]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/swapfile.c
mm, swap: fix race between swapoff and some swap operations
[mirror_ubuntu-jammy-kernel.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
155 /*
156 * swapon tell device that all the old swap contents can be discarded,
157 * to allow the swap device to optimize its wear-levelling.
158 */
159 static int discard_swap(struct swap_info_struct *si)
160 {
161 struct swap_extent *se;
162 sector_t start_block;
163 sector_t nr_blocks;
164 int err = 0;
165
166 /* Do not discard the swap header page! */
167 se = &si->first_swap_extent;
168 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
169 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
170 if (nr_blocks) {
171 err = blkdev_issue_discard(si->bdev, start_block,
172 nr_blocks, GFP_KERNEL, 0);
173 if (err)
174 return err;
175 cond_resched();
176 }
177
178 list_for_each_entry(se, &si->first_swap_extent.list, list) {
179 start_block = se->start_block << (PAGE_SHIFT - 9);
180 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
181
182 err = blkdev_issue_discard(si->bdev, start_block,
183 nr_blocks, GFP_KERNEL, 0);
184 if (err)
185 break;
186
187 cond_resched();
188 }
189 return err; /* That will often be -EOPNOTSUPP */
190 }
191
192 /*
193 * swap allocation tell device that a cluster of swap can now be discarded,
194 * to allow the swap device to optimize its wear-levelling.
195 */
196 static void discard_swap_cluster(struct swap_info_struct *si,
197 pgoff_t start_page, pgoff_t nr_pages)
198 {
199 struct swap_extent *se = si->curr_swap_extent;
200 int found_extent = 0;
201
202 while (nr_pages) {
203 if (se->start_page <= start_page &&
204 start_page < se->start_page + se->nr_pages) {
205 pgoff_t offset = start_page - se->start_page;
206 sector_t start_block = se->start_block + offset;
207 sector_t nr_blocks = se->nr_pages - offset;
208
209 if (nr_blocks > nr_pages)
210 nr_blocks = nr_pages;
211 start_page += nr_blocks;
212 nr_pages -= nr_blocks;
213
214 if (!found_extent++)
215 si->curr_swap_extent = se;
216
217 start_block <<= PAGE_SHIFT - 9;
218 nr_blocks <<= PAGE_SHIFT - 9;
219 if (blkdev_issue_discard(si->bdev, start_block,
220 nr_blocks, GFP_NOIO, 0))
221 break;
222 }
223
224 se = list_next_entry(se, list);
225 }
226 }
227
228 #ifdef CONFIG_THP_SWAP
229 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
230
231 #define swap_entry_size(size) (size)
232 #else
233 #define SWAPFILE_CLUSTER 256
234
235 /*
236 * Define swap_entry_size() as constant to let compiler to optimize
237 * out some code if !CONFIG_THP_SWAP
238 */
239 #define swap_entry_size(size) 1
240 #endif
241 #define LATENCY_LIMIT 256
242
243 static inline void cluster_set_flag(struct swap_cluster_info *info,
244 unsigned int flag)
245 {
246 info->flags = flag;
247 }
248
249 static inline unsigned int cluster_count(struct swap_cluster_info *info)
250 {
251 return info->data;
252 }
253
254 static inline void cluster_set_count(struct swap_cluster_info *info,
255 unsigned int c)
256 {
257 info->data = c;
258 }
259
260 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
261 unsigned int c, unsigned int f)
262 {
263 info->flags = f;
264 info->data = c;
265 }
266
267 static inline unsigned int cluster_next(struct swap_cluster_info *info)
268 {
269 return info->data;
270 }
271
272 static inline void cluster_set_next(struct swap_cluster_info *info,
273 unsigned int n)
274 {
275 info->data = n;
276 }
277
278 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
279 unsigned int n, unsigned int f)
280 {
281 info->flags = f;
282 info->data = n;
283 }
284
285 static inline bool cluster_is_free(struct swap_cluster_info *info)
286 {
287 return info->flags & CLUSTER_FLAG_FREE;
288 }
289
290 static inline bool cluster_is_null(struct swap_cluster_info *info)
291 {
292 return info->flags & CLUSTER_FLAG_NEXT_NULL;
293 }
294
295 static inline void cluster_set_null(struct swap_cluster_info *info)
296 {
297 info->flags = CLUSTER_FLAG_NEXT_NULL;
298 info->data = 0;
299 }
300
301 static inline bool cluster_is_huge(struct swap_cluster_info *info)
302 {
303 if (IS_ENABLED(CONFIG_THP_SWAP))
304 return info->flags & CLUSTER_FLAG_HUGE;
305 return false;
306 }
307
308 static inline void cluster_clear_huge(struct swap_cluster_info *info)
309 {
310 info->flags &= ~CLUSTER_FLAG_HUGE;
311 }
312
313 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
314 unsigned long offset)
315 {
316 struct swap_cluster_info *ci;
317
318 ci = si->cluster_info;
319 if (ci) {
320 ci += offset / SWAPFILE_CLUSTER;
321 spin_lock(&ci->lock);
322 }
323 return ci;
324 }
325
326 static inline void unlock_cluster(struct swap_cluster_info *ci)
327 {
328 if (ci)
329 spin_unlock(&ci->lock);
330 }
331
332 /*
333 * Determine the locking method in use for this device. Return
334 * swap_cluster_info if SSD-style cluster-based locking is in place.
335 */
336 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
337 struct swap_info_struct *si, unsigned long offset)
338 {
339 struct swap_cluster_info *ci;
340
341 /* Try to use fine-grained SSD-style locking if available: */
342 ci = lock_cluster(si, offset);
343 /* Otherwise, fall back to traditional, coarse locking: */
344 if (!ci)
345 spin_lock(&si->lock);
346
347 return ci;
348 }
349
350 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
351 struct swap_cluster_info *ci)
352 {
353 if (ci)
354 unlock_cluster(ci);
355 else
356 spin_unlock(&si->lock);
357 }
358
359 static inline bool cluster_list_empty(struct swap_cluster_list *list)
360 {
361 return cluster_is_null(&list->head);
362 }
363
364 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
365 {
366 return cluster_next(&list->head);
367 }
368
369 static void cluster_list_init(struct swap_cluster_list *list)
370 {
371 cluster_set_null(&list->head);
372 cluster_set_null(&list->tail);
373 }
374
375 static void cluster_list_add_tail(struct swap_cluster_list *list,
376 struct swap_cluster_info *ci,
377 unsigned int idx)
378 {
379 if (cluster_list_empty(list)) {
380 cluster_set_next_flag(&list->head, idx, 0);
381 cluster_set_next_flag(&list->tail, idx, 0);
382 } else {
383 struct swap_cluster_info *ci_tail;
384 unsigned int tail = cluster_next(&list->tail);
385
386 /*
387 * Nested cluster lock, but both cluster locks are
388 * only acquired when we held swap_info_struct->lock
389 */
390 ci_tail = ci + tail;
391 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
392 cluster_set_next(ci_tail, idx);
393 spin_unlock(&ci_tail->lock);
394 cluster_set_next_flag(&list->tail, idx, 0);
395 }
396 }
397
398 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
399 struct swap_cluster_info *ci)
400 {
401 unsigned int idx;
402
403 idx = cluster_next(&list->head);
404 if (cluster_next(&list->tail) == idx) {
405 cluster_set_null(&list->head);
406 cluster_set_null(&list->tail);
407 } else
408 cluster_set_next_flag(&list->head,
409 cluster_next(&ci[idx]), 0);
410
411 return idx;
412 }
413
414 /* Add a cluster to discard list and schedule it to do discard */
415 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
416 unsigned int idx)
417 {
418 /*
419 * If scan_swap_map() can't find a free cluster, it will check
420 * si->swap_map directly. To make sure the discarding cluster isn't
421 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
422 * will be cleared after discard
423 */
424 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
425 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
426
427 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
428
429 schedule_work(&si->discard_work);
430 }
431
432 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
433 {
434 struct swap_cluster_info *ci = si->cluster_info;
435
436 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
437 cluster_list_add_tail(&si->free_clusters, ci, idx);
438 }
439
440 /*
441 * Doing discard actually. After a cluster discard is finished, the cluster
442 * will be added to free cluster list. caller should hold si->lock.
443 */
444 static void swap_do_scheduled_discard(struct swap_info_struct *si)
445 {
446 struct swap_cluster_info *info, *ci;
447 unsigned int idx;
448
449 info = si->cluster_info;
450
451 while (!cluster_list_empty(&si->discard_clusters)) {
452 idx = cluster_list_del_first(&si->discard_clusters, info);
453 spin_unlock(&si->lock);
454
455 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
456 SWAPFILE_CLUSTER);
457
458 spin_lock(&si->lock);
459 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
460 __free_cluster(si, idx);
461 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462 0, SWAPFILE_CLUSTER);
463 unlock_cluster(ci);
464 }
465 }
466
467 static void swap_discard_work(struct work_struct *work)
468 {
469 struct swap_info_struct *si;
470
471 si = container_of(work, struct swap_info_struct, discard_work);
472
473 spin_lock(&si->lock);
474 swap_do_scheduled_discard(si);
475 spin_unlock(&si->lock);
476 }
477
478 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
479 {
480 struct swap_cluster_info *ci = si->cluster_info;
481
482 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
483 cluster_list_del_first(&si->free_clusters, ci);
484 cluster_set_count_flag(ci + idx, 0, 0);
485 }
486
487 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
488 {
489 struct swap_cluster_info *ci = si->cluster_info + idx;
490
491 VM_BUG_ON(cluster_count(ci) != 0);
492 /*
493 * If the swap is discardable, prepare discard the cluster
494 * instead of free it immediately. The cluster will be freed
495 * after discard.
496 */
497 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
498 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
499 swap_cluster_schedule_discard(si, idx);
500 return;
501 }
502
503 __free_cluster(si, idx);
504 }
505
506 /*
507 * The cluster corresponding to page_nr will be used. The cluster will be
508 * removed from free cluster list and its usage counter will be increased.
509 */
510 static void inc_cluster_info_page(struct swap_info_struct *p,
511 struct swap_cluster_info *cluster_info, unsigned long page_nr)
512 {
513 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
514
515 if (!cluster_info)
516 return;
517 if (cluster_is_free(&cluster_info[idx]))
518 alloc_cluster(p, idx);
519
520 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
521 cluster_set_count(&cluster_info[idx],
522 cluster_count(&cluster_info[idx]) + 1);
523 }
524
525 /*
526 * The cluster corresponding to page_nr decreases one usage. If the usage
527 * counter becomes 0, which means no page in the cluster is in using, we can
528 * optionally discard the cluster and add it to free cluster list.
529 */
530 static void dec_cluster_info_page(struct swap_info_struct *p,
531 struct swap_cluster_info *cluster_info, unsigned long page_nr)
532 {
533 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
534
535 if (!cluster_info)
536 return;
537
538 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
539 cluster_set_count(&cluster_info[idx],
540 cluster_count(&cluster_info[idx]) - 1);
541
542 if (cluster_count(&cluster_info[idx]) == 0)
543 free_cluster(p, idx);
544 }
545
546 /*
547 * It's possible scan_swap_map() uses a free cluster in the middle of free
548 * cluster list. Avoiding such abuse to avoid list corruption.
549 */
550 static bool
551 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
552 unsigned long offset)
553 {
554 struct percpu_cluster *percpu_cluster;
555 bool conflict;
556
557 offset /= SWAPFILE_CLUSTER;
558 conflict = !cluster_list_empty(&si->free_clusters) &&
559 offset != cluster_list_first(&si->free_clusters) &&
560 cluster_is_free(&si->cluster_info[offset]);
561
562 if (!conflict)
563 return false;
564
565 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
566 cluster_set_null(&percpu_cluster->index);
567 return true;
568 }
569
570 /*
571 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
572 * might involve allocating a new cluster for current CPU too.
