]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/swapfile.c
memcg: adjust to support new THP refcounting
[mirror_ubuntu-hirsute-kernel.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61 * all active swap_info_structs
62 * protected with swap_lock, and ordered by priority.
63 */
64 PLIST_HEAD(swap_active_head);
65
66 /*
67 * all available (active, not full) swap_info_structs
68 * protected with swap_avail_lock, ordered by priority.
69 * This is used by get_swap_page() instead of swap_active_head
70 * because swap_active_head includes all swap_info_structs,
71 * but get_swap_page() doesn't need to look at full ones.
72 * This uses its own lock instead of swap_lock because when a
73 * swap_info_struct changes between not-full/full, it needs to
74 * add/remove itself to/from this list, but the swap_info_struct->lock
75 * is held and the locking order requires swap_lock to be taken
76 * before any swap_info_struct->lock.
77 */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82
83 static DEFINE_MUTEX(swapon_mutex);
84
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
92 }
93
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98 swp_entry_t entry = swp_entry(si->type, offset);
99 struct page *page;
100 int ret = 0;
101
102 page = find_get_page(swap_address_space(entry), entry.val);
103 if (!page)
104 return 0;
105 /*
106 * This function is called from scan_swap_map() and it's called
107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 * We have to use trylock for avoiding deadlock. This is a special
109 * case and you should use try_to_free_swap() with explicit lock_page()
110 * in usual operations.
111 */
112 if (trylock_page(page)) {
113 ret = try_to_free_swap(page);
114 unlock_page(page);
115 }
116 page_cache_release(page);
117 return ret;
118 }
119
120 /*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126 struct swap_extent *se;
127 sector_t start_block;
128 sector_t nr_blocks;
129 int err = 0;
130
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 if (nr_blocks) {
136 err = blkdev_issue_discard(si->bdev, start_block,
137 nr_blocks, GFP_KERNEL, 0);
138 if (err)
139 return err;
140 cond_resched();
141 }
142
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146
147 err = blkdev_issue_discard(si->bdev, start_block,
148 nr_blocks, GFP_KERNEL, 0);
149 if (err)
150 break;
151
152 cond_resched();
153 }
154 return err; /* That will often be -EOPNOTSUPP */
155 }
156
157 /*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
163 {
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
166
167 while (nr_pages) {
168 if (se->start_page <= start_page &&
169 start_page < se->start_page + se->nr_pages) {
170 pgoff_t offset = start_page - se->start_page;
171 sector_t start_block = se->start_block + offset;
172 sector_t nr_blocks = se->nr_pages - offset;
173
174 if (nr_blocks > nr_pages)
175 nr_blocks = nr_pages;
176 start_page += nr_blocks;
177 nr_pages -= nr_blocks;
178
179 if (!found_extent++)
180 si->curr_swap_extent = se;
181
182 start_block <<= PAGE_SHIFT - 9;
183 nr_blocks <<= PAGE_SHIFT - 9;
184 if (blkdev_issue_discard(si->bdev, start_block,
185 nr_blocks, GFP_NOIO, 0))
186 break;
187 }
188
189 se = list_next_entry(se, list);
190 }
191 }
192
193 #define SWAPFILE_CLUSTER 256
194 #define LATENCY_LIMIT 256
195
196 static inline void cluster_set_flag(struct swap_cluster_info *info,
197 unsigned int flag)
198 {
199 info->flags = flag;
200 }
201
202 static inline unsigned int cluster_count(struct swap_cluster_info *info)
203 {
204 return info->data;
205 }
206
207 static inline void cluster_set_count(struct swap_cluster_info *info,
208 unsigned int c)
209 {
210 info->data = c;
211 }
212
213 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
214 unsigned int c, unsigned int f)
215 {
216 info->flags = f;
217 info->data = c;
218 }
219
220 static inline unsigned int cluster_next(struct swap_cluster_info *info)
221 {
222 return info->data;
223 }
224
225 static inline void cluster_set_next(struct swap_cluster_info *info,
226 unsigned int n)
227 {
228 info->data = n;
229 }
230
231 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
232 unsigned int n, unsigned int f)
233 {
234 info->flags = f;
235 info->data = n;
236 }
237
238 static inline bool cluster_is_free(struct swap_cluster_info *info)
239 {
240 return info->flags & CLUSTER_FLAG_FREE;
241 }
242
243 static inline bool cluster_is_null(struct swap_cluster_info *info)
244 {
245 return info->flags & CLUSTER_FLAG_NEXT_NULL;
246 }
247
248 static inline void cluster_set_null(struct swap_cluster_info *info)
249 {
250 info->flags = CLUSTER_FLAG_NEXT_NULL;
251 info->data = 0;
252 }
253
254 /* Add a cluster to discard list and schedule it to do discard */
255 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
256 unsigned int idx)
257 {
258 /*
259 * If scan_swap_map() can't find a free cluster, it will check
260 * si->swap_map directly. To make sure the discarding cluster isn't
261 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
262 * will be cleared after discard
263 */
264 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
265 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
266
267 if (cluster_is_null(&si->discard_cluster_head)) {
268 cluster_set_next_flag(&si->discard_cluster_head,
269 idx, 0);
270 cluster_set_next_flag(&si->discard_cluster_tail,
271 idx, 0);
272 } else {
273 unsigned int tail = cluster_next(&si->discard_cluster_tail);
274 cluster_set_next(&si->cluster_info[tail], idx);
275 cluster_set_next_flag(&si->discard_cluster_tail,
276 idx, 0);
277 }
278
279 schedule_work(&si->discard_work);
280 }
281
282 /*
283 * Doing discard actually. After a cluster discard is finished, the cluster
284 * will be added to free cluster list. caller should hold si->lock.
285 */
286 static void swap_do_scheduled_discard(struct swap_info_struct *si)
287 {
288 struct swap_cluster_info *info;
289 unsigned int idx;
290
291 info = si->cluster_info;
292
293 while (!cluster_is_null(&si->discard_cluster_head)) {
294 idx = cluster_next(&si->discard_cluster_head);
295
296 cluster_set_next_flag(&si->discard_cluster_head,
297 cluster_next(&info[idx]), 0);
298 if (cluster_next(&si->discard_cluster_tail) == idx) {
299 cluster_set_null(&si->discard_cluster_head);
300 cluster_set_null(&si->discard_cluster_tail);
301 }
302 spin_unlock(&si->lock);
303
304 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
305 SWAPFILE_CLUSTER);
306
307 spin_lock(&si->lock);
308 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
309 if (cluster_is_null(&si->free_cluster_head)) {
310 cluster_set_next_flag(&si->free_cluster_head,
311 idx, 0);
312 cluster_set_next_flag(&si->free_cluster_tail,
313 idx, 0);
314 } else {
315 unsigned int tail;
316
317 tail = cluster_next(&si->free_cluster_tail);
318 cluster_set_next(&info[tail], idx);
319 cluster_set_next_flag(&si->free_cluster_tail,
320 idx, 0);
321 }
322 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
323 0, SWAPFILE_CLUSTER);
324 }
325 }
326
327 static void swap_discard_work(struct work_struct *work)
328 {
329 struct swap_info_struct *si;
330
331 si = container_of(work, struct swap_info_struct, discard_work);
332
333 spin_lock(&si->lock);
334 swap_do_scheduled_discard(si);
335 spin_unlock(&si->lock);
336 }
337
338 /*
339 * The cluster corresponding to page_nr will be used. The cluster will be
340 * removed from free cluster list and its usage counter will be increased.
341 */
342 static void inc_cluster_info_page(struct swap_info_struct *p,
343 struct swap_cluster_info *cluster_info, unsigned long page_nr)
344 {
345 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
346
347 if (!cluster_info)
348 return;
349 if (cluster_is_free(&cluster_info[idx])) {
350 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
351 cluster_set_next_flag(&p->free_cluster_head,
352 cluster_next(&cluster_info[idx]), 0);
353 if (cluster_next(&p->free_cluster_tail) == idx) {
354 cluster_set_null(&p->free_cluster_tail);
355 cluster_set_null(&p->free_cluster_head);
356 }
357 cluster_set_count_flag(&cluster_info[idx], 0, 0);
358 }
359
360 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
361 cluster_set_count(&cluster_info[idx],
362 cluster_count(&cluster_info[idx]) + 1);
363 }
364
365 /*
366 * The cluster corresponding to page_nr decreases one usage. If the usage
367 * counter becomes 0, which means no page in the cluster is in using, we can
368 * optionally discard the cluster and add it to free cluster list.
369 */
370 static void dec_cluster_info_page(struct swap_info_struct *p,
371 struct swap_cluster_info *cluster_info, unsigned long page_nr)
372 {
373 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
374
375 if (!cluster_info)
376 return;
377
378 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
379 cluster_set_count(&cluster_info[idx],
380 cluster_count(&cluster_info[idx]) - 1);
381
382 if (cluster_count(&cluster_info[idx]) == 0) {
383 /*
384 * If the swap is discardable, prepare discard the cluster
385 * instead of free it immediately. The cluster will be freed
386 * after discard.
