]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/swapfile.c
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
104 }
105
106 /* Reclaim the swap entry anyway if possible */
107 #define TTRS_ANYWAY 0x1
108 /*
109 * Reclaim the swap entry if there are no more mappings of the
110 * corresponding page
111 */
112 #define TTRS_UNMAPPED 0x2
113 /* Reclaim the swap entry if swap is getting full*/
114 #define TTRS_FULL 0x4
115
116 /* returns 1 if swap entry is freed */
117 static int __try_to_reclaim_swap(struct swap_info_struct *si,
118 unsigned long offset, unsigned long flags)
119 {
120 swp_entry_t entry = swp_entry(si->type, offset);
121 struct page *page;
122 int ret = 0;
123
124 page = find_get_page(swap_address_space(entry), offset);
125 if (!page)
126 return 0;
127 /*
128 * When this function is called from scan_swap_map_slots() and it's
129 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
130 * here. We have to use trylock for avoiding deadlock. This is a special
131 * case and you should use try_to_free_swap() with explicit lock_page()
132 * in usual operations.
133 */
134 if (trylock_page(page)) {
135 if ((flags & TTRS_ANYWAY) ||
136 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
137 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
138 ret = try_to_free_swap(page);
139 unlock_page(page);
140 }
141 put_page(page);
142 return ret;
143 }
144
145 /*
146 * swapon tell device that all the old swap contents can be discarded,
147 * to allow the swap device to optimize its wear-levelling.
148 */
149 static int discard_swap(struct swap_info_struct *si)
150 {
151 struct swap_extent *se;
152 sector_t start_block;
153 sector_t nr_blocks;
154 int err = 0;
155
156 /* Do not discard the swap header page! */
157 se = &si->first_swap_extent;
158 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
159 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
160 if (nr_blocks) {
161 err = blkdev_issue_discard(si->bdev, start_block,
162 nr_blocks, GFP_KERNEL, 0);
163 if (err)
164 return err;
165 cond_resched();
166 }
167
168 list_for_each_entry(se, &si->first_swap_extent.list, list) {
169 start_block = se->start_block << (PAGE_SHIFT - 9);
170 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
171
172 err = blkdev_issue_discard(si->bdev, start_block,
173 nr_blocks, GFP_KERNEL, 0);
174 if (err)
175 break;
176
177 cond_resched();
178 }
179 return err; /* That will often be -EOPNOTSUPP */
180 }
181
182 /*
183 * swap allocation tell device that a cluster of swap can now be discarded,
184 * to allow the swap device to optimize its wear-levelling.
185 */
186 static void discard_swap_cluster(struct swap_info_struct *si,
187 pgoff_t start_page, pgoff_t nr_pages)
188 {
189 struct swap_extent *se = si->curr_swap_extent;
190 int found_extent = 0;
191
192 while (nr_pages) {
193 if (se->start_page <= start_page &&
194 start_page < se->start_page + se->nr_pages) {
195 pgoff_t offset = start_page - se->start_page;
196 sector_t start_block = se->start_block + offset;
197 sector_t nr_blocks = se->nr_pages - offset;
198
199 if (nr_blocks > nr_pages)
200 nr_blocks = nr_pages;
201 start_page += nr_blocks;
202 nr_pages -= nr_blocks;
203
204 if (!found_extent++)
205 si->curr_swap_extent = se;
206
207 start_block <<= PAGE_SHIFT - 9;
208 nr_blocks <<= PAGE_SHIFT - 9;
209 if (blkdev_issue_discard(si->bdev, start_block,
210 nr_blocks, GFP_NOIO, 0))
211 break;
212 }
213
214 se = list_next_entry(se, list);
215 }
216 }
217
218 #ifdef CONFIG_THP_SWAP
219 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
220
221 #define swap_entry_size(size) (size)
222 #else
223 #define SWAPFILE_CLUSTER 256
224
225 /*
226 * Define swap_entry_size() as constant to let compiler to optimize
227 * out some code if !CONFIG_THP_SWAP
228 */
229 #define swap_entry_size(size) 1
230 #endif
231 #define LATENCY_LIMIT 256
232
233 static inline void cluster_set_flag(struct swap_cluster_info *info,
234 unsigned int flag)
235 {
236 info->flags = flag;
237 }
238
239 static inline unsigned int cluster_count(struct swap_cluster_info *info)
240 {
241 return info->data;
242 }
243
244 static inline void cluster_set_count(struct swap_cluster_info *info,
245 unsigned int c)
246 {
247 info->data = c;
248 }
249
250 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
251 unsigned int c, unsigned int f)
252 {
253 info->flags = f;
254 info->data = c;
255 }
256
257 static inline unsigned int cluster_next(struct swap_cluster_info *info)
258 {
259 return info->data;
260 }
261
262 static inline void cluster_set_next(struct swap_cluster_info *info,
263 unsigned int n)
264 {
265 info->data = n;
266 }
267
268 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
269 unsigned int n, unsigned int f)
270 {
271 info->flags = f;
272 info->data = n;
273 }
274
275 static inline bool cluster_is_free(struct swap_cluster_info *info)
276 {
277 return info->flags & CLUSTER_FLAG_FREE;
278 }
279
280 static inline bool cluster_is_null(struct swap_cluster_info *info)
281 {
282 return info->flags & CLUSTER_FLAG_NEXT_NULL;
283 }
284
285 static inline void cluster_set_null(struct swap_cluster_info *info)
286 {
287 info->flags = CLUSTER_FLAG_NEXT_NULL;
288 info->data = 0;
289 }
290
291 static inline bool cluster_is_huge(struct swap_cluster_info *info)
292 {
293 if (IS_ENABLED(CONFIG_THP_SWAP))
294 return info->flags & CLUSTER_FLAG_HUGE;
295 return false;
296 }
297
298 static inline void cluster_clear_huge(struct swap_cluster_info *info)
299 {
300 info->flags &= ~CLUSTER_FLAG_HUGE;
301 }
302
303 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
304 unsigned long offset)
305 {
306 struct swap_cluster_info *ci;
307
308 ci = si->cluster_info;
309 if (ci) {
310 ci += offset / SWAPFILE_CLUSTER;
311 spin_lock(&ci->lock);
312 }
313 return ci;
314 }
315
316 static inline void unlock_cluster(struct swap_cluster_info *ci)
317 {
318 if (ci)
319 spin_unlock(&ci->lock);
320 }
321
322 /*
323 * Determine the locking method in use for this device. Return
324 * swap_cluster_info if SSD-style cluster-based locking is in place.
325 */
326 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
327 struct swap_info_struct *si, unsigned long offset)
328 {
329 struct swap_cluster_info *ci;
330
331 /* Try to use fine-grained SSD-style locking if available: */
332 ci = lock_cluster(si, offset);
333 /* Otherwise, fall back to traditional, coarse locking: */
334 if (!ci)
335 spin_lock(&si->lock);
336
337 return ci;
338 }
339
340 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
341 struct swap_cluster_info *ci)
342 {
343 if (ci)
344 unlock_cluster(ci);
345 else
346 spin_unlock(&si->lock);
347 }
348
349 static inline bool cluster_list_empty(struct swap_cluster_list *list)
350 {
351 return cluster_is_null(&list->head);
352 }
353
354 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
355 {
356 return cluster_next(&list->head);
357 }
358
359 static void cluster_list_init(struct swap_cluster_list *list)
360 {
361 cluster_set_null(&list->head);
362 cluster_set_null(&list->tail);
363 }
364
365 static void cluster_list_add_tail(struct swap_cluster_list *list,
366 struct swap_cluster_info *ci,
367 unsigned int idx)
368 {
369 if (cluster_list_empty(list)) {
370 cluster_set_next_flag(&list->head, idx, 0);
371 cluster_set_next_flag(&list->tail, idx, 0);
372 } else {
373 struct swap_cluster_info *ci_tail;
374 unsigned int tail = cluster_next(&list->tail);
375
376 /*
377 * Nested cluster lock, but both cluster locks are
378 * only acquired when we held swap_info_struct->lock
379 */
380 ci_tail = ci + tail;
381 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
382 cluster_set_next(ci_tail, idx);
383 spin_unlock(&ci_tail->lock);
384 cluster_set_next_flag(&list->tail, idx, 0);
385 }
386 }
387
388 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
389 struct swap_cluster_info *ci)
390 {
391 unsigned int idx;
392
393 idx = cluster_next(&list->head);
394 if (cluster_next(&list->tail) == idx) {
395 cluster_set_null(&list->head);
396 cluster_set_null(&list->tail);
397 } else
398 cluster_set_next_flag(&list->head,
399 cluster_next(&ci[idx]), 0);
400
401 return idx;
402 }
403
404 /* Add a cluster to discard list and schedule it to do discard */
405 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
406 unsigned int idx)
407 {
408 /*
409 * If scan_swap_map() can't find a free cluster, it will check
410 * si->swap_map directly. To make sure the discarding cluster isn't
411 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
412 * will be cleared after discard
413 */
414 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
415 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
416
417 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
418
419 schedule_work(&si->discard_work);
420 }
421
422 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
423 {
424 struct swap_cluster_info *ci = si->cluster_info;
425
426 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
427 cluster_list_add_tail(&si->free_clusters, ci, idx);
428 }
429
430 /*
431 * Doing discard actually. After a cluster discard is finished, the cluster
432 * will be added to free cluster list. caller should hold si->lock.
433 */
434 static void swap_do_scheduled_discard(struct swap_info_struct *si)
435 {
436 struct swap_cluster_info *info, *ci;
437 unsigned int idx;
438
439 info = si->cluster_info;
440
441 while (!cluster_list_empty(&si->discard_clusters)) {
442 idx = cluster_list_del_first(&si->discard_clusters, info);
443 spin_unlock(&si->lock);
444
445 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
446 SWAPFILE_CLUSTER);
447
448 spin_lock(&si->lock);
449 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
450 __free_cluster(si, idx);
451 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
452 0, SWAPFILE_CLUSTER);
453 unlock_cluster(ci);
454 }
455 }
456
457 static void swap_discard_work(struct work_struct *work)
458 {
459 struct swap_info_struct *si;
460
461 si = container_of(work, struct swap_info_struct, discard_work);
462
463 spin_lock(&si->lock);
464 swap_do_scheduled_discard(si);
465 spin_unlock(&si->lock);
466 }
467
468 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 struct swap_cluster_info *ci = si->cluster_info;
471
472 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
473 cluster_list_del_first(&si->free_clusters, ci);
474 cluster_set_count_flag(ci + idx, 0, 0);
475 }
476
477 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479 struct swap_cluster_info *ci = si->cluster_info + idx;
480
481 VM_BUG_ON(cluster_count(ci) != 0);
482 /*
483 * If the swap is discardable, prepare discard the cluster
484 * instead of free it immediately. The cluster will be freed
485 * after discard.
486 */
487 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
488 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
489 swap_cluster_schedule_discard(si, idx);
490 return;
491 }
492
493 __free_cluster(si, idx);
494 }
495
496 /*
497 * The cluster corresponding to page_nr will be used. The cluster will be
498 * removed from free cluster list and its usage counter will be increased.
499 */
500 static void inc_cluster_info_page(struct swap_info_struct *p,
501 struct swap_cluster_info *cluster_info, unsigned long page_nr)
502 {
503 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
504
505 if (!cluster_info)
506 return;
507 if (cluster_is_free(&cluster_info[idx]))
508 alloc_cluster(p, idx);
509
510 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
511 cluster_set_count(&cluster_info[idx],
512 cluster_count(&cluster_info[idx]) + 1);
513 }
514
515 /*
516 * The cluster corresponding to page_nr decreases one usage. If the usage
517 * counter becomes 0, which means no page in the cluster is in using, we can
518 * optionally discard the cluster and add it to free cluster list.
519 */
520 static void dec_cluster_info_page(struct swap_info_struct *p,
521 struct swap_cluster_info *cluster_info, unsigned long page_nr)
522 {
523 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
524
525 if (!cluster_info)
526 return;
527
528 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
529 cluster_set_count(&cluster_info[idx],
530 cluster_count(&cluster_info[idx]) - 1);
531
532 if (cluster_count(&cluster_info[idx]) == 0)
533 free_cluster(p, idx);
534 }
535
536 /*
537 * It's possible scan_swap_map() uses a free cluster in the middle of free
538 * cluster list. Avoiding such abuse to avoid list corruption.
539 */
540 static bool
541 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
542 unsigned long offset)
543 {
544 struct percpu_cluster *percpu_cluster;
545 bool conflict;
546
547 offset /= SWAPFILE_CLUSTER;
548 conflict = !cluster_list_empty(&si->free_clusters) &&
549 offset != cluster_list_first(&si->free_clusters) &&
550 cluster_is_free(&si->cluster_info[offset]);
551
552 if (!conflict)
553 return false;
554
555 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
556 cluster_set_null(&percpu_cluster->index);
557 return true;
558 }
559
560 /*
561 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
562 * might involve allocating a new cluster for current CPU too.
