]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - mm/swapfile.c
UBUNTU: [Config] enable signing for ppc64el
[mirror_ubuntu-impish-kernel.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55 * Some modules use swappable objects and may try to swap them out under
56 * memory pressure (via the shrinker). Before doing so, they may wish to
57 * check to see if any swap space is available.
58 */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority = -1;
63
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68
69 /*
70 * all active swap_info_structs
71 * protected with swap_lock, and ordered by priority.
72 */
73 PLIST_HEAD(swap_active_head);
74
75 /*
76 * all available (active, not full) swap_info_structs
77 * protected with swap_avail_lock, ordered by priority.
78 * This is used by get_swap_page() instead of swap_active_head
79 * because swap_active_head includes all swap_info_structs,
80 * but get_swap_page() doesn't need to look at full ones.
81 * This uses its own lock instead of swap_lock because when a
82 * swap_info_struct changes between not-full/full, it needs to
83 * add/remove itself to/from this list, but the swap_info_struct->lock
84 * is held and the locking order requires swap_lock to be taken
85 * before any swap_info_struct->lock.
86 */
87 static struct plist_head *swap_avail_heads;
88 static DEFINE_SPINLOCK(swap_avail_lock);
89
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91
92 static DEFINE_MUTEX(swapon_mutex);
93
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97
98 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
99
100 static struct swap_info_struct *swap_type_to_swap_info(int type)
101 {
102 if (type >= READ_ONCE(nr_swapfiles))
103 return NULL;
104
105 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
106 return READ_ONCE(swap_info[type]);
107 }
108
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
112 }
113
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY 0x1
116 /*
117 * Reclaim the swap entry if there are no more mappings of the
118 * corresponding page
119 */
120 #define TTRS_UNMAPPED 0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL 0x4
123
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 unsigned long offset, unsigned long flags)
127 {
128 swp_entry_t entry = swp_entry(si->type, offset);
129 struct page *page;
130 int ret = 0;
131
132 page = find_get_page(swap_address_space(entry), offset);
133 if (!page)
134 return 0;
135 /*
136 * When this function is called from scan_swap_map_slots() and it's
137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 * here. We have to use trylock for avoiding deadlock. This is a special
139 * case and you should use try_to_free_swap() with explicit lock_page()
140 * in usual operations.
141 */
142 if (trylock_page(page)) {
143 if ((flags & TTRS_ANYWAY) ||
144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 ret = try_to_free_swap(page);
147 unlock_page(page);
148 }
149 put_page(page);
150 return ret;
151 }
152
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155 struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 return rb_entry(rb, struct swap_extent, rb_node);
157 }
158
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161 struct rb_node *rb = rb_next(&se->rb_node);
162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164
165 /*
166 * swapon tell device that all the old swap contents can be discarded,
167 * to allow the swap device to optimize its wear-levelling.
168 */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171 struct swap_extent *se;
172 sector_t start_block;
173 sector_t nr_blocks;
174 int err = 0;
175
176 /* Do not discard the swap header page! */
177 se = first_se(si);
178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 if (nr_blocks) {
181 err = blkdev_issue_discard(si->bdev, start_block,
182 nr_blocks, GFP_KERNEL, 0);
183 if (err)
184 return err;
185 cond_resched();
186 }
187
188 for (se = next_se(se); se; se = next_se(se)) {
189 start_block = se->start_block << (PAGE_SHIFT - 9);
190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191
192 err = blkdev_issue_discard(si->bdev, start_block,
193 nr_blocks, GFP_KERNEL, 0);
194 if (err)
195 break;
196
197 cond_resched();
198 }
199 return err; /* That will often be -EOPNOTSUPP */
200 }
201
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205 struct swap_extent *se;
206 struct rb_node *rb;
207
208 rb = sis->swap_extent_root.rb_node;
209 while (rb) {
210 se = rb_entry(rb, struct swap_extent, rb_node);
211 if (offset < se->start_page)
212 rb = rb->rb_left;
213 else if (offset >= se->start_page + se->nr_pages)
214 rb = rb->rb_right;
215 else
216 return se;
217 }
218 /* It *must* be present */
219 BUG();
220 }
221
222 sector_t swap_page_sector(struct page *page)
223 {
224 struct swap_info_struct *sis = page_swap_info(page);
225 struct swap_extent *se;
226 sector_t sector;
227 pgoff_t offset;
228
229 offset = __page_file_index(page);
230 se = offset_to_swap_extent(sis, offset);
231 sector = se->start_block + (offset - se->start_page);
232 return sector << (PAGE_SHIFT - 9);
233 }
234
235 /*
236 * swap allocation tell device that a cluster of swap can now be discarded,
237 * to allow the swap device to optimize its wear-levelling.
238 */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240 pgoff_t start_page, pgoff_t nr_pages)
241 {
242 struct swap_extent *se = offset_to_swap_extent(si, start_page);
243
244 while (nr_pages) {
245 pgoff_t offset = start_page - se->start_page;
246 sector_t start_block = se->start_block + offset;
247 sector_t nr_blocks = se->nr_pages - offset;
248
249 if (nr_blocks > nr_pages)
250 nr_blocks = nr_pages;
251 start_page += nr_blocks;
252 nr_pages -= nr_blocks;
253
254 start_block <<= PAGE_SHIFT - 9;
255 nr_blocks <<= PAGE_SHIFT - 9;
256 if (blkdev_issue_discard(si->bdev, start_block,
257 nr_blocks, GFP_NOIO, 0))
258 break;
259
260 se = next_se(se);
261 }
262 }
263
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
266
267 #define swap_entry_size(size) (size)
268 #else
269 #define SWAPFILE_CLUSTER 256
270
271 /*
272 * Define swap_entry_size() as constant to let compiler to optimize
273 * out some code if !CONFIG_THP_SWAP
274 */
275 #define swap_entry_size(size) 1
276 #endif
277 #define LATENCY_LIMIT 256
278
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280 unsigned int flag)
281 {
282 info->flags = flag;
283 }
284
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287 return info->data;
288 }
289
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291 unsigned int c)
292 {
293 info->data = c;
294 }
295
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 unsigned int c, unsigned int f)
298 {
299 info->flags = f;
300 info->data = c;
301 }
302
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305 return info->data;
306 }
307
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309 unsigned int n)
310 {
311 info->data = n;
312 }
313
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 unsigned int n, unsigned int f)
316 {
317 info->flags = f;
318 info->data = n;
319 }
320
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323 return info->flags & CLUSTER_FLAG_FREE;
324 }
325
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328 return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333 info->flags = CLUSTER_FLAG_NEXT_NULL;
334 info->data = 0;
335 }
336
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339 if (IS_ENABLED(CONFIG_THP_SWAP))
340 return info->flags & CLUSTER_FLAG_HUGE;
341 return false;
342 }
343
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346 info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 unsigned long offset)
351 {
352 struct swap_cluster_info *ci;
353
354 ci = si->cluster_info;
355 if (ci) {
356 ci += offset / SWAPFILE_CLUSTER;
357 spin_lock(&ci->lock);
358 }
359 return ci;
360 }
361
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364 if (ci)
365 spin_unlock(&ci->lock);
366 }
367
368 /*
369 * Determine the locking method in use for this device. Return
370 * swap_cluster_info if SSD-style cluster-based locking is in place.
371 */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 struct swap_info_struct *si, unsigned long offset)
374 {
375 struct swap_cluster_info *ci;
376
377 /* Try to use fine-grained SSD-style locking if available: */
378 ci = lock_cluster(si, offset);
379 /* Otherwise, fall back to traditional, coarse locking: */
380 if (!ci)
381 spin_lock(&si->lock);
382
383 return ci;
384 }
385
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 struct swap_cluster_info *ci)
388 {
389 if (ci)
390 unlock_cluster(ci);
391 else
392 spin_unlock(&si->lock);
393 }
394
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397 return cluster_is_null(&list->head);
398 }
399
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402 return cluster_next(&list->head);
403 }
404
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407 cluster_set_null(&list->head);
408 cluster_set_null(&list->tail);
409 }
410
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412 struct swap_cluster_info *ci,
413 unsigned int idx)
414 {
415 if (cluster_list_empty(list)) {
416 cluster_set_next_flag(&list->head, idx, 0);
417 cluster_set_next_flag(&list->tail, idx, 0);
418 } else {
419 struct swap_cluster_info *ci_tail;
420 unsigned int tail = cluster_next(&list->tail);
421
422 /*
423 * Nested cluster lock, but both cluster locks are
424 * only acquired when we held swap_info_struct->lock
425 */
426 ci_tail = ci + tail;
427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 cluster_set_next(ci_tail, idx);
429 spin_unlock(&ci_tail->lock);
430 cluster_set_next_flag(&list->tail, idx, 0);
431 }
432 }
433
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 struct swap_cluster_info *ci)
436 {
437 unsigned int idx;
438
439 idx = cluster_next(&list->head);
440 if (cluster_next(&list->tail) == idx) {
441 cluster_set_null(&list->head);
442 cluster_set_null(&list->tail);
443 } else
444 cluster_set_next_flag(&list->head,
445 cluster_next(&ci[idx]), 0);
446
447 return idx;
448 }
449
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452 unsigned int idx)
453 {
454 /*
455 * If scan_swap_map() can't find a free cluster, it will check
456 * si->swap_map directly. To make sure the discarding cluster isn't
457 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
458 * will be cleared after discard
459 */
460 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462
463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464
465 schedule_work(&si->discard_work);
466 }
467
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 struct swap_cluster_info *ci = si->cluster_info;
471
472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475
476 /*
477 * Doing discard actually. After a cluster discard is finished, the cluster
478 * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482 struct swap_cluster_info *info, *ci;
483 unsigned int idx;
484
485 info = si->cluster_info;
486
487 while (!cluster_list_empty(&si->discard_clusters)) {
488 idx = cluster_list_del_first(&si->discard_clusters, info);
489 spin_unlock(&si->lock);
490
491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492 SWAPFILE_CLUSTER);
493
494 spin_lock(&si->lock);
495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 __free_cluster(si, idx);
497 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 0, SWAPFILE_CLUSTER);
499 unlock_cluster(ci);
500 }
501 }
502
503 static void swap_discard_work(struct work_struct *work)
504 {
505 struct swap_info_struct *si;
506
507 si = container_of(work, struct swap_info_struct, discard_work);
508
509 spin_lock(&si->lock);
510 swap_do_scheduled_discard(si);
511 spin_unlock(&si->lock);
512 }
513
514 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
515 {
516 struct swap_cluster_info *ci = si->cluster_info;
517
518 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
519 cluster_list_del_first(&si->free_clusters, ci);
520 cluster_set_count_flag(ci + idx, 0, 0);
521 }
522
523 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
524 {
525 struct swap_cluster_info *ci = si->cluster_info + idx;
526
527 VM_BUG_ON(cluster_count(ci) != 0);
528 /*
529 * If the swap is discardable, prepare discard the cluster
530 * instead of free it immediately. The cluster will be freed
531 * after discard.
532 */
533 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
534 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
535 swap_cluster_schedule_discard(si, idx);
536 return;
537 }
538
539 __free_cluster(si, idx);
540 }
541
542 /*
543 * The cluster corresponding to page_nr will be used. The cluster will be
544 * removed from free cluster list and its usage counter will be increased.
545 */
546 static void inc_cluster_info_page(struct swap_info_struct *p,
547 struct swap_cluster_info *cluster_info, unsigned long page_nr)
548 {
549 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
550
551 if (!cluster_info)
552 return;
553 if (cluster_is_free(&cluster_info[idx]))
554 alloc_cluster(p, idx);
555
556 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
557 cluster_set_count(&cluster_info[idx],
558 cluster_count(&cluster_info[idx]) + 1);
559 }
560
561 /*
562 * The cluster corresponding to page_nr decreases one usage. If the usage
563 * counter becomes 0, which means no page in the cluster is in using, we can
564 * optionally discard the cluster and add it to free cluster list.
565 */
566 static void dec_cluster_info_page(struct swap_info_struct *p,
567 struct swap_cluster_info *cluster_info, unsigned long page_nr)
568 {
569 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
570
571 if (!cluster_info)
572 return;
573
574 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
575 cluster_set_count(&cluster_info[idx],
576 cluster_count(&cluster_info[idx]) - 1);
577
578 if (cluster_count(&cluster_info[idx]) == 0)
579 free_cluster(p, idx);
580 }
581
582 /*
583 * It's possible scan_swap_map() uses a free cluster in the middle of free
584 * cluster list. Avoiding such abuse to avoid list corruption.
585 */
586 static bool
587 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
588 unsigned long offset)
589 {
590 struct percpu_cluster *percpu_cluster;
591 bool conflict;
592
593 offset /= SWAPFILE_CLUSTER;
594 conflict = !cluster_list_empty(&si->free_clusters) &&
595 offset != cluster_list_first(&si->free_clusters) &&
596 cluster_is_free(&si->cluster_info[offset]);
597
598 if (!conflict)
599 return false;
600
601 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
602 cluster_set_null(&percpu_cluster->index);
603 return true;
604 }
605
606 /*
607 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
608 * might involve allocating a new cluster for current CPU too.
