2525 swap_cgroup_swapoff(p->type);
2526 spin_lock(&swap_lock);
2527 p->swap_file = NULL;
2528 p->flags = 0;
2529 spin_unlock(&swap_lock);
2530 vfree(swap_map);
2531 vfree(cluster_info);
2532 if (swap_file) {
2533 if (inode && S_ISREG(inode->i_mode)) {
2534 mutex_unlock(&inode->i_mutex);
2535 inode = NULL;
2536 }
2537 filp_close(swap_file, NULL);
2538 }
2539 out:
2540 if (page && !IS_ERR(page)) {
2541 kunmap(page);
2542 page_cache_release(page);
2543 }
2544 if (name)
2545 putname(name);
2546 if (inode && S_ISREG(inode->i_mode))
2547 mutex_unlock(&inode->i_mutex);
2548 return error;
2549 }
2550
2551 void si_swapinfo(struct sysinfo *val)
2552 {
2553 unsigned int type;
2554 unsigned long nr_to_be_unused = 0;
2555
2556 spin_lock(&swap_lock);
2557 for (type = 0; type < nr_swapfiles; type++) {
2558 struct swap_info_struct *si = swap_info[type];
2559
2560 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2561 nr_to_be_unused += si->inuse_pages;
2562 }
2563 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2564 val->totalswap = total_swap_pages + nr_to_be_unused;
2565 spin_unlock(&swap_lock);
2566 }
2567
2568 /*
2569 * Verify that a swap entry is valid and increment its swap map count.
2570 *
2571 * Returns error code in following case.
2572 * - success -> 0
2573 * - swp_entry is invalid -> EINVAL
2574 * - swp_entry is migration entry -> EINVAL
2575 * - swap-cache reference is requested but there is already one. -> EEXIST
2576 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2577 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2578 */
2579 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2580 {
2581 struct swap_info_struct *p;
2582 unsigned long offset, type;
2583 unsigned char count;
2584 unsigned char has_cache;
2585 int err = -EINVAL;
2586
2587 if (non_swap_entry(entry))
2588 goto out;
2589
2590 type = swp_type(entry);
2591 if (type >= nr_swapfiles)
2592 goto bad_file;
2593 p = swap_info[type];
2594 offset = swp_offset(entry);
2595
2596 spin_lock(&p->lock);
2597 if (unlikely(offset >= p->max))
2598 goto unlock_out;
2599
2600 count = p->swap_map[offset];
2601
2602 /*
2603 * swapin_readahead() doesn't check if a swap entry is valid, so the
2604 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2605 */
2606 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2607 err = -ENOENT;
2608 goto unlock_out;
2609 }
2610
2611 has_cache = count & SWAP_HAS_CACHE;
2612 count &= ~SWAP_HAS_CACHE;
2613 err = 0;
2614
2615 if (usage == SWAP_HAS_CACHE) {
2616
2617 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2618 if (!has_cache && count)
2619 has_cache = SWAP_HAS_CACHE;
2620 else if (has_cache) /* someone else added cache */
2621 err = -EEXIST;
2622 else /* no users remaining */
2623 err = -ENOENT;
2624
2625 } else if (count || has_cache) {
2626
2627 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2628 count += usage;
2629 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2630 err = -EINVAL;
2631 else if (swap_count_continued(p, offset, count))
2632 count = COUNT_CONTINUED;
2633 else
2634 err = -ENOMEM;
2635 } else
2636 err = -ENOENT; /* unused swap entry */
2637
2638 p->swap_map[offset] = count | has_cache;
2639
2640 unlock_out:
2641 spin_unlock(&p->lock);
2642 out:
2643 return err;
2644
2645 bad_file:
2646 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2647 goto out;
2648 }
2649
2650 /*
2651 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2652 * (in which case its reference count is never incremented).
2653 */
2654 void swap_shmem_alloc(swp_entry_t entry)
2655 {
2656 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2657 }
2658
2659 /*
2660 * Increase reference count of swap entry by 1.
2661 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2662 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2663 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2664 * might occur if a page table entry has got corrupted.