387 */
388 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
389 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
390 swap_cluster_schedule_discard(p, idx);
391 return;
392 }
393
394 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
395 if (cluster_is_null(&p->free_cluster_head)) {
396 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
397 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
398 } else {
399 unsigned int tail = cluster_next(&p->free_cluster_tail);
400 cluster_set_next(&cluster_info[tail], idx);
401 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
402 }
403 }
404 }
405
406 /*
407 * It's possible scan_swap_map() uses a free cluster in the middle of free
408 * cluster list. Avoiding such abuse to avoid list corruption.
409 */
410 static bool
411 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
412 unsigned long offset)
413 {
414 struct percpu_cluster *percpu_cluster;
415 bool conflict;
416
417 offset /= SWAPFILE_CLUSTER;
418 conflict = !cluster_is_null(&si->free_cluster_head) &&
419 offset != cluster_next(&si->free_cluster_head) &&
420 cluster_is_free(&si->cluster_info[offset]);
421
422 if (!conflict)
423 return false;
424
425 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
426 cluster_set_null(&percpu_cluster->index);
427 return true;
428 }
429
430 /*
431 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
432 * might involve allocating a new cluster for current CPU too.
433 */
434 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
435 unsigned long *offset, unsigned long *scan_base)
436 {
437 struct percpu_cluster *cluster;
438 bool found_free;
439 unsigned long tmp;
440
441 new_cluster:
442 cluster = this_cpu_ptr(si->percpu_cluster);
443 if (cluster_is_null(&cluster->index)) {
444 if (!cluster_is_null(&si->free_cluster_head)) {
445 cluster->index = si->free_cluster_head;
446 cluster->next = cluster_next(&cluster->index) *
447 SWAPFILE_CLUSTER;
448 } else if (!cluster_is_null(&si->discard_cluster_head)) {
449 /*
450 * we don't have free cluster but have some clusters in
451 * discarding, do discard now and reclaim them
452 */
453 swap_do_scheduled_discard(si);
454 *scan_base = *offset = si->cluster_next;
455 goto new_cluster;
456 } else
457 return;
458 }
459
460 found_free = false;
461
462 /*
463 * Other CPUs can use our cluster if they can't find a free cluster,
464 * check if there is still free entry in the cluster
465 */
466 tmp = cluster->next;
467 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
468 SWAPFILE_CLUSTER) {
469 if (!si->swap_map[tmp]) {
470 found_free = true;
471 break;
472 }
473 tmp++;
474 }
475 if (!found_free) {
476 cluster_set_null(&cluster->index);
477 goto new_cluster;
478 }
479 cluster->next = tmp + 1;
480 *offset = tmp;
481 *scan_base = tmp;
482 }
483
484 static unsigned long scan_swap_map(struct swap_info_struct *si,
485 unsigned char usage)
486 {
487 unsigned long offset;
488 unsigned long scan_base;
489 unsigned long last_in_cluster = 0;
490 int latency_ration = LATENCY_LIMIT;
491
492 /*
493 * We try to cluster swap pages by allocating them sequentially
494 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
495 * way, however, we resort to first-free allocation, starting
496 * a new cluster. This prevents us from scattering swap pages
497 * all over the entire swap partition, so that we reduce
498 * overall disk seek times between swap pages. -- sct
499 * But we do now try to find an empty cluster. -Andrea
500 * And we let swap pages go all over an SSD partition. Hugh
501 */
502
503 si->flags += SWP_SCANNING;
504 scan_base = offset = si->cluster_next;
505
506 /* SSD algorithm */
507 if (si->cluster_info) {
508 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
509 goto checks;
510 }
511
512 if (unlikely(!si->cluster_nr--)) {
513 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
514 si->cluster_nr = SWAPFILE_CLUSTER - 1;
515 goto checks;
516 }
517
518 spin_unlock(&si->lock);
519
520 /*
521 * If seek is expensive, start searching for new cluster from
522 * start of partition, to minimize the span of allocated swap.
523 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
524 * case, just handled by scan_swap_map_try_ssd_cluster() above.
525 */
526 scan_base = offset = si->lowest_bit;
527 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
528
529 /* Locate the first empty (unaligned) cluster */
530 for (; last_in_cluster <= si->highest_bit; offset++) {
531 if (si->swap_map[offset])
532 last_in_cluster = offset + SWAPFILE_CLUSTER;
533 else if (offset == last_in_cluster) {
534 spin_lock(&si->lock);
535 offset -= SWAPFILE_CLUSTER - 1;
536 si->cluster_next = offset;
537 si->cluster_nr = SWAPFILE_CLUSTER - 1;
538 goto checks;
539 }
540 if (unlikely(--latency_ration < 0)) {
541 cond_resched();
542 latency_ration = LATENCY_LIMIT;
543 }
544 }
545
546 offset = scan_base;
547 spin_lock(&si->lock);
548 si->cluster_nr = SWAPFILE_CLUSTER - 1;
549 }
550
551 checks:
552 if (si->cluster_info) {
553 while (scan_swap_map_ssd_cluster_conflict(si, offset))
554 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
555 }
556 if (!(si->flags & SWP_WRITEOK))
557 goto no_page;
558 if (!si->highest_bit)
559 goto no_page;
560 if (offset > si->highest_bit)
561 scan_base = offset = si->lowest_bit;
562
563 /* reuse swap entry of cache-only swap if not busy. */
564 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
565 int swap_was_freed;
566 spin_unlock(&si->lock);
567 swap_was_freed = __try_to_reclaim_swap(si, offset);
568 spin_lock(&si->lock);
569 /* entry was freed successfully, try to use this again */
570 if (swap_was_freed)
571 goto checks;
572 goto scan; /* check next one */
573 }
574
575 if (si->swap_map[offset])
576 goto scan;
577
578 if (offset == si->lowest_bit)
579 si->lowest_bit++;
580 if (offset == si->highest_bit)
581 si->highest_bit--;
582 si->inuse_pages++;
583 if (si->inuse_pages == si->pages) {
584 si->lowest_bit = si->max;
585 si->highest_bit = 0;
586 spin_lock(&swap_avail_lock);
587 plist_del(&si->avail_list, &swap_avail_head);
588 spin_unlock(&swap_avail_lock);
589 }
590 si->swap_map[offset] = usage;
591 inc_cluster_info_page(si, si->cluster_info, offset);
592 si->cluster_next = offset + 1;
593 si->flags -= SWP_SCANNING;
594
595 return offset;
596
597 scan:
598 spin_unlock(&si->lock);
599 while (++offset <= si->highest_bit) {
600 if (!si->swap_map[offset]) {
601 spin_lock(&si->lock);
602 goto checks;
603 }
604 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
605 spin_lock(&si->lock);
606 goto checks;
607 }
608 if (unlikely(--latency_ration < 0)) {
609 cond_resched();
610 latency_ration = LATENCY_LIMIT;
611 }
612 }
613 offset = si->lowest_bit;
614 while (offset < scan_base) {
615 if (!si->swap_map[offset]) {
616 spin_lock(&si->lock);
617 goto checks;
618 }
619 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
620 spin_lock(&si->lock);
621 goto checks;
622 }
623 if (unlikely(--latency_ration < 0)) {
624 cond_resched();
625 latency_ration = LATENCY_LIMIT;
626 }
627 offset++;
628 }
629 spin_lock(&si->lock);
630
631 no_page:
632 si->flags -= SWP_SCANNING;
633 return 0;
634 }
635
636 swp_entry_t get_swap_page(void)
637 {
638 struct swap_info_struct *si, *next;
639 pgoff_t offset;
640
641 if (atomic_long_read(&nr_swap_pages) <= 0)
642 goto noswap;
643 atomic_long_dec(&nr_swap_pages);
644
645 spin_lock(&swap_avail_lock);
646
647 start_over:
648 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
649 /* requeue si to after same-priority siblings */
650 plist_requeue(&si->avail_list, &swap_avail_head);
651 spin_unlock(&swap_avail_lock);
652 spin_lock(&si->lock);
653 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
654 spin_lock(&swap_avail_lock);
655 if (plist_node_empty(&si->avail_list)) {
656 spin_unlock(&si->lock);
657 goto nextsi;
658 }
659 WARN(!si->highest_bit,
660 "swap_info %d in list but !highest_bit\n",
661 si->type);
662 WARN(!(si->flags & SWP_WRITEOK),
663 "swap_info %d in list but !SWP_WRITEOK\n",
664 si->type);
665 plist_del(&si->avail_list, &swap_avail_head);
666 spin_unlock(&si->lock);
667 goto nextsi;
668 }
669
670 /* This is called for allocating swap entry for cache */
671 offset = scan_swap_map(si, SWAP_HAS_CACHE);
672 spin_unlock(&si->lock);
673 if (offset)
674 return swp_entry(si->type, offset);
675 pr_debug("scan_swap_map of si %d failed to find offset\n",
676 si->type);
677 spin_lock(&swap_avail_lock);
678 nextsi:
679 /*
680 * if we got here, it's likely that si was almost full before,
681 * and since scan_swap_map() can drop the si->lock, multiple
682 * callers probably all tried to get a page from the same si
683 * and it filled up before we could get one; or, the si filled
684 * up between us dropping swap_avail_lock and taking si->lock.