609 */
610 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
611 unsigned long *offset, unsigned long *scan_base)
612 {
613 struct percpu_cluster *cluster;
614 struct swap_cluster_info *ci;
615 unsigned long tmp, max;
616
617 new_cluster:
618 cluster = this_cpu_ptr(si->percpu_cluster);
619 if (cluster_is_null(&cluster->index)) {
620 if (!cluster_list_empty(&si->free_clusters)) {
621 cluster->index = si->free_clusters.head;
622 cluster->next = cluster_next(&cluster->index) *
623 SWAPFILE_CLUSTER;
624 } else if (!cluster_list_empty(&si->discard_clusters)) {
625 /*
626 * we don't have free cluster but have some clusters in
627 * discarding, do discard now and reclaim them, then
628 * reread cluster_next_cpu since we dropped si->lock
629 */
630 swap_do_scheduled_discard(si);
631 *scan_base = this_cpu_read(*si->cluster_next_cpu);
632 *offset = *scan_base;
633 goto new_cluster;
634 } else
635 return false;
636 }
637
638 /*
639 * Other CPUs can use our cluster if they can't find a free cluster,
640 * check if there is still free entry in the cluster
641 */
642 tmp = cluster->next;
643 max = min_t(unsigned long, si->max,
644 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
645 if (tmp < max) {
646 ci = lock_cluster(si, tmp);
647 while (tmp < max) {
648 if (!si->swap_map[tmp])
649 break;
650 tmp++;
651 }
652 unlock_cluster(ci);
653 }
654 if (tmp >= max) {
655 cluster_set_null(&cluster->index);
656 goto new_cluster;
657 }
658 cluster->next = tmp + 1;
659 *offset = tmp;
660 *scan_base = tmp;
661 return true;
662 }
663
664 static void __del_from_avail_list(struct swap_info_struct *p)
665 {
666 int nid;
667
668 for_each_node(nid)
669 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
670 }
671
672 static void del_from_avail_list(struct swap_info_struct *p)
673 {
674 spin_lock(&swap_avail_lock);
675 __del_from_avail_list(p);
676 spin_unlock(&swap_avail_lock);
677 }
678
679 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
680 unsigned int nr_entries)
681 {
682 unsigned int end = offset + nr_entries - 1;
683
684 if (offset == si->lowest_bit)
685 si->lowest_bit += nr_entries;
686 if (end == si->highest_bit)
687 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
688 si->inuse_pages += nr_entries;
689 if (si->inuse_pages == si->pages) {
690 si->lowest_bit = si->max;
691 si->highest_bit = 0;
692 del_from_avail_list(si);
693 }
694 }
695
696 static void add_to_avail_list(struct swap_info_struct *p)
697 {
698 int nid;
699
700 spin_lock(&swap_avail_lock);
701 for_each_node(nid) {
702 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
703 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
704 }
705 spin_unlock(&swap_avail_lock);
706 }
707
708 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
709 unsigned int nr_entries)
710 {
711 unsigned long begin = offset;
712 unsigned long end = offset + nr_entries - 1;
713 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
714
715 if (offset < si->lowest_bit)
716 si->lowest_bit = offset;
717 if (end > si->highest_bit) {
718 bool was_full = !si->highest_bit;
719
720 WRITE_ONCE(si->highest_bit, end);
721 if (was_full && (si->flags & SWP_WRITEOK))
722 add_to_avail_list(si);
723 }
724 atomic_long_add(nr_entries, &nr_swap_pages);
725 si->inuse_pages -= nr_entries;
726 if (si->flags & SWP_BLKDEV)
727 swap_slot_free_notify =
728 si->bdev->bd_disk->fops->swap_slot_free_notify;
729 else
730 swap_slot_free_notify = NULL;
731 while (offset <= end) {
732 arch_swap_invalidate_page(si->type, offset);
733 frontswap_invalidate_page(si->type, offset);
734 if (swap_slot_free_notify)
735 swap_slot_free_notify(si->bdev, offset);
736 offset++;
737 }
738 clear_shadow_from_swap_cache(si->type, begin, end);
739 }
740
741 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
742 {
743 unsigned long prev;
744
745 if (!(si->flags & SWP_SOLIDSTATE)) {
746 si->cluster_next = next;
747 return;
748 }
749
750 prev = this_cpu_read(*si->cluster_next_cpu);
751 /*
752 * Cross the swap address space size aligned trunk, choose
753 * another trunk randomly to avoid lock contention on swap
754 * address space if possible.
755 */
756 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
757 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
758 /* No free swap slots available */
759 if (si->highest_bit <= si->lowest_bit)
760 return;
761 next = si->lowest_bit +
762 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
763 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
764 next = max_t(unsigned int, next, si->lowest_bit);
765 }
766 this_cpu_write(*si->cluster_next_cpu, next);
767 }
768
769 static int scan_swap_map_slots(struct swap_info_struct *si,
770 unsigned char usage, int nr,
771 swp_entry_t slots[])
772 {
773 struct swap_cluster_info *ci;
774 unsigned long offset;
775 unsigned long scan_base;
776 unsigned long last_in_cluster = 0;
777 int latency_ration = LATENCY_LIMIT;
778 int n_ret = 0;
779 bool scanned_many = false;
780
781 /*
782 * We try to cluster swap pages by allocating them sequentially
783 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
784 * way, however, we resort to first-free allocation, starting
785 * a new cluster. This prevents us from scattering swap pages
786 * all over the entire swap partition, so that we reduce
787 * overall disk seek times between swap pages. -- sct
788 * But we do now try to find an empty cluster. -Andrea
789 * And we let swap pages go all over an SSD partition. Hugh
790 */
791
792 si->flags += SWP_SCANNING;
793 /*
794 * Use percpu scan base for SSD to reduce lock contention on
795 * cluster and swap cache. For HDD, sequential access is more
796 * important.
797 */
798 if (si->flags & SWP_SOLIDSTATE)
799 scan_base = this_cpu_read(*si->cluster_next_cpu);
800 else
801 scan_base = si->cluster_next;
802 offset = scan_base;
803
804 /* SSD algorithm */
805 if (si->cluster_info) {
806 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
807 goto scan;
808 } else if (unlikely(!si->cluster_nr--)) {
809 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
810 si->cluster_nr = SWAPFILE_CLUSTER - 1;
811 goto checks;
812 }
813
814 spin_unlock(&si->lock);
815
816 /*
817 * If seek is expensive, start searching for new cluster from
818 * start of partition, to minimize the span of allocated swap.
819 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
820 * case, just handled by scan_swap_map_try_ssd_cluster() above.
821 */
822 scan_base = offset = si->lowest_bit;
823 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
824
825 /* Locate the first empty (unaligned) cluster */
826 for (; last_in_cluster <= si->highest_bit; offset++) {
827 if (si->swap_map[offset])
828 last_in_cluster = offset + SWAPFILE_CLUSTER;
829 else if (offset == last_in_cluster) {
830 spin_lock(&si->lock);
831 offset -= SWAPFILE_CLUSTER - 1;
832 si->cluster_next = offset;
833 si->cluster_nr = SWAPFILE_CLUSTER - 1;
834 goto checks;
835 }
836 if (unlikely(--latency_ration < 0)) {
837 cond_resched();
838 latency_ration = LATENCY_LIMIT;
839 }
840 }
841
842 offset = scan_base;
843 spin_lock(&si->lock);
844 si->cluster_nr = SWAPFILE_CLUSTER - 1;
845 }
846
847 checks:
848 if (si->cluster_info) {
849 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
850 /* take a break if we already got some slots */
851 if (n_ret)
852 goto done;
853 if (!scan_swap_map_try_ssd_cluster(si, &offset,
854 &scan_base))
855 goto scan;
856 }
857 }
858 if (!(si->flags & SWP_WRITEOK))
859 goto no_page;
860 if (!si->highest_bit)
861 goto no_page;
862 if (offset > si->highest_bit)
863 scan_base = offset = si->lowest_bit;
864
865 ci = lock_cluster(si, offset);
866 /* reuse swap entry of cache-only swap if not busy. */
867 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
868 int swap_was_freed;
869 unlock_cluster(ci);
870 spin_unlock(&si->lock);
871 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
872 spin_lock(&si->lock);
873 /* entry was freed successfully, try to use this again */
874 if (swap_was_freed)
875 goto checks;
876 goto scan; /* check next one */
877 }
878
879 if (si->swap_map[offset]) {
880 unlock_cluster(ci);
881 if (!n_ret)
882 goto scan;
883 else
884 goto done;
885 }
886 WRITE_ONCE(si->swap_map[offset], usage);
887 inc_cluster_info_page(si, si->cluster_info, offset);
888 unlock_cluster(ci);
889
890 swap_range_alloc(si, offset, 1);
891 slots[n_ret++] = swp_entry(si->type, offset);
892
893 /* got enough slots or reach max slots? */
894 if ((n_ret == nr) || (offset >= si->highest_bit))
895 goto done;
896
897 /* search for next available slot */
898
899 /* time to take a break? */
900 if (unlikely(--latency_ration < 0)) {
901 if (n_ret)
902 goto done;
903 spin_unlock(&si->lock);
904 cond_resched();
905 spin_lock(&si->lock);
906 latency_ration = LATENCY_LIMIT;
907 }
908
909 /* try to get more slots in cluster */
910 if (si->cluster_info) {
911 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
912 goto checks;
913 } else if (si->cluster_nr && !si->swap_map[++offset]) {
914 /* non-ssd case, still more slots in cluster? */
915 --si->cluster_nr;
916 goto checks;
917 }
918
919 /*
920 * Even if there's no free clusters available (fragmented),
921 * try to scan a little more quickly with lock held unless we
922 * have scanned too many slots already.
923 */
924 if (!scanned_many) {
925 unsigned long scan_limit;
926
927 if (offset < scan_base)
928 scan_limit = scan_base;
929 else
930 scan_limit = si->highest_bit;
931 for (; offset <= scan_limit && --latency_ration > 0;
932 offset++) {
933 if (!si->swap_map[offset])
934 goto checks;
935 }
936 }
937
938 done:
939 set_cluster_next(si, offset + 1);
940 si->flags -= SWP_SCANNING;
941 return n_ret;
942
943 scan:
944 spin_unlock(&si->lock);
945 while (++offset <= READ_ONCE(si->highest_bit)) {
946 if (data_race(!si->swap_map[offset])) {
947 spin_lock(&si->lock);
948 goto checks;
949 }
950 if (vm_swap_full() &&
951 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
952 spin_lock(&si->lock);
953 goto checks;
954 }
955 if (unlikely(--latency_ration < 0)) {
956 cond_resched();
957 latency_ration = LATENCY_LIMIT;
958 scanned_many = true;
959 }
960 }
961 offset = si->lowest_bit;
962 while (offset < scan_base) {
963 if (data_race(!si->swap_map[offset])) {
964 spin_lock(&si->lock);
965 goto checks;
966 }
967 if (vm_swap_full() &&
968 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
969 spin_lock(&si->lock);
970 goto checks;
971 }
972 if (unlikely(--latency_ration < 0)) {
973 cond_resched();
974 latency_ration = LATENCY_LIMIT;
975 scanned_many = true;
976 }
977 offset++;
978 }
979 spin_lock(&si->lock);
980
981 no_page:
982 si->flags -= SWP_SCANNING;
983 return n_ret;
984 }
985
986 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
987 {
988 unsigned long idx;
989 struct swap_cluster_info *ci;
990 unsigned long offset;
991
992 /*
993 * Should not even be attempting cluster allocations when huge
994 * page swap is disabled. Warn and fail the allocation.
995 */
996 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
997 VM_WARN_ON_ONCE(1);
998 return 0;
999 }
1000
1001 if (cluster_list_empty(&si->free_clusters))
1002 return 0;
1003
1004 idx = cluster_list_first(&si->free_clusters);
1005 offset = idx * SWAPFILE_CLUSTER;
1006 ci = lock_cluster(si, offset);
1007 alloc_cluster(si, idx);
1008 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1009
1010 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1011 unlock_cluster(ci);
1012 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1013 *slot = swp_entry(si->type, offset);
1014
1015 return 1;
1016 }
1017
1018 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1019 {
1020 unsigned long offset = idx * SWAPFILE_CLUSTER;
1021 struct swap_cluster_info *ci;
1022
1023 ci = lock_cluster(si, offset);
1024 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1025 cluster_set_count_flag(ci, 0, 0);
1026 free_cluster(si, idx);
1027 unlock_cluster(ci);
1028 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1029 }
1030
1031 static unsigned long scan_swap_map(struct swap_info_struct *si,
1032 unsigned char usage)
1033 {
1034 swp_entry_t entry;
1035 int n_ret;
1036
1037 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1038
1039 if (n_ret)
1040 return swp_offset(entry);
1041 else
1042 return 0;
1043
1044 }
1045
1046 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1047 {
1048 unsigned long size = swap_entry_size(entry_size);
1049 struct swap_info_struct *si, *next;
1050 long avail_pgs;
1051 int n_ret = 0;
1052 int node;
1053
1054 /* Only single cluster request supported */
1055 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1056
1057 spin_lock(&swap_avail_lock);
1058
1059 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1060 if (avail_pgs <= 0) {
1061 spin_unlock(&swap_avail_lock);
1062 goto noswap;
1063 }
1064
1065 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1066
1067 atomic_long_sub(n_goal * size, &nr_swap_pages);
1068
1069 start_over:
1070 node = numa_node_id();
1071 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1072 /* requeue si to after same-priority siblings */
1073 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1074 spin_unlock(&swap_avail_lock);
1075 spin_lock(&si->lock);
1076 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1077 spin_lock(&swap_avail_lock);
1078 if (plist_node_empty(&si->avail_lists[node])) {
1079 spin_unlock(&si->lock);
1080 goto nextsi;
1081 }
1082 WARN(!si->highest_bit,
1083 "swap_info %d in list but !highest_bit\n",
1084 si->type);
1085 WARN(!(si->flags & SWP_WRITEOK),
1086 "swap_info %d in list but !SWP_WRITEOK\n",
1087 si->type);
1088 __del_from_avail_list(si);
1089 spin_unlock(&si->lock);
1090 goto nextsi;
1091 }
1092 if (size == SWAPFILE_CLUSTER) {
1093 if (si->flags & SWP_BLKDEV)
1094 n_ret = swap_alloc_cluster(si, swp_entries);
1095 } else
1096 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1097 n_goal, swp_entries);
1098 spin_unlock(&si->lock);
1099 if (n_ret || size == SWAPFILE_CLUSTER)
1100 goto check_out;
1101 pr_debug("scan_swap_map of si %d failed to find offset\n",
1102 si->type);
1103
1104 spin_lock(&swap_avail_lock);
1105 nextsi:
1106 /*
1107 * if we got here, it's likely that si was almost full before,
1108 * and since scan_swap_map() can drop the si->lock, multiple
1109 * callers probably all tried to get a page from the same si
1110 * and it filled up before we could get one; or, the si filled
1111 * up between us dropping swap_avail_lock and taking si->lock.