573 */
574 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
575 unsigned long *offset, unsigned long *scan_base)
576 {
577 struct percpu_cluster *cluster;
578 struct swap_cluster_info *ci;
579 bool found_free;
580 unsigned long tmp, max;
581
582 new_cluster:
583 cluster = this_cpu_ptr(si->percpu_cluster);
584 if (cluster_is_null(&cluster->index)) {
585 if (!cluster_list_empty(&si->free_clusters)) {
586 cluster->index = si->free_clusters.head;
587 cluster->next = cluster_next(&cluster->index) *
588 SWAPFILE_CLUSTER;
589 } else if (!cluster_list_empty(&si->discard_clusters)) {
590 /*
591 * we don't have free cluster but have some clusters in
592 * discarding, do discard now and reclaim them
593 */
594 swap_do_scheduled_discard(si);
595 *scan_base = *offset = si->cluster_next;
596 goto new_cluster;
597 } else
598 return false;
599 }
600
601 found_free = false;
602
603 /*
604 * Other CPUs can use our cluster if they can't find a free cluster,
605 * check if there is still free entry in the cluster
606 */
607 tmp = cluster->next;
608 max = min_t(unsigned long, si->max,
609 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
610 if (tmp >= max) {
611 cluster_set_null(&cluster->index);
612 goto new_cluster;
613 }
614 ci = lock_cluster(si, tmp);
615 while (tmp < max) {
616 if (!si->swap_map[tmp]) {
617 found_free = true;
618 break;
619 }
620 tmp++;
621 }
622 unlock_cluster(ci);
623 if (!found_free) {
624 cluster_set_null(&cluster->index);
625 goto new_cluster;
626 }
627 cluster->next = tmp + 1;
628 *offset = tmp;
629 *scan_base = tmp;
630 return found_free;
631 }
632
633 static void __del_from_avail_list(struct swap_info_struct *p)
634 {
635 int nid;
636
637 for_each_node(nid)
638 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
639 }
640
641 static void del_from_avail_list(struct swap_info_struct *p)
642 {
643 spin_lock(&swap_avail_lock);
644 __del_from_avail_list(p);
645 spin_unlock(&swap_avail_lock);
646 }
647
648 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
649 unsigned int nr_entries)
650 {
651 unsigned int end = offset + nr_entries - 1;
652
653 if (offset == si->lowest_bit)
654 si->lowest_bit += nr_entries;
655 if (end == si->highest_bit)
656 si->highest_bit -= nr_entries;
657 si->inuse_pages += nr_entries;
658 if (si->inuse_pages == si->pages) {
659 si->lowest_bit = si->max;
660 si->highest_bit = 0;
661 del_from_avail_list(si);
662 }
663 }
664
665 static void add_to_avail_list(struct swap_info_struct *p)
666 {
667 int nid;
668
669 spin_lock(&swap_avail_lock);
670 for_each_node(nid) {
671 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
672 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
673 }
674 spin_unlock(&swap_avail_lock);
675 }
676
677 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
678 unsigned int nr_entries)
679 {
680 unsigned long end = offset + nr_entries - 1;
681 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
682
683 if (offset < si->lowest_bit)
684 si->lowest_bit = offset;
685 if (end > si->highest_bit) {
686 bool was_full = !si->highest_bit;
687
688 si->highest_bit = end;
689 if (was_full && (si->flags & SWP_WRITEOK))
690 add_to_avail_list(si);
691 }
692 atomic_long_add(nr_entries, &nr_swap_pages);
693 si->inuse_pages -= nr_entries;
694 if (si->flags & SWP_BLKDEV)
695 swap_slot_free_notify =
696 si->bdev->bd_disk->fops->swap_slot_free_notify;
697 else
698 swap_slot_free_notify = NULL;
699 while (offset <= end) {
700 frontswap_invalidate_page(si->type, offset);
701 if (swap_slot_free_notify)
702 swap_slot_free_notify(si->bdev, offset);
703 offset++;
704 }
705 }
706
707 static int scan_swap_map_slots(struct swap_info_struct *si,
708 unsigned char usage, int nr,
709 swp_entry_t slots[])
710 {
711 struct swap_cluster_info *ci;
712 unsigned long offset;
713 unsigned long scan_base;
714 unsigned long last_in_cluster = 0;
715 int latency_ration = LATENCY_LIMIT;
716 int n_ret = 0;
717
718 if (nr > SWAP_BATCH)
719 nr = SWAP_BATCH;
720
721 /*
722 * We try to cluster swap pages by allocating them sequentially
723 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
724 * way, however, we resort to first-free allocation, starting
725 * a new cluster. This prevents us from scattering swap pages
726 * all over the entire swap partition, so that we reduce
727 * overall disk seek times between swap pages. -- sct
728 * But we do now try to find an empty cluster. -Andrea
729 * And we let swap pages go all over an SSD partition. Hugh
730 */
731
732 si->flags += SWP_SCANNING;
733 scan_base = offset = si->cluster_next;
734
735 /* SSD algorithm */
736 if (si->cluster_info) {
737 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
738 goto checks;
739 else
740 goto scan;
741 }
742
743 if (unlikely(!si->cluster_nr--)) {
744 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
745 si->cluster_nr = SWAPFILE_CLUSTER - 1;
746 goto checks;
747 }
748
749 spin_unlock(&si->lock);
750
751 /*
752 * If seek is expensive, start searching for new cluster from
753 * start of partition, to minimize the span of allocated swap.
754 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
755 * case, just handled by scan_swap_map_try_ssd_cluster() above.
756 */
757 scan_base = offset = si->lowest_bit;
758 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
759
760 /* Locate the first empty (unaligned) cluster */
761 for (; last_in_cluster <= si->highest_bit; offset++) {
762 if (si->swap_map[offset])
763 last_in_cluster = offset + SWAPFILE_CLUSTER;
764 else if (offset == last_in_cluster) {
765 spin_lock(&si->lock);
766 offset -= SWAPFILE_CLUSTER - 1;
767 si->cluster_next = offset;
768 si->cluster_nr = SWAPFILE_CLUSTER - 1;
769 goto checks;
770 }
771 if (unlikely(--latency_ration < 0)) {
772 cond_resched();
773 latency_ration = LATENCY_LIMIT;
774 }
775 }
776
777 offset = scan_base;
778 spin_lock(&si->lock);
779 si->cluster_nr = SWAPFILE_CLUSTER - 1;
780 }
781
782 checks:
783 if (si->cluster_info) {
784 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
785 /* take a break if we already got some slots */
786 if (n_ret)
787 goto done;
788 if (!scan_swap_map_try_ssd_cluster(si, &offset,
789 &scan_base))
790 goto scan;
791 }
792 }
793 if (!(si->flags & SWP_WRITEOK))
794 goto no_page;
795 if (!si->highest_bit)
796 goto no_page;
797 if (offset > si->highest_bit)
798 scan_base = offset = si->lowest_bit;
799
800 ci = lock_cluster(si, offset);
801 /* reuse swap entry of cache-only swap if not busy. */
802 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
803 int swap_was_freed;
804 unlock_cluster(ci);
805 spin_unlock(&si->lock);
806 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
807 spin_lock(&si->lock);
808 /* entry was freed successfully, try to use this again */
809 if (swap_was_freed)
810 goto checks;
811 goto scan; /* check next one */
812 }
813
814 if (si->swap_map[offset]) {
815 unlock_cluster(ci);
816 if (!n_ret)
817 goto scan;
818 else
819 goto done;
820 }
821 si->swap_map[offset] = usage;
822 inc_cluster_info_page(si, si->cluster_info, offset);
823 unlock_cluster(ci);
824
825 swap_range_alloc(si, offset, 1);
826 si->cluster_next = offset + 1;
827 slots[n_ret++] = swp_entry(si->type, offset);
828
829 /* got enough slots or reach max slots? */
830 if ((n_ret == nr) || (offset >= si->highest_bit))
831 goto done;
832
833 /* search for next available slot */
834
835 /* time to take a break? */
836 if (unlikely(--latency_ration < 0)) {
837 if (n_ret)
838 goto done;
839 spin_unlock(&si->lock);
840 cond_resched();
841 spin_lock(&si->lock);
842 latency_ration = LATENCY_LIMIT;
843 }
844
845 /* try to get more slots in cluster */
846 if (si->cluster_info) {
847 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
848 goto checks;
849 else
850 goto done;
851 }
852 /* non-ssd case */
853 ++offset;
854
855 /* non-ssd case, still more slots in cluster? */
856 if (si->cluster_nr && !si->swap_map[offset]) {
857 --si->cluster_nr;
858 goto checks;
859 }
860
861 done:
862 si->flags -= SWP_SCANNING;
863 return n_ret;
864
865 scan:
866 spin_unlock(&si->lock);
867 while (++offset <= si->highest_bit) {
868 if (!si->swap_map[offset]) {
869 spin_lock(&si->lock);
870 goto checks;
871 }
872 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
873 spin_lock(&si->lock);
874 goto checks;
875 }
876 if (unlikely(--latency_ration < 0)) {
877 cond_resched();
878 latency_ration = LATENCY_LIMIT;
879 }
880 }
881 offset = si->lowest_bit;
882 while (offset < scan_base) {
883 if (!si->swap_map[offset]) {
884 spin_lock(&si->lock);
885 goto checks;
886 }
887 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
888 spin_lock(&si->lock);
889 goto checks;
890 }
891 if (unlikely(--latency_ration < 0)) {
892 cond_resched();
893 latency_ration = LATENCY_LIMIT;
894 }
895 offset++;
896 }
897 spin_lock(&si->lock);
898
899 no_page:
900 si->flags -= SWP_SCANNING;
901 return n_ret;
902 }
903
904 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
905 {
906 unsigned long idx;
907 struct swap_cluster_info *ci;
908 unsigned long offset, i;
909 unsigned char *map;
910
911 /*
912 * Should not even be attempting cluster allocations when huge
913 * page swap is disabled. Warn and fail the allocation.
914 */
915 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
916 VM_WARN_ON_ONCE(1);
917 return 0;
918 }
919
920 if (cluster_list_empty(&si->free_clusters))
921 return 0;
922
923 idx = cluster_list_first(&si->free_clusters);
924 offset = idx * SWAPFILE_CLUSTER;
925 ci = lock_cluster(si, offset);
926 alloc_cluster(si, idx);
927 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
928
929 map = si->swap_map + offset;
930 for (i = 0; i < SWAPFILE_CLUSTER; i++)
931 map[i] = SWAP_HAS_CACHE;
932 unlock_cluster(ci);
933 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
934 *slot = swp_entry(si->type, offset);
935
936 return 1;
937 }
938
939 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
940 {
941 unsigned long offset = idx * SWAPFILE_CLUSTER;
942 struct swap_cluster_info *ci;
943
944 ci = lock_cluster(si, offset);
945 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
946 cluster_set_count_flag(ci, 0, 0);
947 free_cluster(si, idx);
948 unlock_cluster(ci);
949 swap_range_free(si, offset, SWAPFILE_CLUSTER);
950 }
951
952 static unsigned long scan_swap_map(struct swap_info_struct *si,
953 unsigned char usage)
954 {
955 swp_entry_t entry;
956 int n_ret;
957
958 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
959
960 if (n_ret)
961 return swp_offset(entry);
962 else
963 return 0;
964
965 }
966
967 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
968 {
969 unsigned long size = swap_entry_size(entry_size);
970 struct swap_info_struct *si, *next;
971 long avail_pgs;
972 int n_ret = 0;
973 int node;
974
975 /* Only single cluster request supported */
976 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
977
978 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
979 if (avail_pgs <= 0)
980 goto noswap;
981
982 if (n_goal > SWAP_BATCH)
983 n_goal = SWAP_BATCH;
984
985 if (n_goal > avail_pgs)
986 n_goal = avail_pgs;
987
988 atomic_long_sub(n_goal * size, &nr_swap_pages);
989
990 spin_lock(&swap_avail_lock);
991
992 start_over:
993 node = numa_node_id();
994 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
995 /* requeue si to after same-priority siblings */
996 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
997 spin_unlock(&swap_avail_lock);
998 spin_lock(&si->lock);
999 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1000 spin_lock(&swap_avail_lock);
1001 if (plist_node_empty(&si->avail_lists[node])) {
1002 spin_unlock(&si->lock);
1003 goto nextsi;
1004 }
1005 WARN(!si->highest_bit,
1006 "swap_info %d in list but !highest_bit\n",
1007 si->type);
1008 WARN(!(si->flags & SWP_WRITEOK),
1009 "swap_info %d in list but !SWP_WRITEOK\n",
1010 si->type);
1011 __del_from_avail_list(si);
1012 spin_unlock(&si->lock);
1013 goto nextsi;
1014 }
1015 if (size == SWAPFILE_CLUSTER) {
1016 if (!(si->flags & SWP_FS))
1017 n_ret = swap_alloc_cluster(si, swp_entries);
1018 } else
1019 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1020 n_goal, swp_entries);
1021 spin_unlock(&si->lock);
1022 if (n_ret || size == SWAPFILE_CLUSTER)
1023 goto check_out;
1024 pr_debug("scan_swap_map of si %d failed to find offset\n",
1025 si->type);
1026
1027 spin_lock(&swap_avail_lock);
1028 nextsi:
1029 /*
1030 * if we got here, it's likely that si was almost full before,
1031 * and since scan_swap_map() can drop the si->lock, multiple
1032 * callers probably all tried to get a page from the same si
1033 * and it filled up before we could get one; or, the si filled
1034 * up between us dropping swap_avail_lock and taking si->lock.
1035 * Since we dropped the swap_avail_lock, the swap_avail_head
1036 * list may have been modified; so if next is still in the
1037 * swap_avail_head list then try it, otherwise start over
1038 * if we have not gotten any slots.