685 * Since we dropped the swap_avail_lock, the swap_avail_head
686 * list may have been modified; so if next is still in the
687 * swap_avail_head list then try it, otherwise start over.
688 */
689 if (plist_node_empty(&next->avail_list))
690 goto start_over;
691 }
692
693 spin_unlock(&swap_avail_lock);
694
695 atomic_long_inc(&nr_swap_pages);
696 noswap:
697 return (swp_entry_t) {0};
698 }
699
700 /* The only caller of this function is now suspend routine */
701 swp_entry_t get_swap_page_of_type(int type)
702 {
703 struct swap_info_struct *si;
704 pgoff_t offset;
705
706 si = swap_info[type];
707 spin_lock(&si->lock);
708 if (si && (si->flags & SWP_WRITEOK)) {
709 atomic_long_dec(&nr_swap_pages);
710 /* This is called for allocating swap entry, not cache */
711 offset = scan_swap_map(si, 1);
712 if (offset) {
713 spin_unlock(&si->lock);
714 return swp_entry(type, offset);
715 }
716 atomic_long_inc(&nr_swap_pages);
717 }
718 spin_unlock(&si->lock);
719 return (swp_entry_t) {0};
720 }
721
722 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
723 {
724 struct swap_info_struct *p;
725 unsigned long offset, type;
726
727 if (!entry.val)
728 goto out;
729 type = swp_type(entry);
730 if (type >= nr_swapfiles)
731 goto bad_nofile;
732 p = swap_info[type];
733 if (!(p->flags & SWP_USED))
734 goto bad_device;
735 offset = swp_offset(entry);
736 if (offset >= p->max)
737 goto bad_offset;
738 if (!p->swap_map[offset])
739 goto bad_free;
740 spin_lock(&p->lock);
741 return p;
742
743 bad_free:
744 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
745 goto out;
746 bad_offset:
747 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
748 goto out;
749 bad_device:
750 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
751 goto out;
752 bad_nofile:
753 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
754 out:
755 return NULL;
756 }
757
758 static unsigned char swap_entry_free(struct swap_info_struct *p,
759 swp_entry_t entry, unsigned char usage)
760 {
761 unsigned long offset = swp_offset(entry);
762 unsigned char count;
763 unsigned char has_cache;
764
765 count = p->swap_map[offset];
766 has_cache = count & SWAP_HAS_CACHE;
767 count &= ~SWAP_HAS_CACHE;
768
769 if (usage == SWAP_HAS_CACHE) {
770 VM_BUG_ON(!has_cache);
771 has_cache = 0;
772 } else if (count == SWAP_MAP_SHMEM) {
773 /*
774 * Or we could insist on shmem.c using a special
775 * swap_shmem_free() and free_shmem_swap_and_cache()...
776 */
777 count = 0;
778 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
779 if (count == COUNT_CONTINUED) {
780 if (swap_count_continued(p, offset, count))
781 count = SWAP_MAP_MAX | COUNT_CONTINUED;
782 else
783 count = SWAP_MAP_MAX;
784 } else
785 count--;
786 }
787
788 if (!count)
789 mem_cgroup_uncharge_swap(entry);
790
791 usage = count | has_cache;
792 p->swap_map[offset] = usage;
793
794 /* free if no reference */
795 if (!usage) {
796 dec_cluster_info_page(p, p->cluster_info, offset);
797 if (offset < p->lowest_bit)
798 p->lowest_bit = offset;
799 if (offset > p->highest_bit) {
800 bool was_full = !p->highest_bit;
801 p->highest_bit = offset;
802 if (was_full && (p->flags & SWP_WRITEOK)) {
803 spin_lock(&swap_avail_lock);
804 WARN_ON(!plist_node_empty(&p->avail_list));
805 if (plist_node_empty(&p->avail_list))
806 plist_add(&p->avail_list,
807 &swap_avail_head);
808 spin_unlock(&swap_avail_lock);
809 }
810 }
811 atomic_long_inc(&nr_swap_pages);
812 p->inuse_pages--;
813 frontswap_invalidate_page(p->type, offset);
814 if (p->flags & SWP_BLKDEV) {
815 struct gendisk *disk = p->bdev->bd_disk;
816 if (disk->fops->swap_slot_free_notify)
817 disk->fops->swap_slot_free_notify(p->bdev,
818 offset);
819 }
820 }
821
822 return usage;
823 }
824
825 /*
826 * Caller has made sure that the swap device corresponding to entry
827 * is still around or has not been recycled.
828 */
829 void swap_free(swp_entry_t entry)
830 {
831 struct swap_info_struct *p;
832
833 p = swap_info_get(entry);
834 if (p) {
835 swap_entry_free(p, entry, 1);
836 spin_unlock(&p->lock);
837 }
838 }
839
840 /*
841 * Called after dropping swapcache to decrease refcnt to swap entries.
842 */
843 void swapcache_free(swp_entry_t entry)
844 {
845 struct swap_info_struct *p;
846
847 p = swap_info_get(entry);
848 if (p) {
849 swap_entry_free(p, entry, SWAP_HAS_CACHE);
850 spin_unlock(&p->lock);
851 }
852 }
853
854 /*
855 * How many references to page are currently swapped out?
856 * This does not give an exact answer when swap count is continued,
857 * but does include the high COUNT_CONTINUED flag to allow for that.
858 */
859 int page_swapcount(struct page *page)
860 {
861 int count = 0;
862 struct swap_info_struct *p;
863 swp_entry_t entry;
864
865 entry.val = page_private(page);
866 p = swap_info_get(entry);
867 if (p) {
868 count = swap_count(p->swap_map[swp_offset(entry)]);
869 spin_unlock(&p->lock);
870 }
871 return count;
872 }
873
874 /*
875 * How many references to @entry are currently swapped out?
876 * This considers COUNT_CONTINUED so it returns exact answer.
877 */
878 int swp_swapcount(swp_entry_t entry)
879 {
880 int count, tmp_count, n;
881 struct swap_info_struct *p;
882 struct page *page;
883 pgoff_t offset;
884 unsigned char *map;
885
886 p = swap_info_get(entry);
887 if (!p)
888 return 0;
889
890 count = swap_count(p->swap_map[swp_offset(entry)]);
891 if (!(count & COUNT_CONTINUED))
892 goto out;
893
894 count &= ~COUNT_CONTINUED;
895 n = SWAP_MAP_MAX + 1;
896
897 offset = swp_offset(entry);
898 page = vmalloc_to_page(p->swap_map + offset);
899 offset &= ~PAGE_MASK;
900 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
901
902 do {
903 page = list_next_entry(page, lru);
904 map = kmap_atomic(page);
905 tmp_count = map[offset];
906 kunmap_atomic(map);
907
908 count += (tmp_count & ~COUNT_CONTINUED) * n;
909 n *= (SWAP_CONT_MAX + 1);
910 } while (tmp_count & COUNT_CONTINUED);
911 out:
912 spin_unlock(&p->lock);
913 return count;
914 }
915
916 /*
917 * We can write to an anon page without COW if there are no other references
918 * to it. And as a side-effect, free up its swap: because the old content
919 * on disk will never be read, and seeking back there to write new content
920 * later would only waste time away from clustering.
921 */
922 int reuse_swap_page(struct page *page)
923 {
924 int count;
925
926 VM_BUG_ON_PAGE(!PageLocked(page), page);
927 if (unlikely(PageKsm(page)))
928 return 0;
929 count = page_mapcount(page);
930 if (count <= 1 && PageSwapCache(page)) {
931 count += page_swapcount(page);
932 if (count == 1 && !PageWriteback(page)) {
933 delete_from_swap_cache(page);
934 SetPageDirty(page);
935 }
936 }
937 return count <= 1;
938 }
939
940 /*
941 * If swap is getting full, or if there are no more mappings of this page,
942 * then try_to_free_swap is called to free its swap space.
943 */
944 int try_to_free_swap(struct page *page)
945 {
946 VM_BUG_ON_PAGE(!PageLocked(page), page);
947
948 if (!PageSwapCache(page))
949 return 0;
950 if (PageWriteback(page))
951 return 0;
952 if (page_swapcount(page))
953 return 0;
954
955 /*
956 * Once hibernation has begun to create its image of memory,
957 * there's a danger that one of the calls to try_to_free_swap()
958 * - most probably a call from __try_to_reclaim_swap() while
959 * hibernation is allocating its own swap pages for the image,
960 * but conceivably even a call from memory reclaim - will free
961 * the swap from a page which has already been recorded in the
962 * image as a clean swapcache page, and then reuse its swap for
963 * another page of the image. On waking from hibernation, the
964 * original page might be freed under memory pressure, then
965 * later read back in from swap, now with the wrong data.