563 */
564 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
565 unsigned long *offset, unsigned long *scan_base)
566 {
567 struct percpu_cluster *cluster;
568 struct swap_cluster_info *ci;
569 bool found_free;
570 unsigned long tmp, max;
571
572 new_cluster:
573 cluster = this_cpu_ptr(si->percpu_cluster);
574 if (cluster_is_null(&cluster->index)) {
575 if (!cluster_list_empty(&si->free_clusters)) {
576 cluster->index = si->free_clusters.head;
577 cluster->next = cluster_next(&cluster->index) *
578 SWAPFILE_CLUSTER;
579 } else if (!cluster_list_empty(&si->discard_clusters)) {
580 /*
581 * we don't have free cluster but have some clusters in
582 * discarding, do discard now and reclaim them
583 */
584 swap_do_scheduled_discard(si);
585 *scan_base = *offset = si->cluster_next;
586 goto new_cluster;
587 } else
588 return false;
589 }
590
591 found_free = false;
592
593 /*
594 * Other CPUs can use our cluster if they can't find a free cluster,
595 * check if there is still free entry in the cluster
596 */
597 tmp = cluster->next;
598 max = min_t(unsigned long, si->max,
599 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
600 if (tmp >= max) {
601 cluster_set_null(&cluster->index);
602 goto new_cluster;
603 }
604 ci = lock_cluster(si, tmp);
605 while (tmp < max) {
606 if (!si->swap_map[tmp]) {
607 found_free = true;
608 break;
609 }
610 tmp++;
611 }
612 unlock_cluster(ci);
613 if (!found_free) {
614 cluster_set_null(&cluster->index);
615 goto new_cluster;
616 }
617 cluster->next = tmp + 1;
618 *offset = tmp;
619 *scan_base = tmp;
620 return found_free;
621 }
622
623 static void __del_from_avail_list(struct swap_info_struct *p)
624 {
625 int nid;
626
627 for_each_node(nid)
628 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
629 }
630
631 static void del_from_avail_list(struct swap_info_struct *p)
632 {
633 spin_lock(&swap_avail_lock);
634 __del_from_avail_list(p);
635 spin_unlock(&swap_avail_lock);
636 }
637
638 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
639 unsigned int nr_entries)
640 {
641 unsigned int end = offset + nr_entries - 1;
642
643 if (offset == si->lowest_bit)
644 si->lowest_bit += nr_entries;
645 if (end == si->highest_bit)
646 si->highest_bit -= nr_entries;
647 si->inuse_pages += nr_entries;
648 if (si->inuse_pages == si->pages) {
649 si->lowest_bit = si->max;
650 si->highest_bit = 0;
651 del_from_avail_list(si);
652 }
653 }
654
655 static void add_to_avail_list(struct swap_info_struct *p)
656 {
657 int nid;
658
659 spin_lock(&swap_avail_lock);
660 for_each_node(nid) {
661 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
662 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
663 }
664 spin_unlock(&swap_avail_lock);
665 }
666
667 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
668 unsigned int nr_entries)
669 {
670 unsigned long end = offset + nr_entries - 1;
671 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
672
673 if (offset < si->lowest_bit)
674 si->lowest_bit = offset;
675 if (end > si->highest_bit) {
676 bool was_full = !si->highest_bit;
677
678 si->highest_bit = end;
679 if (was_full && (si->flags & SWP_WRITEOK))
680 add_to_avail_list(si);
681 }
682 atomic_long_add(nr_entries, &nr_swap_pages);
683 si->inuse_pages -= nr_entries;
684 if (si->flags & SWP_BLKDEV)
685 swap_slot_free_notify =
686 si->bdev->bd_disk->fops->swap_slot_free_notify;
687 else
688 swap_slot_free_notify = NULL;
689 while (offset <= end) {
690 frontswap_invalidate_page(si->type, offset);
691 if (swap_slot_free_notify)
692 swap_slot_free_notify(si->bdev, offset);
693 offset++;
694 }
695 }
696
697 static int scan_swap_map_slots(struct swap_info_struct *si,
698 unsigned char usage, int nr,
699 swp_entry_t slots[])
700 {
701 struct swap_cluster_info *ci;
702 unsigned long offset;
703 unsigned long scan_base;
704 unsigned long last_in_cluster = 0;
705 int latency_ration = LATENCY_LIMIT;
706 int n_ret = 0;
707
708 if (nr > SWAP_BATCH)
709 nr = SWAP_BATCH;
710
711 /*
712 * We try to cluster swap pages by allocating them sequentially
713 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
714 * way, however, we resort to first-free allocation, starting
715 * a new cluster. This prevents us from scattering swap pages
716 * all over the entire swap partition, so that we reduce
717 * overall disk seek times between swap pages. -- sct
718 * But we do now try to find an empty cluster. -Andrea
719 * And we let swap pages go all over an SSD partition. Hugh
720 */
721
722 si->flags += SWP_SCANNING;
723 scan_base = offset = si->cluster_next;
724
725 /* SSD algorithm */
726 if (si->cluster_info) {
727 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
728 goto checks;
729 else
730 goto scan;
731 }
732
733 if (unlikely(!si->cluster_nr--)) {
734 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
735 si->cluster_nr = SWAPFILE_CLUSTER - 1;
736 goto checks;
737 }
738
739 spin_unlock(&si->lock);
740
741 /*
742 * If seek is expensive, start searching for new cluster from
743 * start of partition, to minimize the span of allocated swap.
744 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
745 * case, just handled by scan_swap_map_try_ssd_cluster() above.
746 */
747 scan_base = offset = si->lowest_bit;
748 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
749
750 /* Locate the first empty (unaligned) cluster */
751 for (; last_in_cluster <= si->highest_bit; offset++) {
752 if (si->swap_map[offset])
753 last_in_cluster = offset + SWAPFILE_CLUSTER;
754 else if (offset == last_in_cluster) {
755 spin_lock(&si->lock);
756 offset -= SWAPFILE_CLUSTER - 1;
757 si->cluster_next = offset;
758 si->cluster_nr = SWAPFILE_CLUSTER - 1;
759 goto checks;
760 }
761 if (unlikely(--latency_ration < 0)) {
762 cond_resched();
763 latency_ration = LATENCY_LIMIT;
764 }
765 }
766
767 offset = scan_base;
768 spin_lock(&si->lock);
769 si->cluster_nr = SWAPFILE_CLUSTER - 1;
770 }
771
772 checks:
773 if (si->cluster_info) {
774 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
775 /* take a break if we already got some slots */
776 if (n_ret)
777 goto done;
778 if (!scan_swap_map_try_ssd_cluster(si, &offset,
779 &scan_base))
780 goto scan;
781 }
782 }
783 if (!(si->flags & SWP_WRITEOK))
784 goto no_page;
785 if (!si->highest_bit)
786 goto no_page;
787 if (offset > si->highest_bit)
788 scan_base = offset = si->lowest_bit;
789
790 ci = lock_cluster(si, offset);
791 /* reuse swap entry of cache-only swap if not busy. */
792 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
793 int swap_was_freed;
794 unlock_cluster(ci);
795 spin_unlock(&si->lock);
796 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
797 spin_lock(&si->lock);
798 /* entry was freed successfully, try to use this again */
799 if (swap_was_freed)
800 goto checks;
801 goto scan; /* check next one */
802 }
803
804 if (si->swap_map[offset]) {
805 unlock_cluster(ci);
806 if (!n_ret)
807 goto scan;
808 else
809 goto done;
810 }
811 si->swap_map[offset] = usage;
812 inc_cluster_info_page(si, si->cluster_info, offset);
813 unlock_cluster(ci);
814
815 swap_range_alloc(si, offset, 1);
816 si->cluster_next = offset + 1;
817 slots[n_ret++] = swp_entry(si->type, offset);
818
819 /* got enough slots or reach max slots? */
820 if ((n_ret == nr) || (offset >= si->highest_bit))
821 goto done;
822
823 /* search for next available slot */
824
825 /* time to take a break? */
826 if (unlikely(--latency_ration < 0)) {
827 if (n_ret)
828 goto done;
829 spin_unlock(&si->lock);
830 cond_resched();
831 spin_lock(&si->lock);
832 latency_ration = LATENCY_LIMIT;
833 }
834
835 /* try to get more slots in cluster */
836 if (si->cluster_info) {
837 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838 goto checks;
839 else
840 goto done;
841 }
842 /* non-ssd case */
843 ++offset;
844
845 /* non-ssd case, still more slots in cluster? */
846 if (si->cluster_nr && !si->swap_map[offset]) {
847 --si->cluster_nr;
848 goto checks;
849 }
850
851 done:
852 si->flags -= SWP_SCANNING;
853 return n_ret;
854
855 scan:
856 spin_unlock(&si->lock);
857 while (++offset <= si->highest_bit) {
858 if (!si->swap_map[offset]) {
859 spin_lock(&si->lock);
860 goto checks;
861 }
862 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
863 spin_lock(&si->lock);
864 goto checks;
865 }
866 if (unlikely(--latency_ration < 0)) {
867 cond_resched();
868 latency_ration = LATENCY_LIMIT;
869 }
870 }
871 offset = si->lowest_bit;
872 while (offset < scan_base) {
873 if (!si->swap_map[offset]) {
874 spin_lock(&si->lock);
875 goto checks;
876 }
877 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
878 spin_lock(&si->lock);
879 goto checks;
880 }
881 if (unlikely(--latency_ration < 0)) {
882 cond_resched();
883 latency_ration = LATENCY_LIMIT;
884 }
885 offset++;
886 }
887 spin_lock(&si->lock);
888
889 no_page:
890 si->flags -= SWP_SCANNING;
891 return n_ret;
892 }
893
894 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
895 {
896 unsigned long idx;
897 struct swap_cluster_info *ci;
898 unsigned long offset, i;
899 unsigned char *map;
900
901 /*
902 * Should not even be attempting cluster allocations when huge
903 * page swap is disabled. Warn and fail the allocation.
904 */
905 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
906 VM_WARN_ON_ONCE(1);
907 return 0;
908 }
909
910 if (cluster_list_empty(&si->free_clusters))
911 return 0;
912
913 idx = cluster_list_first(&si->free_clusters);
914 offset = idx * SWAPFILE_CLUSTER;
915 ci = lock_cluster(si, offset);
916 alloc_cluster(si, idx);
917 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
918
919 map = si->swap_map + offset;
920 for (i = 0; i < SWAPFILE_CLUSTER; i++)
921 map[i] = SWAP_HAS_CACHE;
922 unlock_cluster(ci);
923 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
924 *slot = swp_entry(si->type, offset);
925
926 return 1;
927 }
928
929 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
930 {
931 unsigned long offset = idx * SWAPFILE_CLUSTER;
932 struct swap_cluster_info *ci;
933
934 ci = lock_cluster(si, offset);
935 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
936 cluster_set_count_flag(ci, 0, 0);
937 free_cluster(si, idx);
938 unlock_cluster(ci);
939 swap_range_free(si, offset, SWAPFILE_CLUSTER);
940 }
941
942 static unsigned long scan_swap_map(struct swap_info_struct *si,
943 unsigned char usage)
944 {
945 swp_entry_t entry;
946 int n_ret;
947
948 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
949
950 if (n_ret)
951 return swp_offset(entry);
952 else
953 return 0;
954
955 }
956
957 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
958 {
959 unsigned long size = swap_entry_size(entry_size);
960 struct swap_info_struct *si, *next;
961 long avail_pgs;
962 int n_ret = 0;
963 int node;
964
965 /* Only single cluster request supported */
966 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
967
968 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
969 if (avail_pgs <= 0)
970 goto noswap;
971
972 if (n_goal > SWAP_BATCH)
973 n_goal = SWAP_BATCH;
974
975 if (n_goal > avail_pgs)
976 n_goal = avail_pgs;
977
978 atomic_long_sub(n_goal * size, &nr_swap_pages);
979
980 spin_lock(&swap_avail_lock);
981
982 start_over:
983 node = numa_node_id();
984 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
985 /* requeue si to after same-priority siblings */
986 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
987 spin_unlock(&swap_avail_lock);
988 spin_lock(&si->lock);
989 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
990 spin_lock(&swap_avail_lock);
991 if (plist_node_empty(&si->avail_lists[node])) {
992 spin_unlock(&si->lock);
993 goto nextsi;
994 }
995 WARN(!si->highest_bit,
996 "swap_info %d in list but !highest_bit\n",
997 si->type);
998 WARN(!(si->flags & SWP_WRITEOK),
999 "swap_info %d in list but !SWP_WRITEOK\n",
1000 si->type);
1001 __del_from_avail_list(si);
1002 spin_unlock(&si->lock);
1003 goto nextsi;
1004 }
1005 if (size == SWAPFILE_CLUSTER) {
1006 if (!(si->flags & SWP_FS))
1007 n_ret = swap_alloc_cluster(si, swp_entries);
1008 } else
1009 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1010 n_goal, swp_entries);
1011 spin_unlock(&si->lock);
1012 if (n_ret || size == SWAPFILE_CLUSTER)
1013 goto check_out;
1014 pr_debug("scan_swap_map of si %d failed to find offset\n",
1015 si->type);
1016
1017 spin_lock(&swap_avail_lock);
1018 nextsi:
1019 /*
1020 * if we got here, it's likely that si was almost full before,
1021 * and since scan_swap_map() can drop the si->lock, multiple
1022 * callers probably all tried to get a page from the same si
1023 * and it filled up before we could get one; or, the si filled
1024 * up between us dropping swap_avail_lock and taking si->lock.
1025 * Since we dropped the swap_avail_lock, the swap_avail_head
1026 * list may have been modified; so if next is still in the
1027 * swap_avail_head list then try it, otherwise start over
1028 * if we have not gotten any slots.