1112 * Since we dropped the swap_avail_lock, the swap_avail_head
1113 * list may have been modified; so if next is still in the
1114 * swap_avail_head list then try it, otherwise start over
1115 * if we have not gotten any slots.
1116 */
1117 if (plist_node_empty(&next->avail_lists[node]))
1118 goto start_over;
1119 }
1120
1121 spin_unlock(&swap_avail_lock);
1122
1123 check_out:
1124 if (n_ret < n_goal)
1125 atomic_long_add((long)(n_goal - n_ret) * size,
1126 &nr_swap_pages);
1127 noswap:
1128 return n_ret;
1129 }
1130
1131 /* The only caller of this function is now suspend routine */
1132 swp_entry_t get_swap_page_of_type(int type)
1133 {
1134 struct swap_info_struct *si = swap_type_to_swap_info(type);
1135 pgoff_t offset;
1136
1137 if (!si)
1138 goto fail;
1139
1140 spin_lock(&si->lock);
1141 if (si->flags & SWP_WRITEOK) {
1142 /* This is called for allocating swap entry, not cache */
1143 offset = scan_swap_map(si, 1);
1144 if (offset) {
1145 atomic_long_dec(&nr_swap_pages);
1146 spin_unlock(&si->lock);
1147 return swp_entry(type, offset);
1148 }
1149 }
1150 spin_unlock(&si->lock);
1151 fail:
1152 return (swp_entry_t) {0};
1153 }
1154
1155 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1156 {
1157 struct swap_info_struct *p;
1158 unsigned long offset;
1159
1160 if (!entry.val)
1161 goto out;
1162 p = swp_swap_info(entry);
1163 if (!p)
1164 goto bad_nofile;
1165 if (data_race(!(p->flags & SWP_USED)))
1166 goto bad_device;
1167 offset = swp_offset(entry);
1168 if (offset >= p->max)
1169 goto bad_offset;
1170 return p;
1171
1172 bad_offset:
1173 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1174 goto out;
1175 bad_device:
1176 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1177 goto out;
1178 bad_nofile:
1179 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1180 out:
1181 return NULL;
1182 }
1183
1184 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1185 {
1186 struct swap_info_struct *p;
1187
1188 p = __swap_info_get(entry);
1189 if (!p)
1190 goto out;
1191 if (data_race(!p->swap_map[swp_offset(entry)]))
1192 goto bad_free;
1193 return p;
1194
1195 bad_free:
1196 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1197 out:
1198 return NULL;
1199 }
1200
1201 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1202 {
1203 struct swap_info_struct *p;
1204
1205 p = _swap_info_get(entry);
1206 if (p)
1207 spin_lock(&p->lock);
1208 return p;
1209 }
1210
1211 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1212 struct swap_info_struct *q)
1213 {
1214 struct swap_info_struct *p;
1215
1216 p = _swap_info_get(entry);
1217
1218 if (p != q) {
1219 if (q != NULL)
1220 spin_unlock(&q->lock);
1221 if (p != NULL)
1222 spin_lock(&p->lock);
1223 }
1224 return p;
1225 }
1226
1227 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1228 unsigned long offset,
1229 unsigned char usage)
1230 {
1231 unsigned char count;
1232 unsigned char has_cache;
1233
1234 count = p->swap_map[offset];
1235
1236 has_cache = count & SWAP_HAS_CACHE;
1237 count &= ~SWAP_HAS_CACHE;
1238
1239 if (usage == SWAP_HAS_CACHE) {
1240 VM_BUG_ON(!has_cache);
1241 has_cache = 0;
1242 } else if (count == SWAP_MAP_SHMEM) {
1243 /*
1244 * Or we could insist on shmem.c using a special
1245 * swap_shmem_free() and free_shmem_swap_and_cache()...
1246 */
1247 count = 0;
1248 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1249 if (count == COUNT_CONTINUED) {
1250 if (swap_count_continued(p, offset, count))
1251 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1252 else
1253 count = SWAP_MAP_MAX;
1254 } else
1255 count--;
1256 }
1257
1258 usage = count | has_cache;
1259 if (usage)
1260 WRITE_ONCE(p->swap_map[offset], usage);
1261 else
1262 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1263
1264 return usage;
1265 }
1266
1267 /*
1268 * Check whether swap entry is valid in the swap device. If so,
1269 * return pointer to swap_info_struct, and keep the swap entry valid
1270 * via preventing the swap device from being swapoff, until
1271 * put_swap_device() is called. Otherwise return NULL.
1272 *
1273 * The entirety of the RCU read critical section must come before the
1274 * return from or after the call to synchronize_rcu() in
1275 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1276 * true, the si->map, si->cluster_info, etc. must be valid in the
1277 * critical section.
1278 *
1279 * Notice that swapoff or swapoff+swapon can still happen before the
1280 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1281 * in put_swap_device() if there isn't any other way to prevent
1282 * swapoff, such as page lock, page table lock, etc. The caller must
1283 * be prepared for that. For example, the following situation is
1284 * possible.
1285 *
1286 * CPU1 CPU2
1287 * do_swap_page()
1288 * ... swapoff+swapon
1289 * __read_swap_cache_async()
1290 * swapcache_prepare()
1291 * __swap_duplicate()
1292 * // check swap_map
1293 * // verify PTE not changed
1294 *
1295 * In __swap_duplicate(), the swap_map need to be checked before
1296 * changing partly because the specified swap entry may be for another
1297 * swap device which has been swapoff. And in do_swap_page(), after
1298 * the page is read from the swap device, the PTE is verified not
1299 * changed with the page table locked to check whether the swap device
1300 * has been swapoff or swapoff+swapon.
1301 */
1302 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1303 {
1304 struct swap_info_struct *si;
1305 unsigned long offset;
1306
1307 if (!entry.val)
1308 goto out;
1309 si = swp_swap_info(entry);
1310 if (!si)
1311 goto bad_nofile;
1312
1313 rcu_read_lock();
1314 if (data_race(!(si->flags & SWP_VALID)))
1315 goto unlock_out;
1316 offset = swp_offset(entry);
1317 if (offset >= si->max)
1318 goto unlock_out;
1319
1320 return si;
1321 bad_nofile:
1322 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1323 out:
1324 return NULL;
1325 unlock_out:
1326 rcu_read_unlock();
1327 return NULL;
1328 }
1329
1330 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1331 swp_entry_t entry)
1332 {
1333 struct swap_cluster_info *ci;
1334 unsigned long offset = swp_offset(entry);
1335 unsigned char usage;
1336
1337 ci = lock_cluster_or_swap_info(p, offset);
1338 usage = __swap_entry_free_locked(p, offset, 1);
1339 unlock_cluster_or_swap_info(p, ci);
1340 if (!usage)
1341 free_swap_slot(entry);
1342
1343 return usage;
1344 }
1345
1346 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1347 {
1348 struct swap_cluster_info *ci;
1349 unsigned long offset = swp_offset(entry);
1350 unsigned char count;
1351
1352 ci = lock_cluster(p, offset);
1353 count = p->swap_map[offset];
1354 VM_BUG_ON(count != SWAP_HAS_CACHE);
1355 p->swap_map[offset] = 0;
1356 dec_cluster_info_page(p, p->cluster_info, offset);
1357 unlock_cluster(ci);
1358
1359 mem_cgroup_uncharge_swap(entry, 1);
1360 swap_range_free(p, offset, 1);
1361 }
1362
1363 /*
1364 * Caller has made sure that the swap device corresponding to entry
1365 * is still around or has not been recycled.
1366 */
1367 void swap_free(swp_entry_t entry)
1368 {
1369 struct swap_info_struct *p;
1370
1371 p = _swap_info_get(entry);
1372 if (p)
1373 __swap_entry_free(p, entry);
1374 }
1375
1376 /*
1377 * Called after dropping swapcache to decrease refcnt to swap entries.
1378 */
1379 void put_swap_page(struct page *page, swp_entry_t entry)
1380 {
1381 unsigned long offset = swp_offset(entry);
1382 unsigned long idx = offset / SWAPFILE_CLUSTER;
1383 struct swap_cluster_info *ci;
1384 struct swap_info_struct *si;
1385 unsigned char *map;
1386 unsigned int i, free_entries = 0;
1387 unsigned char val;
1388 int size = swap_entry_size(thp_nr_pages(page));
1389
1390 si = _swap_info_get(entry);
1391 if (!si)
1392 return;
1393
1394 ci = lock_cluster_or_swap_info(si, offset);
1395 if (size == SWAPFILE_CLUSTER) {
1396 VM_BUG_ON(!cluster_is_huge(ci));
1397 map = si->swap_map + offset;
1398 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1399 val = map[i];
1400 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1401 if (val == SWAP_HAS_CACHE)
1402 free_entries++;
1403 }
1404 cluster_clear_huge(ci);
1405 if (free_entries == SWAPFILE_CLUSTER) {
1406 unlock_cluster_or_swap_info(si, ci);
1407 spin_lock(&si->lock);
1408 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1409 swap_free_cluster(si, idx);
1410 spin_unlock(&si->lock);
1411 return;
1412 }
1413 }
1414 for (i = 0; i < size; i++, entry.val++) {
1415 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1416 unlock_cluster_or_swap_info(si, ci);
1417 free_swap_slot(entry);
1418 if (i == size - 1)
1419 return;
1420 lock_cluster_or_swap_info(si, offset);
1421 }
1422 }
1423 unlock_cluster_or_swap_info(si, ci);
1424 }
1425
1426 #ifdef CONFIG_THP_SWAP
1427 int split_swap_cluster(swp_entry_t entry)
1428 {
1429 struct swap_info_struct *si;
1430 struct swap_cluster_info *ci;
1431 unsigned long offset = swp_offset(entry);
1432
1433 si = _swap_info_get(entry);
1434 if (!si)
1435 return -EBUSY;
1436 ci = lock_cluster(si, offset);
1437 cluster_clear_huge(ci);
1438 unlock_cluster(ci);
1439 return 0;
1440 }
1441 #endif
1442
1443 static int swp_entry_cmp(const void *ent1, const void *ent2)
1444 {
1445 const swp_entry_t *e1 = ent1, *e2 = ent2;
1446
1447 return (int)swp_type(*e1) - (int)swp_type(*e2);
1448 }
1449
1450 void swapcache_free_entries(swp_entry_t *entries, int n)
1451 {
1452 struct swap_info_struct *p, *prev;
1453 int i;
1454
1455 if (n <= 0)
1456 return;
1457
1458 prev = NULL;
1459 p = NULL;
1460
1461 /*
1462 * Sort swap entries by swap device, so each lock is only taken once.
1463 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1464 * so low that it isn't necessary to optimize further.
1465 */
1466 if (nr_swapfiles > 1)
1467 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1468 for (i = 0; i < n; ++i) {
1469 p = swap_info_get_cont(entries[i], prev);
1470 if (p)
1471 swap_entry_free(p, entries[i]);
1472 prev = p;
1473 }
1474 if (p)
1475 spin_unlock(&p->lock);
1476 }
1477
1478 /*
1479 * How many references to page are currently swapped out?
1480 * This does not give an exact answer when swap count is continued,
1481 * but does include the high COUNT_CONTINUED flag to allow for that.
1482 */
1483 int page_swapcount(struct page *page)
1484 {
1485 int count = 0;
1486 struct swap_info_struct *p;
1487 struct swap_cluster_info *ci;
1488 swp_entry_t entry;
1489 unsigned long offset;
1490
1491 entry.val = page_private(page);
1492 p = _swap_info_get(entry);
1493 if (p) {
1494 offset = swp_offset(entry);
1495 ci = lock_cluster_or_swap_info(p, offset);
1496 count = swap_count(p->swap_map[offset]);
1497 unlock_cluster_or_swap_info(p, ci);
1498 }
1499 return count;
1500 }
1501
1502 int __swap_count(swp_entry_t entry)
1503 {
1504 struct swap_info_struct *si;
1505 pgoff_t offset = swp_offset(entry);
1506 int count = 0;
1507
1508 si = get_swap_device(entry);
1509 if (si) {
1510 count = swap_count(si->swap_map[offset]);
1511 put_swap_device(si);
1512 }
1513 return count;
1514 }
1515
1516 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1517 {
1518 int count = 0;
1519 pgoff_t offset = swp_offset(entry);
1520 struct swap_cluster_info *ci;
1521
1522 ci = lock_cluster_or_swap_info(si, offset);
1523 count = swap_count(si->swap_map[offset]);
1524 unlock_cluster_or_swap_info(si, ci);
1525 return count;
1526 }
1527
1528 /*
1529 * How many references to @entry are currently swapped out?
1530 * This does not give an exact answer when swap count is continued,
1531 * but does include the high COUNT_CONTINUED flag to allow for that.
1532 */
1533 int __swp_swapcount(swp_entry_t entry)
1534 {
1535 int count = 0;
1536 struct swap_info_struct *si;
1537
1538 si = get_swap_device(entry);
1539 if (si) {
1540 count = swap_swapcount(si, entry);
1541 put_swap_device(si);
1542 }
1543 return count;
1544 }
1545
1546 /*
1547 * How many references to @entry are currently swapped out?
1548 * This considers COUNT_CONTINUED so it returns exact answer.