966 *
967 * Hibernation suspends storage while it is writing the image
968 * to disk so check that here.
969 */
970 if (pm_suspended_storage())
971 return 0;
972
973 delete_from_swap_cache(page);
974 SetPageDirty(page);
975 return 1;
976 }
977
978 /*
979 * Free the swap entry like above, but also try to
980 * free the page cache entry if it is the last user.
981 */
982 int free_swap_and_cache(swp_entry_t entry)
983 {
984 struct swap_info_struct *p;
985 struct page *page = NULL;
986
987 if (non_swap_entry(entry))
988 return 1;
989
990 p = swap_info_get(entry);
991 if (p) {
992 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
993 page = find_get_page(swap_address_space(entry),
994 entry.val);
995 if (page && !trylock_page(page)) {
996 page_cache_release(page);
997 page = NULL;
998 }
999 }
1000 spin_unlock(&p->lock);
1001 }
1002 if (page) {
1003 /*
1004 * Not mapped elsewhere, or swap space full? Free it!
1005 * Also recheck PageSwapCache now page is locked (above).
1006 */
1007 if (PageSwapCache(page) && !PageWriteback(page) &&
1008 (!page_mapped(page) || vm_swap_full())) {
1009 delete_from_swap_cache(page);
1010 SetPageDirty(page);
1011 }
1012 unlock_page(page);
1013 page_cache_release(page);
1014 }
1015 return p != NULL;
1016 }
1017
1018 #ifdef CONFIG_HIBERNATION
1019 /*
1020 * Find the swap type that corresponds to given device (if any).
1021 *
1022 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1023 * from 0, in which the swap header is expected to be located.
1024 *
1025 * This is needed for the suspend to disk (aka swsusp).
1026 */
1027 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1028 {
1029 struct block_device *bdev = NULL;
1030 int type;
1031
1032 if (device)
1033 bdev = bdget(device);
1034
1035 spin_lock(&swap_lock);
1036 for (type = 0; type < nr_swapfiles; type++) {
1037 struct swap_info_struct *sis = swap_info[type];
1038
1039 if (!(sis->flags & SWP_WRITEOK))
1040 continue;
1041
1042 if (!bdev) {
1043 if (bdev_p)
1044 *bdev_p = bdgrab(sis->bdev);
1045
1046 spin_unlock(&swap_lock);
1047 return type;
1048 }
1049 if (bdev == sis->bdev) {
1050 struct swap_extent *se = &sis->first_swap_extent;
1051
1052 if (se->start_block == offset) {
1053 if (bdev_p)
1054 *bdev_p = bdgrab(sis->bdev);
1055
1056 spin_unlock(&swap_lock);
1057 bdput(bdev);
1058 return type;
1059 }
1060 }
1061 }
1062 spin_unlock(&swap_lock);
1063 if (bdev)
1064 bdput(bdev);
1065
1066 return -ENODEV;
1067 }
1068
1069 /*
1070 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1071 * corresponding to given index in swap_info (swap type).
1072 */
1073 sector_t swapdev_block(int type, pgoff_t offset)
1074 {
1075 struct block_device *bdev;
1076
1077 if ((unsigned int)type >= nr_swapfiles)
1078 return 0;
1079 if (!(swap_info[type]->flags & SWP_WRITEOK))
1080 return 0;
1081 return map_swap_entry(swp_entry(type, offset), &bdev);
1082 }
1083
1084 /*
1085 * Return either the total number of swap pages of given type, or the number
1086 * of free pages of that type (depending on @free)
1087 *
1088 * This is needed for software suspend
1089 */
1090 unsigned int count_swap_pages(int type, int free)
1091 {
1092 unsigned int n = 0;
1093
1094 spin_lock(&swap_lock);
1095 if ((unsigned int)type < nr_swapfiles) {
1096 struct swap_info_struct *sis = swap_info[type];
1097
1098 spin_lock(&sis->lock);
1099 if (sis->flags & SWP_WRITEOK) {
1100 n = sis->pages;
1101 if (free)
1102 n -= sis->inuse_pages;
1103 }
1104 spin_unlock(&sis->lock);
1105 }
1106 spin_unlock(&swap_lock);
1107 return n;
1108 }
1109 #endif /* CONFIG_HIBERNATION */
1110
1111 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1112 {
1113 #ifdef CONFIG_MEM_SOFT_DIRTY
1114 /*
1115 * When pte keeps soft dirty bit the pte generated
1116 * from swap entry does not has it, still it's same
1117 * pte from logical point of view.
1118 */
1119 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1120 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1121 #else
1122 return pte_same(pte, swp_pte);
1123 #endif
1124 }
1125
1126 /*
1127 * No need to decide whether this PTE shares the swap entry with others,
1128 * just let do_wp_page work it out if a write is requested later - to
1129 * force COW, vm_page_prot omits write permission from any private vma.
1130 */
1131 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1132 unsigned long addr, swp_entry_t entry, struct page *page)
1133 {
1134 struct page *swapcache;
1135 struct mem_cgroup *memcg;
1136 spinlock_t *ptl;
1137 pte_t *pte;
1138 int ret = 1;
1139
1140 swapcache = page;
1141 page = ksm_might_need_to_copy(page, vma, addr);
1142 if (unlikely(!page))
1143 return -ENOMEM;
1144
1145 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1146 &memcg, false)) {
1147 ret = -ENOMEM;
1148 goto out_nolock;
1149 }
1150
1151 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1152 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1153 mem_cgroup_cancel_charge(page, memcg, false);
1154 ret = 0;
1155 goto out;
1156 }
1157
1158 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1159 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1160 get_page(page);
1161 set_pte_at(vma->vm_mm, addr, pte,
1162 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1163 if (page == swapcache) {
1164 page_add_anon_rmap(page, vma, addr, false);
1165 mem_cgroup_commit_charge(page, memcg, true, false);
1166 } else { /* ksm created a completely new copy */
1167 page_add_new_anon_rmap(page, vma, addr, false);
1168 mem_cgroup_commit_charge(page, memcg, false, false);
1169 lru_cache_add_active_or_unevictable(page, vma);
1170 }
1171 swap_free(entry);
1172 /*
1173 * Move the page to the active list so it is not
1174 * immediately swapped out again after swapon.
1175 */
1176 activate_page(page);
1177 out:
1178 pte_unmap_unlock(pte, ptl);
1179 out_nolock:
1180 if (page != swapcache) {
1181 unlock_page(page);
1182 put_page(page);
1183 }
1184 return ret;
1185 }
1186
1187 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1188 unsigned long addr, unsigned long end,
1189 swp_entry_t entry, struct page *page)
1190 {
1191 pte_t swp_pte = swp_entry_to_pte(entry);
1192 pte_t *pte;
1193 int ret = 0;
1194
1195 /*
1196 * We don't actually need pte lock while scanning for swp_pte: since
1197 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1198 * page table while we're scanning; though it could get zapped, and on
1199 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1200 * of unmatched parts which look like swp_pte, so unuse_pte must
1201 * recheck under pte lock. Scanning without pte lock lets it be
1202 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1203 */
1204 pte = pte_offset_map(pmd, addr);
1205 do {
1206 /*
1207 * swapoff spends a _lot_ of time in this loop!
1208 * Test inline before going to call unuse_pte.
1209 */
1210 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1211 pte_unmap(pte);
1212 ret = unuse_pte(vma, pmd, addr, entry, page);
1213 if (ret)
1214 goto out;
1215 pte = pte_offset_map(pmd, addr);
1216 }
1217 } while (pte++, addr += PAGE_SIZE, addr != end);
1218 pte_unmap(pte - 1);
1219 out:
1220 return ret;
1221 }
1222
1223 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1224 unsigned long addr, unsigned long end,
1225 swp_entry_t entry, struct page *page)
1226 {
1227 pmd_t *pmd;
1228 unsigned long next;
1229 int ret;
1230
1231 pmd = pmd_offset(pud, addr);
1232 do {
1233 next = pmd_addr_end(addr, end);
1234 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1235 continue;
1236 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1237 if (ret)
1238 return ret;
1239 } while (pmd++, addr = next, addr != end);
1240 return 0;
1241 }
1242
1243 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1244 unsigned long addr, unsigned long end,
1245 swp_entry_t entry, struct page *page)
1246 {
1247 pud_t *pud;
1248 unsigned long next;
1249 int ret;
1250
1251 pud = pud_offset(pgd, addr);
1252 do {
1253 next = pud_addr_end(addr, end);
1254 if (pud_none_or_clear_bad(pud))
1255 continue;
1256 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1257 if (ret)
1258 return ret;
1259 } while (pud++, addr = next, addr != end);
1260 return 0;
1261 }
1262
1263 static int unuse_vma(struct vm_area_struct *vma,
1264 swp_entry_t entry, struct page *page)
1265 {
1266 pgd_t *pgd;
1267 unsigned long addr, end, next;
1268 int ret;
1269
1270 if (page_anon_vma(page)) {
1271 addr = page_address_in_vma(page, vma);
1272 if (addr == -EFAULT)
1273 return 0;
1274 else
1275 end = addr + PAGE_SIZE;
1276 } else {
1277 addr = vma->vm_start;
1278 end = vma->vm_end;
1279 }
1280
1281 pgd = pgd_offset(vma->vm_mm, addr);
1282 do {
1283 next = pgd_addr_end(addr, end);
1284 if (pgd_none_or_clear_bad(pgd))
1285 continue;
1286 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1287 if (ret)
1288 return ret;
1289 } while (pgd++, addr = next, addr != end);
1290 return 0;
1291 }
1292
1293 static int unuse_mm(struct mm_struct *mm,
1294 swp_entry_t entry, struct page *page)
1295 {
1296 struct vm_area_struct *vma;
1297 int ret = 0;
1298
1299 if (!down_read_trylock(&mm->mmap_sem)) {
1300 /*
1301 * Activate page so shrink_inactive_list is unlikely to unmap
1302 * its ptes while lock is dropped, so swapoff can make progress.