1039 */
1040 if (plist_node_empty(&next->avail_lists[node]))
1041 goto start_over;
1042 }
1043
1044 spin_unlock(&swap_avail_lock);
1045
1046 check_out:
1047 if (n_ret < n_goal)
1048 atomic_long_add((long)(n_goal - n_ret) * size,
1049 &nr_swap_pages);
1050 noswap:
1051 return n_ret;
1052 }
1053
1054 /* The only caller of this function is now suspend routine */
1055 swp_entry_t get_swap_page_of_type(int type)
1056 {
1057 struct swap_info_struct *si = swap_type_to_swap_info(type);
1058 pgoff_t offset;
1059
1060 if (!si)
1061 goto fail;
1062
1063 spin_lock(&si->lock);
1064 if (si->flags & SWP_WRITEOK) {
1065 atomic_long_dec(&nr_swap_pages);
1066 /* This is called for allocating swap entry, not cache */
1067 offset = scan_swap_map(si, 1);
1068 if (offset) {
1069 spin_unlock(&si->lock);
1070 return swp_entry(type, offset);
1071 }
1072 atomic_long_inc(&nr_swap_pages);
1073 }
1074 spin_unlock(&si->lock);
1075 fail:
1076 return (swp_entry_t) {0};
1077 }
1078
1079 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1080 {
1081 struct swap_info_struct *p;
1082 unsigned long offset;
1083
1084 if (!entry.val)
1085 goto out;
1086 p = swp_swap_info(entry);
1087 if (!p)
1088 goto bad_nofile;
1089 if (!(p->flags & SWP_USED))
1090 goto bad_device;
1091 offset = swp_offset(entry);
1092 if (offset >= p->max)
1093 goto bad_offset;
1094 return p;
1095
1096 bad_offset:
1097 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1098 goto out;
1099 bad_device:
1100 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1101 goto out;
1102 bad_nofile:
1103 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1104 out:
1105 return NULL;
1106 }
1107
1108 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1109 {
1110 struct swap_info_struct *p;
1111
1112 p = __swap_info_get(entry);
1113 if (!p)
1114 goto out;
1115 if (!p->swap_map[swp_offset(entry)])
1116 goto bad_free;
1117 return p;
1118
1119 bad_free:
1120 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1121 goto out;
1122 out:
1123 return NULL;
1124 }
1125
1126 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1127 {
1128 struct swap_info_struct *p;
1129
1130 p = _swap_info_get(entry);
1131 if (p)
1132 spin_lock(&p->lock);
1133 return p;
1134 }
1135
1136 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1137 struct swap_info_struct *q)
1138 {
1139 struct swap_info_struct *p;
1140
1141 p = _swap_info_get(entry);
1142
1143 if (p != q) {
1144 if (q != NULL)
1145 spin_unlock(&q->lock);
1146 if (p != NULL)
1147 spin_lock(&p->lock);
1148 }
1149 return p;
1150 }
1151
1152 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1153 unsigned long offset,
1154 unsigned char usage)
1155 {
1156 unsigned char count;
1157 unsigned char has_cache;
1158
1159 count = p->swap_map[offset];
1160
1161 has_cache = count & SWAP_HAS_CACHE;
1162 count &= ~SWAP_HAS_CACHE;
1163
1164 if (usage == SWAP_HAS_CACHE) {
1165 VM_BUG_ON(!has_cache);
1166 has_cache = 0;
1167 } else if (count == SWAP_MAP_SHMEM) {
1168 /*
1169 * Or we could insist on shmem.c using a special
1170 * swap_shmem_free() and free_shmem_swap_and_cache()...
1171 */
1172 count = 0;
1173 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1174 if (count == COUNT_CONTINUED) {
1175 if (swap_count_continued(p, offset, count))
1176 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1177 else
1178 count = SWAP_MAP_MAX;
1179 } else
1180 count--;
1181 }
1182
1183 usage = count | has_cache;
1184 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1185
1186 return usage;
1187 }
1188
1189 /*
1190 * Check whether swap entry is valid in the swap device. If so,
1191 * return pointer to swap_info_struct, and keep the swap entry valid
1192 * via preventing the swap device from being swapoff, until
1193 * put_swap_device() is called. Otherwise return NULL.
1194 *
1195 * The entirety of the RCU read critical section must come before the
1196 * return from or after the call to synchronize_rcu() in
1197 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1198 * true, the si->map, si->cluster_info, etc. must be valid in the
1199 * critical section.
1200 *
1201 * Notice that swapoff or swapoff+swapon can still happen before the
1202 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1203 * in put_swap_device() if there isn't any other way to prevent
1204 * swapoff, such as page lock, page table lock, etc. The caller must
1205 * be prepared for that. For example, the following situation is
1206 * possible.
1207 *
1208 * CPU1 CPU2
1209 * do_swap_page()
1210 * ... swapoff+swapon
1211 * __read_swap_cache_async()
1212 * swapcache_prepare()
1213 * __swap_duplicate()
1214 * // check swap_map
1215 * // verify PTE not changed
1216 *
1217 * In __swap_duplicate(), the swap_map need to be checked before
1218 * changing partly because the specified swap entry may be for another
1219 * swap device which has been swapoff. And in do_swap_page(), after
1220 * the page is read from the swap device, the PTE is verified not
1221 * changed with the page table locked to check whether the swap device
1222 * has been swapoff or swapoff+swapon.
1223 */
1224 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1225 {
1226 struct swap_info_struct *si;
1227 unsigned long offset;
1228
1229 if (!entry.val)
1230 goto out;
1231 si = swp_swap_info(entry);
1232 if (!si)
1233 goto bad_nofile;
1234
1235 rcu_read_lock();
1236 if (!(si->flags & SWP_VALID))
1237 goto unlock_out;
1238 offset = swp_offset(entry);
1239 if (offset >= si->max)
1240 goto unlock_out;
1241
1242 return si;
1243 bad_nofile:
1244 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1245 out:
1246 return NULL;
1247 unlock_out:
1248 rcu_read_unlock();
1249 return NULL;
1250 }
1251
1252 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1253 swp_entry_t entry, unsigned char usage)
1254 {
1255 struct swap_cluster_info *ci;
1256 unsigned long offset = swp_offset(entry);
1257
1258 ci = lock_cluster_or_swap_info(p, offset);
1259 usage = __swap_entry_free_locked(p, offset, usage);
1260 unlock_cluster_or_swap_info(p, ci);
1261 if (!usage)
1262 free_swap_slot(entry);
1263
1264 return usage;
1265 }
1266
1267 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1268 {
1269 struct swap_cluster_info *ci;
1270 unsigned long offset = swp_offset(entry);
1271 unsigned char count;
1272
1273 ci = lock_cluster(p, offset);
1274 count = p->swap_map[offset];
1275 VM_BUG_ON(count != SWAP_HAS_CACHE);
1276 p->swap_map[offset] = 0;
1277 dec_cluster_info_page(p, p->cluster_info, offset);
1278 unlock_cluster(ci);
1279
1280 mem_cgroup_uncharge_swap(entry, 1);
1281 swap_range_free(p, offset, 1);
1282 }
1283
1284 /*
1285 * Caller has made sure that the swap device corresponding to entry
1286 * is still around or has not been recycled.
1287 */
1288 void swap_free(swp_entry_t entry)
1289 {
1290 struct swap_info_struct *p;
1291
1292 p = _swap_info_get(entry);
1293 if (p)
1294 __swap_entry_free(p, entry, 1);
1295 }
1296
1297 /*
1298 * Called after dropping swapcache to decrease refcnt to swap entries.
1299 */
1300 void put_swap_page(struct page *page, swp_entry_t entry)
1301 {
1302 unsigned long offset = swp_offset(entry);
1303 unsigned long idx = offset / SWAPFILE_CLUSTER;
1304 struct swap_cluster_info *ci;
1305 struct swap_info_struct *si;
1306 unsigned char *map;
1307 unsigned int i, free_entries = 0;
1308 unsigned char val;
1309 int size = swap_entry_size(hpage_nr_pages(page));
1310
1311 si = _swap_info_get(entry);
1312 if (!si)
1313 return;
1314
1315 ci = lock_cluster_or_swap_info(si, offset);
1316 if (size == SWAPFILE_CLUSTER) {
1317 VM_BUG_ON(!cluster_is_huge(ci));
1318 map = si->swap_map + offset;
1319 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1320 val = map[i];
1321 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1322 if (val == SWAP_HAS_CACHE)
1323 free_entries++;
1324 }
1325 cluster_clear_huge(ci);
1326 if (free_entries == SWAPFILE_CLUSTER) {
1327 unlock_cluster_or_swap_info(si, ci);
1328 spin_lock(&si->lock);
1329 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1330 swap_free_cluster(si, idx);
1331 spin_unlock(&si->lock);
1332 return;
1333 }
1334 }
1335 for (i = 0; i < size; i++, entry.val++) {
1336 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1337 unlock_cluster_or_swap_info(si, ci);
1338 free_swap_slot(entry);
1339 if (i == size - 1)
1340 return;
1341 lock_cluster_or_swap_info(si, offset);
1342 }
1343 }
1344 unlock_cluster_or_swap_info(si, ci);
1345 }
1346
1347 #ifdef CONFIG_THP_SWAP
1348 int split_swap_cluster(swp_entry_t entry)
1349 {
1350 struct swap_info_struct *si;
1351 struct swap_cluster_info *ci;
1352 unsigned long offset = swp_offset(entry);
1353
1354 si = _swap_info_get(entry);
1355 if (!si)
1356 return -EBUSY;
1357 ci = lock_cluster(si, offset);
1358 cluster_clear_huge(ci);
1359 unlock_cluster(ci);
1360 return 0;
1361 }
1362 #endif
1363
1364 static int swp_entry_cmp(const void *ent1, const void *ent2)
1365 {
1366 const swp_entry_t *e1 = ent1, *e2 = ent2;
1367
1368 return (int)swp_type(*e1) - (int)swp_type(*e2);
1369 }
1370
1371 void swapcache_free_entries(swp_entry_t *entries, int n)
1372 {
1373 struct swap_info_struct *p, *prev;
1374 int i;
1375
1376 if (n <= 0)
1377 return;
1378
1379 prev = NULL;
1380 p = NULL;
1381
1382 /*
1383 * Sort swap entries by swap device, so each lock is only taken once.
1384 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1385 * so low that it isn't necessary to optimize further.
1386 */
1387 if (nr_swapfiles > 1)
1388 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1389 for (i = 0; i < n; ++i) {
1390 p = swap_info_get_cont(entries[i], prev);
1391 if (p)
1392 swap_entry_free(p, entries[i]);
1393 prev = p;
1394 }
1395 if (p)
1396 spin_unlock(&p->lock);
1397 }
1398
1399 /*
1400 * How many references to page are currently swapped out?
1401 * This does not give an exact answer when swap count is continued,
1402 * but does include the high COUNT_CONTINUED flag to allow for that.
1403 */
1404 int page_swapcount(struct page *page)
1405 {
1406 int count = 0;
1407 struct swap_info_struct *p;
1408 struct swap_cluster_info *ci;
1409 swp_entry_t entry;
1410 unsigned long offset;
1411
1412 entry.val = page_private(page);
1413 p = _swap_info_get(entry);
1414 if (p) {
1415 offset = swp_offset(entry);
1416 ci = lock_cluster_or_swap_info(p, offset);
1417 count = swap_count(p->swap_map[offset]);
1418 unlock_cluster_or_swap_info(p, ci);
1419 }
1420 return count;
1421 }
1422
1423 int __swap_count(swp_entry_t entry)
1424 {
1425 struct swap_info_struct *si;
1426 pgoff_t offset = swp_offset(entry);
1427 int count = 0;
1428
1429 si = get_swap_device(entry);
1430 if (si) {
1431 count = swap_count(si->swap_map[offset]);
1432 put_swap_device(si);
1433 }
1434 return count;
1435 }
1436
1437 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1438 {
1439 int count = 0;
1440 pgoff_t offset = swp_offset(entry);
1441 struct swap_cluster_info *ci;
1442
1443 ci = lock_cluster_or_swap_info(si, offset);
1444 count = swap_count(si->swap_map[offset]);
1445 unlock_cluster_or_swap_info(si, ci);
1446 return count;
1447 }
1448
1449 /*
1450 * How many references to @entry are currently swapped out?
1451 * This does not give an exact answer when swap count is continued,
1452 * but does include the high COUNT_CONTINUED flag to allow for that.
1453 */
1454 int __swp_swapcount(swp_entry_t entry)
1455 {
1456 int count = 0;
1457 struct swap_info_struct *si;
1458
1459 si = get_swap_device(entry);
1460 if (si) {
1461 count = swap_swapcount(si, entry);
1462 put_swap_device(si);
1463 }
1464 return count;
1465 }
1466
1467 /*
1468 * How many references to @entry are currently swapped out?
1469 * This considers COUNT_CONTINUED so it returns exact answer.