1549 */
1550 int swp_swapcount(swp_entry_t entry)
1551 {
1552 int count, tmp_count, n;
1553 struct swap_info_struct *p;
1554 struct swap_cluster_info *ci;
1555 struct page *page;
1556 pgoff_t offset;
1557 unsigned char *map;
1558
1559 p = _swap_info_get(entry);
1560 if (!p)
1561 return 0;
1562
1563 offset = swp_offset(entry);
1564
1565 ci = lock_cluster_or_swap_info(p, offset);
1566
1567 count = swap_count(p->swap_map[offset]);
1568 if (!(count & COUNT_CONTINUED))
1569 goto out;
1570
1571 count &= ~COUNT_CONTINUED;
1572 n = SWAP_MAP_MAX + 1;
1573
1574 page = vmalloc_to_page(p->swap_map + offset);
1575 offset &= ~PAGE_MASK;
1576 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1577
1578 do {
1579 page = list_next_entry(page, lru);
1580 map = kmap_atomic(page);
1581 tmp_count = map[offset];
1582 kunmap_atomic(map);
1583
1584 count += (tmp_count & ~COUNT_CONTINUED) * n;
1585 n *= (SWAP_CONT_MAX + 1);
1586 } while (tmp_count & COUNT_CONTINUED);
1587 out:
1588 unlock_cluster_or_swap_info(p, ci);
1589 return count;
1590 }
1591
1592 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1593 swp_entry_t entry)
1594 {
1595 struct swap_cluster_info *ci;
1596 unsigned char *map = si->swap_map;
1597 unsigned long roffset = swp_offset(entry);
1598 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1599 int i;
1600 bool ret = false;
1601
1602 ci = lock_cluster_or_swap_info(si, offset);
1603 if (!ci || !cluster_is_huge(ci)) {
1604 if (swap_count(map[roffset]))
1605 ret = true;
1606 goto unlock_out;
1607 }
1608 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1609 if (swap_count(map[offset + i])) {
1610 ret = true;
1611 break;
1612 }
1613 }
1614 unlock_out:
1615 unlock_cluster_or_swap_info(si, ci);
1616 return ret;
1617 }
1618
1619 static bool page_swapped(struct page *page)
1620 {
1621 swp_entry_t entry;
1622 struct swap_info_struct *si;
1623
1624 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1625 return page_swapcount(page) != 0;
1626
1627 page = compound_head(page);
1628 entry.val = page_private(page);
1629 si = _swap_info_get(entry);
1630 if (si)
1631 return swap_page_trans_huge_swapped(si, entry);
1632 return false;
1633 }
1634
1635 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1636 int *total_swapcount)
1637 {
1638 int i, map_swapcount, _total_mapcount, _total_swapcount;
1639 unsigned long offset = 0;
1640 struct swap_info_struct *si;
1641 struct swap_cluster_info *ci = NULL;
1642 unsigned char *map = NULL;
1643 int mapcount, swapcount = 0;
1644
1645 /* hugetlbfs shouldn't call it */
1646 VM_BUG_ON_PAGE(PageHuge(page), page);
1647
1648 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1649 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1650 if (PageSwapCache(page))
1651 swapcount = page_swapcount(page);
1652 if (total_swapcount)
1653 *total_swapcount = swapcount;
1654 return mapcount + swapcount;
1655 }
1656
1657 page = compound_head(page);
1658
1659 _total_mapcount = _total_swapcount = map_swapcount = 0;
1660 if (PageSwapCache(page)) {
1661 swp_entry_t entry;
1662
1663 entry.val = page_private(page);
1664 si = _swap_info_get(entry);
1665 if (si) {
1666 map = si->swap_map;
1667 offset = swp_offset(entry);
1668 }
1669 }
1670 if (map)
1671 ci = lock_cluster(si, offset);
1672 for (i = 0; i < HPAGE_PMD_NR; i++) {
1673 mapcount = atomic_read(&page[i]._mapcount) + 1;
1674 _total_mapcount += mapcount;
1675 if (map) {
1676 swapcount = swap_count(map[offset + i]);
1677 _total_swapcount += swapcount;
1678 }
1679 map_swapcount = max(map_swapcount, mapcount + swapcount);
1680 }
1681 unlock_cluster(ci);
1682 if (PageDoubleMap(page)) {
1683 map_swapcount -= 1;
1684 _total_mapcount -= HPAGE_PMD_NR;
1685 }
1686 mapcount = compound_mapcount(page);
1687 map_swapcount += mapcount;
1688 _total_mapcount += mapcount;
1689 if (total_mapcount)
1690 *total_mapcount = _total_mapcount;
1691 if (total_swapcount)
1692 *total_swapcount = _total_swapcount;
1693
1694 return map_swapcount;
1695 }
1696
1697 /*
1698 * We can write to an anon page without COW if there are no other references
1699 * to it. And as a side-effect, free up its swap: because the old content
1700 * on disk will never be read, and seeking back there to write new content
1701 * later would only waste time away from clustering.
1702 *
1703 * NOTE: total_map_swapcount should not be relied upon by the caller if
1704 * reuse_swap_page() returns false, but it may be always overwritten
1705 * (see the other implementation for CONFIG_SWAP=n).
1706 */
1707 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1708 {
1709 int count, total_mapcount, total_swapcount;
1710
1711 VM_BUG_ON_PAGE(!PageLocked(page), page);
1712 if (unlikely(PageKsm(page)))
1713 return false;
1714 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1715 &total_swapcount);
1716 if (total_map_swapcount)
1717 *total_map_swapcount = total_mapcount + total_swapcount;
1718 if (count == 1 && PageSwapCache(page) &&
1719 (likely(!PageTransCompound(page)) ||
1720 /* The remaining swap count will be freed soon */
1721 total_swapcount == page_swapcount(page))) {
1722 if (!PageWriteback(page)) {
1723 page = compound_head(page);
1724 delete_from_swap_cache(page);
1725 SetPageDirty(page);
1726 } else {
1727 swp_entry_t entry;
1728 struct swap_info_struct *p;
1729
1730 entry.val = page_private(page);
1731 p = swap_info_get(entry);
1732 if (p->flags & SWP_STABLE_WRITES) {
1733 spin_unlock(&p->lock);
1734 return false;
1735 }
1736 spin_unlock(&p->lock);
1737 }
1738 }
1739
1740 return count <= 1;
1741 }
1742
1743 /*
1744 * If swap is getting full, or if there are no more mappings of this page,
1745 * then try_to_free_swap is called to free its swap space.
1746 */
1747 int try_to_free_swap(struct page *page)
1748 {
1749 VM_BUG_ON_PAGE(!PageLocked(page), page);
1750
1751 if (!PageSwapCache(page))
1752 return 0;
1753 if (PageWriteback(page))
1754 return 0;
1755 if (page_swapped(page))
1756 return 0;
1757
1758 /*
1759 * Once hibernation has begun to create its image of memory,
1760 * there's a danger that one of the calls to try_to_free_swap()
1761 * - most probably a call from __try_to_reclaim_swap() while
1762 * hibernation is allocating its own swap pages for the image,
1763 * but conceivably even a call from memory reclaim - will free
1764 * the swap from a page which has already been recorded in the
1765 * image as a clean swapcache page, and then reuse its swap for
1766 * another page of the image. On waking from hibernation, the
1767 * original page might be freed under memory pressure, then
1768 * later read back in from swap, now with the wrong data.
1769 *
1770 * Hibernation suspends storage while it is writing the image
1771 * to disk so check that here.
1772 */
1773 if (pm_suspended_storage())
1774 return 0;
1775
1776 page = compound_head(page);
1777 delete_from_swap_cache(page);
1778 SetPageDirty(page);
1779 return 1;
1780 }
1781
1782 /*
1783 * Free the swap entry like above, but also try to
1784 * free the page cache entry if it is the last user.
1785 */
1786 int free_swap_and_cache(swp_entry_t entry)
1787 {
1788 struct swap_info_struct *p;
1789 unsigned char count;
1790
1791 if (non_swap_entry(entry))
1792 return 1;
1793
1794 p = _swap_info_get(entry);
1795 if (p) {
1796 count = __swap_entry_free(p, entry);
1797 if (count == SWAP_HAS_CACHE &&
1798 !swap_page_trans_huge_swapped(p, entry))
1799 __try_to_reclaim_swap(p, swp_offset(entry),
1800 TTRS_UNMAPPED | TTRS_FULL);
1801 }
1802 return p != NULL;
1803 }
1804
1805 #ifdef CONFIG_HIBERNATION
1806 /*
1807 * Find the swap type that corresponds to given device (if any).
1808 *
1809 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1810 * from 0, in which the swap header is expected to be located.
1811 *
1812 * This is needed for the suspend to disk (aka swsusp).
1813 */
1814 int swap_type_of(dev_t device, sector_t offset)
1815 {
1816 int type;
1817
1818 if (!device)
1819 return -1;
1820
1821 spin_lock(&swap_lock);
1822 for (type = 0; type < nr_swapfiles; type++) {
1823 struct swap_info_struct *sis = swap_info[type];
1824
1825 if (!(sis->flags & SWP_WRITEOK))
1826 continue;
1827
1828 if (device == sis->bdev->bd_dev) {
1829 struct swap_extent *se = first_se(sis);
1830
1831 if (se->start_block == offset) {
1832 spin_unlock(&swap_lock);
1833 return type;
1834 }
1835 }
1836 }
1837 spin_unlock(&swap_lock);
1838 return -ENODEV;
1839 }
1840
1841 int find_first_swap(dev_t *device)
1842 {
1843 int type;
1844
1845 spin_lock(&swap_lock);
1846 for (type = 0; type < nr_swapfiles; type++) {
1847 struct swap_info_struct *sis = swap_info[type];
1848
1849 if (!(sis->flags & SWP_WRITEOK))
1850 continue;
1851 *device = sis->bdev->bd_dev;
1852 spin_unlock(&swap_lock);
1853 return type;
1854 }
1855 spin_unlock(&swap_lock);
1856 return -ENODEV;
1857 }
1858
1859 /*
1860 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1861 * corresponding to given index in swap_info (swap type).
1862 */
1863 sector_t swapdev_block(int type, pgoff_t offset)
1864 {
1865 struct swap_info_struct *si = swap_type_to_swap_info(type);
1866 struct swap_extent *se;
1867
1868 if (!si || !(si->flags & SWP_WRITEOK))
1869 return 0;
1870 se = offset_to_swap_extent(si, offset);
1871 return se->start_block + (offset - se->start_page);
1872 }
1873
1874 /*
1875 * Return either the total number of swap pages of given type, or the number
1876 * of free pages of that type (depending on @free)
1877 *
1878 * This is needed for software suspend
1879 */
1880 unsigned int count_swap_pages(int type, int free)
1881 {
1882 unsigned int n = 0;
1883
1884 spin_lock(&swap_lock);
1885 if ((unsigned int)type < nr_swapfiles) {
1886 struct swap_info_struct *sis = swap_info[type];
1887
1888 spin_lock(&sis->lock);
1889 if (sis->flags & SWP_WRITEOK) {
1890 n = sis->pages;
1891 if (free)
1892 n -= sis->inuse_pages;
1893 }
1894 spin_unlock(&sis->lock);
1895 }
1896 spin_unlock(&swap_lock);
1897 return n;
1898 }
1899 #endif /* CONFIG_HIBERNATION */
1900
1901 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1902 {
1903 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1904 }
1905
1906 /*
1907 * No need to decide whether this PTE shares the swap entry with others,
1908 * just let do_wp_page work it out if a write is requested later - to
1909 * force COW, vm_page_prot omits write permission from any private vma.