1029 */
1030 if (plist_node_empty(&next->avail_lists[node]))
1031 goto start_over;
1032 }
1033
1034 spin_unlock(&swap_avail_lock);
1035
1036 check_out:
1037 if (n_ret < n_goal)
1038 atomic_long_add((long)(n_goal - n_ret) * size,
1039 &nr_swap_pages);
1040 noswap:
1041 return n_ret;
1042 }
1043
1044 /* The only caller of this function is now suspend routine */
1045 swp_entry_t get_swap_page_of_type(int type)
1046 {
1047 struct swap_info_struct *si;
1048 pgoff_t offset;
1049
1050 si = swap_info[type];
1051 spin_lock(&si->lock);
1052 if (si && (si->flags & SWP_WRITEOK)) {
1053 atomic_long_dec(&nr_swap_pages);
1054 /* This is called for allocating swap entry, not cache */
1055 offset = scan_swap_map(si, 1);
1056 if (offset) {
1057 spin_unlock(&si->lock);
1058 return swp_entry(type, offset);
1059 }
1060 atomic_long_inc(&nr_swap_pages);
1061 }
1062 spin_unlock(&si->lock);
1063 return (swp_entry_t) {0};
1064 }
1065
1066 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1067 {
1068 struct swap_info_struct *p;
1069 unsigned long offset, type;
1070
1071 if (!entry.val)
1072 goto out;
1073 type = swp_type(entry);
1074 if (type >= nr_swapfiles)
1075 goto bad_nofile;
1076 p = swap_info[type];
1077 if (!(p->flags & SWP_USED))
1078 goto bad_device;
1079 offset = swp_offset(entry);
1080 if (offset >= p->max)
1081 goto bad_offset;
1082 return p;
1083
1084 bad_offset:
1085 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1086 goto out;
1087 bad_device:
1088 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1089 goto out;
1090 bad_nofile:
1091 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1092 out:
1093 return NULL;
1094 }
1095
1096 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1097 {
1098 struct swap_info_struct *p;
1099
1100 p = __swap_info_get(entry);
1101 if (!p)
1102 goto out;
1103 if (!p->swap_map[swp_offset(entry)])
1104 goto bad_free;
1105 return p;
1106
1107 bad_free:
1108 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1109 goto out;
1110 out:
1111 return NULL;
1112 }
1113
1114 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1115 {
1116 struct swap_info_struct *p;
1117
1118 p = _swap_info_get(entry);
1119 if (p)
1120 spin_lock(&p->lock);
1121 return p;
1122 }
1123
1124 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1125 struct swap_info_struct *q)
1126 {
1127 struct swap_info_struct *p;
1128
1129 p = _swap_info_get(entry);
1130
1131 if (p != q) {
1132 if (q != NULL)
1133 spin_unlock(&q->lock);
1134 if (p != NULL)
1135 spin_lock(&p->lock);
1136 }
1137 return p;
1138 }
1139
1140 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1141 unsigned long offset,
1142 unsigned char usage)
1143 {
1144 unsigned char count;
1145 unsigned char has_cache;
1146
1147 count = p->swap_map[offset];
1148
1149 has_cache = count & SWAP_HAS_CACHE;
1150 count &= ~SWAP_HAS_CACHE;
1151
1152 if (usage == SWAP_HAS_CACHE) {
1153 VM_BUG_ON(!has_cache);
1154 has_cache = 0;
1155 } else if (count == SWAP_MAP_SHMEM) {
1156 /*
1157 * Or we could insist on shmem.c using a special
1158 * swap_shmem_free() and free_shmem_swap_and_cache()...
1159 */
1160 count = 0;
1161 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1162 if (count == COUNT_CONTINUED) {
1163 if (swap_count_continued(p, offset, count))
1164 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1165 else
1166 count = SWAP_MAP_MAX;
1167 } else
1168 count--;
1169 }
1170
1171 usage = count | has_cache;
1172 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1173
1174 return usage;
1175 }
1176
1177 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1178 swp_entry_t entry, unsigned char usage)
1179 {
1180 struct swap_cluster_info *ci;
1181 unsigned long offset = swp_offset(entry);
1182
1183 ci = lock_cluster_or_swap_info(p, offset);
1184 usage = __swap_entry_free_locked(p, offset, usage);
1185 unlock_cluster_or_swap_info(p, ci);
1186 if (!usage)
1187 free_swap_slot(entry);
1188
1189 return usage;
1190 }
1191
1192 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1193 {
1194 struct swap_cluster_info *ci;
1195 unsigned long offset = swp_offset(entry);
1196 unsigned char count;
1197
1198 ci = lock_cluster(p, offset);
1199 count = p->swap_map[offset];
1200 VM_BUG_ON(count != SWAP_HAS_CACHE);
1201 p->swap_map[offset] = 0;
1202 dec_cluster_info_page(p, p->cluster_info, offset);
1203 unlock_cluster(ci);
1204
1205 mem_cgroup_uncharge_swap(entry, 1);
1206 swap_range_free(p, offset, 1);
1207 }
1208
1209 /*
1210 * Caller has made sure that the swap device corresponding to entry
1211 * is still around or has not been recycled.
1212 */
1213 void swap_free(swp_entry_t entry)
1214 {
1215 struct swap_info_struct *p;
1216
1217 p = _swap_info_get(entry);
1218 if (p)
1219 __swap_entry_free(p, entry, 1);
1220 }
1221
1222 /*
1223 * Called after dropping swapcache to decrease refcnt to swap entries.
1224 */
1225 void put_swap_page(struct page *page, swp_entry_t entry)
1226 {
1227 unsigned long offset = swp_offset(entry);
1228 unsigned long idx = offset / SWAPFILE_CLUSTER;
1229 struct swap_cluster_info *ci;
1230 struct swap_info_struct *si;
1231 unsigned char *map;
1232 unsigned int i, free_entries = 0;
1233 unsigned char val;
1234 int size = swap_entry_size(hpage_nr_pages(page));
1235
1236 si = _swap_info_get(entry);
1237 if (!si)
1238 return;
1239
1240 ci = lock_cluster_or_swap_info(si, offset);
1241 if (size == SWAPFILE_CLUSTER) {
1242 VM_BUG_ON(!cluster_is_huge(ci));
1243 map = si->swap_map + offset;
1244 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1245 val = map[i];
1246 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1247 if (val == SWAP_HAS_CACHE)
1248 free_entries++;
1249 }
1250 cluster_clear_huge(ci);
1251 if (free_entries == SWAPFILE_CLUSTER) {
1252 unlock_cluster_or_swap_info(si, ci);
1253 spin_lock(&si->lock);
1254 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1255 swap_free_cluster(si, idx);
1256 spin_unlock(&si->lock);
1257 return;
1258 }
1259 }
1260 for (i = 0; i < size; i++, entry.val++) {
1261 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1262 unlock_cluster_or_swap_info(si, ci);
1263 free_swap_slot(entry);
1264 if (i == size - 1)
1265 return;
1266 lock_cluster_or_swap_info(si, offset);
1267 }
1268 }
1269 unlock_cluster_or_swap_info(si, ci);
1270 }
1271
1272 #ifdef CONFIG_THP_SWAP
1273 int split_swap_cluster(swp_entry_t entry)
1274 {
1275 struct swap_info_struct *si;
1276 struct swap_cluster_info *ci;
1277 unsigned long offset = swp_offset(entry);
1278
1279 si = _swap_info_get(entry);
1280 if (!si)
1281 return -EBUSY;
1282 ci = lock_cluster(si, offset);
1283 cluster_clear_huge(ci);
1284 unlock_cluster(ci);
1285 return 0;
1286 }
1287 #endif
1288
1289 static int swp_entry_cmp(const void *ent1, const void *ent2)
1290 {
1291 const swp_entry_t *e1 = ent1, *e2 = ent2;
1292
1293 return (int)swp_type(*e1) - (int)swp_type(*e2);
1294 }
1295
1296 void swapcache_free_entries(swp_entry_t *entries, int n)
1297 {
1298 struct swap_info_struct *p, *prev;
1299 int i;
1300
1301 if (n <= 0)
1302 return;
1303
1304 prev = NULL;
1305 p = NULL;
1306
1307 /*
1308 * Sort swap entries by swap device, so each lock is only taken once.
1309 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1310 * so low that it isn't necessary to optimize further.
1311 */
1312 if (nr_swapfiles > 1)
1313 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1314 for (i = 0; i < n; ++i) {
1315 p = swap_info_get_cont(entries[i], prev);
1316 if (p)
1317 swap_entry_free(p, entries[i]);
1318 prev = p;
1319 }
1320 if (p)
1321 spin_unlock(&p->lock);
1322 }
1323
1324 /*
1325 * How many references to page are currently swapped out?
1326 * This does not give an exact answer when swap count is continued,
1327 * but does include the high COUNT_CONTINUED flag to allow for that.
1328 */
1329 int page_swapcount(struct page *page)
1330 {
1331 int count = 0;
1332 struct swap_info_struct *p;
1333 struct swap_cluster_info *ci;
1334 swp_entry_t entry;
1335 unsigned long offset;
1336
1337 entry.val = page_private(page);
1338 p = _swap_info_get(entry);
1339 if (p) {
1340 offset = swp_offset(entry);
1341 ci = lock_cluster_or_swap_info(p, offset);
1342 count = swap_count(p->swap_map[offset]);
1343 unlock_cluster_or_swap_info(p, ci);
1344 }
1345 return count;
1346 }
1347
1348 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1349 {
1350 pgoff_t offset = swp_offset(entry);
1351
1352 return swap_count(si->swap_map[offset]);
1353 }
1354
1355 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1356 {
1357 int count = 0;
1358 pgoff_t offset = swp_offset(entry);
1359 struct swap_cluster_info *ci;
1360
1361 ci = lock_cluster_or_swap_info(si, offset);
1362 count = swap_count(si->swap_map[offset]);
1363 unlock_cluster_or_swap_info(si, ci);
1364 return count;
1365 }
1366
1367 /*
1368 * How many references to @entry are currently swapped out?
1369 * This does not give an exact answer when swap count is continued,
1370 * but does include the high COUNT_CONTINUED flag to allow for that.
1371 */
1372 int __swp_swapcount(swp_entry_t entry)
1373 {
1374 int count = 0;
1375 struct swap_info_struct *si;
1376
1377 si = __swap_info_get(entry);
1378 if (si)
1379 count = swap_swapcount(si, entry);
1380 return count;
1381 }
1382
1383 /*
1384 * How many references to @entry are currently swapped out?
1385 * This considers COUNT_CONTINUED so it returns exact answer.
1386 */
1387 int swp_swapcount(swp_entry_t entry)
1388 {
1389 int count, tmp_count, n;
1390 struct swap_info_struct *p;
1391 struct swap_cluster_info *ci;
1392 struct page *page;
1393 pgoff_t offset;
1394 unsigned char *map;
1395
1396 p = _swap_info_get(entry);
1397 if (!p)
1398 return 0;
1399
1400 offset = swp_offset(entry);
1401
1402 ci = lock_cluster_or_swap_info(p, offset);
1403
1404 count = swap_count(p->swap_map[offset]);
1405 if (!(count & COUNT_CONTINUED))
1406 goto out;
1407
1408 count &= ~COUNT_CONTINUED;
1409 n = SWAP_MAP_MAX + 1;
1410
1411 page = vmalloc_to_page(p->swap_map + offset);
1412 offset &= ~PAGE_MASK;
1413 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1414
1415 do {
1416 page = list_next_entry(page, lru);
1417 map = kmap_atomic(page);
1418 tmp_count = map[offset];
1419 kunmap_atomic(map);
1420
1421 count += (tmp_count & ~COUNT_CONTINUED) * n;
1422 n *= (SWAP_CONT_MAX + 1);
1423 } while (tmp_count & COUNT_CONTINUED);
1424 out:
1425 unlock_cluster_or_swap_info(p, ci);
1426 return count;
1427 }
1428
1429 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1430 swp_entry_t entry)
1431 {
1432 struct swap_cluster_info *ci;
1433 unsigned char *map = si->swap_map;
1434 unsigned long roffset = swp_offset(entry);
1435 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1436 int i;
1437 bool ret = false;
1438
1439 ci = lock_cluster_or_swap_info(si, offset);
1440 if (!ci || !cluster_is_huge(ci)) {
1441 if (swap_count(map[roffset]))
1442 ret = true;
1443 goto unlock_out;
1444 }
1445 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1446 if (swap_count(map[offset + i])) {
1447 ret = true;
1448 break;
1449 }
1450 }
1451 unlock_out:
1452 unlock_cluster_or_swap_info(si, ci);
1453 return ret;
1454 }
1455
1456 static bool page_swapped(struct page *page)
1457 {
1458 swp_entry_t entry;
1459 struct swap_info_struct *si;
1460
1461 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1462 return page_swapcount(page) != 0;
1463
1464 page = compound_head(page);
1465 entry.val = page_private(page);
1466 si = _swap_info_get(entry);
1467 if (si)
1468 return swap_page_trans_huge_swapped(si, entry);
1469 return false;
1470 }
1471
1472 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1473 int *total_swapcount)
1474 {
1475 int i, map_swapcount, _total_mapcount, _total_swapcount;
1476 unsigned long offset = 0;
1477 struct swap_info_struct *si;
1478 struct swap_cluster_info *ci = NULL;
1479 unsigned char *map = NULL;
1480 int mapcount, swapcount = 0;
1481
1482 /* hugetlbfs shouldn't call it */
1483 VM_BUG_ON_PAGE(PageHuge(page), page);
1484
1485 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1486 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1487 if (PageSwapCache(page))
1488 swapcount = page_swapcount(page);
1489 if (total_swapcount)
1490 *total_swapcount = swapcount;
1491 return mapcount + swapcount;
1492 }
1493
1494 page = compound_head(page);
1495
1496 _total_mapcount = _total_swapcount = map_swapcount = 0;
1497 if (PageSwapCache(page)) {
1498 swp_entry_t entry;
1499
1500 entry.val = page_private(page);
1501 si = _swap_info_get(entry);
1502 if (si) {
1503 map = si->swap_map;
1504 offset = swp_offset(entry);
1505 }
1506 }
1507 if (map)
1508 ci = lock_cluster(si, offset);
1509 for (i = 0; i < HPAGE_PMD_NR; i++) {
1510 mapcount = atomic_read(&page[i]._mapcount) + 1;
1511 _total_mapcount += mapcount;
1512 if (map) {
1513 swapcount = swap_count(map[offset + i]);
1514 _total_swapcount += swapcount;
1515 }
1516 map_swapcount = max(map_swapcount, mapcount + swapcount);
1517 }
1518 unlock_cluster(ci);
1519 if (PageDoubleMap(page)) {
1520 map_swapcount -= 1;
1521 _total_mapcount -= HPAGE_PMD_NR;
1522 }
1523 mapcount = compound_mapcount(page);
1524 map_swapcount += mapcount;
1525 _total_mapcount += mapcount;
1526 if (total_mapcount)
1527 *total_mapcount = _total_mapcount;
1528 if (total_swapcount)
1529 *total_swapcount = _total_swapcount;
1530
1531 return map_swapcount;
1532 }
1533
1534 /*
1535 * We can write to an anon page without COW if there are no other references
1536 * to it. And as a side-effect, free up its swap: because the old content
1537 * on disk will never be read, and seeking back there to write new content
1538 * later would only waste time away from clustering.