1470 */
1471 int swp_swapcount(swp_entry_t entry)
1472 {
1473 int count, tmp_count, n;
1474 struct swap_info_struct *p;
1475 struct swap_cluster_info *ci;
1476 struct page *page;
1477 pgoff_t offset;
1478 unsigned char *map;
1479
1480 p = _swap_info_get(entry);
1481 if (!p)
1482 return 0;
1483
1484 offset = swp_offset(entry);
1485
1486 ci = lock_cluster_or_swap_info(p, offset);
1487
1488 count = swap_count(p->swap_map[offset]);
1489 if (!(count & COUNT_CONTINUED))
1490 goto out;
1491
1492 count &= ~COUNT_CONTINUED;
1493 n = SWAP_MAP_MAX + 1;
1494
1495 page = vmalloc_to_page(p->swap_map + offset);
1496 offset &= ~PAGE_MASK;
1497 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1498
1499 do {
1500 page = list_next_entry(page, lru);
1501 map = kmap_atomic(page);
1502 tmp_count = map[offset];
1503 kunmap_atomic(map);
1504
1505 count += (tmp_count & ~COUNT_CONTINUED) * n;
1506 n *= (SWAP_CONT_MAX + 1);
1507 } while (tmp_count & COUNT_CONTINUED);
1508 out:
1509 unlock_cluster_or_swap_info(p, ci);
1510 return count;
1511 }
1512
1513 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1514 swp_entry_t entry)
1515 {
1516 struct swap_cluster_info *ci;
1517 unsigned char *map = si->swap_map;
1518 unsigned long roffset = swp_offset(entry);
1519 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1520 int i;
1521 bool ret = false;
1522
1523 ci = lock_cluster_or_swap_info(si, offset);
1524 if (!ci || !cluster_is_huge(ci)) {
1525 if (swap_count(map[roffset]))
1526 ret = true;
1527 goto unlock_out;
1528 }
1529 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1530 if (swap_count(map[offset + i])) {
1531 ret = true;
1532 break;
1533 }
1534 }
1535 unlock_out:
1536 unlock_cluster_or_swap_info(si, ci);
1537 return ret;
1538 }
1539
1540 static bool page_swapped(struct page *page)
1541 {
1542 swp_entry_t entry;
1543 struct swap_info_struct *si;
1544
1545 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1546 return page_swapcount(page) != 0;
1547
1548 page = compound_head(page);
1549 entry.val = page_private(page);
1550 si = _swap_info_get(entry);
1551 if (si)
1552 return swap_page_trans_huge_swapped(si, entry);
1553 return false;
1554 }
1555
1556 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1557 int *total_swapcount)
1558 {
1559 int i, map_swapcount, _total_mapcount, _total_swapcount;
1560 unsigned long offset = 0;
1561 struct swap_info_struct *si;
1562 struct swap_cluster_info *ci = NULL;
1563 unsigned char *map = NULL;
1564 int mapcount, swapcount = 0;
1565
1566 /* hugetlbfs shouldn't call it */
1567 VM_BUG_ON_PAGE(PageHuge(page), page);
1568
1569 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1570 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1571 if (PageSwapCache(page))
1572 swapcount = page_swapcount(page);
1573 if (total_swapcount)
1574 *total_swapcount = swapcount;
1575 return mapcount + swapcount;
1576 }
1577
1578 page = compound_head(page);
1579
1580 _total_mapcount = _total_swapcount = map_swapcount = 0;
1581 if (PageSwapCache(page)) {
1582 swp_entry_t entry;
1583
1584 entry.val = page_private(page);
1585 si = _swap_info_get(entry);
1586 if (si) {
1587 map = si->swap_map;
1588 offset = swp_offset(entry);
1589 }
1590 }
1591 if (map)
1592 ci = lock_cluster(si, offset);
1593 for (i = 0; i < HPAGE_PMD_NR; i++) {
1594 mapcount = atomic_read(&page[i]._mapcount) + 1;
1595 _total_mapcount += mapcount;
1596 if (map) {
1597 swapcount = swap_count(map[offset + i]);
1598 _total_swapcount += swapcount;
1599 }
1600 map_swapcount = max(map_swapcount, mapcount + swapcount);
1601 }
1602 unlock_cluster(ci);
1603 if (PageDoubleMap(page)) {
1604 map_swapcount -= 1;
1605 _total_mapcount -= HPAGE_PMD_NR;
1606 }
1607 mapcount = compound_mapcount(page);
1608 map_swapcount += mapcount;
1609 _total_mapcount += mapcount;
1610 if (total_mapcount)
1611 *total_mapcount = _total_mapcount;
1612 if (total_swapcount)
1613 *total_swapcount = _total_swapcount;
1614
1615 return map_swapcount;
1616 }
1617
1618 /*
1619 * We can write to an anon page without COW if there are no other references
1620 * to it. And as a side-effect, free up its swap: because the old content
1621 * on disk will never be read, and seeking back there to write new content
1622 * later would only waste time away from clustering.
1623 *
1624 * NOTE: total_map_swapcount should not be relied upon by the caller if
1625 * reuse_swap_page() returns false, but it may be always overwritten
1626 * (see the other implementation for CONFIG_SWAP=n).
1627 */
1628 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1629 {
1630 int count, total_mapcount, total_swapcount;
1631
1632 VM_BUG_ON_PAGE(!PageLocked(page), page);
1633 if (unlikely(PageKsm(page)))
1634 return false;
1635 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1636 &total_swapcount);
1637 if (total_map_swapcount)
1638 *total_map_swapcount = total_mapcount + total_swapcount;
1639 if (count == 1 && PageSwapCache(page) &&
1640 (likely(!PageTransCompound(page)) ||
1641 /* The remaining swap count will be freed soon */
1642 total_swapcount == page_swapcount(page))) {
1643 if (!PageWriteback(page)) {
1644 page = compound_head(page);
1645 delete_from_swap_cache(page);
1646 SetPageDirty(page);
1647 } else {
1648 swp_entry_t entry;
1649 struct swap_info_struct *p;
1650
1651 entry.val = page_private(page);
1652 p = swap_info_get(entry);
1653 if (p->flags & SWP_STABLE_WRITES) {
1654 spin_unlock(&p->lock);
1655 return false;
1656 }
1657 spin_unlock(&p->lock);
1658 }
1659 }
1660
1661 return count <= 1;
1662 }
1663
1664 /*
1665 * If swap is getting full, or if there are no more mappings of this page,
1666 * then try_to_free_swap is called to free its swap space.
1667 */
1668 int try_to_free_swap(struct page *page)
1669 {
1670 VM_BUG_ON_PAGE(!PageLocked(page), page);
1671
1672 if (!PageSwapCache(page))
1673 return 0;
1674 if (PageWriteback(page))
1675 return 0;
1676 if (page_swapped(page))
1677 return 0;
1678
1679 /*
1680 * Once hibernation has begun to create its image of memory,
1681 * there's a danger that one of the calls to try_to_free_swap()
1682 * - most probably a call from __try_to_reclaim_swap() while
1683 * hibernation is allocating its own swap pages for the image,
1684 * but conceivably even a call from memory reclaim - will free
1685 * the swap from a page which has already been recorded in the
1686 * image as a clean swapcache page, and then reuse its swap for
1687 * another page of the image. On waking from hibernation, the
1688 * original page might be freed under memory pressure, then
1689 * later read back in from swap, now with the wrong data.
1690 *
1691 * Hibernation suspends storage while it is writing the image
1692 * to disk so check that here.
1693 */
1694 if (pm_suspended_storage())
1695 return 0;
1696
1697 page = compound_head(page);
1698 delete_from_swap_cache(page);
1699 SetPageDirty(page);
1700 return 1;
1701 }
1702
1703 /*
1704 * Free the swap entry like above, but also try to
1705 * free the page cache entry if it is the last user.
1706 */
1707 int free_swap_and_cache(swp_entry_t entry)
1708 {
1709 struct swap_info_struct *p;
1710 unsigned char count;
1711
1712 if (non_swap_entry(entry))
1713 return 1;
1714
1715 p = _swap_info_get(entry);
1716 if (p) {
1717 count = __swap_entry_free(p, entry, 1);
1718 if (count == SWAP_HAS_CACHE &&
1719 !swap_page_trans_huge_swapped(p, entry))
1720 __try_to_reclaim_swap(p, swp_offset(entry),
1721 TTRS_UNMAPPED | TTRS_FULL);
1722 }
1723 return p != NULL;
1724 }
1725
1726 #ifdef CONFIG_HIBERNATION
1727 /*
1728 * Find the swap type that corresponds to given device (if any).
1729 *
1730 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1731 * from 0, in which the swap header is expected to be located.
1732 *
1733 * This is needed for the suspend to disk (aka swsusp).
1734 */
1735 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1736 {
1737 struct block_device *bdev = NULL;
1738 int type;
1739
1740 if (device)
1741 bdev = bdget(device);
1742
1743 spin_lock(&swap_lock);
1744 for (type = 0; type < nr_swapfiles; type++) {
1745 struct swap_info_struct *sis = swap_info[type];
1746
1747 if (!(sis->flags & SWP_WRITEOK))
1748 continue;
1749
1750 if (!bdev) {
1751 if (bdev_p)
1752 *bdev_p = bdgrab(sis->bdev);
1753
1754 spin_unlock(&swap_lock);
1755 return type;
1756 }
1757 if (bdev == sis->bdev) {
1758 struct swap_extent *se = &sis->first_swap_extent;
1759
1760 if (se->start_block == offset) {
1761 if (bdev_p)
1762 *bdev_p = bdgrab(sis->bdev);
1763
1764 spin_unlock(&swap_lock);
1765 bdput(bdev);
1766 return type;
1767 }
1768 }
1769 }
1770 spin_unlock(&swap_lock);
1771 if (bdev)
1772 bdput(bdev);
1773
1774 return -ENODEV;
1775 }
1776
1777 /*
1778 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1779 * corresponding to given index in swap_info (swap type).
1780 */
1781 sector_t swapdev_block(int type, pgoff_t offset)
1782 {
1783 struct block_device *bdev;
1784 struct swap_info_struct *si = swap_type_to_swap_info(type);
1785
1786 if (!si || !(si->flags & SWP_WRITEOK))
1787 return 0;
1788 return map_swap_entry(swp_entry(type, offset), &bdev);
1789 }
1790
1791 /*
1792 * Return either the total number of swap pages of given type, or the number
1793 * of free pages of that type (depending on @free)
1794 *
1795 * This is needed for software suspend
1796 */
1797 unsigned int count_swap_pages(int type, int free)
1798 {
1799 unsigned int n = 0;
1800
1801 spin_lock(&swap_lock);
1802 if ((unsigned int)type < nr_swapfiles) {
1803 struct swap_info_struct *sis = swap_info[type];
1804
1805 spin_lock(&sis->lock);
1806 if (sis->flags & SWP_WRITEOK) {
1807 n = sis->pages;
1808 if (free)
1809 n -= sis->inuse_pages;
1810 }
1811 spin_unlock(&sis->lock);
1812 }
1813 spin_unlock(&swap_lock);
1814 return n;
1815 }
1816 #endif /* CONFIG_HIBERNATION */
1817
1818 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1819 {
1820 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1821 }
1822
1823 /*
1824 * No need to decide whether this PTE shares the swap entry with others,
1825 * just let do_wp_page work it out if a write is requested later - to
1826 * force COW, vm_page_prot omits write permission from any private vma.
1827 */
1828 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1829 unsigned long addr, swp_entry_t entry, struct page *page)
1830 {
1831 struct page *swapcache;
1832 struct mem_cgroup *memcg;
1833 spinlock_t *ptl;
1834 pte_t *pte;
1835 int ret = 1;
1836
1837 swapcache = page;
1838 page = ksm_might_need_to_copy(page, vma, addr);
1839 if (unlikely(!page))
1840 return -ENOMEM;
1841
1842 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1843 &memcg, false)) {
1844 ret = -ENOMEM;
1845 goto out_nolock;
1846 }
1847
1848 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1849 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1850 mem_cgroup_cancel_charge(page, memcg, false);
1851 ret = 0;
1852 goto out;
1853 }
1854
1855 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1856 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1857 get_page(page);
1858 set_pte_at(vma->vm_mm, addr, pte,
1859 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1860 if (page == swapcache) {
1861 page_add_anon_rmap(page, vma, addr, false);
1862 mem_cgroup_commit_charge(page, memcg, true, false);
1863 } else { /* ksm created a completely new copy */
1864 page_add_new_anon_rmap(page, vma, addr, false);
1865 mem_cgroup_commit_charge(page, memcg, false, false);
1866 lru_cache_add_active_or_unevictable(page, vma);
1867 }
1868 swap_free(entry);
1869 /*
1870 * Move the page to the active list so it is not
1871 * immediately swapped out again after swapon.
1872 */
1873 activate_page(page);
1874 out:
1875 pte_unmap_unlock(pte, ptl);
1876 out_nolock:
1877 if (page != swapcache) {
1878 unlock_page(page);
1879 put_page(page);
1880 }
1881 return ret;
1882 }
1883
1884 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1885 unsigned long addr, unsigned long end,
1886 unsigned int type, bool frontswap,
1887 unsigned long *fs_pages_to_unuse)
1888 {
1889 struct page *page;
1890 swp_entry_t entry;
1891 pte_t *pte;
1892 struct swap_info_struct *si;
1893 unsigned long offset;
1894 int ret = 0;
1895 volatile unsigned char *swap_map;
1896
1897 si = swap_info[type];
1898 pte = pte_offset_map(pmd, addr);
1899 do {
1900 struct vm_fault vmf;
1901
1902 if (!is_swap_pte(*pte))
1903 continue;
1904
1905 entry = pte_to_swp_entry(*pte);
1906 if (swp_type(entry) != type)
1907 continue;
1908
1909 offset = swp_offset(entry);
1910 if (frontswap && !frontswap_test(si, offset))
1911 continue;
1912
1913 pte_unmap(pte);
1914 swap_map = &si->swap_map[offset];
1915 vmf.vma = vma;
1916 vmf.address = addr;
1917 vmf.pmd = pmd;
1918 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1919 if (!page) {
1920 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1921 goto try_next;
1922 return -ENOMEM;
1923 }
1924
1925 lock_page(page);
1926 wait_on_page_writeback(page);
1927 ret = unuse_pte(vma, pmd, addr, entry, page);
1928 if (ret < 0) {
1929 unlock_page(page);
1930 put_page(page);
1931 goto out;
1932 }
1933
1934 try_to_free_swap(page);
1935 unlock_page(page);
1936 put_page(page);
1937
1938 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1939 ret = FRONTSWAP_PAGES_UNUSED;
1940 goto out;
1941 }
1942 try_next:
1943 pte = pte_offset_map(pmd, addr);
1944 } while (pte++, addr += PAGE_SIZE, addr != end);
1945 pte_unmap(pte - 1);
1946
1947 ret = 0;
1948 out:
1949 return ret;
1950 }
1951
1952 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1953 unsigned long addr, unsigned long end,
1954 unsigned int type, bool frontswap,
1955 unsigned long *fs_pages_to_unuse)
1956 {
1957 pmd_t *pmd;
1958 unsigned long next;
1959 int ret;
1960
1961 pmd = pmd_offset(pud, addr);
1962 do {
1963 cond_resched();
1964 next = pmd_addr_end(addr, end);
1965 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1966 continue;
1967 ret = unuse_pte_range(vma, pmd, addr, next, type,
1968 frontswap, fs_pages_to_unuse);
1969 if (ret)
1970 return ret;
1971 } while (pmd++, addr = next, addr != end);
1972 return 0;
1973 }
1974
1975 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1976 unsigned long addr, unsigned long end,
1977 unsigned int type, bool frontswap,
1978 unsigned long *fs_pages_to_unuse)
1979 {
1980 pud_t *pud;
1981 unsigned long next;
1982 int ret;
1983
1984 pud = pud_offset(p4d, addr);
1985 do {
1986 next = pud_addr_end(addr, end);
1987 if (pud_none_or_clear_bad(pud))
1988 continue;
1989 ret = unuse_pmd_range(vma, pud, addr, next, type,
1990 frontswap, fs_pages_to_unuse);
1991 if (ret)
1992 return ret;
1993 } while (pud++, addr = next, addr != end);
1994 return 0;
1995 }
1996
1997 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1998 unsigned long addr, unsigned long end,
1999 unsigned int type, bool frontswap,
2000 unsigned long *fs_pages_to_unuse)
2001 {
2002 p4d_t *p4d;
2003 unsigned long next;
2004 int ret;
2005
2006 p4d = p4d_offset(pgd, addr);
2007 do {
2008 next = p4d_addr_end(addr, end);
2009 if (p4d_none_or_clear_bad(p4d))
2010 continue;
2011 ret = unuse_pud_range(vma, p4d, addr, next, type,
2012 frontswap, fs_pages_to_unuse);
2013 if (ret)
2014 return ret;
2015 } while (p4d++, addr = next, addr != end);
2016 return 0;
2017 }
2018
2019 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2020 bool frontswap, unsigned long *fs_pages_to_unuse)
2021 {
2022 pgd_t *pgd;
2023 unsigned long addr, end, next;
2024 int ret;
2025
2026 addr = vma->vm_start;
2027 end = vma->vm_end;
2028
2029 pgd = pgd_offset(vma->vm_mm, addr);
2030 do {
2031 next = pgd_addr_end(addr, end);
2032 if (pgd_none_or_clear_bad(pgd))
2033 continue;
2034 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2035 frontswap, fs_pages_to_unuse);
2036 if (ret)
2037 return ret;
2038 } while (pgd++, addr = next, addr != end);
2039 return 0;
2040 }
2041
2042 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2043 bool frontswap, unsigned long *fs_pages_to_unuse)
2044 {
2045 struct vm_area_struct *vma;
2046 int ret = 0;
2047
2048 down_read(&mm->mmap_sem);
2049 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2050 if (vma->anon_vma) {
2051 ret = unuse_vma(vma, type, frontswap,
2052 fs_pages_to_unuse);
2053 if (ret)
2054 break;
2055 }
2056 cond_resched();
2057 }
2058 up_read(&mm->mmap_sem);
2059 return ret;
2060 }
2061
2062 /*
2063 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2064 * from current position to next entry still in use. Return 0
2065 * if there are no inuse entries after prev till end of the map.