1910 */
1911 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1912 unsigned long addr, swp_entry_t entry, struct page *page)
1913 {
1914 struct page *swapcache;
1915 spinlock_t *ptl;
1916 pte_t *pte;
1917 int ret = 1;
1918
1919 swapcache = page;
1920 page = ksm_might_need_to_copy(page, vma, addr);
1921 if (unlikely(!page))
1922 return -ENOMEM;
1923
1924 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1925 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1926 ret = 0;
1927 goto out;
1928 }
1929
1930 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1931 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1932 get_page(page);
1933 set_pte_at(vma->vm_mm, addr, pte,
1934 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1935 if (page == swapcache) {
1936 page_add_anon_rmap(page, vma, addr, false);
1937 } else { /* ksm created a completely new copy */
1938 page_add_new_anon_rmap(page, vma, addr, false);
1939 lru_cache_add_inactive_or_unevictable(page, vma);
1940 }
1941 swap_free(entry);
1942 out:
1943 pte_unmap_unlock(pte, ptl);
1944 if (page != swapcache) {
1945 unlock_page(page);
1946 put_page(page);
1947 }
1948 return ret;
1949 }
1950
1951 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1952 unsigned long addr, unsigned long end,
1953 unsigned int type, bool frontswap,
1954 unsigned long *fs_pages_to_unuse)
1955 {
1956 struct page *page;
1957 swp_entry_t entry;
1958 pte_t *pte;
1959 struct swap_info_struct *si;
1960 unsigned long offset;
1961 int ret = 0;
1962 volatile unsigned char *swap_map;
1963
1964 si = swap_info[type];
1965 pte = pte_offset_map(pmd, addr);
1966 do {
1967 if (!is_swap_pte(*pte))
1968 continue;
1969
1970 entry = pte_to_swp_entry(*pte);
1971 if (swp_type(entry) != type)
1972 continue;
1973
1974 offset = swp_offset(entry);
1975 if (frontswap && !frontswap_test(si, offset))
1976 continue;
1977
1978 pte_unmap(pte);
1979 swap_map = &si->swap_map[offset];
1980 page = lookup_swap_cache(entry, vma, addr);
1981 if (!page) {
1982 struct vm_fault vmf = {
1983 .vma = vma,
1984 .address = addr,
1985 .pmd = pmd,
1986 };
1987
1988 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1989 &vmf);
1990 }
1991 if (!page) {
1992 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1993 goto try_next;
1994 return -ENOMEM;
1995 }
1996
1997 lock_page(page);
1998 wait_on_page_writeback(page);
1999 ret = unuse_pte(vma, pmd, addr, entry, page);
2000 if (ret < 0) {
2001 unlock_page(page);
2002 put_page(page);
2003 goto out;
2004 }
2005
2006 try_to_free_swap(page);
2007 unlock_page(page);
2008 put_page(page);
2009
2010 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2011 ret = FRONTSWAP_PAGES_UNUSED;
2012 goto out;
2013 }
2014 try_next:
2015 pte = pte_offset_map(pmd, addr);
2016 } while (pte++, addr += PAGE_SIZE, addr != end);
2017 pte_unmap(pte - 1);
2018
2019 ret = 0;
2020 out:
2021 return ret;
2022 }
2023
2024 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2025 unsigned long addr, unsigned long end,
2026 unsigned int type, bool frontswap,
2027 unsigned long *fs_pages_to_unuse)
2028 {
2029 pmd_t *pmd;
2030 unsigned long next;
2031 int ret;
2032
2033 pmd = pmd_offset(pud, addr);
2034 do {
2035 cond_resched();
2036 next = pmd_addr_end(addr, end);
2037 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2038 continue;
2039 ret = unuse_pte_range(vma, pmd, addr, next, type,
2040 frontswap, fs_pages_to_unuse);
2041 if (ret)
2042 return ret;
2043 } while (pmd++, addr = next, addr != end);
2044 return 0;
2045 }
2046
2047 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2048 unsigned long addr, unsigned long end,
2049 unsigned int type, bool frontswap,
2050 unsigned long *fs_pages_to_unuse)
2051 {
2052 pud_t *pud;
2053 unsigned long next;
2054 int ret;
2055
2056 pud = pud_offset(p4d, addr);
2057 do {
2058 next = pud_addr_end(addr, end);
2059 if (pud_none_or_clear_bad(pud))
2060 continue;
2061 ret = unuse_pmd_range(vma, pud, addr, next, type,
2062 frontswap, fs_pages_to_unuse);
2063 if (ret)
2064 return ret;
2065 } while (pud++, addr = next, addr != end);
2066 return 0;
2067 }
2068
2069 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2070 unsigned long addr, unsigned long end,
2071 unsigned int type, bool frontswap,
2072 unsigned long *fs_pages_to_unuse)
2073 {
2074 p4d_t *p4d;
2075 unsigned long next;
2076 int ret;
2077
2078 p4d = p4d_offset(pgd, addr);
2079 do {
2080 next = p4d_addr_end(addr, end);
2081 if (p4d_none_or_clear_bad(p4d))
2082 continue;
2083 ret = unuse_pud_range(vma, p4d, addr, next, type,
2084 frontswap, fs_pages_to_unuse);
2085 if (ret)
2086 return ret;
2087 } while (p4d++, addr = next, addr != end);
2088 return 0;
2089 }
2090
2091 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2092 bool frontswap, unsigned long *fs_pages_to_unuse)
2093 {
2094 pgd_t *pgd;
2095 unsigned long addr, end, next;
2096 int ret;
2097
2098 addr = vma->vm_start;
2099 end = vma->vm_end;
2100
2101 pgd = pgd_offset(vma->vm_mm, addr);
2102 do {
2103 next = pgd_addr_end(addr, end);
2104 if (pgd_none_or_clear_bad(pgd))
2105 continue;
2106 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2107 frontswap, fs_pages_to_unuse);
2108 if (ret)
2109 return ret;
2110 } while (pgd++, addr = next, addr != end);
2111 return 0;
2112 }
2113
2114 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2115 bool frontswap, unsigned long *fs_pages_to_unuse)
2116 {
2117 struct vm_area_struct *vma;
2118 int ret = 0;
2119
2120 mmap_read_lock(mm);
2121 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2122 if (vma->anon_vma) {
2123 ret = unuse_vma(vma, type, frontswap,
2124 fs_pages_to_unuse);
2125 if (ret)
2126 break;
2127 }
2128 cond_resched();
2129 }
2130 mmap_read_unlock(mm);
2131 return ret;
2132 }
2133
2134 /*
2135 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2136 * from current position to next entry still in use. Return 0
2137 * if there are no inuse entries after prev till end of the map.
2138 */
2139 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2140 unsigned int prev, bool frontswap)
2141 {
2142 unsigned int i;
2143 unsigned char count;
2144
2145 /*
2146 * No need for swap_lock here: we're just looking
2147 * for whether an entry is in use, not modifying it; false
2148 * hits are okay, and sys_swapoff() has already prevented new
2149 * allocations from this area (while holding swap_lock).
2150 */
2151 for (i = prev + 1; i < si->max; i++) {
2152 count = READ_ONCE(si->swap_map[i]);
2153 if (count && swap_count(count) != SWAP_MAP_BAD)
2154 if (!frontswap || frontswap_test(si, i))
2155 break;
2156 if ((i % LATENCY_LIMIT) == 0)
2157 cond_resched();
2158 }
2159
2160 if (i == si->max)
2161 i = 0;
2162
2163 return i;
2164 }
2165
2166 /*
2167 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2168 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2169 */
2170 int try_to_unuse(unsigned int type, bool frontswap,
2171 unsigned long pages_to_unuse)
2172 {
2173 struct mm_struct *prev_mm;
2174 struct mm_struct *mm;
2175 struct list_head *p;
2176 int retval = 0;
2177 struct swap_info_struct *si = swap_info[type];
2178 struct page *page;
2179 swp_entry_t entry;
2180 unsigned int i;
2181
2182 if (!READ_ONCE(si->inuse_pages))
2183 return 0;
2184
2185 if (!frontswap)
2186 pages_to_unuse = 0;
2187
2188 retry:
2189 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2190 if (retval)
2191 goto out;
2192
2193 prev_mm = &init_mm;
2194 mmget(prev_mm);
2195
2196 spin_lock(&mmlist_lock);
2197 p = &init_mm.mmlist;
2198 while (READ_ONCE(si->inuse_pages) &&
2199 !signal_pending(current) &&
2200 (p = p->next) != &init_mm.mmlist) {
2201
2202 mm = list_entry(p, struct mm_struct, mmlist);
2203 if (!mmget_not_zero(mm))
2204 continue;
2205 spin_unlock(&mmlist_lock);
2206 mmput(prev_mm);
2207 prev_mm = mm;
2208 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2209
2210 if (retval) {
2211 mmput(prev_mm);
2212 goto out;
2213 }
2214
2215 /*
2216 * Make sure that we aren't completely killing
2217 * interactive performance.
2218 */
2219 cond_resched();
2220 spin_lock(&mmlist_lock);
2221 }
2222 spin_unlock(&mmlist_lock);
2223
2224 mmput(prev_mm);
2225
2226 i = 0;
2227 while (READ_ONCE(si->inuse_pages) &&
2228 !signal_pending(current) &&
2229 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2230
2231 entry = swp_entry(type, i);
2232 page = find_get_page(swap_address_space(entry), i);
2233 if (!page)
2234 continue;
2235
2236 /*
2237 * It is conceivable that a racing task removed this page from
2238 * swap cache just before we acquired the page lock. The page
2239 * might even be back in swap cache on another swap area. But
2240 * that is okay, try_to_free_swap() only removes stale pages.
2241 */
2242 lock_page(page);
2243 wait_on_page_writeback(page);
2244 try_to_free_swap(page);
2245 unlock_page(page);
2246 put_page(page);
2247
2248 /*
2249 * For frontswap, we just need to unuse pages_to_unuse, if
2250 * it was specified. Need not check frontswap again here as
2251 * we already zeroed out pages_to_unuse if not frontswap.
2252 */
2253 if (pages_to_unuse && --pages_to_unuse == 0)
2254 goto out;
2255 }
2256
2257 /*
2258 * Lets check again to see if there are still swap entries in the map.
2259 * If yes, we would need to do retry the unuse logic again.
2260 * Under global memory pressure, swap entries can be reinserted back
2261 * into process space after the mmlist loop above passes over them.
2262 *
2263 * Limit the number of retries? No: when mmget_not_zero() above fails,
2264 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2265 * at its own independent pace; and even shmem_writepage() could have
2266 * been preempted after get_swap_page(), temporarily hiding that swap.
2267 * It's easy and robust (though cpu-intensive) just to keep retrying.
2268 */
2269 if (READ_ONCE(si->inuse_pages)) {
2270 if (!signal_pending(current))
2271 goto retry;
2272 retval = -EINTR;
2273 }
2274 out:
2275 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2276 }
2277
2278 /*
2279 * After a successful try_to_unuse, if no swap is now in use, we know
2280 * we can empty the mmlist. swap_lock must be held on entry and exit.
2281 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2282 * added to the mmlist just after page_duplicate - before would be racy.
2283 */
2284 static void drain_mmlist(void)
2285 {
2286 struct list_head *p, *next;
2287 unsigned int type;
2288
2289 for (type = 0; type < nr_swapfiles; type++)
2290 if (swap_info[type]->inuse_pages)
2291 return;
2292 spin_lock(&mmlist_lock);
2293 list_for_each_safe(p, next, &init_mm.mmlist)
2294 list_del_init(p);
2295 spin_unlock(&mmlist_lock);
2296 }
2297
2298 /*
2299 * Free all of a swapdev's extent information
2300 */
2301 static void destroy_swap_extents(struct swap_info_struct *sis)
2302 {
2303 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2304 struct rb_node *rb = sis->swap_extent_root.rb_node;
2305 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2306
2307 rb_erase(rb, &sis->swap_extent_root);
2308 kfree(se);
2309 }
2310
2311 if (sis->flags & SWP_ACTIVATED) {
2312 struct file *swap_file = sis->swap_file;
2313 struct address_space *mapping = swap_file->f_mapping;
2314
2315 sis->flags &= ~SWP_ACTIVATED;
2316 if (mapping->a_ops->swap_deactivate)
2317 mapping->a_ops->swap_deactivate(swap_file);
2318 }
2319 }
2320
2321 /*
2322 * Add a block range (and the corresponding page range) into this swapdev's
2323 * extent tree.
2324 *
2325 * This function rather assumes that it is called in ascending page order.
2326 */
2327 int
2328 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2329 unsigned long nr_pages, sector_t start_block)
2330 {
2331 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2332 struct swap_extent *se;
2333 struct swap_extent *new_se;
2334
2335 /*
2336 * place the new node at the right most since the
2337 * function is called in ascending page order.
2338 */
2339 while (*link) {
2340 parent = *link;
2341 link = &parent->rb_right;
2342 }
2343
2344 if (parent) {
2345 se = rb_entry(parent, struct swap_extent, rb_node);
2346 BUG_ON(se->start_page + se->nr_pages != start_page);
2347 if (se->start_block + se->nr_pages == start_block) {
2348 /* Merge it */
2349 se->nr_pages += nr_pages;
2350 return 0;
2351 }
2352 }
2353
2354 /* No merge, insert a new extent. */
2355 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2356 if (new_se == NULL)
2357 return -ENOMEM;
2358 new_se->start_page = start_page;
2359 new_se->nr_pages = nr_pages;
2360 new_se->start_block = start_block;
2361
2362 rb_link_node(&new_se->rb_node, parent, link);
2363 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2364 return 1;
2365 }
2366 EXPORT_SYMBOL_GPL(add_swap_extent);
2367
2368 /*
2369 * A `swap extent' is a simple thing which maps a contiguous range of pages
2370 * onto a contiguous range of disk blocks. An ordered list of swap extents
2371 * is built at swapon time and is then used at swap_writepage/swap_readpage
2372 * time for locating where on disk a page belongs.
2373 *
2374 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2375 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2376 * swap files identically.
2377 *
2378 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2379 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2380 * swapfiles are handled *identically* after swapon time.
2381 *
2382 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2383 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2384 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2385 * requirements, they are simply tossed out - we will never use those blocks
2386 * for swapping.
2387 *
2388 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2389 * prevents users from writing to the swap device, which will corrupt memory.
2390 *
2391 * The amount of disk space which a single swap extent represents varies.
2392 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2393 * extents in the list. To avoid much list walking, we cache the previous
2394 * search location in `curr_swap_extent', and start new searches from there.
2395 * This is extremely effective. The average number of iterations in
2396 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2397 */
2398 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2399 {
2400 struct file *swap_file = sis->swap_file;
2401 struct address_space *mapping = swap_file->f_mapping;
2402 struct inode *inode = mapping->host;
2403 int ret;
2404
2405 if (S_ISBLK(inode->i_mode)) {
2406 ret = add_swap_extent(sis, 0, sis->max, 0);
2407 *span = sis->pages;
2408 return ret;
2409 }
2410
2411 if (mapping->a_ops->swap_activate) {
2412 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2413 if (ret >= 0)
2414 sis->flags |= SWP_ACTIVATED;
2415 if (!ret) {
2416 sis->flags |= SWP_FS_OPS;
2417 ret = add_swap_extent(sis, 0, sis->max, 0);
2418 *span = sis->pages;
2419 }
2420 return ret;
2421 }
2422
2423 return generic_swapfile_activate(sis, swap_file, span);
2424 }
2425
2426 static int swap_node(struct swap_info_struct *p)
2427 {
2428 struct block_device *bdev;
2429
2430 if (p->bdev)
2431 bdev = p->bdev;
2432 else
2433 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2434
2435 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2436 }
2437
2438 static void setup_swap_info(struct swap_info_struct *p, int prio,
2439 unsigned char *swap_map,
2440 struct swap_cluster_info *cluster_info)
2441 {
2442 int i;
2443
2444 if (prio >= 0)
2445 p->prio = prio;
2446 else
2447 p->prio = --least_priority;
2448 /*
2449 * the plist prio is negated because plist ordering is
2450 * low-to-high, while swap ordering is high-to-low
2451 */
2452 p->list.prio = -p->prio;
2453 for_each_node(i) {
2454 if (p->prio >= 0)
2455 p->avail_lists[i].prio = -p->prio;
2456 else {
2457 if (swap_node(p) == i)
2458 p->avail_lists[i].prio = 1;
2459 else
2460 p->avail_lists[i].prio = -p->prio;
2461 }
2462 }
2463 p->swap_map = swap_map;
2464 p->cluster_info = cluster_info;
2465 }
2466
2467 static void _enable_swap_info(struct swap_info_struct *p)
2468 {
2469 p->flags |= SWP_WRITEOK | SWP_VALID;
2470 atomic_long_add(p->pages, &nr_swap_pages);
2471 total_swap_pages += p->pages;
2472
2473 assert_spin_locked(&swap_lock);
2474 /*
2475 * both lists are plists, and thus priority ordered.