1539 *
1540 * NOTE: total_map_swapcount should not be relied upon by the caller if
1541 * reuse_swap_page() returns false, but it may be always overwritten
1542 * (see the other implementation for CONFIG_SWAP=n).
1543 */
1544 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1545 {
1546 int count, total_mapcount, total_swapcount;
1547
1548 VM_BUG_ON_PAGE(!PageLocked(page), page);
1549 if (unlikely(PageKsm(page)))
1550 return false;
1551 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1552 &total_swapcount);
1553 if (total_map_swapcount)
1554 *total_map_swapcount = total_mapcount + total_swapcount;
1555 if (count == 1 && PageSwapCache(page) &&
1556 (likely(!PageTransCompound(page)) ||
1557 /* The remaining swap count will be freed soon */
1558 total_swapcount == page_swapcount(page))) {
1559 if (!PageWriteback(page)) {
1560 page = compound_head(page);
1561 delete_from_swap_cache(page);
1562 SetPageDirty(page);
1563 } else {
1564 swp_entry_t entry;
1565 struct swap_info_struct *p;
1566
1567 entry.val = page_private(page);
1568 p = swap_info_get(entry);
1569 if (p->flags & SWP_STABLE_WRITES) {
1570 spin_unlock(&p->lock);
1571 return false;
1572 }
1573 spin_unlock(&p->lock);
1574 }
1575 }
1576
1577 return count <= 1;
1578 }
1579
1580 /*
1581 * If swap is getting full, or if there are no more mappings of this page,
1582 * then try_to_free_swap is called to free its swap space.
1583 */
1584 int try_to_free_swap(struct page *page)
1585 {
1586 VM_BUG_ON_PAGE(!PageLocked(page), page);
1587
1588 if (!PageSwapCache(page))
1589 return 0;
1590 if (PageWriteback(page))
1591 return 0;
1592 if (page_swapped(page))
1593 return 0;
1594
1595 /*
1596 * Once hibernation has begun to create its image of memory,
1597 * there's a danger that one of the calls to try_to_free_swap()
1598 * - most probably a call from __try_to_reclaim_swap() while
1599 * hibernation is allocating its own swap pages for the image,
1600 * but conceivably even a call from memory reclaim - will free
1601 * the swap from a page which has already been recorded in the
1602 * image as a clean swapcache page, and then reuse its swap for
1603 * another page of the image. On waking from hibernation, the
1604 * original page might be freed under memory pressure, then
1605 * later read back in from swap, now with the wrong data.
1606 *
1607 * Hibernation suspends storage while it is writing the image
1608 * to disk so check that here.
1609 */
1610 if (pm_suspended_storage())
1611 return 0;
1612
1613 page = compound_head(page);
1614 delete_from_swap_cache(page);
1615 SetPageDirty(page);
1616 return 1;
1617 }
1618
1619 /*
1620 * Free the swap entry like above, but also try to
1621 * free the page cache entry if it is the last user.
1622 */
1623 int free_swap_and_cache(swp_entry_t entry)
1624 {
1625 struct swap_info_struct *p;
1626 unsigned char count;
1627
1628 if (non_swap_entry(entry))
1629 return 1;
1630
1631 p = _swap_info_get(entry);
1632 if (p) {
1633 count = __swap_entry_free(p, entry, 1);
1634 if (count == SWAP_HAS_CACHE &&
1635 !swap_page_trans_huge_swapped(p, entry))
1636 __try_to_reclaim_swap(p, swp_offset(entry),
1637 TTRS_UNMAPPED | TTRS_FULL);
1638 }
1639 return p != NULL;
1640 }
1641
1642 #ifdef CONFIG_HIBERNATION
1643 /*
1644 * Find the swap type that corresponds to given device (if any).
1645 *
1646 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1647 * from 0, in which the swap header is expected to be located.
1648 *
1649 * This is needed for the suspend to disk (aka swsusp).
1650 */
1651 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1652 {
1653 struct block_device *bdev = NULL;
1654 int type;
1655
1656 if (device)
1657 bdev = bdget(device);
1658
1659 spin_lock(&swap_lock);
1660 for (type = 0; type < nr_swapfiles; type++) {
1661 struct swap_info_struct *sis = swap_info[type];
1662
1663 if (!(sis->flags & SWP_WRITEOK))
1664 continue;
1665
1666 if (!bdev) {
1667 if (bdev_p)
1668 *bdev_p = bdgrab(sis->bdev);
1669
1670 spin_unlock(&swap_lock);
1671 return type;
1672 }
1673 if (bdev == sis->bdev) {
1674 struct swap_extent *se = &sis->first_swap_extent;
1675
1676 if (se->start_block == offset) {
1677 if (bdev_p)
1678 *bdev_p = bdgrab(sis->bdev);
1679
1680 spin_unlock(&swap_lock);
1681 bdput(bdev);
1682 return type;
1683 }
1684 }
1685 }
1686 spin_unlock(&swap_lock);
1687 if (bdev)
1688 bdput(bdev);
1689
1690 return -ENODEV;
1691 }
1692
1693 /*
1694 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1695 * corresponding to given index in swap_info (swap type).
1696 */
1697 sector_t swapdev_block(int type, pgoff_t offset)
1698 {
1699 struct block_device *bdev;
1700
1701 if ((unsigned int)type >= nr_swapfiles)
1702 return 0;
1703 if (!(swap_info[type]->flags & SWP_WRITEOK))
1704 return 0;
1705 return map_swap_entry(swp_entry(type, offset), &bdev);
1706 }
1707
1708 /*
1709 * Return either the total number of swap pages of given type, or the number
1710 * of free pages of that type (depending on @free)
1711 *
1712 * This is needed for software suspend
1713 */
1714 unsigned int count_swap_pages(int type, int free)
1715 {
1716 unsigned int n = 0;
1717
1718 spin_lock(&swap_lock);
1719 if ((unsigned int)type < nr_swapfiles) {
1720 struct swap_info_struct *sis = swap_info[type];
1721
1722 spin_lock(&sis->lock);
1723 if (sis->flags & SWP_WRITEOK) {
1724 n = sis->pages;
1725 if (free)
1726 n -= sis->inuse_pages;
1727 }
1728 spin_unlock(&sis->lock);
1729 }
1730 spin_unlock(&swap_lock);
1731 return n;
1732 }
1733 #endif /* CONFIG_HIBERNATION */
1734
1735 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1736 {
1737 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1738 }
1739
1740 /*
1741 * No need to decide whether this PTE shares the swap entry with others,
1742 * just let do_wp_page work it out if a write is requested later - to
1743 * force COW, vm_page_prot omits write permission from any private vma.
1744 */
1745 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1746 unsigned long addr, swp_entry_t entry, struct page *page)
1747 {
1748 struct page *swapcache;
1749 struct mem_cgroup *memcg;
1750 spinlock_t *ptl;
1751 pte_t *pte;
1752 int ret = 1;
1753
1754 swapcache = page;
1755 page = ksm_might_need_to_copy(page, vma, addr);
1756 if (unlikely(!page))
1757 return -ENOMEM;
1758
1759 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1760 &memcg, false)) {
1761 ret = -ENOMEM;
1762 goto out_nolock;
1763 }
1764
1765 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1766 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1767 mem_cgroup_cancel_charge(page, memcg, false);
1768 ret = 0;
1769 goto out;
1770 }
1771
1772 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1773 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1774 get_page(page);
1775 set_pte_at(vma->vm_mm, addr, pte,
1776 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1777 if (page == swapcache) {
1778 page_add_anon_rmap(page, vma, addr, false);
1779 mem_cgroup_commit_charge(page, memcg, true, false);
1780 } else { /* ksm created a completely new copy */
1781 page_add_new_anon_rmap(page, vma, addr, false);
1782 mem_cgroup_commit_charge(page, memcg, false, false);
1783 lru_cache_add_active_or_unevictable(page, vma);
1784 }
1785 swap_free(entry);
1786 /*
1787 * Move the page to the active list so it is not
1788 * immediately swapped out again after swapon.
1789 */
1790 activate_page(page);
1791 out:
1792 pte_unmap_unlock(pte, ptl);
1793 out_nolock:
1794 if (page != swapcache) {
1795 unlock_page(page);
1796 put_page(page);
1797 }
1798 return ret;
1799 }
1800
1801 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1802 unsigned long addr, unsigned long end,
1803 swp_entry_t entry, struct page *page)
1804 {
1805 pte_t swp_pte = swp_entry_to_pte(entry);
1806 pte_t *pte;
1807 int ret = 0;
1808
1809 /*
1810 * We don't actually need pte lock while scanning for swp_pte: since
1811 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1812 * page table while we're scanning; though it could get zapped, and on
1813 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1814 * of unmatched parts which look like swp_pte, so unuse_pte must
1815 * recheck under pte lock. Scanning without pte lock lets it be
1816 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1817 */
1818 pte = pte_offset_map(pmd, addr);
1819 do {
1820 /*
1821 * swapoff spends a _lot_ of time in this loop!
1822 * Test inline before going to call unuse_pte.
1823 */
1824 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1825 pte_unmap(pte);
1826 ret = unuse_pte(vma, pmd, addr, entry, page);
1827 if (ret)
1828 goto out;
1829 pte = pte_offset_map(pmd, addr);
1830 }
1831 } while (pte++, addr += PAGE_SIZE, addr != end);
1832 pte_unmap(pte - 1);
1833 out:
1834 return ret;
1835 }
1836
1837 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1838 unsigned long addr, unsigned long end,
1839 swp_entry_t entry, struct page *page)
1840 {
1841 pmd_t *pmd;
1842 unsigned long next;
1843 int ret;
1844
1845 pmd = pmd_offset(pud, addr);
1846 do {
1847 cond_resched();
1848 next = pmd_addr_end(addr, end);
1849 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1850 continue;
1851 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1852 if (ret)
1853 return ret;
1854 } while (pmd++, addr = next, addr != end);
1855 return 0;
1856 }
1857
1858 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1859 unsigned long addr, unsigned long end,
1860 swp_entry_t entry, struct page *page)
1861 {
1862 pud_t *pud;
1863 unsigned long next;
1864 int ret;
1865
1866 pud = pud_offset(p4d, addr);
1867 do {
1868 next = pud_addr_end(addr, end);
1869 if (pud_none_or_clear_bad(pud))
1870 continue;
1871 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1872 if (ret)
1873 return ret;
1874 } while (pud++, addr = next, addr != end);
1875 return 0;
1876 }
1877
1878 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1879 unsigned long addr, unsigned long end,
1880 swp_entry_t entry, struct page *page)
1881 {
1882 p4d_t *p4d;
1883 unsigned long next;
1884 int ret;
1885
1886 p4d = p4d_offset(pgd, addr);
1887 do {
1888 next = p4d_addr_end(addr, end);
1889 if (p4d_none_or_clear_bad(p4d))
1890 continue;
1891 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1892 if (ret)
1893 return ret;
1894 } while (p4d++, addr = next, addr != end);
1895 return 0;
1896 }
1897
1898 static int unuse_vma(struct vm_area_struct *vma,
1899 swp_entry_t entry, struct page *page)
1900 {
1901 pgd_t *pgd;
1902 unsigned long addr, end, next;
1903 int ret;
1904
1905 if (page_anon_vma(page)) {
1906 addr = page_address_in_vma(page, vma);
1907 if (addr == -EFAULT)
1908 return 0;
1909 else
1910 end = addr + PAGE_SIZE;
1911 } else {
1912 addr = vma->vm_start;
1913 end = vma->vm_end;
1914 }
1915
1916 pgd = pgd_offset(vma->vm_mm, addr);
1917 do {
1918 next = pgd_addr_end(addr, end);
1919 if (pgd_none_or_clear_bad(pgd))
1920 continue;
1921 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1922 if (ret)
1923 return ret;
1924 } while (pgd++, addr = next, addr != end);
1925 return 0;
1926 }
1927
1928 static int unuse_mm(struct mm_struct *mm,
1929 swp_entry_t entry, struct page *page)
1930 {
1931 struct vm_area_struct *vma;
1932 int ret = 0;
1933
1934 if (!down_read_trylock(&mm->mmap_sem)) {
1935 /*
1936 * Activate page so shrink_inactive_list is unlikely to unmap
1937 * its ptes while lock is dropped, so swapoff can make progress.
1938 */
1939 activate_page(page);
1940 unlock_page(page);
1941 down_read(&mm->mmap_sem);
1942 lock_page(page);
1943 }
1944 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1945 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1946 break;
1947 cond_resched();
1948 }
1949 up_read(&mm->mmap_sem);
1950 return (ret < 0)? ret: 0;
1951 }
1952
1953 /*
1954 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1955 * from current position to next entry still in use.
1956 * Recycle to start on reaching the end, returning 0 when empty.
1957 */
1958 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1959 unsigned int prev, bool frontswap)
1960 {
1961 unsigned int max = si->max;
1962 unsigned int i = prev;
1963 unsigned char count;
1964
1965 /*
1966 * No need for swap_lock here: we're just looking
1967 * for whether an entry is in use, not modifying it; false
1968 * hits are okay, and sys_swapoff() has already prevented new
1969 * allocations from this area (while holding swap_lock).
1970 */
1971 for (;;) {
1972 if (++i >= max) {
1973 if (!prev) {
1974 i = 0;
1975 break;
1976 }
1977 /*
1978 * No entries in use at top of swap_map,
1979 * loop back to start and recheck there.