2066 */
2067 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2068 unsigned int prev, bool frontswap)
2069 {
2070 unsigned int i;
2071 unsigned char count;
2072
2073 /*
2074 * No need for swap_lock here: we're just looking
2075 * for whether an entry is in use, not modifying it; false
2076 * hits are okay, and sys_swapoff() has already prevented new
2077 * allocations from this area (while holding swap_lock).
2078 */
2079 for (i = prev + 1; i < si->max; i++) {
2080 count = READ_ONCE(si->swap_map[i]);
2081 if (count && swap_count(count) != SWAP_MAP_BAD)
2082 if (!frontswap || frontswap_test(si, i))
2083 break;
2084 if ((i % LATENCY_LIMIT) == 0)
2085 cond_resched();
2086 }
2087
2088 if (i == si->max)
2089 i = 0;
2090
2091 return i;
2092 }
2093
2094 /*
2095 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2096 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2097 */
2098 int try_to_unuse(unsigned int type, bool frontswap,
2099 unsigned long pages_to_unuse)
2100 {
2101 struct mm_struct *prev_mm;
2102 struct mm_struct *mm;
2103 struct list_head *p;
2104 int retval = 0;
2105 struct swap_info_struct *si = swap_info[type];
2106 struct page *page;
2107 swp_entry_t entry;
2108 unsigned int i;
2109
2110 if (!si->inuse_pages)
2111 return 0;
2112
2113 if (!frontswap)
2114 pages_to_unuse = 0;
2115
2116 retry:
2117 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2118 if (retval)
2119 goto out;
2120
2121 prev_mm = &init_mm;
2122 mmget(prev_mm);
2123
2124 spin_lock(&mmlist_lock);
2125 p = &init_mm.mmlist;
2126 while (si->inuse_pages &&
2127 !signal_pending(current) &&
2128 (p = p->next) != &init_mm.mmlist) {
2129
2130 mm = list_entry(p, struct mm_struct, mmlist);
2131 if (!mmget_not_zero(mm))
2132 continue;
2133 spin_unlock(&mmlist_lock);
2134 mmput(prev_mm);
2135 prev_mm = mm;
2136 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2137
2138 if (retval) {
2139 mmput(prev_mm);
2140 goto out;
2141 }
2142
2143 /*
2144 * Make sure that we aren't completely killing
2145 * interactive performance.
2146 */
2147 cond_resched();
2148 spin_lock(&mmlist_lock);
2149 }
2150 spin_unlock(&mmlist_lock);
2151
2152 mmput(prev_mm);
2153
2154 i = 0;
2155 while (si->inuse_pages &&
2156 !signal_pending(current) &&
2157 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2158
2159 entry = swp_entry(type, i);
2160 page = find_get_page(swap_address_space(entry), i);
2161 if (!page)
2162 continue;
2163
2164 /*
2165 * It is conceivable that a racing task removed this page from
2166 * swap cache just before we acquired the page lock. The page
2167 * might even be back in swap cache on another swap area. But
2168 * that is okay, try_to_free_swap() only removes stale pages.
2169 */
2170 lock_page(page);
2171 wait_on_page_writeback(page);
2172 try_to_free_swap(page);
2173 unlock_page(page);
2174 put_page(page);
2175
2176 /*
2177 * For frontswap, we just need to unuse pages_to_unuse, if
2178 * it was specified. Need not check frontswap again here as
2179 * we already zeroed out pages_to_unuse if not frontswap.
2180 */
2181 if (pages_to_unuse && --pages_to_unuse == 0)
2182 goto out;
2183 }
2184
2185 /*
2186 * Lets check again to see if there are still swap entries in the map.
2187 * If yes, we would need to do retry the unuse logic again.
2188 * Under global memory pressure, swap entries can be reinserted back
2189 * into process space after the mmlist loop above passes over them.
2190 *
2191 * Limit the number of retries? No: when mmget_not_zero() above fails,
2192 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2193 * at its own independent pace; and even shmem_writepage() could have
2194 * been preempted after get_swap_page(), temporarily hiding that swap.
2195 * It's easy and robust (though cpu-intensive) just to keep retrying.
2196 */
2197 if (si->inuse_pages) {
2198 if (!signal_pending(current))
2199 goto retry;
2200 retval = -EINTR;
2201 }
2202 out:
2203 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2204 }
2205
2206 /*
2207 * After a successful try_to_unuse, if no swap is now in use, we know
2208 * we can empty the mmlist. swap_lock must be held on entry and exit.
2209 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2210 * added to the mmlist just after page_duplicate - before would be racy.
2211 */
2212 static void drain_mmlist(void)
2213 {
2214 struct list_head *p, *next;
2215 unsigned int type;
2216
2217 for (type = 0; type < nr_swapfiles; type++)
2218 if (swap_info[type]->inuse_pages)
2219 return;
2220 spin_lock(&mmlist_lock);
2221 list_for_each_safe(p, next, &init_mm.mmlist)
2222 list_del_init(p);
2223 spin_unlock(&mmlist_lock);
2224 }
2225
2226 /*
2227 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2228 * corresponds to page offset for the specified swap entry.
2229 * Note that the type of this function is sector_t, but it returns page offset
2230 * into the bdev, not sector offset.
2231 */
2232 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2233 {
2234 struct swap_info_struct *sis;
2235 struct swap_extent *start_se;
2236 struct swap_extent *se;
2237 pgoff_t offset;
2238
2239 sis = swp_swap_info(entry);
2240 *bdev = sis->bdev;
2241
2242 offset = swp_offset(entry);
2243 start_se = sis->curr_swap_extent;
2244 se = start_se;
2245
2246 for ( ; ; ) {
2247 if (se->start_page <= offset &&
2248 offset < (se->start_page + se->nr_pages)) {
2249 return se->start_block + (offset - se->start_page);
2250 }
2251 se = list_next_entry(se, list);
2252 sis->curr_swap_extent = se;
2253 BUG_ON(se == start_se); /* It *must* be present */
2254 }
2255 }
2256
2257 /*
2258 * Returns the page offset into bdev for the specified page's swap entry.
2259 */
2260 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2261 {
2262 swp_entry_t entry;
2263 entry.val = page_private(page);
2264 return map_swap_entry(entry, bdev);
2265 }
2266
2267 /*
2268 * Free all of a swapdev's extent information
2269 */
2270 static void destroy_swap_extents(struct swap_info_struct *sis)
2271 {
2272 while (!list_empty(&sis->first_swap_extent.list)) {
2273 struct swap_extent *se;
2274
2275 se = list_first_entry(&sis->first_swap_extent.list,
2276 struct swap_extent, list);
2277 list_del(&se->list);
2278 kfree(se);
2279 }
2280
2281 if (sis->flags & SWP_ACTIVATED) {
2282 struct file *swap_file = sis->swap_file;
2283 struct address_space *mapping = swap_file->f_mapping;
2284
2285 sis->flags &= ~SWP_ACTIVATED;
2286 if (mapping->a_ops->swap_deactivate)
2287 mapping->a_ops->swap_deactivate(swap_file);
2288 }
2289 }
2290
2291 /*
2292 * Add a block range (and the corresponding page range) into this swapdev's
2293 * extent list. The extent list is kept sorted in page order.
2294 *
2295 * This function rather assumes that it is called in ascending page order.
2296 */
2297 int
2298 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2299 unsigned long nr_pages, sector_t start_block)
2300 {
2301 struct swap_extent *se;
2302 struct swap_extent *new_se;
2303 struct list_head *lh;
2304
2305 if (start_page == 0) {
2306 se = &sis->first_swap_extent;
2307 sis->curr_swap_extent = se;
2308 se->start_page = 0;
2309 se->nr_pages = nr_pages;
2310 se->start_block = start_block;
2311 return 1;
2312 } else {
2313 lh = sis->first_swap_extent.list.prev; /* Highest extent */
2314 se = list_entry(lh, struct swap_extent, list);
2315 BUG_ON(se->start_page + se->nr_pages != start_page);
2316 if (se->start_block + se->nr_pages == start_block) {
2317 /* Merge it */
2318 se->nr_pages += nr_pages;
2319 return 0;
2320 }
2321 }
2322
2323 /*
2324 * No merge. Insert a new extent, preserving ordering.
2325 */
2326 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2327 if (new_se == NULL)
2328 return -ENOMEM;
2329 new_se->start_page = start_page;
2330 new_se->nr_pages = nr_pages;
2331 new_se->start_block = start_block;
2332
2333 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2334 return 1;
2335 }
2336 EXPORT_SYMBOL_GPL(add_swap_extent);
2337
2338 /*
2339 * A `swap extent' is a simple thing which maps a contiguous range of pages
2340 * onto a contiguous range of disk blocks. An ordered list of swap extents
2341 * is built at swapon time and is then used at swap_writepage/swap_readpage
2342 * time for locating where on disk a page belongs.
2343 *
2344 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2345 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2346 * swap files identically.
2347 *
2348 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2349 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2350 * swapfiles are handled *identically* after swapon time.
2351 *
2352 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2353 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2354 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2355 * requirements, they are simply tossed out - we will never use those blocks
2356 * for swapping.
2357 *
2358 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2359 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2360 * which will scribble on the fs.
2361 *
2362 * The amount of disk space which a single swap extent represents varies.
2363 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2364 * extents in the list. To avoid much list walking, we cache the previous
2365 * search location in `curr_swap_extent', and start new searches from there.
2366 * This is extremely effective. The average number of iterations in
2367 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2368 */
2369 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2370 {
2371 struct file *swap_file = sis->swap_file;
2372 struct address_space *mapping = swap_file->f_mapping;
2373 struct inode *inode = mapping->host;
2374 int ret;
2375
2376 if (S_ISBLK(inode->i_mode)) {
2377 ret = add_swap_extent(sis, 0, sis->max, 0);
2378 *span = sis->pages;
2379 return ret;
2380 }
2381
2382 if (mapping->a_ops->swap_activate) {
2383 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2384 if (ret >= 0)
2385 sis->flags |= SWP_ACTIVATED;
2386 if (!ret) {
2387 sis->flags |= SWP_FS;
2388 ret = add_swap_extent(sis, 0, sis->max, 0);
2389 *span = sis->pages;
2390 }
2391 return ret;
2392 }
2393
2394 return generic_swapfile_activate(sis, swap_file, span);
2395 }
2396
2397 static int swap_node(struct swap_info_struct *p)
2398 {
2399 struct block_device *bdev;
2400
2401 if (p->bdev)
2402 bdev = p->bdev;
2403 else
2404 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2405
2406 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2407 }
2408
2409 static void setup_swap_info(struct swap_info_struct *p, int prio,
2410 unsigned char *swap_map,
2411 struct swap_cluster_info *cluster_info)
2412 {
2413 int i;
2414
2415 if (prio >= 0)
2416 p->prio = prio;
2417 else
2418 p->prio = --least_priority;
2419 /*
2420 * the plist prio is negated because plist ordering is
2421 * low-to-high, while swap ordering is high-to-low
2422 */
2423 p->list.prio = -p->prio;
2424 for_each_node(i) {
2425 if (p->prio >= 0)
2426 p->avail_lists[i].prio = -p->prio;
2427 else {
2428 if (swap_node(p) == i)
2429 p->avail_lists[i].prio = 1;
2430 else
2431 p->avail_lists[i].prio = -p->prio;
2432 }
2433 }
2434 p->swap_map = swap_map;
2435 p->cluster_info = cluster_info;
2436 }
2437
2438 static void _enable_swap_info(struct swap_info_struct *p)
2439 {
2440 p->flags |= SWP_WRITEOK | SWP_VALID;
2441 atomic_long_add(p->pages, &nr_swap_pages);
2442 total_swap_pages += p->pages;
2443
2444 assert_spin_locked(&swap_lock);
2445 /*
2446 * both lists are plists, and thus priority ordered.