2665 */
2666 int swap_duplicate(swp_entry_t entry)
2667 {
2668 int err = 0;
2669
2670 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2671 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2672 return err;
2673 }
2674
2675 /*
2676 * @entry: swap entry for which we allocate swap cache.
2677 *
2678 * Called when allocating swap cache for existing swap entry,
2679 * This can return error codes. Returns 0 at success.
2680 * -EBUSY means there is a swap cache.
2681 * Note: return code is different from swap_duplicate().
2682 */
2683 int swapcache_prepare(swp_entry_t entry)
2684 {
2685 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2686 }
2687
2688 struct swap_info_struct *page_swap_info(struct page *page)
2689 {
2690 swp_entry_t swap = { .val = page_private(page) };
2691 BUG_ON(!PageSwapCache(page));
2692 return swap_info[swp_type(swap)];
2693 }
2694
2695 /*
2696 * out-of-line __page_file_ methods to avoid include hell.
2697 */
2698 struct address_space *__page_file_mapping(struct page *page)
2699 {
2700 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2701 return page_swap_info(page)->swap_file->f_mapping;
2702 }
2703 EXPORT_SYMBOL_GPL(__page_file_mapping);
2704
2705 pgoff_t __page_file_index(struct page *page)
2706 {
2707 swp_entry_t swap = { .val = page_private(page) };
2708 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2709 return swp_offset(swap);
2710 }
2711 EXPORT_SYMBOL_GPL(__page_file_index);
2712
2713 /*
2714 * add_swap_count_continuation - called when a swap count is duplicated
2715 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2716 * page of the original vmalloc'ed swap_map, to hold the continuation count
2717 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2718 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2719 *
2720 * These continuation pages are seldom referenced: the common paths all work
2721 * on the original swap_map, only referring to a continuation page when the
2722 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2723 *
2724 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2725 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2726 * can be called after dropping locks.
2727 */
2728 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2729 {
2730 struct swap_info_struct *si;
2731 struct page *head;
2732 struct page *page;
2733 struct page *list_page;
2734 pgoff_t offset;
2735 unsigned char count;
2736
2737 /*
2738 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2739 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2740 */
2741 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2742
2743 si = swap_info_get(entry);
2744 if (!si) {
2745 /*
2746 * An acceptable race has occurred since the failing
2747 * __swap_duplicate(): the swap entry has been freed,
2748 * perhaps even the whole swap_map cleared for swapoff.
2749 */
2750 goto outer;
2751 }
2752
2753 offset = swp_offset(entry);
2754 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2755
2756 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2757 /*
2758 * The higher the swap count, the more likely it is that tasks
2759 * will race to add swap count continuation: we need to avoid
2760 * over-provisioning.
2761 */
2762 goto out;
2763 }
2764
2765 if (!page) {
2766 spin_unlock(&si->lock);
2767 return -ENOMEM;
2768 }
2769
2770 /*
2771 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2772 * no architecture is using highmem pages for kernel page tables: so it
2773 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2774 */
2775 head = vmalloc_to_page(si->swap_map + offset);
2776 offset &= ~PAGE_MASK;
2777
2778 /*
2779 * Page allocation does not initialize the page's lru field,
2780 * but it does always reset its private field.
2781 */
2782 if (!page_private(head)) {
2783 BUG_ON(count & COUNT_CONTINUED);
2784 INIT_LIST_HEAD(&head->lru);
2785 set_page_private(head, SWP_CONTINUED);
2786 si->flags |= SWP_CONTINUED;
2787 }
2788
2789 list_for_each_entry(list_page, &head->lru, lru) {
2790 unsigned char *map;
2791
2792 /*
2793 * If the previous map said no continuation, but we've found
2794 * a continuation page, free our allocation and use this one.
2795 */
2796 if (!(count & COUNT_CONTINUED))
2797 goto out;
2798
2799 map = kmap_atomic(list_page) + offset;
2800 count = *map;
2801 kunmap_atomic(map);
2802
2803 /*
2804 * If this continuation count now has some space in it,
2805 * free our allocation and use this one.