2476 * swap_active_head needs to be priority ordered for swapoff(),
2477 * which on removal of any swap_info_struct with an auto-assigned
2478 * (i.e. negative) priority increments the auto-assigned priority
2479 * of any lower-priority swap_info_structs.
2480 * swap_avail_head needs to be priority ordered for get_swap_page(),
2481 * which allocates swap pages from the highest available priority
2482 * swap_info_struct.
2483 */
2484 plist_add(&p->list, &swap_active_head);
2485 add_to_avail_list(p);
2486 }
2487
2488 static void enable_swap_info(struct swap_info_struct *p, int prio,
2489 unsigned char *swap_map,
2490 struct swap_cluster_info *cluster_info,
2491 unsigned long *frontswap_map)
2492 {
2493 frontswap_init(p->type, frontswap_map);
2494 spin_lock(&swap_lock);
2495 spin_lock(&p->lock);
2496 setup_swap_info(p, prio, swap_map, cluster_info);
2497 spin_unlock(&p->lock);
2498 spin_unlock(&swap_lock);
2499 /*
2500 * Guarantee swap_map, cluster_info, etc. fields are valid
2501 * between get/put_swap_device() if SWP_VALID bit is set
2502 */
2503 synchronize_rcu();
2504 spin_lock(&swap_lock);
2505 spin_lock(&p->lock);
2506 _enable_swap_info(p);
2507 spin_unlock(&p->lock);
2508 spin_unlock(&swap_lock);
2509 }
2510
2511 static void reinsert_swap_info(struct swap_info_struct *p)
2512 {
2513 spin_lock(&swap_lock);
2514 spin_lock(&p->lock);
2515 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2516 _enable_swap_info(p);
2517 spin_unlock(&p->lock);
2518 spin_unlock(&swap_lock);
2519 }
2520
2521 bool has_usable_swap(void)
2522 {
2523 bool ret = true;
2524
2525 spin_lock(&swap_lock);
2526 if (plist_head_empty(&swap_active_head))
2527 ret = false;
2528 spin_unlock(&swap_lock);
2529 return ret;
2530 }
2531
2532 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2533 {
2534 struct swap_info_struct *p = NULL;
2535 unsigned char *swap_map;
2536 struct swap_cluster_info *cluster_info;
2537 unsigned long *frontswap_map;
2538 struct file *swap_file, *victim;
2539 struct address_space *mapping;
2540 struct inode *inode;
2541 struct filename *pathname;
2542 int err, found = 0;
2543 unsigned int old_block_size;
2544
2545 if (!capable(CAP_SYS_ADMIN))
2546 return -EPERM;
2547
2548 BUG_ON(!current->mm);
2549
2550 pathname = getname(specialfile);
2551 if (IS_ERR(pathname))
2552 return PTR_ERR(pathname);
2553
2554 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2555 err = PTR_ERR(victim);
2556 if (IS_ERR(victim))
2557 goto out;
2558
2559 mapping = victim->f_mapping;
2560 spin_lock(&swap_lock);
2561 plist_for_each_entry(p, &swap_active_head, list) {
2562 if (p->flags & SWP_WRITEOK) {
2563 if (p->swap_file->f_mapping == mapping) {
2564 found = 1;
2565 break;
2566 }
2567 }
2568 }
2569 if (!found) {
2570 err = -EINVAL;
2571 spin_unlock(&swap_lock);
2572 goto out_dput;
2573 }
2574 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2575 vm_unacct_memory(p->pages);
2576 else {
2577 err = -ENOMEM;
2578 spin_unlock(&swap_lock);
2579 goto out_dput;
2580 }
2581 del_from_avail_list(p);
2582 spin_lock(&p->lock);
2583 if (p->prio < 0) {
2584 struct swap_info_struct *si = p;
2585 int nid;
2586
2587 plist_for_each_entry_continue(si, &swap_active_head, list) {
2588 si->prio++;
2589 si->list.prio--;
2590 for_each_node(nid) {
2591 if (si->avail_lists[nid].prio != 1)
2592 si->avail_lists[nid].prio--;
2593 }
2594 }
2595 least_priority++;
2596 }
2597 plist_del(&p->list, &swap_active_head);
2598 atomic_long_sub(p->pages, &nr_swap_pages);
2599 total_swap_pages -= p->pages;
2600 p->flags &= ~SWP_WRITEOK;
2601 spin_unlock(&p->lock);
2602 spin_unlock(&swap_lock);
2603
2604 disable_swap_slots_cache_lock();
2605
2606 set_current_oom_origin();
2607 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2608 clear_current_oom_origin();
2609
2610 if (err) {
2611 /* re-insert swap space back into swap_list */
2612 reinsert_swap_info(p);
2613 reenable_swap_slots_cache_unlock();
2614 goto out_dput;
2615 }
2616
2617 reenable_swap_slots_cache_unlock();
2618
2619 spin_lock(&swap_lock);
2620 spin_lock(&p->lock);
2621 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2622 spin_unlock(&p->lock);
2623 spin_unlock(&swap_lock);
2624 /*
2625 * wait for swap operations protected by get/put_swap_device()
2626 * to complete
2627 */
2628 synchronize_rcu();
2629
2630 flush_work(&p->discard_work);
2631
2632 destroy_swap_extents(p);
2633 if (p->flags & SWP_CONTINUED)
2634 free_swap_count_continuations(p);
2635
2636 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2637 atomic_dec(&nr_rotate_swap);
2638
2639 mutex_lock(&swapon_mutex);
2640 spin_lock(&swap_lock);
2641 spin_lock(&p->lock);
2642 drain_mmlist();
2643
2644 /* wait for anyone still in scan_swap_map */
2645 p->highest_bit = 0; /* cuts scans short */
2646 while (p->flags >= SWP_SCANNING) {
2647 spin_unlock(&p->lock);
2648 spin_unlock(&swap_lock);
2649 schedule_timeout_uninterruptible(1);
2650 spin_lock(&swap_lock);
2651 spin_lock(&p->lock);
2652 }
2653
2654 swap_file = p->swap_file;
2655 old_block_size = p->old_block_size;
2656 p->swap_file = NULL;
2657 p->max = 0;
2658 swap_map = p->swap_map;
2659 p->swap_map = NULL;
2660 cluster_info = p->cluster_info;
2661 p->cluster_info = NULL;
2662 frontswap_map = frontswap_map_get(p);
2663 spin_unlock(&p->lock);
2664 spin_unlock(&swap_lock);
2665 arch_swap_invalidate_area(p->type);
2666 frontswap_invalidate_area(p->type);
2667 frontswap_map_set(p, NULL);
2668 mutex_unlock(&swapon_mutex);
2669 free_percpu(p->percpu_cluster);
2670 p->percpu_cluster = NULL;
2671 free_percpu(p->cluster_next_cpu);
2672 p->cluster_next_cpu = NULL;
2673 vfree(swap_map);
2674 kvfree(cluster_info);
2675 kvfree(frontswap_map);
2676 /* Destroy swap account information */
2677 swap_cgroup_swapoff(p->type);
2678 exit_swap_address_space(p->type);
2679
2680 inode = mapping->host;
2681 if (S_ISBLK(inode->i_mode)) {
2682 struct block_device *bdev = I_BDEV(inode);
2683
2684 set_blocksize(bdev, old_block_size);
2685 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2686 }
2687
2688 inode_lock(inode);
2689 inode->i_flags &= ~S_SWAPFILE;
2690 inode_unlock(inode);
2691 filp_close(swap_file, NULL);
2692
2693 /*
2694 * Clear the SWP_USED flag after all resources are freed so that swapon
2695 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2696 * not hold p->lock after we cleared its SWP_WRITEOK.
2697 */
2698 spin_lock(&swap_lock);
2699 p->flags = 0;
2700 spin_unlock(&swap_lock);
2701
2702 err = 0;
2703 atomic_inc(&proc_poll_event);
2704 wake_up_interruptible(&proc_poll_wait);
2705
2706 out_dput:
2707 filp_close(victim, NULL);
2708 out:
2709 putname(pathname);
2710 return err;
2711 }
2712
2713 #ifdef CONFIG_PROC_FS
2714 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2715 {
2716 struct seq_file *seq = file->private_data;
2717
2718 poll_wait(file, &proc_poll_wait, wait);
2719
2720 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2721 seq->poll_event = atomic_read(&proc_poll_event);
2722 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2723 }
2724
2725 return EPOLLIN | EPOLLRDNORM;
2726 }
2727
2728 /* iterator */
2729 static void *swap_start(struct seq_file *swap, loff_t *pos)
2730 {
2731 struct swap_info_struct *si;
2732 int type;
2733 loff_t l = *pos;
2734
2735 mutex_lock(&swapon_mutex);
2736
2737 if (!l)
2738 return SEQ_START_TOKEN;
2739
2740 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2741 if (!(si->flags & SWP_USED) || !si->swap_map)
2742 continue;
2743 if (!--l)
2744 return si;
2745 }
2746
2747 return NULL;
2748 }
2749
2750 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2751 {
2752 struct swap_info_struct *si = v;
2753 int type;
2754
2755 if (v == SEQ_START_TOKEN)
2756 type = 0;
2757 else
2758 type = si->type + 1;
2759
2760 ++(*pos);
2761 for (; (si = swap_type_to_swap_info(type)); type++) {
2762 if (!(si->flags & SWP_USED) || !si->swap_map)
2763 continue;
2764 return si;
2765 }
2766
2767 return NULL;
2768 }
2769
2770 static void swap_stop(struct seq_file *swap, void *v)
2771 {
2772 mutex_unlock(&swapon_mutex);
2773 }
2774
2775 static int swap_show(struct seq_file *swap, void *v)
2776 {
2777 struct swap_info_struct *si = v;
2778 struct file *file;
2779 int len;
2780 unsigned int bytes, inuse;
2781
2782 if (si == SEQ_START_TOKEN) {
2783 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2784 return 0;
2785 }
2786
2787 bytes = si->pages << (PAGE_SHIFT - 10);
2788 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2789
2790 file = si->swap_file;
2791 len = seq_file_path(swap, file, " \t\n\\");
2792 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2793 len < 40 ? 40 - len : 1, " ",
2794 S_ISBLK(file_inode(file)->i_mode) ?
2795 "partition" : "file\t",
2796 bytes, bytes < 10000000 ? "\t" : "",
2797 inuse, inuse < 10000000 ? "\t" : "",
2798 si->prio);
2799 return 0;
2800 }
2801
2802 static const struct seq_operations swaps_op = {
2803 .start = swap_start,
2804 .next = swap_next,
2805 .stop = swap_stop,
2806 .show = swap_show
2807 };
2808
2809 static int swaps_open(struct inode *inode, struct file *file)
2810 {
2811 struct seq_file *seq;
2812 int ret;
2813
2814 ret = seq_open(file, &swaps_op);
2815 if (ret)
2816 return ret;
2817
2818 seq = file->private_data;
2819 seq->poll_event = atomic_read(&proc_poll_event);
2820 return 0;
2821 }
2822
2823 static const struct proc_ops swaps_proc_ops = {
2824 .proc_flags = PROC_ENTRY_PERMANENT,
2825 .proc_open = swaps_open,
2826 .proc_read = seq_read,
2827 .proc_lseek = seq_lseek,
2828 .proc_release = seq_release,
2829 .proc_poll = swaps_poll,
2830 };
2831
2832 static int __init procswaps_init(void)
2833 {
2834 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2835 return 0;
2836 }
2837 __initcall(procswaps_init);
2838 #endif /* CONFIG_PROC_FS */
2839
2840 #ifdef MAX_SWAPFILES_CHECK
2841 static int __init max_swapfiles_check(void)
2842 {
2843 MAX_SWAPFILES_CHECK();
2844 return 0;
2845 }
2846 late_initcall(max_swapfiles_check);
2847 #endif
2848
2849 static struct swap_info_struct *alloc_swap_info(void)
2850 {
2851 struct swap_info_struct *p;
2852 struct swap_info_struct *defer = NULL;
2853 unsigned int type;
2854 int i;
2855
2856 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2857 if (!p)
2858 return ERR_PTR(-ENOMEM);
2859
2860 spin_lock(&swap_lock);
2861 for (type = 0; type < nr_swapfiles; type++) {
2862 if (!(swap_info[type]->flags & SWP_USED))
2863 break;
2864 }
2865 if (type >= MAX_SWAPFILES) {
2866 spin_unlock(&swap_lock);
2867 kvfree(p);
2868 return ERR_PTR(-EPERM);
2869 }
2870 if (type >= nr_swapfiles) {
2871 p->type = type;
2872 WRITE_ONCE(swap_info[type], p);
2873 /*
2874 * Write swap_info[type] before nr_swapfiles, in case a
2875 * racing procfs swap_start() or swap_next() is reading them.
2876 * (We never shrink nr_swapfiles, we never free this entry.)
2877 */
2878 smp_wmb();
2879 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2880 } else {
2881 defer = p;
2882 p = swap_info[type];
2883 /*
2884 * Do not memset this entry: a racing procfs swap_next()
2885 * would be relying on p->type to remain valid.