2447 * swap_active_head needs to be priority ordered for swapoff(),
2448 * which on removal of any swap_info_struct with an auto-assigned
2449 * (i.e. negative) priority increments the auto-assigned priority
2450 * of any lower-priority swap_info_structs.
2451 * swap_avail_head needs to be priority ordered for get_swap_page(),
2452 * which allocates swap pages from the highest available priority
2453 * swap_info_struct.
2454 */
2455 plist_add(&p->list, &swap_active_head);
2456 add_to_avail_list(p);
2457 }
2458
2459 static void enable_swap_info(struct swap_info_struct *p, int prio,
2460 unsigned char *swap_map,
2461 struct swap_cluster_info *cluster_info,
2462 unsigned long *frontswap_map)
2463 {
2464 frontswap_init(p->type, frontswap_map);
2465 spin_lock(&swap_lock);
2466 spin_lock(&p->lock);
2467 setup_swap_info(p, prio, swap_map, cluster_info);
2468 spin_unlock(&p->lock);
2469 spin_unlock(&swap_lock);
2470 /*
2471 * Guarantee swap_map, cluster_info, etc. fields are valid
2472 * between get/put_swap_device() if SWP_VALID bit is set
2473 */
2474 synchronize_rcu();
2475 spin_lock(&swap_lock);
2476 spin_lock(&p->lock);
2477 _enable_swap_info(p);
2478 spin_unlock(&p->lock);
2479 spin_unlock(&swap_lock);
2480 }
2481
2482 static void reinsert_swap_info(struct swap_info_struct *p)
2483 {
2484 spin_lock(&swap_lock);
2485 spin_lock(&p->lock);
2486 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2487 _enable_swap_info(p);
2488 spin_unlock(&p->lock);
2489 spin_unlock(&swap_lock);
2490 }
2491
2492 bool has_usable_swap(void)
2493 {
2494 bool ret = true;
2495
2496 spin_lock(&swap_lock);
2497 if (plist_head_empty(&swap_active_head))
2498 ret = false;
2499 spin_unlock(&swap_lock);
2500 return ret;
2501 }
2502
2503 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2504 {
2505 struct swap_info_struct *p = NULL;
2506 unsigned char *swap_map;
2507 struct swap_cluster_info *cluster_info;
2508 unsigned long *frontswap_map;
2509 struct file *swap_file, *victim;
2510 struct address_space *mapping;
2511 struct inode *inode;
2512 struct filename *pathname;
2513 int err, found = 0;
2514 unsigned int old_block_size;
2515
2516 if (!capable(CAP_SYS_ADMIN))
2517 return -EPERM;
2518
2519 BUG_ON(!current->mm);
2520
2521 pathname = getname(specialfile);
2522 if (IS_ERR(pathname))
2523 return PTR_ERR(pathname);
2524
2525 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2526 err = PTR_ERR(victim);
2527 if (IS_ERR(victim))
2528 goto out;
2529
2530 mapping = victim->f_mapping;
2531 spin_lock(&swap_lock);
2532 plist_for_each_entry(p, &swap_active_head, list) {
2533 if (p->flags & SWP_WRITEOK) {
2534 if (p->swap_file->f_mapping == mapping) {
2535 found = 1;
2536 break;
2537 }
2538 }
2539 }
2540 if (!found) {
2541 err = -EINVAL;
2542 spin_unlock(&swap_lock);
2543 goto out_dput;
2544 }
2545 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2546 vm_unacct_memory(p->pages);
2547 else {
2548 err = -ENOMEM;
2549 spin_unlock(&swap_lock);
2550 goto out_dput;
2551 }
2552 del_from_avail_list(p);
2553 spin_lock(&p->lock);
2554 if (p->prio < 0) {
2555 struct swap_info_struct *si = p;
2556 int nid;
2557
2558 plist_for_each_entry_continue(si, &swap_active_head, list) {
2559 si->prio++;
2560 si->list.prio--;
2561 for_each_node(nid) {
2562 if (si->avail_lists[nid].prio != 1)
2563 si->avail_lists[nid].prio--;
2564 }
2565 }
2566 least_priority++;
2567 }
2568 plist_del(&p->list, &swap_active_head);
2569 atomic_long_sub(p->pages, &nr_swap_pages);
2570 total_swap_pages -= p->pages;
2571 p->flags &= ~SWP_WRITEOK;
2572 spin_unlock(&p->lock);
2573 spin_unlock(&swap_lock);
2574
2575 disable_swap_slots_cache_lock();
2576
2577 set_current_oom_origin();
2578 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2579 clear_current_oom_origin();
2580
2581 if (err) {
2582 /* re-insert swap space back into swap_list */
2583 reinsert_swap_info(p);
2584 reenable_swap_slots_cache_unlock();
2585 goto out_dput;
2586 }
2587
2588 reenable_swap_slots_cache_unlock();
2589
2590 spin_lock(&swap_lock);
2591 spin_lock(&p->lock);
2592 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2593 spin_unlock(&p->lock);
2594 spin_unlock(&swap_lock);
2595 /*
2596 * wait for swap operations protected by get/put_swap_device()
2597 * to complete
2598 */
2599 synchronize_rcu();
2600
2601 flush_work(&p->discard_work);
2602
2603 destroy_swap_extents(p);
2604 if (p->flags & SWP_CONTINUED)
2605 free_swap_count_continuations(p);
2606
2607 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2608 atomic_dec(&nr_rotate_swap);
2609
2610 mutex_lock(&swapon_mutex);
2611 spin_lock(&swap_lock);
2612 spin_lock(&p->lock);
2613 drain_mmlist();
2614
2615 /* wait for anyone still in scan_swap_map */
2616 p->highest_bit = 0; /* cuts scans short */
2617 while (p->flags >= SWP_SCANNING) {
2618 spin_unlock(&p->lock);
2619 spin_unlock(&swap_lock);
2620 schedule_timeout_uninterruptible(1);
2621 spin_lock(&swap_lock);
2622 spin_lock(&p->lock);
2623 }
2624
2625 swap_file = p->swap_file;
2626 old_block_size = p->old_block_size;
2627 p->swap_file = NULL;
2628 p->max = 0;
2629 swap_map = p->swap_map;
2630 p->swap_map = NULL;
2631 cluster_info = p->cluster_info;
2632 p->cluster_info = NULL;
2633 frontswap_map = frontswap_map_get(p);
2634 spin_unlock(&p->lock);
2635 spin_unlock(&swap_lock);
2636 frontswap_invalidate_area(p->type);
2637 frontswap_map_set(p, NULL);
2638 mutex_unlock(&swapon_mutex);
2639 free_percpu(p->percpu_cluster);
2640 p->percpu_cluster = NULL;
2641 vfree(swap_map);
2642 kvfree(cluster_info);
2643 kvfree(frontswap_map);
2644 /* Destroy swap account information */
2645 swap_cgroup_swapoff(p->type);
2646 exit_swap_address_space(p->type);
2647
2648 inode = mapping->host;
2649 if (S_ISBLK(inode->i_mode)) {
2650 struct block_device *bdev = I_BDEV(inode);
2651 set_blocksize(bdev, old_block_size);
2652 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2653 } else {
2654 inode_lock(inode);
2655 inode->i_flags &= ~S_SWAPFILE;
2656 inode_unlock(inode);
2657 }
2658 filp_close(swap_file, NULL);
2659
2660 /*
2661 * Clear the SWP_USED flag after all resources are freed so that swapon
2662 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2663 * not hold p->lock after we cleared its SWP_WRITEOK.
2664 */
2665 spin_lock(&swap_lock);
2666 p->flags = 0;
2667 spin_unlock(&swap_lock);
2668
2669 err = 0;
2670 atomic_inc(&proc_poll_event);
2671 wake_up_interruptible(&proc_poll_wait);
2672
2673 out_dput:
2674 filp_close(victim, NULL);
2675 out:
2676 putname(pathname);
2677 return err;
2678 }
2679
2680 #ifdef CONFIG_PROC_FS
2681 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2682 {
2683 struct seq_file *seq = file->private_data;
2684
2685 poll_wait(file, &proc_poll_wait, wait);
2686
2687 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2688 seq->poll_event = atomic_read(&proc_poll_event);
2689 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2690 }
2691
2692 return EPOLLIN | EPOLLRDNORM;
2693 }
2694
2695 /* iterator */
2696 static void *swap_start(struct seq_file *swap, loff_t *pos)
2697 {
2698 struct swap_info_struct *si;
2699 int type;
2700 loff_t l = *pos;
2701
2702 mutex_lock(&swapon_mutex);
2703
2704 if (!l)
2705 return SEQ_START_TOKEN;
2706
2707 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2708 if (!(si->flags & SWP_USED) || !si->swap_map)
2709 continue;
2710 if (!--l)
2711 return si;
2712 }
2713
2714 return NULL;
2715 }
2716
2717 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2718 {
2719 struct swap_info_struct *si = v;
2720 int type;
2721
2722 if (v == SEQ_START_TOKEN)
2723 type = 0;
2724 else
2725 type = si->type + 1;
2726
2727 for (; (si = swap_type_to_swap_info(type)); type++) {
2728 if (!(si->flags & SWP_USED) || !si->swap_map)
2729 continue;
2730 ++*pos;
2731 return si;
2732 }
2733
2734 return NULL;
2735 }
2736
2737 static void swap_stop(struct seq_file *swap, void *v)
2738 {
2739 mutex_unlock(&swapon_mutex);
2740 }
2741
2742 static int swap_show(struct seq_file *swap, void *v)
2743 {
2744 struct swap_info_struct *si = v;
2745 struct file *file;
2746 int len;
2747
2748 if (si == SEQ_START_TOKEN) {
2749 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2750 return 0;
2751 }
2752
2753 file = si->swap_file;
2754 len = seq_file_path(swap, file, " \t\n\\");
2755 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2756 len < 40 ? 40 - len : 1, " ",
2757 S_ISBLK(file_inode(file)->i_mode) ?
2758 "partition" : "file\t",
2759 si->pages << (PAGE_SHIFT - 10),
2760 si->inuse_pages << (PAGE_SHIFT - 10),
2761 si->prio);
2762 return 0;
2763 }
2764
2765 static const struct seq_operations swaps_op = {
2766 .start = swap_start,
2767 .next = swap_next,
2768 .stop = swap_stop,
2769 .show = swap_show
2770 };
2771
2772 static int swaps_open(struct inode *inode, struct file *file)
2773 {
2774 struct seq_file *seq;
2775 int ret;
2776
2777 ret = seq_open(file, &swaps_op);
2778 if (ret)
2779 return ret;
2780
2781 seq = file->private_data;
2782 seq->poll_event = atomic_read(&proc_poll_event);
2783 return 0;
2784 }
2785
2786 static const struct file_operations proc_swaps_operations = {
2787 .open = swaps_open,
2788 .read = seq_read,
2789 .llseek = seq_lseek,
2790 .release = seq_release,
2791 .poll = swaps_poll,
2792 };
2793
2794 static int __init procswaps_init(void)
2795 {
2796 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2797 return 0;
2798 }
2799 __initcall(procswaps_init);
2800 #endif /* CONFIG_PROC_FS */
2801
2802 #ifdef MAX_SWAPFILES_CHECK
2803 static int __init max_swapfiles_check(void)
2804 {
2805 MAX_SWAPFILES_CHECK();
2806 return 0;
2807 }
2808 late_initcall(max_swapfiles_check);
2809 #endif
2810
2811 static struct swap_info_struct *alloc_swap_info(void)
2812 {
2813 struct swap_info_struct *p;
2814 unsigned int type;
2815 int i;
2816
2817 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2818 if (!p)
2819 return ERR_PTR(-ENOMEM);
2820
2821 spin_lock(&swap_lock);
2822 for (type = 0; type < nr_swapfiles; type++) {
2823 if (!(swap_info[type]->flags & SWP_USED))
2824 break;
2825 }
2826 if (type >= MAX_SWAPFILES) {
2827 spin_unlock(&swap_lock);
2828 kvfree(p);
2829 return ERR_PTR(-EPERM);
2830 }
2831 if (type >= nr_swapfiles) {
2832 p->type = type;
2833 WRITE_ONCE(swap_info[type], p);
2834 /*
2835 * Write swap_info[type] before nr_swapfiles, in case a
2836 * racing procfs swap_start() or swap_next() is reading them.
2837 * (We never shrink nr_swapfiles, we never free this entry.)
2838 */
2839 smp_wmb();
2840 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2841 } else {
2842 kvfree(p);
2843 p = swap_info[type];
2844 /*
2845 * Do not memset this entry: a racing procfs swap_next()
2846 * would be relying on p->type to remain valid.