1303 */
1304 activate_page(page);
1305 unlock_page(page);
1306 down_read(&mm->mmap_sem);
1307 lock_page(page);
1308 }
1309 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1310 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1311 break;
1312 }
1313 up_read(&mm->mmap_sem);
1314 return (ret < 0)? ret: 0;
1315 }
1316
1317 /*
1318 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1319 * from current position to next entry still in use.
1320 * Recycle to start on reaching the end, returning 0 when empty.
1321 */
1322 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1323 unsigned int prev, bool frontswap)
1324 {
1325 unsigned int max = si->max;
1326 unsigned int i = prev;
1327 unsigned char count;
1328
1329 /*
1330 * No need for swap_lock here: we're just looking
1331 * for whether an entry is in use, not modifying it; false
1332 * hits are okay, and sys_swapoff() has already prevented new
1333 * allocations from this area (while holding swap_lock).
1334 */
1335 for (;;) {
1336 if (++i >= max) {
1337 if (!prev) {
1338 i = 0;
1339 break;
1340 }
1341 /*
1342 * No entries in use at top of swap_map,
1343 * loop back to start and recheck there.
1344 */
1345 max = prev + 1;
1346 prev = 0;
1347 i = 1;
1348 }
1349 if (frontswap) {
1350 if (frontswap_test(si, i))
1351 break;
1352 else
1353 continue;
1354 }
1355 count = READ_ONCE(si->swap_map[i]);
1356 if (count && swap_count(count) != SWAP_MAP_BAD)
1357 break;
1358 }
1359 return i;
1360 }
1361
1362 /*
1363 * We completely avoid races by reading each swap page in advance,
1364 * and then search for the process using it. All the necessary
1365 * page table adjustments can then be made atomically.
1366 *
1367 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1368 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1369 */
1370 int try_to_unuse(unsigned int type, bool frontswap,
1371 unsigned long pages_to_unuse)
1372 {
1373 struct swap_info_struct *si = swap_info[type];
1374 struct mm_struct *start_mm;
1375 volatile unsigned char *swap_map; /* swap_map is accessed without
1376 * locking. Mark it as volatile
1377 * to prevent compiler doing
1378 * something odd.
1379 */
1380 unsigned char swcount;
1381 struct page *page;
1382 swp_entry_t entry;
1383 unsigned int i = 0;
1384 int retval = 0;
1385
1386 /*
1387 * When searching mms for an entry, a good strategy is to
1388 * start at the first mm we freed the previous entry from
1389 * (though actually we don't notice whether we or coincidence
1390 * freed the entry). Initialize this start_mm with a hold.
1391 *
1392 * A simpler strategy would be to start at the last mm we
1393 * freed the previous entry from; but that would take less
1394 * advantage of mmlist ordering, which clusters forked mms
1395 * together, child after parent. If we race with dup_mmap(), we
1396 * prefer to resolve parent before child, lest we miss entries
1397 * duplicated after we scanned child: using last mm would invert
1398 * that.
1399 */
1400 start_mm = &init_mm;
1401 atomic_inc(&init_mm.mm_users);
1402
1403 /*
1404 * Keep on scanning until all entries have gone. Usually,
1405 * one pass through swap_map is enough, but not necessarily:
1406 * there are races when an instance of an entry might be missed.
1407 */
1408 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1409 if (signal_pending(current)) {
1410 retval = -EINTR;
1411 break;
1412 }
1413
1414 /*
1415 * Get a page for the entry, using the existing swap
1416 * cache page if there is one. Otherwise, get a clean
1417 * page and read the swap into it.
1418 */
1419 swap_map = &si->swap_map[i];
1420 entry = swp_entry(type, i);
1421 page = read_swap_cache_async(entry,
1422 GFP_HIGHUSER_MOVABLE, NULL, 0);
1423 if (!page) {
1424 /*
1425 * Either swap_duplicate() failed because entry
1426 * has been freed independently, and will not be
1427 * reused since sys_swapoff() already disabled
1428 * allocation from here, or alloc_page() failed.
1429 */
1430 swcount = *swap_map;
1431 /*
1432 * We don't hold lock here, so the swap entry could be
1433 * SWAP_MAP_BAD (when the cluster is discarding).
1434 * Instead of fail out, We can just skip the swap
1435 * entry because swapoff will wait for discarding
1436 * finish anyway.
1437 */
1438 if (!swcount || swcount == SWAP_MAP_BAD)
1439 continue;
1440 retval = -ENOMEM;
1441 break;
1442 }
1443
1444 /*
1445 * Don't hold on to start_mm if it looks like exiting.
1446 */
1447 if (atomic_read(&start_mm->mm_users) == 1) {
1448 mmput(start_mm);
1449 start_mm = &init_mm;
1450 atomic_inc(&init_mm.mm_users);
1451 }
1452
1453 /*
1454 * Wait for and lock page. When do_swap_page races with
1455 * try_to_unuse, do_swap_page can handle the fault much
1456 * faster than try_to_unuse can locate the entry. This
1457 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1458 * defer to do_swap_page in such a case - in some tests,
1459 * do_swap_page and try_to_unuse repeatedly compete.
1460 */
1461 wait_on_page_locked(page);
1462 wait_on_page_writeback(page);
1463 lock_page(page);
1464 wait_on_page_writeback(page);
1465
1466 /*
1467 * Remove all references to entry.
1468 */
1469 swcount = *swap_map;
1470 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1471 retval = shmem_unuse(entry, page);
1472 /* page has already been unlocked and released */
1473 if (retval < 0)
1474 break;
1475 continue;
1476 }
1477 if (swap_count(swcount) && start_mm != &init_mm)
1478 retval = unuse_mm(start_mm, entry, page);
1479
1480 if (swap_count(*swap_map)) {
1481 int set_start_mm = (*swap_map >= swcount);
1482 struct list_head *p = &start_mm->mmlist;
1483 struct mm_struct *new_start_mm = start_mm;
1484 struct mm_struct *prev_mm = start_mm;
1485 struct mm_struct *mm;
1486
1487 atomic_inc(&new_start_mm->mm_users);
1488 atomic_inc(&prev_mm->mm_users);
1489 spin_lock(&mmlist_lock);
1490 while (swap_count(*swap_map) && !retval &&
1491 (p = p->next) != &start_mm->mmlist) {
1492 mm = list_entry(p, struct mm_struct, mmlist);
1493 if (!atomic_inc_not_zero(&mm->mm_users))
1494 continue;
1495 spin_unlock(&mmlist_lock);
1496 mmput(prev_mm);
1497 prev_mm = mm;
1498
1499 cond_resched();
1500
1501 swcount = *swap_map;
1502 if (!swap_count(swcount)) /* any usage ? */
1503 ;
1504 else if (mm == &init_mm)
1505 set_start_mm = 1;
1506 else
1507 retval = unuse_mm(mm, entry, page);
1508
1509 if (set_start_mm && *swap_map < swcount) {
1510 mmput(new_start_mm);
1511 atomic_inc(&mm->mm_users);
1512 new_start_mm = mm;
1513 set_start_mm = 0;
1514 }
1515 spin_lock(&mmlist_lock);
1516 }
1517 spin_unlock(&mmlist_lock);
1518 mmput(prev_mm);
1519 mmput(start_mm);
1520 start_mm = new_start_mm;
1521 }
1522 if (retval) {
1523 unlock_page(page);
1524 page_cache_release(page);
1525 break;
1526 }
1527
1528 /*
1529 * If a reference remains (rare), we would like to leave
1530 * the page in the swap cache; but try_to_unmap could
1531 * then re-duplicate the entry once we drop page lock,
1532 * so we might loop indefinitely; also, that page could
1533 * not be swapped out to other storage meanwhile. So:
1534 * delete from cache even if there's another reference,
1535 * after ensuring that the data has been saved to disk -
1536 * since if the reference remains (rarer), it will be
1537 * read from disk into another page. Splitting into two
1538 * pages would be incorrect if swap supported "shared
1539 * private" pages, but they are handled by tmpfs files.