2886 */
2887 }
2888 p->swap_extent_root = RB_ROOT;
2889 plist_node_init(&p->list, 0);
2890 for_each_node(i)
2891 plist_node_init(&p->avail_lists[i], 0);
2892 p->flags = SWP_USED;
2893 spin_unlock(&swap_lock);
2894 kvfree(defer);
2895 spin_lock_init(&p->lock);
2896 spin_lock_init(&p->cont_lock);
2897
2898 return p;
2899 }
2900
2901 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2902 {
2903 int error;
2904
2905 if (S_ISBLK(inode->i_mode)) {
2906 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2907 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2908 if (IS_ERR(p->bdev)) {
2909 error = PTR_ERR(p->bdev);
2910 p->bdev = NULL;
2911 return error;
2912 }
2913 p->old_block_size = block_size(p->bdev);
2914 error = set_blocksize(p->bdev, PAGE_SIZE);
2915 if (error < 0)
2916 return error;
2917 /*
2918 * Zoned block devices contain zones that have a sequential
2919 * write only restriction. Hence zoned block devices are not
2920 * suitable for swapping. Disallow them here.
2921 */
2922 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2923 return -EINVAL;
2924 p->flags |= SWP_BLKDEV;
2925 } else if (S_ISREG(inode->i_mode)) {
2926 p->bdev = inode->i_sb->s_bdev;
2927 }
2928
2929 return 0;
2930 }
2931
2932
2933 /*
2934 * Find out how many pages are allowed for a single swap device. There
2935 * are two limiting factors:
2936 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2937 * 2) the number of bits in the swap pte, as defined by the different
2938 * architectures.
2939 *
2940 * In order to find the largest possible bit mask, a swap entry with
2941 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2942 * decoded to a swp_entry_t again, and finally the swap offset is
2943 * extracted.
2944 *
2945 * This will mask all the bits from the initial ~0UL mask that can't
2946 * be encoded in either the swp_entry_t or the architecture definition
2947 * of a swap pte.
2948 */
2949 unsigned long generic_max_swapfile_size(void)
2950 {
2951 return swp_offset(pte_to_swp_entry(
2952 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2953 }
2954
2955 /* Can be overridden by an architecture for additional checks. */
2956 __weak unsigned long max_swapfile_size(void)
2957 {
2958 return generic_max_swapfile_size();
2959 }
2960
2961 static unsigned long read_swap_header(struct swap_info_struct *p,
2962 union swap_header *swap_header,
2963 struct inode *inode)
2964 {
2965 int i;
2966 unsigned long maxpages;
2967 unsigned long swapfilepages;
2968 unsigned long last_page;
2969
2970 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2971 pr_err("Unable to find swap-space signature\n");
2972 return 0;
2973 }
2974
2975 /* swap partition endianess hack... */
2976 if (swab32(swap_header->info.version) == 1) {
2977 swab32s(&swap_header->info.version);
2978 swab32s(&swap_header->info.last_page);
2979 swab32s(&swap_header->info.nr_badpages);
2980 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2981 return 0;
2982 for (i = 0; i < swap_header->info.nr_badpages; i++)
2983 swab32s(&swap_header->info.badpages[i]);
2984 }
2985 /* Check the swap header's sub-version */
2986 if (swap_header->info.version != 1) {
2987 pr_warn("Unable to handle swap header version %d\n",
2988 swap_header->info.version);
2989 return 0;
2990 }
2991
2992 p->lowest_bit = 1;
2993 p->cluster_next = 1;
2994 p->cluster_nr = 0;
2995
2996 maxpages = max_swapfile_size();
2997 last_page = swap_header->info.last_page;
2998 if (!last_page) {
2999 pr_warn("Empty swap-file\n");
3000 return 0;
3001 }
3002 if (last_page > maxpages) {
3003 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3004 maxpages << (PAGE_SHIFT - 10),
3005 last_page << (PAGE_SHIFT - 10));
3006 }
3007 if (maxpages > last_page) {
3008 maxpages = last_page + 1;
3009 /* p->max is an unsigned int: don't overflow it */
3010 if ((unsigned int)maxpages == 0)
3011 maxpages = UINT_MAX;
3012 }
3013 p->highest_bit = maxpages - 1;
3014
3015 if (!maxpages)
3016 return 0;
3017 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3018 if (swapfilepages && maxpages > swapfilepages) {
3019 pr_warn("Swap area shorter than signature indicates\n");
3020 return 0;
3021 }
3022 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3023 return 0;
3024 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3025 return 0;
3026
3027 return maxpages;
3028 }
3029
3030 #define SWAP_CLUSTER_INFO_COLS \
3031 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3032 #define SWAP_CLUSTER_SPACE_COLS \
3033 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3034 #define SWAP_CLUSTER_COLS \
3035 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3036
3037 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3038 union swap_header *swap_header,
3039 unsigned char *swap_map,
3040 struct swap_cluster_info *cluster_info,
3041 unsigned long maxpages,
3042 sector_t *span)
3043 {
3044 unsigned int j, k;
3045 unsigned int nr_good_pages;
3046 int nr_extents;
3047 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3048 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3049 unsigned long i, idx;
3050
3051 nr_good_pages = maxpages - 1; /* omit header page */
3052
3053 cluster_list_init(&p->free_clusters);
3054 cluster_list_init(&p->discard_clusters);
3055
3056 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3057 unsigned int page_nr = swap_header->info.badpages[i];
3058 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3059 return -EINVAL;
3060 if (page_nr < maxpages) {
3061 swap_map[page_nr] = SWAP_MAP_BAD;
3062 nr_good_pages--;
3063 /*
3064 * Haven't marked the cluster free yet, no list
3065 * operation involved
3066 */
3067 inc_cluster_info_page(p, cluster_info, page_nr);
3068 }
3069 }
3070
3071 /* Haven't marked the cluster free yet, no list operation involved */
3072 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3073 inc_cluster_info_page(p, cluster_info, i);
3074
3075 if (nr_good_pages) {
3076 swap_map[0] = SWAP_MAP_BAD;
3077 /*
3078 * Not mark the cluster free yet, no list
3079 * operation involved
3080 */
3081 inc_cluster_info_page(p, cluster_info, 0);
3082 p->max = maxpages;
3083 p->pages = nr_good_pages;
3084 nr_extents = setup_swap_extents(p, span);
3085 if (nr_extents < 0)
3086 return nr_extents;
3087 nr_good_pages = p->pages;
3088 }
3089 if (!nr_good_pages) {
3090 pr_warn("Empty swap-file\n");
3091 return -EINVAL;
3092 }
3093
3094 if (!cluster_info)
3095 return nr_extents;
3096
3097
3098 /*
3099 * Reduce false cache line sharing between cluster_info and
3100 * sharing same address space.
3101 */
3102 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3103 j = (k + col) % SWAP_CLUSTER_COLS;
3104 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3105 idx = i * SWAP_CLUSTER_COLS + j;
3106 if (idx >= nr_clusters)
3107 continue;
3108 if (cluster_count(&cluster_info[idx]))
3109 continue;
3110 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3111 cluster_list_add_tail(&p->free_clusters, cluster_info,
3112 idx);
3113 }
3114 }
3115 return nr_extents;
3116 }
3117
3118 /*
3119 * Helper to sys_swapon determining if a given swap
3120 * backing device queue supports DISCARD operations.
3121 */
3122 static bool swap_discardable(struct swap_info_struct *si)
3123 {
3124 struct request_queue *q = bdev_get_queue(si->bdev);
3125
3126 if (!q || !blk_queue_discard(q))
3127 return false;
3128
3129 return true;
3130 }
3131
3132 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3133 {
3134 struct swap_info_struct *p;
3135 struct filename *name;
3136 struct file *swap_file = NULL;
3137 struct address_space *mapping;
3138 int prio;
3139 int error;
3140 union swap_header *swap_header;
3141 int nr_extents;
3142 sector_t span;
3143 unsigned long maxpages;
3144 unsigned char *swap_map = NULL;
3145 struct swap_cluster_info *cluster_info = NULL;
3146 unsigned long *frontswap_map = NULL;
3147 struct page *page = NULL;
3148 struct inode *inode = NULL;
3149 bool inced_nr_rotate_swap = false;
3150
3151 if (swap_flags & ~SWAP_FLAGS_VALID)
3152 return -EINVAL;
3153
3154 if (!capable(CAP_SYS_ADMIN))
3155 return -EPERM;
3156
3157 if (!swap_avail_heads)
3158 return -ENOMEM;
3159
3160 p = alloc_swap_info();
3161 if (IS_ERR(p))
3162 return PTR_ERR(p);
3163
3164 INIT_WORK(&p->discard_work, swap_discard_work);
3165
3166 name = getname(specialfile);
3167 if (IS_ERR(name)) {
3168 error = PTR_ERR(name);
3169 name = NULL;
3170 goto bad_swap;
3171 }
3172 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3173 if (IS_ERR(swap_file)) {
3174 error = PTR_ERR(swap_file);
3175 swap_file = NULL;
3176 goto bad_swap;
3177 }
3178
3179 p->swap_file = swap_file;
3180 mapping = swap_file->f_mapping;
3181 inode = mapping->host;
3182
3183 error = claim_swapfile(p, inode);
3184 if (unlikely(error))
3185 goto bad_swap;
3186
3187 inode_lock(inode);
3188 if (IS_SWAPFILE(inode)) {
3189 error = -EBUSY;
3190 goto bad_swap_unlock_inode;
3191 }
3192
3193 /*
3194 * Read the swap header.
3195 */
3196 if (!mapping->a_ops->readpage) {
3197 error = -EINVAL;
3198 goto bad_swap_unlock_inode;
3199 }
3200 page = read_mapping_page(mapping, 0, swap_file);
3201 if (IS_ERR(page)) {
3202 error = PTR_ERR(page);
3203 goto bad_swap_unlock_inode;
3204 }
3205 swap_header = kmap(page);
3206
3207 maxpages = read_swap_header(p, swap_header, inode);
3208 if (unlikely(!maxpages)) {
3209 error = -EINVAL;
3210 goto bad_swap_unlock_inode;
3211 }
3212
3213 /* OK, set up the swap map and apply the bad block list */
3214 swap_map = vzalloc(maxpages);
3215 if (!swap_map) {
3216 error = -ENOMEM;
3217 goto bad_swap_unlock_inode;
3218 }
3219
3220 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3221 p->flags |= SWP_STABLE_WRITES;
3222
3223 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3224 p->flags |= SWP_SYNCHRONOUS_IO;
3225
3226 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3227 int cpu;
3228 unsigned long ci, nr_cluster;
3229
3230 p->flags |= SWP_SOLIDSTATE;
3231 p->cluster_next_cpu = alloc_percpu(unsigned int);
3232 if (!p->cluster_next_cpu) {
3233 error = -ENOMEM;
3234 goto bad_swap_unlock_inode;
3235 }
3236 /*
3237 * select a random position to start with to help wear leveling
3238 * SSD
3239 */
3240 for_each_possible_cpu(cpu) {
3241 per_cpu(*p->cluster_next_cpu, cpu) =
3242 1 + prandom_u32_max(p->highest_bit);
3243 }
3244 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3245
3246 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3247 GFP_KERNEL);
3248 if (!cluster_info) {
3249 error = -ENOMEM;
3250 goto bad_swap_unlock_inode;
3251 }
3252
3253 for (ci = 0; ci < nr_cluster; ci++)
3254 spin_lock_init(&((cluster_info + ci)->lock));
3255
3256 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3257 if (!p->percpu_cluster) {
3258 error = -ENOMEM;
3259 goto bad_swap_unlock_inode;
3260 }
3261 for_each_possible_cpu(cpu) {
3262 struct percpu_cluster *cluster;
3263 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3264 cluster_set_null(&cluster->index);
3265 }
3266 } else {
3267 atomic_inc(&nr_rotate_swap);
3268 inced_nr_rotate_swap = true;
3269 }
3270
3271 error = swap_cgroup_swapon(p->type, maxpages);
3272 if (error)
3273 goto bad_swap_unlock_inode;
3274
3275 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3276 cluster_info, maxpages, &span);
3277 if (unlikely(nr_extents < 0)) {
3278 error = nr_extents;
3279 goto bad_swap_unlock_inode;
3280 }
3281 /* frontswap enabled? set up bit-per-page map for frontswap */
3282 if (IS_ENABLED(CONFIG_FRONTSWAP))
3283 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3284 sizeof(long),
3285 GFP_KERNEL);
3286
3287 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3288 /*
3289 * When discard is enabled for swap with no particular
3290 * policy flagged, we set all swap discard flags here in
3291 * order to sustain backward compatibility with older
3292 * swapon(8) releases.
3293 */
3294 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3295 SWP_PAGE_DISCARD);
3296
3297 /*
3298 * By flagging sys_swapon, a sysadmin can tell us to
3299 * either do single-time area discards only, or to just
3300 * perform discards for released swap page-clusters.
3301 * Now it's time to adjust the p->flags accordingly.
3302 */
3303 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3304 p->flags &= ~SWP_PAGE_DISCARD;
3305 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3306 p->flags &= ~SWP_AREA_DISCARD;
3307
3308 /* issue a swapon-time discard if it's still required */
3309 if (p->flags & SWP_AREA_DISCARD) {
3310 int err = discard_swap(p);
3311 if (unlikely(err))
3312 pr_err("swapon: discard_swap(%p): %d\n",
3313 p, err);
3314 }
3315 }
3316
3317 error = init_swap_address_space(p->type, maxpages);
3318 if (error)
3319 goto bad_swap_unlock_inode;
3320
3321 /*
3322 * Flush any pending IO and dirty mappings before we start using this
3323 * swap device.