1980 */
1981 max = prev + 1;
1982 prev = 0;
1983 i = 1;
1984 }
1985 count = READ_ONCE(si->swap_map[i]);
1986 if (count && swap_count(count) != SWAP_MAP_BAD)
1987 if (!frontswap || frontswap_test(si, i))
1988 break;
1989 if ((i % LATENCY_LIMIT) == 0)
1990 cond_resched();
1991 }
1992 return i;
1993 }
1994
1995 /*
1996 * We completely avoid races by reading each swap page in advance,
1997 * and then search for the process using it. All the necessary
1998 * page table adjustments can then be made atomically.
1999 *
2000 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2001 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2002 */
2003 int try_to_unuse(unsigned int type, bool frontswap,
2004 unsigned long pages_to_unuse)
2005 {
2006 struct swap_info_struct *si = swap_info[type];
2007 struct mm_struct *start_mm;
2008 volatile unsigned char *swap_map; /* swap_map is accessed without
2009 * locking. Mark it as volatile
2010 * to prevent compiler doing
2011 * something odd.
2012 */
2013 unsigned char swcount;
2014 struct page *page;
2015 swp_entry_t entry;
2016 unsigned int i = 0;
2017 int retval = 0;
2018
2019 /*
2020 * When searching mms for an entry, a good strategy is to
2021 * start at the first mm we freed the previous entry from
2022 * (though actually we don't notice whether we or coincidence
2023 * freed the entry). Initialize this start_mm with a hold.
2024 *
2025 * A simpler strategy would be to start at the last mm we
2026 * freed the previous entry from; but that would take less
2027 * advantage of mmlist ordering, which clusters forked mms
2028 * together, child after parent. If we race with dup_mmap(), we
2029 * prefer to resolve parent before child, lest we miss entries
2030 * duplicated after we scanned child: using last mm would invert
2031 * that.
2032 */
2033 start_mm = &init_mm;
2034 mmget(&init_mm);
2035
2036 /*
2037 * Keep on scanning until all entries have gone. Usually,
2038 * one pass through swap_map is enough, but not necessarily:
2039 * there are races when an instance of an entry might be missed.
2040 */
2041 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2042 if (signal_pending(current)) {
2043 retval = -EINTR;
2044 break;
2045 }
2046
2047 /*
2048 * Get a page for the entry, using the existing swap
2049 * cache page if there is one. Otherwise, get a clean
2050 * page and read the swap into it.
2051 */
2052 swap_map = &si->swap_map[i];
2053 entry = swp_entry(type, i);
2054 page = read_swap_cache_async(entry,
2055 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2056 if (!page) {
2057 /*
2058 * Either swap_duplicate() failed because entry
2059 * has been freed independently, and will not be
2060 * reused since sys_swapoff() already disabled
2061 * allocation from here, or alloc_page() failed.
2062 */
2063 swcount = *swap_map;
2064 /*
2065 * We don't hold lock here, so the swap entry could be
2066 * SWAP_MAP_BAD (when the cluster is discarding).
2067 * Instead of fail out, We can just skip the swap
2068 * entry because swapoff will wait for discarding
2069 * finish anyway.
2070 */
2071 if (!swcount || swcount == SWAP_MAP_BAD)
2072 continue;
2073 retval = -ENOMEM;
2074 break;
2075 }
2076
2077 /*
2078 * Don't hold on to start_mm if it looks like exiting.
2079 */
2080 if (atomic_read(&start_mm->mm_users) == 1) {
2081 mmput(start_mm);
2082 start_mm = &init_mm;
2083 mmget(&init_mm);
2084 }
2085
2086 /*
2087 * Wait for and lock page. When do_swap_page races with
2088 * try_to_unuse, do_swap_page can handle the fault much
2089 * faster than try_to_unuse can locate the entry. This
2090 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2091 * defer to do_swap_page in such a case - in some tests,
2092 * do_swap_page and try_to_unuse repeatedly compete.
2093 */
2094 wait_on_page_locked(page);
2095 wait_on_page_writeback(page);
2096 lock_page(page);
2097 wait_on_page_writeback(page);
2098
2099 /*
2100 * Remove all references to entry.
2101 */
2102 swcount = *swap_map;
2103 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2104 retval = shmem_unuse(entry, page);
2105 /* page has already been unlocked and released */
2106 if (retval < 0)
2107 break;
2108 continue;
2109 }
2110 if (swap_count(swcount) && start_mm != &init_mm)
2111 retval = unuse_mm(start_mm, entry, page);
2112
2113 if (swap_count(*swap_map)) {
2114 int set_start_mm = (*swap_map >= swcount);
2115 struct list_head *p = &start_mm->mmlist;
2116 struct mm_struct *new_start_mm = start_mm;
2117 struct mm_struct *prev_mm = start_mm;
2118 struct mm_struct *mm;
2119
2120 mmget(new_start_mm);
2121 mmget(prev_mm);
2122 spin_lock(&mmlist_lock);
2123 while (swap_count(*swap_map) && !retval &&
2124 (p = p->next) != &start_mm->mmlist) {
2125 mm = list_entry(p, struct mm_struct, mmlist);
2126 if (!mmget_not_zero(mm))
2127 continue;
2128 spin_unlock(&mmlist_lock);
2129 mmput(prev_mm);
2130 prev_mm = mm;
2131
2132 cond_resched();
2133
2134 swcount = *swap_map;
2135 if (!swap_count(swcount)) /* any usage ? */
2136 ;
2137 else if (mm == &init_mm)
2138 set_start_mm = 1;
2139 else
2140 retval = unuse_mm(mm, entry, page);
2141
2142 if (set_start_mm && *swap_map < swcount) {
2143 mmput(new_start_mm);
2144 mmget(mm);
2145 new_start_mm = mm;
2146 set_start_mm = 0;
2147 }
2148 spin_lock(&mmlist_lock);
2149 }
2150 spin_unlock(&mmlist_lock);
2151 mmput(prev_mm);
2152 mmput(start_mm);
2153 start_mm = new_start_mm;
2154 }
2155 if (retval) {
2156 unlock_page(page);
2157 put_page(page);
2158 break;
2159 }
2160
2161 /*
2162 * If a reference remains (rare), we would like to leave
2163 * the page in the swap cache; but try_to_unmap could
2164 * then re-duplicate the entry once we drop page lock,
2165 * so we might loop indefinitely; also, that page could
2166 * not be swapped out to other storage meanwhile. So:
2167 * delete from cache even if there's another reference,
2168 * after ensuring that the data has been saved to disk -
2169 * since if the reference remains (rarer), it will be
2170 * read from disk into another page. Splitting into two
2171 * pages would be incorrect if swap supported "shared
2172 * private" pages, but they are handled by tmpfs files.
2173 *
2174 * Given how unuse_vma() targets one particular offset
2175 * in an anon_vma, once the anon_vma has been determined,
2176 * this splitting happens to be just what is needed to
2177 * handle where KSM pages have been swapped out: re-reading
2178 * is unnecessarily slow, but we can fix that later on.
2179 */
2180 if (swap_count(*swap_map) &&
2181 PageDirty(page) && PageSwapCache(page)) {
2182 struct writeback_control wbc = {
2183 .sync_mode = WB_SYNC_NONE,
2184 };
2185
2186 swap_writepage(compound_head(page), &wbc);
2187 lock_page(page);
2188 wait_on_page_writeback(page);
2189 }
2190
2191 /*
2192 * It is conceivable that a racing task removed this page from
2193 * swap cache just before we acquired the page lock at the top,
2194 * or while we dropped it in unuse_mm(). The page might even
2195 * be back in swap cache on another swap area: that we must not
2196 * delete, since it may not have been written out to swap yet.
2197 */
2198 if (PageSwapCache(page) &&
2199 likely(page_private(page) == entry.val) &&
2200 (!PageTransCompound(page) ||
2201 !swap_page_trans_huge_swapped(si, entry)))
2202 delete_from_swap_cache(compound_head(page));
2203
2204 /*
2205 * So we could skip searching mms once swap count went
2206 * to 1, we did not mark any present ptes as dirty: must
2207 * mark page dirty so shrink_page_list will preserve it.
2208 */
2209 SetPageDirty(page);
2210 unlock_page(page);
2211 put_page(page);
2212
2213 /*
2214 * Make sure that we aren't completely killing
2215 * interactive performance.
2216 */
2217 cond_resched();
2218 if (frontswap && pages_to_unuse > 0) {
2219 if (!--pages_to_unuse)
2220 break;
2221 }
2222 }
2223
2224 mmput(start_mm);
2225 return retval;
2226 }
2227
2228 /*
2229 * After a successful try_to_unuse, if no swap is now in use, we know
2230 * we can empty the mmlist. swap_lock must be held on entry and exit.
2231 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2232 * added to the mmlist just after page_duplicate - before would be racy.
2233 */
2234 static void drain_mmlist(void)
2235 {
2236 struct list_head *p, *next;
2237 unsigned int type;
2238
2239 for (type = 0; type < nr_swapfiles; type++)
2240 if (swap_info[type]->inuse_pages)
2241 return;
2242 spin_lock(&mmlist_lock);
2243 list_for_each_safe(p, next, &init_mm.mmlist)
2244 list_del_init(p);
2245 spin_unlock(&mmlist_lock);
2246 }
2247
2248 /*
2249 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2250 * corresponds to page offset for the specified swap entry.
2251 * Note that the type of this function is sector_t, but it returns page offset
2252 * into the bdev, not sector offset.
2253 */
2254 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2255 {
2256 struct swap_info_struct *sis;
2257 struct swap_extent *start_se;
2258 struct swap_extent *se;
2259 pgoff_t offset;
2260
2261 sis = swap_info[swp_type(entry)];
2262 *bdev = sis->bdev;
2263
2264 offset = swp_offset(entry);
2265 start_se = sis->curr_swap_extent;
2266 se = start_se;
2267
2268 for ( ; ; ) {
2269 if (se->start_page <= offset &&
2270 offset < (se->start_page + se->nr_pages)) {
2271 return se->start_block + (offset - se->start_page);
2272 }
2273 se = list_next_entry(se, list);
2274 sis->curr_swap_extent = se;
2275 BUG_ON(se == start_se); /* It *must* be present */
2276 }
2277 }
2278
2279 /*
2280 * Returns the page offset into bdev for the specified page's swap entry.
2281 */
2282 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2283 {
2284 swp_entry_t entry;
2285 entry.val = page_private(page);
2286 return map_swap_entry(entry, bdev);
2287 }
2288
2289 /*
2290 * Free all of a swapdev's extent information
2291 */
2292 static void destroy_swap_extents(struct swap_info_struct *sis)
2293 {
2294 while (!list_empty(&sis->first_swap_extent.list)) {
2295 struct swap_extent *se;
2296
2297 se = list_first_entry(&sis->first_swap_extent.list,
2298 struct swap_extent, list);
2299 list_del(&se->list);
2300 kfree(se);
2301 }
2302
2303 if (sis->flags & SWP_ACTIVATED) {
2304 struct file *swap_file = sis->swap_file;
2305 struct address_space *mapping = swap_file->f_mapping;
2306
2307 sis->flags &= ~SWP_ACTIVATED;
2308 if (mapping->a_ops->swap_deactivate)
2309 mapping->a_ops->swap_deactivate(swap_file);
2310 }
2311 }
2312
2313 /*
2314 * Add a block range (and the corresponding page range) into this swapdev's
2315 * extent list. The extent list is kept sorted in page order.
2316 *
2317 * This function rather assumes that it is called in ascending page order.
2318 */
2319 int
2320 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2321 unsigned long nr_pages, sector_t start_block)
2322 {
2323 struct swap_extent *se;
2324 struct swap_extent *new_se;
2325 struct list_head *lh;
2326
2327 if (start_page == 0) {
2328 se = &sis->first_swap_extent;
2329 sis->curr_swap_extent = se;
2330 se->start_page = 0;
2331 se->nr_pages = nr_pages;
2332 se->start_block = start_block;
2333 return 1;
2334 } else {
2335 lh = sis->first_swap_extent.list.prev; /* Highest extent */
2336 se = list_entry(lh, struct swap_extent, list);
2337 BUG_ON(se->start_page + se->nr_pages != start_page);
2338 if (se->start_block + se->nr_pages == start_block) {
2339 /* Merge it */
2340 se->nr_pages += nr_pages;
2341 return 0;
2342 }
2343 }
2344
2345 /*
2346 * No merge. Insert a new extent, preserving ordering.
2347 */
2348 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2349 if (new_se == NULL)
2350 return -ENOMEM;
2351 new_se->start_page = start_page;
2352 new_se->nr_pages = nr_pages;
2353 new_se->start_block = start_block;
2354
2355 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2356 return 1;
2357 }
2358 EXPORT_SYMBOL_GPL(add_swap_extent);
2359
2360 /*
2361 * A `swap extent' is a simple thing which maps a contiguous range of pages
2362 * onto a contiguous range of disk blocks. An ordered list of swap extents
2363 * is built at swapon time and is then used at swap_writepage/swap_readpage
2364 * time for locating where on disk a page belongs.
2365 *
2366 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2367 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2368 * swap files identically.
2369 *
2370 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2371 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2372 * swapfiles are handled *identically* after swapon time.
2373 *
2374 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2375 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2376 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2377 * requirements, they are simply tossed out - we will never use those blocks
2378 * for swapping.
2379 *
2380 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2381 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2382 * which will scribble on the fs.
2383 *
2384 * The amount of disk space which a single swap extent represents varies.
2385 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2386 * extents in the list. To avoid much list walking, we cache the previous
2387 * search location in `curr_swap_extent', and start new searches from there.