2847 */
2848 }
2849 INIT_LIST_HEAD(&p->first_swap_extent.list);
2850 plist_node_init(&p->list, 0);
2851 for_each_node(i)
2852 plist_node_init(&p->avail_lists[i], 0);
2853 p->flags = SWP_USED;
2854 spin_unlock(&swap_lock);
2855 spin_lock_init(&p->lock);
2856 spin_lock_init(&p->cont_lock);
2857
2858 return p;
2859 }
2860
2861 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2862 {
2863 int error;
2864
2865 if (S_ISBLK(inode->i_mode)) {
2866 p->bdev = bdgrab(I_BDEV(inode));
2867 error = blkdev_get(p->bdev,
2868 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2869 if (error < 0) {
2870 p->bdev = NULL;
2871 return error;
2872 }
2873 p->old_block_size = block_size(p->bdev);
2874 error = set_blocksize(p->bdev, PAGE_SIZE);
2875 if (error < 0)
2876 return error;
2877 p->flags |= SWP_BLKDEV;
2878 } else if (S_ISREG(inode->i_mode)) {
2879 p->bdev = inode->i_sb->s_bdev;
2880 inode_lock(inode);
2881 if (IS_SWAPFILE(inode))
2882 return -EBUSY;
2883 } else
2884 return -EINVAL;
2885
2886 return 0;
2887 }
2888
2889
2890 /*
2891 * Find out how many pages are allowed for a single swap device. There
2892 * are two limiting factors:
2893 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2894 * 2) the number of bits in the swap pte, as defined by the different
2895 * architectures.
2896 *
2897 * In order to find the largest possible bit mask, a swap entry with
2898 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2899 * decoded to a swp_entry_t again, and finally the swap offset is
2900 * extracted.
2901 *
2902 * This will mask all the bits from the initial ~0UL mask that can't
2903 * be encoded in either the swp_entry_t or the architecture definition
2904 * of a swap pte.
2905 */
2906 unsigned long generic_max_swapfile_size(void)
2907 {
2908 return swp_offset(pte_to_swp_entry(
2909 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2910 }
2911
2912 /* Can be overridden by an architecture for additional checks. */
2913 __weak unsigned long max_swapfile_size(void)
2914 {
2915 return generic_max_swapfile_size();
2916 }
2917
2918 static unsigned long read_swap_header(struct swap_info_struct *p,
2919 union swap_header *swap_header,
2920 struct inode *inode)
2921 {
2922 int i;
2923 unsigned long maxpages;
2924 unsigned long swapfilepages;
2925 unsigned long last_page;
2926
2927 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2928 pr_err("Unable to find swap-space signature\n");
2929 return 0;
2930 }
2931
2932 /* swap partition endianess hack... */
2933 if (swab32(swap_header->info.version) == 1) {
2934 swab32s(&swap_header->info.version);
2935 swab32s(&swap_header->info.last_page);
2936 swab32s(&swap_header->info.nr_badpages);
2937 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2938 return 0;
2939 for (i = 0; i < swap_header->info.nr_badpages; i++)
2940 swab32s(&swap_header->info.badpages[i]);
2941 }
2942 /* Check the swap header's sub-version */
2943 if (swap_header->info.version != 1) {
2944 pr_warn("Unable to handle swap header version %d\n",
2945 swap_header->info.version);
2946 return 0;
2947 }
2948
2949 p->lowest_bit = 1;
2950 p->cluster_next = 1;
2951 p->cluster_nr = 0;
2952
2953 maxpages = max_swapfile_size();
2954 last_page = swap_header->info.last_page;
2955 if (!last_page) {
2956 pr_warn("Empty swap-file\n");
2957 return 0;
2958 }
2959 if (last_page > maxpages) {
2960 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2961 maxpages << (PAGE_SHIFT - 10),
2962 last_page << (PAGE_SHIFT - 10));
2963 }
2964 if (maxpages > last_page) {
2965 maxpages = last_page + 1;
2966 /* p->max is an unsigned int: don't overflow it */
2967 if ((unsigned int)maxpages == 0)
2968 maxpages = UINT_MAX;
2969 }
2970 p->highest_bit = maxpages - 1;
2971
2972 if (!maxpages)
2973 return 0;
2974 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2975 if (swapfilepages && maxpages > swapfilepages) {
2976 pr_warn("Swap area shorter than signature indicates\n");
2977 return 0;
2978 }
2979 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2980 return 0;
2981 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2982 return 0;
2983
2984 return maxpages;
2985 }
2986
2987 #define SWAP_CLUSTER_INFO_COLS \
2988 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2989 #define SWAP_CLUSTER_SPACE_COLS \
2990 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2991 #define SWAP_CLUSTER_COLS \
2992 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2993
2994 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2995 union swap_header *swap_header,
2996 unsigned char *swap_map,
2997 struct swap_cluster_info *cluster_info,
2998 unsigned long maxpages,
2999 sector_t *span)
3000 {
3001 unsigned int j, k;
3002 unsigned int nr_good_pages;
3003 int nr_extents;
3004 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3005 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3006 unsigned long i, idx;
3007
3008 nr_good_pages = maxpages - 1; /* omit header page */
3009
3010 cluster_list_init(&p->free_clusters);
3011 cluster_list_init(&p->discard_clusters);
3012
3013 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3014 unsigned int page_nr = swap_header->info.badpages[i];
3015 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3016 return -EINVAL;
3017 if (page_nr < maxpages) {
3018 swap_map[page_nr] = SWAP_MAP_BAD;
3019 nr_good_pages--;
3020 /*
3021 * Haven't marked the cluster free yet, no list
3022 * operation involved
3023 */
3024 inc_cluster_info_page(p, cluster_info, page_nr);
3025 }
3026 }
3027
3028 /* Haven't marked the cluster free yet, no list operation involved */
3029 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3030 inc_cluster_info_page(p, cluster_info, i);
3031
3032 if (nr_good_pages) {
3033 swap_map[0] = SWAP_MAP_BAD;
3034 /*
3035 * Not mark the cluster free yet, no list
3036 * operation involved
3037 */
3038 inc_cluster_info_page(p, cluster_info, 0);
3039 p->max = maxpages;
3040 p->pages = nr_good_pages;
3041 nr_extents = setup_swap_extents(p, span);
3042 if (nr_extents < 0)
3043 return nr_extents;
3044 nr_good_pages = p->pages;
3045 }
3046 if (!nr_good_pages) {
3047 pr_warn("Empty swap-file\n");
3048 return -EINVAL;
3049 }
3050
3051 if (!cluster_info)
3052 return nr_extents;
3053
3054
3055 /*
3056 * Reduce false cache line sharing between cluster_info and
3057 * sharing same address space.
3058 */
3059 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3060 j = (k + col) % SWAP_CLUSTER_COLS;
3061 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3062 idx = i * SWAP_CLUSTER_COLS + j;
3063 if (idx >= nr_clusters)
3064 continue;
3065 if (cluster_count(&cluster_info[idx]))
3066 continue;
3067 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3068 cluster_list_add_tail(&p->free_clusters, cluster_info,
3069 idx);
3070 }
3071 }
3072 return nr_extents;
3073 }
3074
3075 /*
3076 * Helper to sys_swapon determining if a given swap
3077 * backing device queue supports DISCARD operations.
3078 */
3079 static bool swap_discardable(struct swap_info_struct *si)
3080 {
3081 struct request_queue *q = bdev_get_queue(si->bdev);
3082
3083 if (!q || !blk_queue_discard(q))
3084 return false;
3085
3086 return true;
3087 }
3088
3089 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3090 {
3091 struct swap_info_struct *p;
3092 struct filename *name;
3093 struct file *swap_file = NULL;
3094 struct address_space *mapping;
3095 int prio;
3096 int error;
3097 union swap_header *swap_header;
3098 int nr_extents;
3099 sector_t span;
3100 unsigned long maxpages;
3101 unsigned char *swap_map = NULL;
3102 struct swap_cluster_info *cluster_info = NULL;
3103 unsigned long *frontswap_map = NULL;
3104 struct page *page = NULL;
3105 struct inode *inode = NULL;
3106 bool inced_nr_rotate_swap = false;
3107
3108 if (swap_flags & ~SWAP_FLAGS_VALID)
3109 return -EINVAL;
3110
3111 if (!capable(CAP_SYS_ADMIN))
3112 return -EPERM;
3113
3114 if (!swap_avail_heads)
3115 return -ENOMEM;
3116
3117 p = alloc_swap_info();
3118 if (IS_ERR(p))
3119 return PTR_ERR(p);
3120
3121 INIT_WORK(&p->discard_work, swap_discard_work);
3122
3123 name = getname(specialfile);
3124 if (IS_ERR(name)) {
3125 error = PTR_ERR(name);
3126 name = NULL;
3127 goto bad_swap;
3128 }
3129 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3130 if (IS_ERR(swap_file)) {
3131 error = PTR_ERR(swap_file);
3132 swap_file = NULL;
3133 goto bad_swap;
3134 }
3135
3136 p->swap_file = swap_file;
3137 mapping = swap_file->f_mapping;
3138 inode = mapping->host;
3139
3140 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3141 error = claim_swapfile(p, inode);
3142 if (unlikely(error))
3143 goto bad_swap;
3144
3145 /*
3146 * Read the swap header.
3147 */
3148 if (!mapping->a_ops->readpage) {
3149 error = -EINVAL;
3150 goto bad_swap;
3151 }
3152 page = read_mapping_page(mapping, 0, swap_file);
3153 if (IS_ERR(page)) {
3154 error = PTR_ERR(page);
3155 goto bad_swap;
3156 }
3157 swap_header = kmap(page);
3158
3159 maxpages = read_swap_header(p, swap_header, inode);
3160 if (unlikely(!maxpages)) {
3161 error = -EINVAL;
3162 goto bad_swap;
3163 }
3164
3165 /* OK, set up the swap map and apply the bad block list */
3166 swap_map = vzalloc(maxpages);
3167 if (!swap_map) {
3168 error = -ENOMEM;
3169 goto bad_swap;
3170 }
3171
3172 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3173 p->flags |= SWP_STABLE_WRITES;
3174
3175 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3176 p->flags |= SWP_SYNCHRONOUS_IO;
3177
3178 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3179 int cpu;
3180 unsigned long ci, nr_cluster;
3181
3182 p->flags |= SWP_SOLIDSTATE;
3183 /*
3184 * select a random position to start with to help wear leveling
3185 * SSD
3186 */
3187 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3188 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3189
3190 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3191 GFP_KERNEL);
3192 if (!cluster_info) {
3193 error = -ENOMEM;
3194 goto bad_swap;
3195 }
3196
3197 for (ci = 0; ci < nr_cluster; ci++)
3198 spin_lock_init(&((cluster_info + ci)->lock));
3199
3200 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3201 if (!p->percpu_cluster) {
3202 error = -ENOMEM;
3203 goto bad_swap;
3204 }
3205 for_each_possible_cpu(cpu) {
3206 struct percpu_cluster *cluster;
3207 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3208 cluster_set_null(&cluster->index);
3209 }
3210 } else {
3211 atomic_inc(&nr_rotate_swap);
3212 inced_nr_rotate_swap = true;
3213 }
3214
3215 error = swap_cgroup_swapon(p->type, maxpages);
3216 if (error)
3217 goto bad_swap;
3218
3219 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3220 cluster_info, maxpages, &span);
3221 if (unlikely(nr_extents < 0)) {
3222 error = nr_extents;
3223 goto bad_swap;
3224 }
3225 /* frontswap enabled? set up bit-per-page map for frontswap */
3226 if (IS_ENABLED(CONFIG_FRONTSWAP))
3227 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3228 sizeof(long),
3229 GFP_KERNEL);
3230
3231 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3232 /*
3233 * When discard is enabled for swap with no particular
3234 * policy flagged, we set all swap discard flags here in
3235 * order to sustain backward compatibility with older
3236 * swapon(8) releases.
3237 */
3238 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3239 SWP_PAGE_DISCARD);
3240
3241 /*
3242 * By flagging sys_swapon, a sysadmin can tell us to
3243 * either do single-time area discards only, or to just
3244 * perform discards for released swap page-clusters.
3245 * Now it's time to adjust the p->flags accordingly.