2806 */
2807 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2808 goto out;
2809 }
2810
2811 list_add_tail(&page->lru, &head->lru);
2812 page = NULL; /* now it's attached, don't free it */
2813 out:
2814 spin_unlock(&si->lock);
2815 outer:
2816 if (page)
2817 __free_page(page);
2818 return 0;
2819 }
2820
2821 /*
2822 * swap_count_continued - when the original swap_map count is incremented
2823 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2824 * into, carry if so, or else fail until a new continuation page is allocated;
2825 * when the original swap_map count is decremented from 0 with continuation,
2826 * borrow from the continuation and report whether it still holds more.
2827 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2828 */
2829 static bool swap_count_continued(struct swap_info_struct *si,
2830 pgoff_t offset, unsigned char count)
2831 {
2832 struct page *head;
2833 struct page *page;
2834 unsigned char *map;
2835
2836 head = vmalloc_to_page(si->swap_map + offset);
2837 if (page_private(head) != SWP_CONTINUED) {
2838 BUG_ON(count & COUNT_CONTINUED);
2839 return false; /* need to add count continuation */
2840 }
2841
2842 offset &= ~PAGE_MASK;
2843 page = list_entry(head->lru.next, struct page, lru);
2844 map = kmap_atomic(page) + offset;
2845
2846 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2847 goto init_map; /* jump over SWAP_CONT_MAX checks */
2848
2849 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2850 /*
2851 * Think of how you add 1 to 999
2852 */
2853 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2854 kunmap_atomic(map);
2855 page = list_entry(page->lru.next, struct page, lru);
2856 BUG_ON(page == head);
2857 map = kmap_atomic(page) + offset;
2858 }
2859 if (*map == SWAP_CONT_MAX) {
2860 kunmap_atomic(map);
2861 page = list_entry(page->lru.next, struct page, lru);
2862 if (page == head)
2863 return false; /* add count continuation */
2864 map = kmap_atomic(page) + offset;
2865 init_map: *map = 0; /* we didn't zero the page */
2866 }
2867 *map += 1;
2868 kunmap_atomic(map);
2869 page = list_entry(page->lru.prev, struct page, lru);
2870 while (page != head) {
2871 map = kmap_atomic(page) + offset;
2872 *map = COUNT_CONTINUED;
2873 kunmap_atomic(map);
2874 page = list_entry(page->lru.prev, struct page, lru);
2875 }
2876 return true; /* incremented */
2877
2878 } else { /* decrementing */
2879 /*
2880 * Think of how you subtract 1 from 1000
2881 */
2882 BUG_ON(count != COUNT_CONTINUED);
2883 while (*map == COUNT_CONTINUED) {
2884 kunmap_atomic(map);
2885 page = list_entry(page->lru.next, struct page, lru);
2886 BUG_ON(page == head);
2887 map = kmap_atomic(page) + offset;
2888 }
2889 BUG_ON(*map == 0);
2890 *map -= 1;
2891 if (*map == 0)
2892 count = 0;
2893 kunmap_atomic(map);
2894 page = list_entry(page->lru.prev, struct page, lru);
2895 while (page != head) {
2896 map = kmap_atomic(page) + offset;
2897 *map = SWAP_CONT_MAX | count;
2898 count = COUNT_CONTINUED;
2899 kunmap_atomic(map);
2900 page = list_entry(page->lru.prev, struct page, lru);
2901 }
2902 return count == COUNT_CONTINUED;
2903 }
2904 }
2905
2906 /*
2907 * free_swap_count_continuations - swapoff free all the continuation pages
2908 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2909 */
2910 static void free_swap_count_continuations(struct swap_info_struct *si)
2911 {
2912 pgoff_t offset;
2913
2914 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2915 struct page *head;
2916 head = vmalloc_to_page(si->swap_map + offset);
2917 if (page_private(head)) {
2918 struct list_head *this, *next;
2919 list_for_each_safe(this, next, &head->lru) {
2920 struct page *page;
2921 page = list_entry(this, struct page, lru);
2922 list_del(this);
2923 __free_page(page);
2924 }
2925 }
2926 }
2927 }