3324 */
3325 inode->i_flags |= S_SWAPFILE;
3326 error = inode_drain_writes(inode);
3327 if (error) {
3328 inode->i_flags &= ~S_SWAPFILE;
3329 goto free_swap_address_space;
3330 }
3331
3332 mutex_lock(&swapon_mutex);
3333 prio = -1;
3334 if (swap_flags & SWAP_FLAG_PREFER)
3335 prio =
3336 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3337 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3338
3339 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3340 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3341 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3342 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3343 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3344 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3345 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3346 (frontswap_map) ? "FS" : "");
3347
3348 mutex_unlock(&swapon_mutex);
3349 atomic_inc(&proc_poll_event);
3350 wake_up_interruptible(&proc_poll_wait);
3351
3352 error = 0;
3353 goto out;
3354 free_swap_address_space:
3355 exit_swap_address_space(p->type);
3356 bad_swap_unlock_inode:
3357 inode_unlock(inode);
3358 bad_swap:
3359 free_percpu(p->percpu_cluster);
3360 p->percpu_cluster = NULL;
3361 free_percpu(p->cluster_next_cpu);
3362 p->cluster_next_cpu = NULL;
3363 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3364 set_blocksize(p->bdev, p->old_block_size);
3365 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3366 }
3367 inode = NULL;
3368 destroy_swap_extents(p);
3369 swap_cgroup_swapoff(p->type);
3370 spin_lock(&swap_lock);
3371 p->swap_file = NULL;
3372 p->flags = 0;
3373 spin_unlock(&swap_lock);
3374 vfree(swap_map);
3375 kvfree(cluster_info);
3376 kvfree(frontswap_map);
3377 if (inced_nr_rotate_swap)
3378 atomic_dec(&nr_rotate_swap);
3379 if (swap_file)
3380 filp_close(swap_file, NULL);
3381 out:
3382 if (page && !IS_ERR(page)) {
3383 kunmap(page);
3384 put_page(page);
3385 }
3386 if (name)
3387 putname(name);
3388 if (inode)
3389 inode_unlock(inode);
3390 if (!error)
3391 enable_swap_slots_cache();
3392 return error;
3393 }
3394
3395 void si_swapinfo(struct sysinfo *val)
3396 {
3397 unsigned int type;
3398 unsigned long nr_to_be_unused = 0;
3399
3400 spin_lock(&swap_lock);
3401 for (type = 0; type < nr_swapfiles; type++) {
3402 struct swap_info_struct *si = swap_info[type];
3403
3404 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3405 nr_to_be_unused += si->inuse_pages;
3406 }
3407 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3408 val->totalswap = total_swap_pages + nr_to_be_unused;
3409 spin_unlock(&swap_lock);
3410 }
3411
3412 /*
3413 * Verify that a swap entry is valid and increment its swap map count.
3414 *
3415 * Returns error code in following case.
3416 * - success -> 0
3417 * - swp_entry is invalid -> EINVAL
3418 * - swp_entry is migration entry -> EINVAL
3419 * - swap-cache reference is requested but there is already one. -> EEXIST
3420 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3421 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3422 */
3423 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3424 {
3425 struct swap_info_struct *p;
3426 struct swap_cluster_info *ci;
3427 unsigned long offset;
3428 unsigned char count;
3429 unsigned char has_cache;
3430 int err;
3431
3432 p = get_swap_device(entry);
3433 if (!p)
3434 return -EINVAL;
3435
3436 offset = swp_offset(entry);
3437 ci = lock_cluster_or_swap_info(p, offset);
3438
3439 count = p->swap_map[offset];
3440
3441 /*
3442 * swapin_readahead() doesn't check if a swap entry is valid, so the
3443 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3444 */
3445 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3446 err = -ENOENT;
3447 goto unlock_out;
3448 }
3449
3450 has_cache = count & SWAP_HAS_CACHE;
3451 count &= ~SWAP_HAS_CACHE;
3452 err = 0;
3453
3454 if (usage == SWAP_HAS_CACHE) {
3455
3456 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3457 if (!has_cache && count)
3458 has_cache = SWAP_HAS_CACHE;
3459 else if (has_cache) /* someone else added cache */
3460 err = -EEXIST;
3461 else /* no users remaining */
3462 err = -ENOENT;
3463
3464 } else if (count || has_cache) {
3465
3466 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3467 count += usage;
3468 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3469 err = -EINVAL;
3470 else if (swap_count_continued(p, offset, count))
3471 count = COUNT_CONTINUED;
3472 else
3473 err = -ENOMEM;
3474 } else
3475 err = -ENOENT; /* unused swap entry */
3476
3477 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3478
3479 unlock_out:
3480 unlock_cluster_or_swap_info(p, ci);
3481 if (p)
3482 put_swap_device(p);
3483 return err;
3484 }
3485
3486 /*
3487 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3488 * (in which case its reference count is never incremented).
3489 */
3490 void swap_shmem_alloc(swp_entry_t entry)
3491 {
3492 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3493 }
3494
3495 /*
3496 * Increase reference count of swap entry by 1.
3497 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3498 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3499 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3500 * might occur if a page table entry has got corrupted.
3501 */
3502 int swap_duplicate(swp_entry_t entry)
3503 {
3504 int err = 0;
3505
3506 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3507 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3508 return err;
3509 }
3510
3511 /*
3512 * @entry: swap entry for which we allocate swap cache.
3513 *
3514 * Called when allocating swap cache for existing swap entry,
3515 * This can return error codes. Returns 0 at success.
3516 * -EEXIST means there is a swap cache.
3517 * Note: return code is different from swap_duplicate().
3518 */
3519 int swapcache_prepare(swp_entry_t entry)
3520 {
3521 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3522 }
3523
3524 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3525 {
3526 return swap_type_to_swap_info(swp_type(entry));
3527 }
3528
3529 struct swap_info_struct *page_swap_info(struct page *page)
3530 {
3531 swp_entry_t entry = { .val = page_private(page) };
3532 return swp_swap_info(entry);
3533 }
3534
3535 /*
3536 * out-of-line __page_file_ methods to avoid include hell.
3537 */
3538 struct address_space *__page_file_mapping(struct page *page)
3539 {
3540 return page_swap_info(page)->swap_file->f_mapping;
3541 }
3542 EXPORT_SYMBOL_GPL(__page_file_mapping);
3543
3544 pgoff_t __page_file_index(struct page *page)
3545 {
3546 swp_entry_t swap = { .val = page_private(page) };
3547 return swp_offset(swap);
3548 }
3549 EXPORT_SYMBOL_GPL(__page_file_index);
3550
3551 /*
3552 * add_swap_count_continuation - called when a swap count is duplicated
3553 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3554 * page of the original vmalloc'ed swap_map, to hold the continuation count
3555 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3556 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3557 *
3558 * These continuation pages are seldom referenced: the common paths all work
3559 * on the original swap_map, only referring to a continuation page when the
3560 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3561 *
3562 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3563 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3564 * can be called after dropping locks.
3565 */
3566 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3567 {
3568 struct swap_info_struct *si;
3569 struct swap_cluster_info *ci;
3570 struct page *head;
3571 struct page *page;
3572 struct page *list_page;
3573 pgoff_t offset;
3574 unsigned char count;
3575 int ret = 0;
3576
3577 /*
3578 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3579 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3580 */
3581 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3582
3583 si = get_swap_device(entry);
3584 if (!si) {
3585 /*
3586 * An acceptable race has occurred since the failing
3587 * __swap_duplicate(): the swap device may be swapoff
3588 */
3589 goto outer;
3590 }
3591 spin_lock(&si->lock);
3592
3593 offset = swp_offset(entry);
3594
3595 ci = lock_cluster(si, offset);
3596
3597 count = swap_count(si->swap_map[offset]);
3598
3599 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3600 /*
3601 * The higher the swap count, the more likely it is that tasks
3602 * will race to add swap count continuation: we need to avoid
3603 * over-provisioning.
3604 */
3605 goto out;
3606 }
3607
3608 if (!page) {
3609 ret = -ENOMEM;
3610 goto out;
3611 }
3612
3613 /*
3614 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3615 * no architecture is using highmem pages for kernel page tables: so it
3616 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3617 */
3618 head = vmalloc_to_page(si->swap_map + offset);
3619 offset &= ~PAGE_MASK;
3620
3621 spin_lock(&si->cont_lock);
3622 /*
3623 * Page allocation does not initialize the page's lru field,
3624 * but it does always reset its private field.
3625 */
3626 if (!page_private(head)) {
3627 BUG_ON(count & COUNT_CONTINUED);
3628 INIT_LIST_HEAD(&head->lru);
3629 set_page_private(head, SWP_CONTINUED);
3630 si->flags |= SWP_CONTINUED;
3631 }
3632
3633 list_for_each_entry(list_page, &head->lru, lru) {
3634 unsigned char *map;
3635
3636 /*
3637 * If the previous map said no continuation, but we've found
3638 * a continuation page, free our allocation and use this one.
3639 */
3640 if (!(count & COUNT_CONTINUED))
3641 goto out_unlock_cont;
3642
3643 map = kmap_atomic(list_page) + offset;
3644 count = *map;
3645 kunmap_atomic(map);
3646
3647 /*
3648 * If this continuation count now has some space in it,
3649 * free our allocation and use this one.
3650 */
3651 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3652 goto out_unlock_cont;
3653 }
3654
3655 list_add_tail(&page->lru, &head->lru);
3656 page = NULL; /* now it's attached, don't free it */
3657 out_unlock_cont:
3658 spin_unlock(&si->cont_lock);
3659 out:
3660 unlock_cluster(ci);
3661 spin_unlock(&si->lock);
3662 put_swap_device(si);
3663 outer:
3664 if (page)
3665 __free_page(page);
3666 return ret;
3667 }
3668
3669 /*
3670 * swap_count_continued - when the original swap_map count is incremented
3671 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3672 * into, carry if so, or else fail until a new continuation page is allocated;
3673 * when the original swap_map count is decremented from 0 with continuation,
3674 * borrow from the continuation and report whether it still holds more.
3675 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3676 * lock.
3677 */
3678 static bool swap_count_continued(struct swap_info_struct *si,
3679 pgoff_t offset, unsigned char count)
3680 {
3681 struct page *head;
3682 struct page *page;
3683 unsigned char *map;
3684 bool ret;
3685
3686 head = vmalloc_to_page(si->swap_map + offset);
3687 if (page_private(head) != SWP_CONTINUED) {
3688 BUG_ON(count & COUNT_CONTINUED);
3689 return false; /* need to add count continuation */
3690 }
3691
3692 spin_lock(&si->cont_lock);
3693 offset &= ~PAGE_MASK;
3694 page = list_next_entry(head, lru);
3695 map = kmap_atomic(page) + offset;
3696
3697 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3698 goto init_map; /* jump over SWAP_CONT_MAX checks */
3699
3700 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3701 /*
3702 * Think of how you add 1 to 999
3703 */
3704 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3705 kunmap_atomic(map);
3706 page = list_next_entry(page, lru);
3707 BUG_ON(page == head);
3708 map = kmap_atomic(page) + offset;
3709 }
3710 if (*map == SWAP_CONT_MAX) {
3711 kunmap_atomic(map);
3712 page = list_next_entry(page, lru);
3713 if (page == head) {
3714 ret = false; /* add count continuation */
3715 goto out;
3716 }
3717 map = kmap_atomic(page) + offset;
3718 init_map: *map = 0; /* we didn't zero the page */
3719 }
3720 *map += 1;
3721 kunmap_atomic(map);
3722 while ((page = list_prev_entry(page, lru)) != head) {
3723 map = kmap_atomic(page) + offset;
3724 *map = COUNT_CONTINUED;
3725 kunmap_atomic(map);
3726 }
3727 ret = true; /* incremented */
3728
3729 } else { /* decrementing */
3730 /*
3731 * Think of how you subtract 1 from 1000
3732 */
3733 BUG_ON(count != COUNT_CONTINUED);
3734 while (*map == COUNT_CONTINUED) {
3735 kunmap_atomic(map);
3736 page = list_next_entry(page, lru);
3737 BUG_ON(page == head);
3738 map = kmap_atomic(page) + offset;
3739 }
3740 BUG_ON(*map == 0);
3741 *map -= 1;
3742 if (*map == 0)
3743 count = 0;
3744 kunmap_atomic(map);
3745 while ((page = list_prev_entry(page, lru)) != head) {
3746 map = kmap_atomic(page) + offset;
3747 *map = SWAP_CONT_MAX | count;
3748 count = COUNT_CONTINUED;
3749 kunmap_atomic(map);
3750 }
3751 ret = count == COUNT_CONTINUED;
3752 }
3753 out:
3754 spin_unlock(&si->cont_lock);
3755 return ret;
3756 }
3757
3758 /*
3759 * free_swap_count_continuations - swapoff free all the continuation pages
3760 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3761 */
3762 static void free_swap_count_continuations(struct swap_info_struct *si)
3763 {
3764 pgoff_t offset;
3765
3766 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3767 struct page *head;
3768 head = vmalloc_to_page(si->swap_map + offset);
3769 if (page_private(head)) {
3770 struct page *page, *next;
3771
3772 list_for_each_entry_safe(page, next, &head->lru, lru) {
3773 list_del(&page->lru);
3774 __free_page(page);
3775 }
3776 }
3777 }
3778 }
3779
3780 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3781 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3782 {
3783 struct swap_info_struct *si, *next;
3784 int nid = page_to_nid(page);
3785
3786 if (!(gfp_mask & __GFP_IO))
3787 return;
3788
3789 if (!blk_cgroup_congested())
3790 return;
3791
3792 /*
3793 * We've already scheduled a throttle, avoid taking the global swap
3794 * lock.
3795 */
3796 if (current->throttle_queue)
3797 return;
3798
3799 spin_lock(&swap_avail_lock);
3800 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3801 avail_lists[nid]) {
3802 if (si->bdev) {
3803 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3804 break;
3805 }
3806 }
3807 spin_unlock(&swap_avail_lock);
3808 }
3809 #endif
3810
3811 static int __init swapfile_init(void)
3812 {
3813 int nid;
3814
3815 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3816 GFP_KERNEL);
3817 if (!swap_avail_heads) {
3818 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3819 return -ENOMEM;
3820 }
3821
3822 for_each_node(nid)
3823 plist_head_init(&swap_avail_heads[nid]);
3824
3825 return 0;
3826 }
3827 subsys_initcall(swapfile_init);