1540 *
1541 * Given how unuse_vma() targets one particular offset
1542 * in an anon_vma, once the anon_vma has been determined,
1543 * this splitting happens to be just what is needed to
1544 * handle where KSM pages have been swapped out: re-reading
1545 * is unnecessarily slow, but we can fix that later on.
1546 */
1547 if (swap_count(*swap_map) &&
1548 PageDirty(page) && PageSwapCache(page)) {
1549 struct writeback_control wbc = {
1550 .sync_mode = WB_SYNC_NONE,
1551 };
1552
1553 swap_writepage(page, &wbc);
1554 lock_page(page);
1555 wait_on_page_writeback(page);
1556 }
1557
1558 /*
1559 * It is conceivable that a racing task removed this page from
1560 * swap cache just before we acquired the page lock at the top,
1561 * or while we dropped it in unuse_mm(). The page might even
1562 * be back in swap cache on another swap area: that we must not
1563 * delete, since it may not have been written out to swap yet.
1564 */
1565 if (PageSwapCache(page) &&
1566 likely(page_private(page) == entry.val))
1567 delete_from_swap_cache(page);
1568
1569 /*
1570 * So we could skip searching mms once swap count went
1571 * to 1, we did not mark any present ptes as dirty: must
1572 * mark page dirty so shrink_page_list will preserve it.
1573 */
1574 SetPageDirty(page);
1575 unlock_page(page);
1576 page_cache_release(page);
1577
1578 /*
1579 * Make sure that we aren't completely killing
1580 * interactive performance.
1581 */
1582 cond_resched();
1583 if (frontswap && pages_to_unuse > 0) {
1584 if (!--pages_to_unuse)
1585 break;
1586 }
1587 }
1588
1589 mmput(start_mm);
1590 return retval;
1591 }
1592
1593 /*
1594 * After a successful try_to_unuse, if no swap is now in use, we know
1595 * we can empty the mmlist. swap_lock must be held on entry and exit.
1596 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1597 * added to the mmlist just after page_duplicate - before would be racy.
1598 */
1599 static void drain_mmlist(void)
1600 {
1601 struct list_head *p, *next;
1602 unsigned int type;
1603
1604 for (type = 0; type < nr_swapfiles; type++)
1605 if (swap_info[type]->inuse_pages)
1606 return;
1607 spin_lock(&mmlist_lock);
1608 list_for_each_safe(p, next, &init_mm.mmlist)
1609 list_del_init(p);
1610 spin_unlock(&mmlist_lock);
1611 }
1612
1613 /*
1614 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1615 * corresponds to page offset for the specified swap entry.
1616 * Note that the type of this function is sector_t, but it returns page offset
1617 * into the bdev, not sector offset.
1618 */
1619 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1620 {
1621 struct swap_info_struct *sis;
1622 struct swap_extent *start_se;
1623 struct swap_extent *se;
1624 pgoff_t offset;
1625
1626 sis = swap_info[swp_type(entry)];
1627 *bdev = sis->bdev;
1628
1629 offset = swp_offset(entry);
1630 start_se = sis->curr_swap_extent;
1631 se = start_se;
1632
1633 for ( ; ; ) {
1634 if (se->start_page <= offset &&
1635 offset < (se->start_page + se->nr_pages)) {
1636 return se->start_block + (offset - se->start_page);
1637 }
1638 se = list_next_entry(se, list);
1639 sis->curr_swap_extent = se;
1640 BUG_ON(se == start_se); /* It *must* be present */
1641 }
1642 }
1643
1644 /*
1645 * Returns the page offset into bdev for the specified page's swap entry.
1646 */
1647 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1648 {
1649 swp_entry_t entry;
1650 entry.val = page_private(page);
1651 return map_swap_entry(entry, bdev);
1652 }
1653
1654 /*
1655 * Free all of a swapdev's extent information
1656 */
1657 static void destroy_swap_extents(struct swap_info_struct *sis)
1658 {
1659 while (!list_empty(&sis->first_swap_extent.list)) {
1660 struct swap_extent *se;
1661
1662 se = list_first_entry(&sis->first_swap_extent.list,
1663 struct swap_extent, list);
1664 list_del(&se->list);
1665 kfree(se);
1666 }
1667
1668 if (sis->flags & SWP_FILE) {
1669 struct file *swap_file = sis->swap_file;
1670 struct address_space *mapping = swap_file->f_mapping;
1671
1672 sis->flags &= ~SWP_FILE;
1673 mapping->a_ops->swap_deactivate(swap_file);
1674 }
1675 }
1676
1677 /*
1678 * Add a block range (and the corresponding page range) into this swapdev's
1679 * extent list. The extent list is kept sorted in page order.
1680 *
1681 * This function rather assumes that it is called in ascending page order.
1682 */
1683 int
1684 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1685 unsigned long nr_pages, sector_t start_block)
1686 {
1687 struct swap_extent *se;
1688 struct swap_extent *new_se;
1689 struct list_head *lh;
1690
1691 if (start_page == 0) {
1692 se = &sis->first_swap_extent;
1693 sis->curr_swap_extent = se;
1694 se->start_page = 0;
1695 se->nr_pages = nr_pages;
1696 se->start_block = start_block;
1697 return 1;
1698 } else {
1699 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1700 se = list_entry(lh, struct swap_extent, list);
1701 BUG_ON(se->start_page + se->nr_pages != start_page);
1702 if (se->start_block + se->nr_pages == start_block) {
1703 /* Merge it */
1704 se->nr_pages += nr_pages;
1705 return 0;
1706 }
1707 }
1708
1709 /*
1710 * No merge. Insert a new extent, preserving ordering.
1711 */
1712 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1713 if (new_se == NULL)
1714 return -ENOMEM;
1715 new_se->start_page = start_page;
1716 new_se->nr_pages = nr_pages;
1717 new_se->start_block = start_block;
1718
1719 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1720 return 1;
1721 }
1722
1723 /*
1724 * A `swap extent' is a simple thing which maps a contiguous range of pages
1725 * onto a contiguous range of disk blocks. An ordered list of swap extents
1726 * is built at swapon time and is then used at swap_writepage/swap_readpage
1727 * time for locating where on disk a page belongs.
1728 *
1729 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1730 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1731 * swap files identically.
1732 *
1733 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1734 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1735 * swapfiles are handled *identically* after swapon time.
1736 *
1737 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1738 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1739 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1740 * requirements, they are simply tossed out - we will never use those blocks
1741 * for swapping.
1742 *
1743 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1744 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1745 * which will scribble on the fs.
1746 *
1747 * The amount of disk space which a single swap extent represents varies.
1748 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1749 * extents in the list. To avoid much list walking, we cache the previous
1750 * search location in `curr_swap_extent', and start new searches from there.
1751 * This is extremely effective. The average number of iterations in
1752 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1753 */
1754 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1755 {
1756 struct file *swap_file = sis->swap_file;
1757 struct address_space *mapping = swap_file->f_mapping;
1758 struct inode *inode = mapping->host;
1759 int ret;
1760
1761 if (S_ISBLK(inode->i_mode)) {
1762 ret = add_swap_extent(sis, 0, sis->max, 0);
1763 *span = sis->pages;
1764 return ret;
1765 }
1766
1767 if (mapping->a_ops->swap_activate) {
1768 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1769 if (!ret) {
1770 sis->flags |= SWP_FILE;
1771 ret = add_swap_extent(sis, 0, sis->max, 0);
1772 *span = sis->pages;
1773 }
1774 return ret;
1775 }
1776
1777 return generic_swapfile_activate(sis, swap_file, span);
1778 }
1779
1780 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1781 unsigned char *swap_map,
1782 struct swap_cluster_info *cluster_info)
1783 {
1784 if (prio >= 0)
1785 p->prio = prio;
1786 else
1787 p->prio = --least_priority;
1788 /*
1789 * the plist prio is negated because plist ordering is
1790 * low-to-high, while swap ordering is high-to-low
1791 */
1792 p->list.prio = -p->prio;
1793 p->avail_list.prio = -p->prio;
1794 p->swap_map = swap_map;
1795 p->cluster_info = cluster_info;
1796 p->flags |= SWP_WRITEOK;
1797 atomic_long_add(p->pages, &nr_swap_pages);
1798 total_swap_pages += p->pages;
1799
1800 assert_spin_locked(&swap_lock);
1801 /*
1802 * both lists are plists, and thus priority ordered.
1803 * swap_active_head needs to be priority ordered for swapoff(),
1804 * which on removal of any swap_info_struct with an auto-assigned
1805 * (i.e. negative) priority increments the auto-assigned priority
1806 * of any lower-priority swap_info_structs.
1807 * swap_avail_head needs to be priority ordered for get_swap_page(),
1808 * which allocates swap pages from the highest available priority
1809 * swap_info_struct.