3246 */
3247 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3248 p->flags &= ~SWP_PAGE_DISCARD;
3249 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3250 p->flags &= ~SWP_AREA_DISCARD;
3251
3252 /* issue a swapon-time discard if it's still required */
3253 if (p->flags & SWP_AREA_DISCARD) {
3254 int err = discard_swap(p);
3255 if (unlikely(err))
3256 pr_err("swapon: discard_swap(%p): %d\n",
3257 p, err);
3258 }
3259 }
3260
3261 error = init_swap_address_space(p->type, maxpages);
3262 if (error)
3263 goto bad_swap;
3264
3265 mutex_lock(&swapon_mutex);
3266 prio = -1;
3267 if (swap_flags & SWAP_FLAG_PREFER)
3268 prio =
3269 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3270 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3271
3272 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3273 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3274 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3275 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3276 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3277 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3278 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3279 (frontswap_map) ? "FS" : "");
3280
3281 mutex_unlock(&swapon_mutex);
3282 atomic_inc(&proc_poll_event);
3283 wake_up_interruptible(&proc_poll_wait);
3284
3285 if (S_ISREG(inode->i_mode))
3286 inode->i_flags |= S_SWAPFILE;
3287 error = 0;
3288 goto out;
3289 bad_swap:
3290 free_percpu(p->percpu_cluster);
3291 p->percpu_cluster = NULL;
3292 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3293 set_blocksize(p->bdev, p->old_block_size);
3294 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3295 }
3296 destroy_swap_extents(p);
3297 swap_cgroup_swapoff(p->type);
3298 spin_lock(&swap_lock);
3299 p->swap_file = NULL;
3300 p->flags = 0;
3301 spin_unlock(&swap_lock);
3302 vfree(swap_map);
3303 kvfree(cluster_info);
3304 kvfree(frontswap_map);
3305 if (inced_nr_rotate_swap)
3306 atomic_dec(&nr_rotate_swap);
3307 if (swap_file) {
3308 if (inode && S_ISREG(inode->i_mode)) {
3309 inode_unlock(inode);
3310 inode = NULL;
3311 }
3312 filp_close(swap_file, NULL);
3313 }
3314 out:
3315 if (page && !IS_ERR(page)) {
3316 kunmap(page);
3317 put_page(page);
3318 }
3319 if (name)
3320 putname(name);
3321 if (inode && S_ISREG(inode->i_mode))
3322 inode_unlock(inode);
3323 if (!error)
3324 enable_swap_slots_cache();
3325 return error;
3326 }
3327
3328 void si_swapinfo(struct sysinfo *val)
3329 {
3330 unsigned int type;
3331 unsigned long nr_to_be_unused = 0;
3332
3333 spin_lock(&swap_lock);
3334 for (type = 0; type < nr_swapfiles; type++) {
3335 struct swap_info_struct *si = swap_info[type];
3336
3337 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3338 nr_to_be_unused += si->inuse_pages;
3339 }
3340 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3341 val->totalswap = total_swap_pages + nr_to_be_unused;
3342 spin_unlock(&swap_lock);
3343 }
3344
3345 /*
3346 * Verify that a swap entry is valid and increment its swap map count.
3347 *
3348 * Returns error code in following case.
3349 * - success -> 0
3350 * - swp_entry is invalid -> EINVAL
3351 * - swp_entry is migration entry -> EINVAL
3352 * - swap-cache reference is requested but there is already one. -> EEXIST
3353 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3354 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3355 */
3356 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3357 {
3358 struct swap_info_struct *p;
3359 struct swap_cluster_info *ci;
3360 unsigned long offset;
3361 unsigned char count;
3362 unsigned char has_cache;
3363 int err = -EINVAL;
3364
3365 p = get_swap_device(entry);
3366 if (!p)
3367 goto out;
3368
3369 offset = swp_offset(entry);
3370 ci = lock_cluster_or_swap_info(p, offset);
3371
3372 count = p->swap_map[offset];
3373
3374 /*
3375 * swapin_readahead() doesn't check if a swap entry is valid, so the
3376 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3377 */
3378 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3379 err = -ENOENT;
3380 goto unlock_out;
3381 }
3382
3383 has_cache = count & SWAP_HAS_CACHE;
3384 count &= ~SWAP_HAS_CACHE;
3385 err = 0;
3386
3387 if (usage == SWAP_HAS_CACHE) {
3388
3389 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3390 if (!has_cache && count)
3391 has_cache = SWAP_HAS_CACHE;
3392 else if (has_cache) /* someone else added cache */
3393 err = -EEXIST;
3394 else /* no users remaining */
3395 err = -ENOENT;
3396
3397 } else if (count || has_cache) {
3398
3399 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3400 count += usage;
3401 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3402 err = -EINVAL;
3403 else if (swap_count_continued(p, offset, count))
3404 count = COUNT_CONTINUED;
3405 else
3406 err = -ENOMEM;
3407 } else
3408 err = -ENOENT; /* unused swap entry */
3409
3410 p->swap_map[offset] = count | has_cache;
3411
3412 unlock_out:
3413 unlock_cluster_or_swap_info(p, ci);
3414 out:
3415 if (p)
3416 put_swap_device(p);
3417 return err;
3418 }
3419
3420 /*
3421 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3422 * (in which case its reference count is never incremented).
3423 */
3424 void swap_shmem_alloc(swp_entry_t entry)
3425 {
3426 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3427 }
3428
3429 /*
3430 * Increase reference count of swap entry by 1.
3431 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3432 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3433 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3434 * might occur if a page table entry has got corrupted.
3435 */
3436 int swap_duplicate(swp_entry_t entry)
3437 {
3438 int err = 0;
3439
3440 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3441 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3442 return err;
3443 }
3444
3445 /*
3446 * @entry: swap entry for which we allocate swap cache.
3447 *
3448 * Called when allocating swap cache for existing swap entry,
3449 * This can return error codes. Returns 0 at success.
3450 * -EBUSY means there is a swap cache.
3451 * Note: return code is different from swap_duplicate().
3452 */
3453 int swapcache_prepare(swp_entry_t entry)
3454 {
3455 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3456 }
3457
3458 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3459 {
3460 return swap_type_to_swap_info(swp_type(entry));
3461 }
3462
3463 struct swap_info_struct *page_swap_info(struct page *page)
3464 {
3465 swp_entry_t entry = { .val = page_private(page) };
3466 return swp_swap_info(entry);
3467 }
3468
3469 /*
3470 * out-of-line __page_file_ methods to avoid include hell.
3471 */
3472 struct address_space *__page_file_mapping(struct page *page)
3473 {
3474 return page_swap_info(page)->swap_file->f_mapping;
3475 }
3476 EXPORT_SYMBOL_GPL(__page_file_mapping);
3477
3478 pgoff_t __page_file_index(struct page *page)
3479 {
3480 swp_entry_t swap = { .val = page_private(page) };
3481 return swp_offset(swap);
3482 }
3483 EXPORT_SYMBOL_GPL(__page_file_index);
3484
3485 /*
3486 * add_swap_count_continuation - called when a swap count is duplicated
3487 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3488 * page of the original vmalloc'ed swap_map, to hold the continuation count
3489 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3490 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3491 *
3492 * These continuation pages are seldom referenced: the common paths all work
3493 * on the original swap_map, only referring to a continuation page when the
3494 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3495 *
3496 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3497 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3498 * can be called after dropping locks.
3499 */
3500 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3501 {
3502 struct swap_info_struct *si;
3503 struct swap_cluster_info *ci;
3504 struct page *head;
3505 struct page *page;
3506 struct page *list_page;
3507 pgoff_t offset;
3508 unsigned char count;
3509 int ret = 0;
3510
3511 /*
3512 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3513 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3514 */
3515 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3516
3517 si = get_swap_device(entry);
3518 if (!si) {
3519 /*
3520 * An acceptable race has occurred since the failing
3521 * __swap_duplicate(): the swap device may be swapoff
3522 */
3523 goto outer;
3524 }
3525 spin_lock(&si->lock);
3526
3527 offset = swp_offset(entry);
3528
3529 ci = lock_cluster(si, offset);
3530
3531 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3532
3533 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3534 /*
3535 * The higher the swap count, the more likely it is that tasks
3536 * will race to add swap count continuation: we need to avoid
3537 * over-provisioning.
3538 */
3539 goto out;
3540 }
3541
3542 if (!page) {
3543 ret = -ENOMEM;
3544 goto out;
3545 }
3546
3547 /*
3548 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3549 * no architecture is using highmem pages for kernel page tables: so it
3550 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3551 */
3552 head = vmalloc_to_page(si->swap_map + offset);
3553 offset &= ~PAGE_MASK;
3554
3555 spin_lock(&si->cont_lock);
3556 /*
3557 * Page allocation does not initialize the page's lru field,
3558 * but it does always reset its private field.
3559 */
3560 if (!page_private(head)) {
3561 BUG_ON(count & COUNT_CONTINUED);
3562 INIT_LIST_HEAD(&head->lru);
3563 set_page_private(head, SWP_CONTINUED);
3564 si->flags |= SWP_CONTINUED;
3565 }
3566
3567 list_for_each_entry(list_page, &head->lru, lru) {
3568 unsigned char *map;
3569
3570 /*
3571 * If the previous map said no continuation, but we've found
3572 * a continuation page, free our allocation and use this one.
3573 */
3574 if (!(count & COUNT_CONTINUED))
3575 goto out_unlock_cont;
3576
3577 map = kmap_atomic(list_page) + offset;
3578 count = *map;
3579 kunmap_atomic(map);
3580
3581 /*
3582 * If this continuation count now has some space in it,
3583 * free our allocation and use this one.
3584 */
3585 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3586 goto out_unlock_cont;
3587 }
3588
3589 list_add_tail(&page->lru, &head->lru);
3590 page = NULL; /* now it's attached, don't free it */
3591 out_unlock_cont:
3592 spin_unlock(&si->cont_lock);
3593 out:
3594 unlock_cluster(ci);
3595 spin_unlock(&si->lock);
3596 put_swap_device(si);
3597 outer:
3598 if (page)
3599 __free_page(page);
3600 return ret;
3601 }
3602
3603 /*
3604 * swap_count_continued - when the original swap_map count is incremented
3605 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3606 * into, carry if so, or else fail until a new continuation page is allocated;
3607 * when the original swap_map count is decremented from 0 with continuation,
3608 * borrow from the continuation and report whether it still holds more.
3609 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3610 * lock.
3611 */
3612 static bool swap_count_continued(struct swap_info_struct *si,
3613 pgoff_t offset, unsigned char count)
3614 {
3615 struct page *head;
3616 struct page *page;
3617 unsigned char *map;
3618 bool ret;
3619
3620 head = vmalloc_to_page(si->swap_map + offset);
3621 if (page_private(head) != SWP_CONTINUED) {
3622 BUG_ON(count & COUNT_CONTINUED);
3623 return false; /* need to add count continuation */
3624 }
3625
3626 spin_lock(&si->cont_lock);
3627 offset &= ~PAGE_MASK;
3628 page = list_entry(head->lru.next, struct page, lru);
3629 map = kmap_atomic(page) + offset;
3630
3631 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3632 goto init_map; /* jump over SWAP_CONT_MAX checks */
3633
3634 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3635 /*
3636 * Think of how you add 1 to 999
3637 */
3638 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3639 kunmap_atomic(map);
3640 page = list_entry(page->lru.next, struct page, lru);
3641 BUG_ON(page == head);
3642 map = kmap_atomic(page) + offset;
3643 }
3644 if (*map == SWAP_CONT_MAX) {
3645 kunmap_atomic(map);
3646 page = list_entry(page->lru.next, struct page, lru);
3647 if (page == head) {
3648 ret = false; /* add count continuation */
3649 goto out;
3650 }
3651 map = kmap_atomic(page) + offset;
3652 init_map: *map = 0; /* we didn't zero the page */
3653 }
3654 *map += 1;
3655 kunmap_atomic(map);
3656 page = list_entry(page->lru.prev, struct page, lru);
3657 while (page != head) {
3658 map = kmap_atomic(page) + offset;
3659 *map = COUNT_CONTINUED;
3660 kunmap_atomic(map);
3661 page = list_entry(page->lru.prev, struct page, lru);
3662 }
3663 ret = true; /* incremented */
3664
3665 } else { /* decrementing */
3666 /*
3667 * Think of how you subtract 1 from 1000
3668 */
3669 BUG_ON(count != COUNT_CONTINUED);
3670 while (*map == COUNT_CONTINUED) {
3671 kunmap_atomic(map);
3672 page = list_entry(page->lru.next, struct page, lru);
3673 BUG_ON(page == head);
3674 map = kmap_atomic(page) + offset;
3675 }
3676 BUG_ON(*map == 0);
3677 *map -= 1;
3678 if (*map == 0)
3679 count = 0;
3680 kunmap_atomic(map);
3681 page = list_entry(page->lru.prev, struct page, lru);
3682 while (page != head) {
3683 map = kmap_atomic(page) + offset;
3684 *map = SWAP_CONT_MAX | count;
3685 count = COUNT_CONTINUED;
3686 kunmap_atomic(map);
3687 page = list_entry(page->lru.prev, struct page, lru);
3688 }
3689 ret = count == COUNT_CONTINUED;
3690 }
3691 out:
3692 spin_unlock(&si->cont_lock);
3693 return ret;
3694 }
3695
3696 /*
3697 * free_swap_count_continuations - swapoff free all the continuation pages
3698 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3699 */
3700 static void free_swap_count_continuations(struct swap_info_struct *si)
3701 {
3702 pgoff_t offset;
3703
3704 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3705 struct page *head;
3706 head = vmalloc_to_page(si->swap_map + offset);
3707 if (page_private(head)) {
3708 struct page *page, *next;
3709
3710 list_for_each_entry_safe(page, next, &head->lru, lru) {
3711 list_del(&page->lru);
3712 __free_page(page);
3713 }
3714 }
3715 }
3716 }
3717
3718 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3719 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3720 gfp_t gfp_mask)
3721 {
3722 struct swap_info_struct *si, *next;
3723 if (!(gfp_mask & __GFP_IO) || !memcg)
3724 return;
3725
3726 if (!blk_cgroup_congested())
3727 return;
3728
3729 /*
3730 * We've already scheduled a throttle, avoid taking the global swap
3731 * lock.
3732 */
3733 if (current->throttle_queue)
3734 return;
3735
3736 spin_lock(&swap_avail_lock);
3737 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3738 avail_lists[node]) {
3739 if (si->bdev) {
3740 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3741 true);
3742 break;
3743 }
3744 }
3745 spin_unlock(&swap_avail_lock);
3746 }
3747 #endif
3748
3749 static int __init swapfile_init(void)
3750 {
3751 int nid;
3752
3753 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3754 GFP_KERNEL);
3755 if (!swap_avail_heads) {
3756 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3757 return -ENOMEM;
3758 }
3759
3760 for_each_node(nid)
3761 plist_head_init(&swap_avail_heads[nid]);
3762
3763 return 0;
3764 }
3765 subsys_initcall(swapfile_init);