2388 * This is extremely effective. The average number of iterations in
2389 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2390 */
2391 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2392 {
2393 struct file *swap_file = sis->swap_file;
2394 struct address_space *mapping = swap_file->f_mapping;
2395 struct inode *inode = mapping->host;
2396 int ret;
2397
2398 if (S_ISBLK(inode->i_mode)) {
2399 ret = add_swap_extent(sis, 0, sis->max, 0);
2400 *span = sis->pages;
2401 return ret;
2402 }
2403
2404 if (mapping->a_ops->swap_activate) {
2405 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2406 if (ret >= 0)
2407 sis->flags |= SWP_ACTIVATED;
2408 if (!ret) {
2409 sis->flags |= SWP_FS;
2410 ret = add_swap_extent(sis, 0, sis->max, 0);
2411 *span = sis->pages;
2412 }
2413 return ret;
2414 }
2415
2416 return generic_swapfile_activate(sis, swap_file, span);
2417 }
2418
2419 static int swap_node(struct swap_info_struct *p)
2420 {
2421 struct block_device *bdev;
2422
2423 if (p->bdev)
2424 bdev = p->bdev;
2425 else
2426 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2427
2428 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2429 }
2430
2431 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2432 unsigned char *swap_map,
2433 struct swap_cluster_info *cluster_info)
2434 {
2435 int i;
2436
2437 if (prio >= 0)
2438 p->prio = prio;
2439 else
2440 p->prio = --least_priority;
2441 /*
2442 * the plist prio is negated because plist ordering is
2443 * low-to-high, while swap ordering is high-to-low
2444 */
2445 p->list.prio = -p->prio;
2446 for_each_node(i) {
2447 if (p->prio >= 0)
2448 p->avail_lists[i].prio = -p->prio;
2449 else {
2450 if (swap_node(p) == i)
2451 p->avail_lists[i].prio = 1;
2452 else
2453 p->avail_lists[i].prio = -p->prio;
2454 }
2455 }
2456 p->swap_map = swap_map;
2457 p->cluster_info = cluster_info;
2458 p->flags |= SWP_WRITEOK;
2459 atomic_long_add(p->pages, &nr_swap_pages);
2460 total_swap_pages += p->pages;
2461
2462 assert_spin_locked(&swap_lock);
2463 /*
2464 * both lists are plists, and thus priority ordered.
2465 * swap_active_head needs to be priority ordered for swapoff(),
2466 * which on removal of any swap_info_struct with an auto-assigned
2467 * (i.e. negative) priority increments the auto-assigned priority
2468 * of any lower-priority swap_info_structs.
2469 * swap_avail_head needs to be priority ordered for get_swap_page(),
2470 * which allocates swap pages from the highest available priority
2471 * swap_info_struct.
2472 */
2473 plist_add(&p->list, &swap_active_head);
2474 add_to_avail_list(p);
2475 }
2476
2477 static void enable_swap_info(struct swap_info_struct *p, int prio,
2478 unsigned char *swap_map,
2479 struct swap_cluster_info *cluster_info,
2480 unsigned long *frontswap_map)
2481 {
2482 frontswap_init(p->type, frontswap_map);
2483 spin_lock(&swap_lock);
2484 spin_lock(&p->lock);
2485 _enable_swap_info(p, prio, swap_map, cluster_info);
2486 spin_unlock(&p->lock);
2487 spin_unlock(&swap_lock);
2488 }
2489
2490 static void reinsert_swap_info(struct swap_info_struct *p)
2491 {
2492 spin_lock(&swap_lock);
2493 spin_lock(&p->lock);
2494 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2495 spin_unlock(&p->lock);
2496 spin_unlock(&swap_lock);
2497 }
2498
2499 bool has_usable_swap(void)
2500 {
2501 bool ret = true;
2502
2503 spin_lock(&swap_lock);
2504 if (plist_head_empty(&swap_active_head))
2505 ret = false;
2506 spin_unlock(&swap_lock);
2507 return ret;
2508 }
2509
2510 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2511 {
2512 struct swap_info_struct *p = NULL;
2513 unsigned char *swap_map;
2514 struct swap_cluster_info *cluster_info;
2515 unsigned long *frontswap_map;
2516 struct file *swap_file, *victim;
2517 struct address_space *mapping;
2518 struct inode *inode;
2519 struct filename *pathname;
2520 int err, found = 0;
2521 unsigned int old_block_size;
2522
2523 if (!capable(CAP_SYS_ADMIN))
2524 return -EPERM;
2525
2526 BUG_ON(!current->mm);
2527
2528 pathname = getname(specialfile);
2529 if (IS_ERR(pathname))
2530 return PTR_ERR(pathname);
2531
2532 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2533 err = PTR_ERR(victim);
2534 if (IS_ERR(victim))
2535 goto out;
2536
2537 mapping = victim->f_mapping;
2538 spin_lock(&swap_lock);
2539 plist_for_each_entry(p, &swap_active_head, list) {
2540 if (p->flags & SWP_WRITEOK) {
2541 if (p->swap_file->f_mapping == mapping) {
2542 found = 1;
2543 break;
2544 }
2545 }
2546 }
2547 if (!found) {
2548 err = -EINVAL;
2549 spin_unlock(&swap_lock);
2550 goto out_dput;
2551 }
2552 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2553 vm_unacct_memory(p->pages);
2554 else {
2555 err = -ENOMEM;
2556 spin_unlock(&swap_lock);
2557 goto out_dput;
2558 }
2559 del_from_avail_list(p);
2560 spin_lock(&p->lock);
2561 if (p->prio < 0) {
2562 struct swap_info_struct *si = p;
2563 int nid;
2564
2565 plist_for_each_entry_continue(si, &swap_active_head, list) {
2566 si->prio++;
2567 si->list.prio--;
2568 for_each_node(nid) {
2569 if (si->avail_lists[nid].prio != 1)
2570 si->avail_lists[nid].prio--;
2571 }
2572 }
2573 least_priority++;
2574 }
2575 plist_del(&p->list, &swap_active_head);
2576 atomic_long_sub(p->pages, &nr_swap_pages);
2577 total_swap_pages -= p->pages;
2578 p->flags &= ~SWP_WRITEOK;
2579 spin_unlock(&p->lock);
2580 spin_unlock(&swap_lock);
2581
2582 disable_swap_slots_cache_lock();
2583
2584 set_current_oom_origin();
2585 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2586 clear_current_oom_origin();
2587
2588 if (err) {
2589 /* re-insert swap space back into swap_list */
2590 reinsert_swap_info(p);
2591 reenable_swap_slots_cache_unlock();
2592 goto out_dput;
2593 }
2594
2595 reenable_swap_slots_cache_unlock();
2596
2597 flush_work(&p->discard_work);
2598
2599 destroy_swap_extents(p);
2600 if (p->flags & SWP_CONTINUED)
2601 free_swap_count_continuations(p);
2602
2603 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2604 atomic_dec(&nr_rotate_swap);
2605
2606 mutex_lock(&swapon_mutex);
2607 spin_lock(&swap_lock);
2608 spin_lock(&p->lock);
2609 drain_mmlist();
2610
2611 /* wait for anyone still in scan_swap_map */
2612 p->highest_bit = 0; /* cuts scans short */
2613 while (p->flags >= SWP_SCANNING) {
2614 spin_unlock(&p->lock);
2615 spin_unlock(&swap_lock);
2616 schedule_timeout_uninterruptible(1);
2617 spin_lock(&swap_lock);
2618 spin_lock(&p->lock);
2619 }
2620
2621 swap_file = p->swap_file;
2622 old_block_size = p->old_block_size;
2623 p->swap_file = NULL;
2624 p->max = 0;
2625 swap_map = p->swap_map;
2626 p->swap_map = NULL;
2627 cluster_info = p->cluster_info;
2628 p->cluster_info = NULL;
2629 frontswap_map = frontswap_map_get(p);
2630 spin_unlock(&p->lock);
2631 spin_unlock(&swap_lock);
2632 frontswap_invalidate_area(p->type);
2633 frontswap_map_set(p, NULL);
2634 mutex_unlock(&swapon_mutex);
2635 free_percpu(p->percpu_cluster);
2636 p->percpu_cluster = NULL;
2637 vfree(swap_map);
2638 kvfree(cluster_info);
2639 kvfree(frontswap_map);
2640 /* Destroy swap account information */
2641 swap_cgroup_swapoff(p->type);
2642 exit_swap_address_space(p->type);
2643
2644 inode = mapping->host;
2645 if (S_ISBLK(inode->i_mode)) {
2646 struct block_device *bdev = I_BDEV(inode);
2647 set_blocksize(bdev, old_block_size);
2648 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2649 } else {
2650 inode_lock(inode);
2651 inode->i_flags &= ~S_SWAPFILE;
2652 inode_unlock(inode);
2653 }
2654 filp_close(swap_file, NULL);
2655
2656 /*
2657 * Clear the SWP_USED flag after all resources are freed so that swapon
2658 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2659 * not hold p->lock after we cleared its SWP_WRITEOK.
2660 */
2661 spin_lock(&swap_lock);
2662 p->flags = 0;
2663 spin_unlock(&swap_lock);
2664
2665 err = 0;
2666 atomic_inc(&proc_poll_event);
2667 wake_up_interruptible(&proc_poll_wait);
2668
2669 out_dput:
2670 filp_close(victim, NULL);
2671 out:
2672 putname(pathname);
2673 return err;
2674 }
2675
2676 #ifdef CONFIG_PROC_FS
2677 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2678 {
2679 struct seq_file *seq = file->private_data;
2680
2681 poll_wait(file, &proc_poll_wait, wait);
2682
2683 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2684 seq->poll_event = atomic_read(&proc_poll_event);
2685 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2686 }
2687
2688 return EPOLLIN | EPOLLRDNORM;
2689 }
2690
2691 /* iterator */
2692 static void *swap_start(struct seq_file *swap, loff_t *pos)
2693 {
2694 struct swap_info_struct *si;
2695 int type;
2696 loff_t l = *pos;
2697
2698 mutex_lock(&swapon_mutex);
2699
2700 if (!l)
2701 return SEQ_START_TOKEN;
2702
2703 for (type = 0; type < nr_swapfiles; type++) {
2704 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2705 si = swap_info[type];
2706 if (!(si->flags & SWP_USED) || !si->swap_map)
2707 continue;
2708 if (!--l)
2709 return si;
2710 }
2711
2712 return NULL;
2713 }
2714
2715 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2716 {
2717 struct swap_info_struct *si = v;
2718 int type;
2719
2720 if (v == SEQ_START_TOKEN)
2721 type = 0;
2722 else
2723 type = si->type + 1;
2724
2725 for (; type < nr_swapfiles; type++) {
2726 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2727 si = swap_info[type];
2728 if (!(si->flags & SWP_USED) || !si->swap_map)
2729 continue;
2730 ++*pos;
2731 return si;
2732 }
2733
2734 return NULL;
2735 }
2736
2737 static void swap_stop(struct seq_file *swap, void *v)
2738 {
2739 mutex_unlock(&swapon_mutex);
2740 }
2741
2742 static int swap_show(struct seq_file *swap, void *v)
2743 {
2744 struct swap_info_struct *si = v;
2745 struct file *file;
2746 int len;
2747
2748 if (si == SEQ_START_TOKEN) {
2749 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2750 return 0;
2751 }
2752
2753 file = si->swap_file;
2754 len = seq_file_path(swap, file, " \t\n\\");
2755 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2756 len < 40 ? 40 - len : 1, " ",
2757 S_ISBLK(file_inode(file)->i_mode) ?
2758 "partition" : "file\t",
2759 si->pages << (PAGE_SHIFT - 10),
2760 si->inuse_pages << (PAGE_SHIFT - 10),
2761 si->prio);
2762 return 0;
2763 }
2764
2765 static const struct seq_operations swaps_op = {
2766 .start = swap_start,
2767 .next = swap_next,
2768 .stop = swap_stop,
2769 .show = swap_show
2770 };
2771
2772 static int swaps_open(struct inode *inode, struct file *file)
2773 {
2774 struct seq_file *seq;
2775 int ret;
2776
2777 ret = seq_open(file, &swaps_op);
2778 if (ret)
2779 return ret;
2780
2781 seq = file->private_data;
2782 seq->poll_event = atomic_read(&proc_poll_event);
2783 return 0;
2784 }
2785
2786 static const struct file_operations proc_swaps_operations = {
2787 .open = swaps_open,
2788 .read = seq_read,
2789 .llseek = seq_lseek,
2790 .release = seq_release,
2791 .poll = swaps_poll,
2792 };
2793
2794 static int __init procswaps_init(void)
2795 {
2796 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2797 return 0;
2798 }
2799 __initcall(procswaps_init);
2800 #endif /* CONFIG_PROC_FS */
2801
2802 #ifdef MAX_SWAPFILES_CHECK
2803 static int __init max_swapfiles_check(void)
2804 {
2805 MAX_SWAPFILES_CHECK();
2806 return 0;
2807 }
2808 late_initcall(max_swapfiles_check);
2809 #endif
2810
2811 static struct swap_info_struct *alloc_swap_info(void)
2812 {
2813 struct swap_info_struct *p;
2814 unsigned int type;
2815 int i;
2816 int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node);
2817
2818 p = kvzalloc(size, GFP_KERNEL);
2819 if (!p)
2820 return ERR_PTR(-ENOMEM);
2821
2822 spin_lock(&swap_lock);
2823 for (type = 0; type < nr_swapfiles; type++) {
2824 if (!(swap_info[type]->flags & SWP_USED))
2825 break;
2826 }
2827 if (type >= MAX_SWAPFILES) {
2828 spin_unlock(&swap_lock);
2829 kvfree(p);
2830 return ERR_PTR(-EPERM);
2831 }
2832 if (type >= nr_swapfiles) {
2833 p->type = type;
2834 swap_info[type] = p;
2835 /*
2836 * Write swap_info[type] before nr_swapfiles, in case a
2837 * racing procfs swap_start() or swap_next() is reading them.
2838 * (We never shrink nr_swapfiles, we never free this entry.)