1810 */
1811 plist_add(&p->list, &swap_active_head);
1812 spin_lock(&swap_avail_lock);
1813 plist_add(&p->avail_list, &swap_avail_head);
1814 spin_unlock(&swap_avail_lock);
1815 }
1816
1817 static void enable_swap_info(struct swap_info_struct *p, int prio,
1818 unsigned char *swap_map,
1819 struct swap_cluster_info *cluster_info,
1820 unsigned long *frontswap_map)
1821 {
1822 frontswap_init(p->type, frontswap_map);
1823 spin_lock(&swap_lock);
1824 spin_lock(&p->lock);
1825 _enable_swap_info(p, prio, swap_map, cluster_info);
1826 spin_unlock(&p->lock);
1827 spin_unlock(&swap_lock);
1828 }
1829
1830 static void reinsert_swap_info(struct swap_info_struct *p)
1831 {
1832 spin_lock(&swap_lock);
1833 spin_lock(&p->lock);
1834 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1835 spin_unlock(&p->lock);
1836 spin_unlock(&swap_lock);
1837 }
1838
1839 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1840 {
1841 struct swap_info_struct *p = NULL;
1842 unsigned char *swap_map;
1843 struct swap_cluster_info *cluster_info;
1844 unsigned long *frontswap_map;
1845 struct file *swap_file, *victim;
1846 struct address_space *mapping;
1847 struct inode *inode;
1848 struct filename *pathname;
1849 int err, found = 0;
1850 unsigned int old_block_size;
1851
1852 if (!capable(CAP_SYS_ADMIN))
1853 return -EPERM;
1854
1855 BUG_ON(!current->mm);
1856
1857 pathname = getname(specialfile);
1858 if (IS_ERR(pathname))
1859 return PTR_ERR(pathname);
1860
1861 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1862 err = PTR_ERR(victim);
1863 if (IS_ERR(victim))
1864 goto out;
1865
1866 mapping = victim->f_mapping;
1867 spin_lock(&swap_lock);
1868 plist_for_each_entry(p, &swap_active_head, list) {
1869 if (p->flags & SWP_WRITEOK) {
1870 if (p->swap_file->f_mapping == mapping) {
1871 found = 1;
1872 break;
1873 }
1874 }
1875 }
1876 if (!found) {
1877 err = -EINVAL;
1878 spin_unlock(&swap_lock);
1879 goto out_dput;
1880 }
1881 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1882 vm_unacct_memory(p->pages);
1883 else {
1884 err = -ENOMEM;
1885 spin_unlock(&swap_lock);
1886 goto out_dput;
1887 }
1888 spin_lock(&swap_avail_lock);
1889 plist_del(&p->avail_list, &swap_avail_head);
1890 spin_unlock(&swap_avail_lock);
1891 spin_lock(&p->lock);
1892 if (p->prio < 0) {
1893 struct swap_info_struct *si = p;
1894
1895 plist_for_each_entry_continue(si, &swap_active_head, list) {
1896 si->prio++;
1897 si->list.prio--;
1898 si->avail_list.prio--;
1899 }
1900 least_priority++;
1901 }
1902 plist_del(&p->list, &swap_active_head);
1903 atomic_long_sub(p->pages, &nr_swap_pages);
1904 total_swap_pages -= p->pages;
1905 p->flags &= ~SWP_WRITEOK;
1906 spin_unlock(&p->lock);
1907 spin_unlock(&swap_lock);
1908
1909 set_current_oom_origin();
1910 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1911 clear_current_oom_origin();
1912
1913 if (err) {
1914 /* re-insert swap space back into swap_list */
1915 reinsert_swap_info(p);
1916 goto out_dput;
1917 }
1918
1919 flush_work(&p->discard_work);
1920
1921 destroy_swap_extents(p);
1922 if (p->flags & SWP_CONTINUED)
1923 free_swap_count_continuations(p);
1924
1925 mutex_lock(&swapon_mutex);
1926 spin_lock(&swap_lock);
1927 spin_lock(&p->lock);
1928 drain_mmlist();
1929
1930 /* wait for anyone still in scan_swap_map */
1931 p->highest_bit = 0; /* cuts scans short */
1932 while (p->flags >= SWP_SCANNING) {
1933 spin_unlock(&p->lock);
1934 spin_unlock(&swap_lock);
1935 schedule_timeout_uninterruptible(1);
1936 spin_lock(&swap_lock);
1937 spin_lock(&p->lock);
1938 }
1939
1940 swap_file = p->swap_file;
1941 old_block_size = p->old_block_size;
1942 p->swap_file = NULL;
1943 p->max = 0;
1944 swap_map = p->swap_map;
1945 p->swap_map = NULL;
1946 cluster_info = p->cluster_info;
1947 p->cluster_info = NULL;
1948 frontswap_map = frontswap_map_get(p);
1949 spin_unlock(&p->lock);
1950 spin_unlock(&swap_lock);
1951 frontswap_invalidate_area(p->type);
1952 frontswap_map_set(p, NULL);
1953 mutex_unlock(&swapon_mutex);
1954 free_percpu(p->percpu_cluster);
1955 p->percpu_cluster = NULL;
1956 vfree(swap_map);
1957 vfree(cluster_info);
1958 vfree(frontswap_map);
1959 /* Destroy swap account information */
1960 swap_cgroup_swapoff(p->type);
1961
1962 inode = mapping->host;
1963 if (S_ISBLK(inode->i_mode)) {
1964 struct block_device *bdev = I_BDEV(inode);
1965 set_blocksize(bdev, old_block_size);
1966 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1967 } else {
1968 mutex_lock(&inode->i_mutex);
1969 inode->i_flags &= ~S_SWAPFILE;
1970 mutex_unlock(&inode->i_mutex);
1971 }
1972 filp_close(swap_file, NULL);
1973
1974 /*
1975 * Clear the SWP_USED flag after all resources are freed so that swapon
1976 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1977 * not hold p->lock after we cleared its SWP_WRITEOK.
1978 */
1979 spin_lock(&swap_lock);
1980 p->flags = 0;
1981 spin_unlock(&swap_lock);
1982
1983 err = 0;
1984 atomic_inc(&proc_poll_event);
1985 wake_up_interruptible(&proc_poll_wait);
1986
1987 out_dput:
1988 filp_close(victim, NULL);
1989 out:
1990 putname(pathname);
1991 return err;
1992 }
1993
1994 #ifdef CONFIG_PROC_FS
1995 static unsigned swaps_poll(struct file *file, poll_table *wait)
1996 {
1997 struct seq_file *seq = file->private_data;
1998
1999 poll_wait(file, &proc_poll_wait, wait);
2000
2001 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2002 seq->poll_event = atomic_read(&proc_poll_event);
2003 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2004 }
2005
2006 return POLLIN | POLLRDNORM;
2007 }
2008
2009 /* iterator */
2010 static void *swap_start(struct seq_file *swap, loff_t *pos)
2011 {
2012 struct swap_info_struct *si;
2013 int type;
2014 loff_t l = *pos;
2015
2016 mutex_lock(&swapon_mutex);
2017
2018 if (!l)
2019 return SEQ_START_TOKEN;
2020
2021 for (type = 0; type < nr_swapfiles; type++) {
2022 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2023 si = swap_info[type];
2024 if (!(si->flags & SWP_USED) || !si->swap_map)
2025 continue;
2026 if (!--l)
2027 return si;
2028 }
2029
2030 return NULL;
2031 }
2032
2033 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2034 {
2035 struct swap_info_struct *si = v;
2036 int type;
2037
2038 if (v == SEQ_START_TOKEN)
2039 type = 0;
2040 else
2041 type = si->type + 1;
2042
2043 for (; type < nr_swapfiles; type++) {
2044 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2045 si = swap_info[type];
2046 if (!(si->flags & SWP_USED) || !si->swap_map)
2047 continue;
2048 ++*pos;
2049 return si;
2050 }
2051
2052 return NULL;
2053 }
2054
2055 static void swap_stop(struct seq_file *swap, void *v)
2056 {
2057 mutex_unlock(&swapon_mutex);
2058 }
2059
2060 static int swap_show(struct seq_file *swap, void *v)
2061 {
2062 struct swap_info_struct *si = v;
2063 struct file *file;
2064 int len;
2065
2066 if (si == SEQ_START_TOKEN) {
2067 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2068 return 0;
2069 }
2070
2071 file = si->swap_file;
2072 len = seq_file_path(swap, file, " \t\n\\");
2073 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2074 len < 40 ? 40 - len : 1, " ",