2839 */
2840 smp_wmb();
2841 nr_swapfiles++;
2842 } else {
2843 kvfree(p);
2844 p = swap_info[type];
2845 /*
2846 * Do not memset this entry: a racing procfs swap_next()
2847 * would be relying on p->type to remain valid.
2848 */
2849 }
2850 INIT_LIST_HEAD(&p->first_swap_extent.list);
2851 plist_node_init(&p->list, 0);
2852 for_each_node(i)
2853 plist_node_init(&p->avail_lists[i], 0);
2854 p->flags = SWP_USED;
2855 spin_unlock(&swap_lock);
2856 spin_lock_init(&p->lock);
2857 spin_lock_init(&p->cont_lock);
2858
2859 return p;
2860 }
2861
2862 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2863 {
2864 int error;
2865
2866 if (S_ISBLK(inode->i_mode)) {
2867 p->bdev = bdgrab(I_BDEV(inode));
2868 error = blkdev_get(p->bdev,
2869 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2870 if (error < 0) {
2871 p->bdev = NULL;
2872 return error;
2873 }
2874 p->old_block_size = block_size(p->bdev);
2875 error = set_blocksize(p->bdev, PAGE_SIZE);
2876 if (error < 0)
2877 return error;
2878 p->flags |= SWP_BLKDEV;
2879 } else if (S_ISREG(inode->i_mode)) {
2880 p->bdev = inode->i_sb->s_bdev;
2881 inode_lock(inode);
2882 if (IS_SWAPFILE(inode))
2883 return -EBUSY;
2884 } else
2885 return -EINVAL;
2886
2887 return 0;
2888 }
2889
2890
2891 /*
2892 * Find out how many pages are allowed for a single swap device. There
2893 * are two limiting factors:
2894 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2895 * 2) the number of bits in the swap pte, as defined by the different
2896 * architectures.
2897 *
2898 * In order to find the largest possible bit mask, a swap entry with
2899 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2900 * decoded to a swp_entry_t again, and finally the swap offset is
2901 * extracted.
2902 *
2903 * This will mask all the bits from the initial ~0UL mask that can't
2904 * be encoded in either the swp_entry_t or the architecture definition
2905 * of a swap pte.
2906 */
2907 unsigned long generic_max_swapfile_size(void)
2908 {
2909 return swp_offset(pte_to_swp_entry(
2910 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2911 }
2912
2913 /* Can be overridden by an architecture for additional checks. */
2914 __weak unsigned long max_swapfile_size(void)
2915 {
2916 return generic_max_swapfile_size();
2917 }
2918
2919 static unsigned long read_swap_header(struct swap_info_struct *p,
2920 union swap_header *swap_header,
2921 struct inode *inode)
2922 {
2923 int i;
2924 unsigned long maxpages;
2925 unsigned long swapfilepages;
2926 unsigned long last_page;
2927
2928 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2929 pr_err("Unable to find swap-space signature\n");
2930 return 0;
2931 }
2932
2933 /* swap partition endianess hack... */
2934 if (swab32(swap_header->info.version) == 1) {
2935 swab32s(&swap_header->info.version);
2936 swab32s(&swap_header->info.last_page);
2937 swab32s(&swap_header->info.nr_badpages);
2938 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2939 return 0;
2940 for (i = 0; i < swap_header->info.nr_badpages; i++)
2941 swab32s(&swap_header->info.badpages[i]);
2942 }
2943 /* Check the swap header's sub-version */
2944 if (swap_header->info.version != 1) {
2945 pr_warn("Unable to handle swap header version %d\n",
2946 swap_header->info.version);
2947 return 0;
2948 }
2949
2950 p->lowest_bit = 1;
2951 p->cluster_next = 1;
2952 p->cluster_nr = 0;
2953
2954 maxpages = max_swapfile_size();
2955 last_page = swap_header->info.last_page;
2956 if (!last_page) {
2957 pr_warn("Empty swap-file\n");
2958 return 0;
2959 }
2960 if (last_page > maxpages) {
2961 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2962 maxpages << (PAGE_SHIFT - 10),
2963 last_page << (PAGE_SHIFT - 10));
2964 }
2965 if (maxpages > last_page) {
2966 maxpages = last_page + 1;
2967 /* p->max is an unsigned int: don't overflow it */
2968 if ((unsigned int)maxpages == 0)
2969 maxpages = UINT_MAX;
2970 }
2971 p->highest_bit = maxpages - 1;
2972
2973 if (!maxpages)
2974 return 0;
2975 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2976 if (swapfilepages && maxpages > swapfilepages) {
2977 pr_warn("Swap area shorter than signature indicates\n");
2978 return 0;
2979 }
2980 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2981 return 0;
2982 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2983 return 0;
2984
2985 return maxpages;
2986 }
2987
2988 #define SWAP_CLUSTER_INFO_COLS \
2989 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2990 #define SWAP_CLUSTER_SPACE_COLS \
2991 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2992 #define SWAP_CLUSTER_COLS \
2993 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2994
2995 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2996 union swap_header *swap_header,
2997 unsigned char *swap_map,
2998 struct swap_cluster_info *cluster_info,
2999 unsigned long maxpages,
3000 sector_t *span)
3001 {
3002 unsigned int j, k;
3003 unsigned int nr_good_pages;
3004 int nr_extents;
3005 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3006 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3007 unsigned long i, idx;
3008
3009 nr_good_pages = maxpages - 1; /* omit header page */
3010
3011 cluster_list_init(&p->free_clusters);
3012 cluster_list_init(&p->discard_clusters);
3013
3014 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3015 unsigned int page_nr = swap_header->info.badpages[i];
3016 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3017 return -EINVAL;
3018 if (page_nr < maxpages) {
3019 swap_map[page_nr] = SWAP_MAP_BAD;
3020 nr_good_pages--;
3021 /*
3022 * Haven't marked the cluster free yet, no list
3023 * operation involved
3024 */
3025 inc_cluster_info_page(p, cluster_info, page_nr);
3026 }
3027 }
3028
3029 /* Haven't marked the cluster free yet, no list operation involved */
3030 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3031 inc_cluster_info_page(p, cluster_info, i);
3032
3033 if (nr_good_pages) {
3034 swap_map[0] = SWAP_MAP_BAD;
3035 /*
3036 * Not mark the cluster free yet, no list
3037 * operation involved
3038 */
3039 inc_cluster_info_page(p, cluster_info, 0);
3040 p->max = maxpages;
3041 p->pages = nr_good_pages;
3042 nr_extents = setup_swap_extents(p, span);
3043 if (nr_extents < 0)
3044 return nr_extents;
3045 nr_good_pages = p->pages;
3046 }
3047 if (!nr_good_pages) {
3048 pr_warn("Empty swap-file\n");
3049 return -EINVAL;
3050 }
3051
3052 if (!cluster_info)
3053 return nr_extents;
3054
3055
3056 /*
3057 * Reduce false cache line sharing between cluster_info and
3058 * sharing same address space.
3059 */
3060 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3061 j = (k + col) % SWAP_CLUSTER_COLS;
3062 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3063 idx = i * SWAP_CLUSTER_COLS + j;
3064 if (idx >= nr_clusters)
3065 continue;
3066 if (cluster_count(&cluster_info[idx]))
3067 continue;
3068 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3069 cluster_list_add_tail(&p->free_clusters, cluster_info,
3070 idx);
3071 }
3072 }
3073 return nr_extents;
3074 }
3075
3076 /*
3077 * Helper to sys_swapon determining if a given swap
3078 * backing device queue supports DISCARD operations.
3079 */
3080 static bool swap_discardable(struct swap_info_struct *si)
3081 {
3082 struct request_queue *q = bdev_get_queue(si->bdev);
3083
3084 if (!q || !blk_queue_discard(q))
3085 return false;
3086
3087 return true;
3088 }
3089
3090 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3091 {
3092 struct swap_info_struct *p;
3093 struct filename *name;
3094 struct file *swap_file = NULL;
3095 struct address_space *mapping;
3096 int prio;
3097 int error;
3098 union swap_header *swap_header;
3099 int nr_extents;
3100 sector_t span;
3101 unsigned long maxpages;
3102 unsigned char *swap_map = NULL;
3103 struct swap_cluster_info *cluster_info = NULL;
3104 unsigned long *frontswap_map = NULL;
3105 struct page *page = NULL;
3106 struct inode *inode = NULL;
3107 bool inced_nr_rotate_swap = false;
3108
3109 if (swap_flags & ~SWAP_FLAGS_VALID)
3110 return -EINVAL;
3111
3112 if (!capable(CAP_SYS_ADMIN))
3113 return -EPERM;
3114
3115 if (!swap_avail_heads)
3116 return -ENOMEM;
3117
3118 p = alloc_swap_info();
3119 if (IS_ERR(p))
3120 return PTR_ERR(p);
3121
3122 INIT_WORK(&p->discard_work, swap_discard_work);
3123
3124 name = getname(specialfile);
3125 if (IS_ERR(name)) {
3126 error = PTR_ERR(name);
3127 name = NULL;
3128 goto bad_swap;
3129 }
3130 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3131 if (IS_ERR(swap_file)) {
3132 error = PTR_ERR(swap_file);
3133 swap_file = NULL;
3134 goto bad_swap;
3135 }
3136
3137 p->swap_file = swap_file;
3138 mapping = swap_file->f_mapping;
3139 inode = mapping->host;
3140
3141 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3142 error = claim_swapfile(p, inode);
3143 if (unlikely(error))
3144 goto bad_swap;
3145
3146 /*
3147 * Read the swap header.
3148 */
3149 if (!mapping->a_ops->readpage) {
3150 error = -EINVAL;
3151 goto bad_swap;
3152 }
3153 page = read_mapping_page(mapping, 0, swap_file);
3154 if (IS_ERR(page)) {
3155 error = PTR_ERR(page);
3156 goto bad_swap;
3157 }
3158 swap_header = kmap(page);
3159
3160 maxpages = read_swap_header(p, swap_header, inode);
3161 if (unlikely(!maxpages)) {
3162 error = -EINVAL;
3163 goto bad_swap;
3164 }
3165
3166 /* OK, set up the swap map and apply the bad block list */
3167 swap_map = vzalloc(maxpages);
3168 if (!swap_map) {
3169 error = -ENOMEM;
3170 goto bad_swap;
3171 }
3172
3173 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3174 p->flags |= SWP_STABLE_WRITES;
3175
3176 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3177 p->flags |= SWP_SYNCHRONOUS_IO;
3178
3179 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3180 int cpu;
3181 unsigned long ci, nr_cluster;
3182
3183 p->flags |= SWP_SOLIDSTATE;
3184 /*
3185 * select a random position to start with to help wear leveling
3186 * SSD
3187 */
3188 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3189 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3190
3191 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3192 GFP_KERNEL);
3193 if (!cluster_info) {
3194 error = -ENOMEM;
3195 goto bad_swap;
3196 }
3197
3198 for (ci = 0; ci < nr_cluster; ci++)
3199 spin_lock_init(&((cluster_info + ci)->lock));
3200
3201 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3202 if (!p->percpu_cluster) {
3203 error = -ENOMEM;
3204 goto bad_swap;
3205 }
3206 for_each_possible_cpu(cpu) {
3207 struct percpu_cluster *cluster;
3208 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3209 cluster_set_null(&cluster->index);
3210 }
3211 } else {
3212 atomic_inc(&nr_rotate_swap);
3213 inced_nr_rotate_swap = true;
3214 }
3215
3216 error = swap_cgroup_swapon(p->type, maxpages);
3217 if (error)
3218 goto bad_swap;
3219
3220 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3221 cluster_info, maxpages, &span);
3222 if (unlikely(nr_extents < 0)) {
3223 error = nr_extents;
3224 goto bad_swap;
3225 }
3226 /* frontswap enabled? set up bit-per-page map for frontswap */
3227 if (IS_ENABLED(CONFIG_FRONTSWAP))
3228 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3229 sizeof(long),
3230 GFP_KERNEL);
3231
3232 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3233 /*
3234 * When discard is enabled for swap with no particular
3235 * policy flagged, we set all swap discard flags here in
3236 * order to sustain backward compatibility with older
3237 * swapon(8) releases.
3238 */
3239 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3240 SWP_PAGE_DISCARD);
3241
3242 /*
3243 * By flagging sys_swapon, a sysadmin can tell us to
3244 * either do single-time area discards only, or to just
3245 * perform discards for released swap page-clusters.
3246 * Now it's time to adjust the p->flags accordingly.
3247 */
3248 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3249 p->flags &= ~SWP_PAGE_DISCARD;
3250 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3251 p->flags &= ~SWP_AREA_DISCARD;
3252
3253 /* issue a swapon-time discard if it's still required */
3254 if (p->flags & SWP_AREA_DISCARD) {
3255 int err = discard_swap(p);
3256 if (unlikely(err))
3257 pr_err("swapon: discard_swap(%p): %d\n",
3258 p, err);
3259 }
3260 }
3261
3262 error = init_swap_address_space(p->type, maxpages);
3263 if (error)
3264 goto bad_swap;
3265
3266 mutex_lock(&swapon_mutex);
3267 prio = -1;
3268 if (swap_flags & SWAP_FLAG_PREFER)
3269 prio =
3270 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3271 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3272
3273 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3274 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3275 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3276 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3277 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3278 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3279 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3280 (frontswap_map) ? "FS" : "");
3281
3282 mutex_unlock(&swapon_mutex);
3283 atomic_inc(&proc_poll_event);
3284 wake_up_interruptible(&proc_poll_wait);
3285
3286 if (S_ISREG(inode->i_mode))
3287 inode->i_flags |= S_SWAPFILE;
3288 error = 0;
3289 goto out;
3290 bad_swap:
3291 free_percpu(p->percpu_cluster);
3292 p->percpu_cluster = NULL;
3293 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3294 set_blocksize(p->bdev, p->old_block_size);
3295 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3296 }
3297 destroy_swap_extents(p);
3298 swap_cgroup_swapoff(p->type);
3299 spin_lock(&swap_lock);
3300 p->swap_file = NULL;
3301 p->flags = 0;
3302 spin_unlock(&swap_lock);
3303 vfree(swap_map);
3304 kvfree(cluster_info);
3305 kvfree(frontswap_map);
3306 if (inced_nr_rotate_swap)
3307 atomic_dec(&nr_rotate_swap);
3308 if (swap_file) {
3309 if (inode && S_ISREG(inode->i_mode)) {
3310 inode_unlock(inode);
3311 inode = NULL;
3312 }
3313 filp_close(swap_file, NULL);
3314 }
3315 out:
3316 if (page && !IS_ERR(page)) {
3317 kunmap(page);
3318 put_page(page);
3319 }
3320 if (name)
3321 putname(name);
3322 if (inode && S_ISREG(inode->i_mode))
3323 inode_unlock(inode);
3324 if (!error)
3325 enable_swap_slots_cache();
3326 return error;
3327 }
3328
3329 void si_swapinfo(struct sysinfo *val)
3330 {
3331 unsigned int type;
3332 unsigned long nr_to_be_unused = 0;
3333
3334 spin_lock(&swap_lock);
3335 for (type = 0; type < nr_swapfiles; type++) {
3336 struct swap_info_struct *si = swap_info[type];
3337
3338 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3339 nr_to_be_unused += si->inuse_pages;
3340 }
3341 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3342 val->totalswap = total_swap_pages + nr_to_be_unused;
3343 spin_unlock(&swap_lock);
3344 }
3345
3346 /*
3347 * Verify that a swap entry is valid and increment its swap map count.
3348 *
3349 * Returns error code in following case.
3350 * - success -> 0
3351 * - swp_entry is invalid -> EINVAL
3352 * - swp_entry is migration entry -> EINVAL
3353 * - swap-cache reference is requested but there is already one. -> EEXIST
3354 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3355 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3356 */
3357 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3358 {
3359 struct swap_info_struct *p;
3360 struct swap_cluster_info *ci;
3361 unsigned long offset, type;
3362 unsigned char count;
3363 unsigned char has_cache;
3364 int err = -EINVAL;
3365
3366 if (non_swap_entry(entry))
3367 goto out;
3368
3369 type = swp_type(entry);
3370 if (type >= nr_swapfiles)
3371 goto bad_file;
3372 p = swap_info[type];
3373 offset = swp_offset(entry);
3374 if (unlikely(offset >= p->max))
3375 goto out;
3376
3377 ci = lock_cluster_or_swap_info(p, offset);
3378
3379 count = p->swap_map[offset];
3380
3381 /*
3382 * swapin_readahead() doesn't check if a swap entry is valid, so the
3383 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3384 */
3385 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3386 err = -ENOENT;
3387 goto unlock_out;
3388 }
3389
3390 has_cache = count & SWAP_HAS_CACHE;
3391 count &= ~SWAP_HAS_CACHE;
3392 err = 0;
3393
3394 if (usage == SWAP_HAS_CACHE) {
3395
3396 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3397 if (!has_cache && count)
3398 has_cache = SWAP_HAS_CACHE;
3399 else if (has_cache) /* someone else added cache */
3400 err = -EEXIST;
3401 else /* no users remaining */
3402 err = -ENOENT;
3403
3404 } else if (count || has_cache) {
3405
3406 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3407 count += usage;
3408 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3409 err = -EINVAL;
3410 else if (swap_count_continued(p, offset, count))
3411 count = COUNT_CONTINUED;
3412 else
3413 err = -ENOMEM;
3414 } else
3415 err = -ENOENT; /* unused swap entry */
3416
3417 p->swap_map[offset] = count | has_cache;
3418
3419 unlock_out:
3420 unlock_cluster_or_swap_info(p, ci);
3421 out:
3422 return err;
3423
3424 bad_file:
3425 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3426 goto out;
3427 }
3428
3429 /*
3430 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3431 * (in which case its reference count is never incremented).
3432 */
3433 void swap_shmem_alloc(swp_entry_t entry)
3434 {
3435 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3436 }
3437
3438 /*
3439 * Increase reference count of swap entry by 1.
3440 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3441 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3442 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3443 * might occur if a page table entry has got corrupted.
3444 */
3445 int swap_duplicate(swp_entry_t entry)
3446 {
3447 int err = 0;
3448
3449 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3450 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3451 return err;
3452 }
3453
3454 /*
3455 * @entry: swap entry for which we allocate swap cache.
3456 *
3457 * Called when allocating swap cache for existing swap entry,
3458 * This can return error codes. Returns 0 at success.
3459 * -EBUSY means there is a swap cache.
3460 * Note: return code is different from swap_duplicate().
3461 */
3462 int swapcache_prepare(swp_entry_t entry)
3463 {
3464 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3465 }
3466
3467 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3468 {
3469 return swap_info[swp_type(entry)];
3470 }
3471
3472 struct swap_info_struct *page_swap_info(struct page *page)
3473 {
3474 swp_entry_t entry = { .val = page_private(page) };
3475 return swp_swap_info(entry);
3476 }
3477
3478 /*
3479 * out-of-line __page_file_ methods to avoid include hell.
3480 */
3481 struct address_space *__page_file_mapping(struct page *page)
3482 {
3483 return page_swap_info(page)->swap_file->f_mapping;
3484 }
3485 EXPORT_SYMBOL_GPL(__page_file_mapping);
3486
3487 pgoff_t __page_file_index(struct page *page)
3488 {
3489 swp_entry_t swap = { .val = page_private(page) };
3490 return swp_offset(swap);
3491 }
3492 EXPORT_SYMBOL_GPL(__page_file_index);
3493
3494 /*
3495 * add_swap_count_continuation - called when a swap count is duplicated
3496 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3497 * page of the original vmalloc'ed swap_map, to hold the continuation count
3498 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3499 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3500 *
3501 * These continuation pages are seldom referenced: the common paths all work
3502 * on the original swap_map, only referring to a continuation page when the
3503 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3504 *
3505 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3506 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3507 * can be called after dropping locks.
3508 */
3509 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3510 {
3511 struct swap_info_struct *si;
3512 struct swap_cluster_info *ci;
3513 struct page *head;
3514 struct page *page;
3515 struct page *list_page;
3516 pgoff_t offset;
3517 unsigned char count;
3518
3519 /*
3520 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3521 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3522 */
3523 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3524
3525 si = swap_info_get(entry);
3526 if (!si) {
3527 /*
3528 * An acceptable race has occurred since the failing
3529 * __swap_duplicate(): the swap entry has been freed,
3530 * perhaps even the whole swap_map cleared for swapoff.
3531 */
3532 goto outer;
3533 }
3534
3535 offset = swp_offset(entry);
3536
3537 ci = lock_cluster(si, offset);
3538
3539 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3540
3541 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3542 /*
3543 * The higher the swap count, the more likely it is that tasks
3544 * will race to add swap count continuation: we need to avoid
3545 * over-provisioning.
3546 */
3547 goto out;
3548 }
3549
3550 if (!page) {
3551 unlock_cluster(ci);
3552 spin_unlock(&si->lock);
3553 return -ENOMEM;
3554 }
3555
3556 /*
3557 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3558 * no architecture is using highmem pages for kernel page tables: so it
3559 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3560 */
3561 head = vmalloc_to_page(si->swap_map + offset);
3562 offset &= ~PAGE_MASK;
3563
3564 spin_lock(&si->cont_lock);
3565 /*
3566 * Page allocation does not initialize the page's lru field,
3567 * but it does always reset its private field.
3568 */
3569 if (!page_private(head)) {
3570 BUG_ON(count & COUNT_CONTINUED);
3571 INIT_LIST_HEAD(&head->lru);
3572 set_page_private(head, SWP_CONTINUED);
3573 si->flags |= SWP_CONTINUED;
3574 }
3575
3576 list_for_each_entry(list_page, &head->lru, lru) {
3577 unsigned char *map;
3578
3579 /*
3580 * If the previous map said no continuation, but we've found
3581 * a continuation page, free our allocation and use this one.
3582 */
3583 if (!(count & COUNT_CONTINUED))
3584 goto out_unlock_cont;
3585
3586 map = kmap_atomic(list_page) + offset;
3587 count = *map;
3588 kunmap_atomic(map);
3589
3590 /*
3591 * If this continuation count now has some space in it,
3592 * free our allocation and use this one.
3593 */
3594 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3595 goto out_unlock_cont;
3596 }
3597
3598 list_add_tail(&page->lru, &head->lru);
3599 page = NULL; /* now it's attached, don't free it */
3600 out_unlock_cont:
3601 spin_unlock(&si->cont_lock);
3602 out:
3603 unlock_cluster(ci);
3604 spin_unlock(&si->lock);
3605 outer:
3606 if (page)
3607 __free_page(page);
3608 return 0;
3609 }
3610
3611 /*
3612 * swap_count_continued - when the original swap_map count is incremented
3613 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3614 * into, carry if so, or else fail until a new continuation page is allocated;
3615 * when the original swap_map count is decremented from 0 with continuation,
3616 * borrow from the continuation and report whether it still holds more.
3617 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3618 * lock.
3619 */
3620 static bool swap_count_continued(struct swap_info_struct *si,
3621 pgoff_t offset, unsigned char count)
3622 {
3623 struct page *head;
3624 struct page *page;
3625 unsigned char *map;
3626 bool ret;
3627
3628 head = vmalloc_to_page(si->swap_map + offset);
3629 if (page_private(head) != SWP_CONTINUED) {
3630 BUG_ON(count & COUNT_CONTINUED);
3631 return false; /* need to add count continuation */
3632 }
3633
3634 spin_lock(&si->cont_lock);
3635 offset &= ~PAGE_MASK;
3636 page = list_entry(head->lru.next, struct page, lru);
3637 map = kmap_atomic(page) + offset;
3638
3639 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3640 goto init_map; /* jump over SWAP_CONT_MAX checks */
3641
3642 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3643 /*
3644 * Think of how you add 1 to 999
3645 */
3646 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3647 kunmap_atomic(map);
3648 page = list_entry(page->lru.next, struct page, lru);
3649 BUG_ON(page == head);
3650 map = kmap_atomic(page) + offset;
3651 }
3652 if (*map == SWAP_CONT_MAX) {
3653 kunmap_atomic(map);
3654 page = list_entry(page->lru.next, struct page, lru);
3655 if (page == head) {
3656 ret = false; /* add count continuation */
3657 goto out;
3658 }
3659 map = kmap_atomic(page) + offset;
3660 init_map: *map = 0; /* we didn't zero the page */
3661 }
3662 *map += 1;
3663 kunmap_atomic(map);
3664 page = list_entry(page->lru.prev, struct page, lru);
3665 while (page != head) {
3666 map = kmap_atomic(page) + offset;
3667 *map = COUNT_CONTINUED;
3668 kunmap_atomic(map);
3669 page = list_entry(page->lru.prev, struct page, lru);
3670 }
3671 ret = true; /* incremented */
3672
3673 } else { /* decrementing */
3674 /*
3675 * Think of how you subtract 1 from 1000
3676 */
3677 BUG_ON(count != COUNT_CONTINUED);
3678 while (*map == COUNT_CONTINUED) {
3679 kunmap_atomic(map);
3680 page = list_entry(page->lru.next, struct page, lru);
3681 BUG_ON(page == head);
3682 map = kmap_atomic(page) + offset;
3683 }
3684 BUG_ON(*map == 0);
3685 *map -= 1;
3686 if (*map == 0)
3687 count = 0;
3688 kunmap_atomic(map);
3689 page = list_entry(page->lru.prev, struct page, lru);
3690 while (page != head) {
3691 map = kmap_atomic(page) + offset;
3692 *map = SWAP_CONT_MAX | count;
3693 count = COUNT_CONTINUED;
3694 kunmap_atomic(map);
3695 page = list_entry(page->lru.prev, struct page, lru);
3696 }
3697 ret = count == COUNT_CONTINUED;
3698 }
3699 out:
3700 spin_unlock(&si->cont_lock);
3701 return ret;
3702 }
3703
3704 /*
3705 * free_swap_count_continuations - swapoff free all the continuation pages
3706 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3707 */
3708 static void free_swap_count_continuations(struct swap_info_struct *si)
3709 {
3710 pgoff_t offset;
3711
3712 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3713 struct page *head;
3714 head = vmalloc_to_page(si->swap_map + offset);
3715 if (page_private(head)) {
3716 struct page *page, *next;
3717
3718 list_for_each_entry_safe(page, next, &head->lru, lru) {
3719 list_del(&page->lru);
3720 __free_page(page);
3721 }
3722 }
3723 }
3724 }
3725
3726 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3727 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3728 gfp_t gfp_mask)
3729 {
3730 struct swap_info_struct *si, *next;
3731 if (!(gfp_mask & __GFP_IO) || !memcg)
3732 return;
3733
3734 if (!blk_cgroup_congested())
3735 return;
3736
3737 /*
3738 * We've already scheduled a throttle, avoid taking the global swap
3739 * lock.
3740 */
3741 if (current->throttle_queue)
3742 return;
3743
3744 spin_lock(&swap_avail_lock);
3745 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3746 avail_lists[node]) {
3747 if (si->bdev) {
3748 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3749 true);
3750 break;
3751 }
3752 }
3753 spin_unlock(&swap_avail_lock);
3754 }
3755 #endif
3756
3757 static int __init swapfile_init(void)
3758 {
3759 int nid;
3760
3761 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3762 GFP_KERNEL);
3763 if (!swap_avail_heads) {
3764 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3765 return -ENOMEM;
3766 }
3767
3768 for_each_node(nid)
3769 plist_head_init(&swap_avail_heads[nid]);
3770
3771 return 0;
3772 }
3773 subsys_initcall(swapfile_init);