2075 S_ISBLK(file_inode(file)->i_mode) ?
2076 "partition" : "file\t",
2077 si->pages << (PAGE_SHIFT - 10),
2078 si->inuse_pages << (PAGE_SHIFT - 10),
2079 si->prio);
2080 return 0;
2081 }
2082
2083 static const struct seq_operations swaps_op = {
2084 .start = swap_start,
2085 .next = swap_next,
2086 .stop = swap_stop,
2087 .show = swap_show
2088 };
2089
2090 static int swaps_open(struct inode *inode, struct file *file)
2091 {
2092 struct seq_file *seq;
2093 int ret;
2094
2095 ret = seq_open(file, &swaps_op);
2096 if (ret)
2097 return ret;
2098
2099 seq = file->private_data;
2100 seq->poll_event = atomic_read(&proc_poll_event);
2101 return 0;
2102 }
2103
2104 static const struct file_operations proc_swaps_operations = {
2105 .open = swaps_open,
2106 .read = seq_read,
2107 .llseek = seq_lseek,
2108 .release = seq_release,
2109 .poll = swaps_poll,
2110 };
2111
2112 static int __init procswaps_init(void)
2113 {
2114 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2115 return 0;
2116 }
2117 __initcall(procswaps_init);
2118 #endif /* CONFIG_PROC_FS */
2119
2120 #ifdef MAX_SWAPFILES_CHECK
2121 static int __init max_swapfiles_check(void)
2122 {
2123 MAX_SWAPFILES_CHECK();
2124 return 0;
2125 }
2126 late_initcall(max_swapfiles_check);
2127 #endif
2128
2129 static struct swap_info_struct *alloc_swap_info(void)
2130 {
2131 struct swap_info_struct *p;
2132 unsigned int type;
2133
2134 p = kzalloc(sizeof(*p), GFP_KERNEL);
2135 if (!p)
2136 return ERR_PTR(-ENOMEM);
2137
2138 spin_lock(&swap_lock);
2139 for (type = 0; type < nr_swapfiles; type++) {
2140 if (!(swap_info[type]->flags & SWP_USED))
2141 break;
2142 }
2143 if (type >= MAX_SWAPFILES) {
2144 spin_unlock(&swap_lock);
2145 kfree(p);
2146 return ERR_PTR(-EPERM);
2147 }
2148 if (type >= nr_swapfiles) {
2149 p->type = type;
2150 swap_info[type] = p;
2151 /*
2152 * Write swap_info[type] before nr_swapfiles, in case a
2153 * racing procfs swap_start() or swap_next() is reading them.
2154 * (We never shrink nr_swapfiles, we never free this entry.)
2155 */
2156 smp_wmb();
2157 nr_swapfiles++;
2158 } else {
2159 kfree(p);
2160 p = swap_info[type];
2161 /*
2162 * Do not memset this entry: a racing procfs swap_next()
2163 * would be relying on p->type to remain valid.
2164 */
2165 }
2166 INIT_LIST_HEAD(&p->first_swap_extent.list);
2167 plist_node_init(&p->list, 0);
2168 plist_node_init(&p->avail_list, 0);
2169 p->flags = SWP_USED;
2170 spin_unlock(&swap_lock);
2171 spin_lock_init(&p->lock);
2172
2173 return p;
2174 }
2175
2176 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2177 {
2178 int error;
2179
2180 if (S_ISBLK(inode->i_mode)) {
2181 p->bdev = bdgrab(I_BDEV(inode));
2182 error = blkdev_get(p->bdev,
2183 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2184 if (error < 0) {
2185 p->bdev = NULL;
2186 return error;
2187 }
2188 p->old_block_size = block_size(p->bdev);
2189 error = set_blocksize(p->bdev, PAGE_SIZE);
2190 if (error < 0)
2191 return error;
2192 p->flags |= SWP_BLKDEV;
2193 } else if (S_ISREG(inode->i_mode)) {
2194 p->bdev = inode->i_sb->s_bdev;
2195 mutex_lock(&inode->i_mutex);
2196 if (IS_SWAPFILE(inode))
2197 return -EBUSY;
2198 } else
2199 return -EINVAL;
2200
2201 return 0;
2202 }
2203
2204 static unsigned long read_swap_header(struct swap_info_struct *p,
2205 union swap_header *swap_header,
2206 struct inode *inode)
2207 {
2208 int i;
2209 unsigned long maxpages;
2210 unsigned long swapfilepages;
2211 unsigned long last_page;
2212
2213 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2214 pr_err("Unable to find swap-space signature\n");
2215 return 0;
2216 }
2217
2218 /* swap partition endianess hack... */
2219 if (swab32(swap_header->info.version) == 1) {
2220 swab32s(&swap_header->info.version);
2221 swab32s(&swap_header->info.last_page);
2222 swab32s(&swap_header->info.nr_badpages);
2223 for (i = 0; i < swap_header->info.nr_badpages; i++)
2224 swab32s(&swap_header->info.badpages[i]);
2225 }
2226 /* Check the swap header's sub-version */
2227 if (swap_header->info.version != 1) {
2228 pr_warn("Unable to handle swap header version %d\n",
2229 swap_header->info.version);
2230 return 0;
2231 }
2232
2233 p->lowest_bit = 1;
2234 p->cluster_next = 1;
2235 p->cluster_nr = 0;
2236
2237 /*
2238 * Find out how many pages are allowed for a single swap
2239 * device. There are two limiting factors: 1) the number
2240 * of bits for the swap offset in the swp_entry_t type, and
2241 * 2) the number of bits in the swap pte as defined by the
2242 * different architectures. In order to find the
2243 * largest possible bit mask, a swap entry with swap type 0
2244 * and swap offset ~0UL is created, encoded to a swap pte,
2245 * decoded to a swp_entry_t again, and finally the swap
2246 * offset is extracted. This will mask all the bits from
2247 * the initial ~0UL mask that can't be encoded in either
2248 * the swp_entry_t or the architecture definition of a
2249 * swap pte.
2250 */
2251 maxpages = swp_offset(pte_to_swp_entry(
2252 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2253 last_page = swap_header->info.last_page;
2254 if (last_page > maxpages) {
2255 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2256 maxpages << (PAGE_SHIFT - 10),
2257 last_page << (PAGE_SHIFT - 10));
2258 }
2259 if (maxpages > last_page) {
2260 maxpages = last_page + 1;
2261 /* p->max is an unsigned int: don't overflow it */
2262 if ((unsigned int)maxpages == 0)
2263 maxpages = UINT_MAX;
2264 }
2265 p->highest_bit = maxpages - 1;
2266
2267 if (!maxpages)
2268 return 0;
2269 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2270 if (swapfilepages && maxpages > swapfilepages) {
2271 pr_warn("Swap area shorter than signature indicates\n");
2272 return 0;
2273 }
2274 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2275 return 0;
2276 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2277 return 0;
2278
2279 return maxpages;
2280 }
2281
2282 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2283 union swap_header *swap_header,
2284 unsigned char *swap_map,
2285 struct swap_cluster_info *cluster_info,
2286 unsigned long maxpages,
2287 sector_t *span)
2288 {
2289 int i;
2290 unsigned int nr_good_pages;
2291 int nr_extents;
2292 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2293 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2294
2295 nr_good_pages = maxpages - 1; /* omit header page */
2296
2297 cluster_set_null(&p->free_cluster_head);
2298 cluster_set_null(&p->free_cluster_tail);
2299 cluster_set_null(&p->discard_cluster_head);
2300 cluster_set_null(&p->discard_cluster_tail);
2301
2302 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2303 unsigned int page_nr = swap_header->info.badpages[i];
2304 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2305 return -EINVAL;
2306 if (page_nr < maxpages) {
2307 swap_map[page_nr] = SWAP_MAP_BAD;
2308 nr_good_pages--;
2309 /*
2310 * Haven't marked the cluster free yet, no list
2311 * operation involved
2312 */
2313 inc_cluster_info_page(p, cluster_info, page_nr);
2314 }
2315 }
2316
2317 /* Haven't marked the cluster free yet, no list operation involved */
2318 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2319 inc_cluster_info_page(p, cluster_info, i);
2320
2321 if (nr_good_pages) {
2322 swap_map[0] = SWAP_MAP_BAD;
2323 /*
2324 * Not mark the cluster free yet, no list
2325 * operation involved
2326 */
2327 inc_cluster_info_page(p, cluster_info, 0);
2328 p->max = maxpages;
2329 p->pages = nr_good_pages;
2330 nr_extents = setup_swap_extents(p, span);
2331 if (nr_extents < 0)
2332 return nr_extents;
2333 nr_good_pages = p->pages;
2334 }
2335 if (!nr_good_pages) {
2336 pr_warn("Empty swap-file\n");
2337 return -EINVAL;
2338 }
2339
2340 if (!cluster_info)
2341 return nr_extents;
2342
2343 for (i = 0; i < nr_clusters; i++) {
2344 if (!cluster_count(&cluster_info[idx])) {
2345 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2346 if (cluster_is_null(&p->free_cluster_head)) {
2347 cluster_set_next_flag(&p->free_cluster_head,
2348 idx, 0);
2349 cluster_set_next_flag(&p->free_cluster_tail,
2350 idx, 0);
2351 } else {
2352 unsigned int tail;
2353
2354 tail = cluster_next(&p->free_cluster_tail);
2355 cluster_set_next(&cluster_info[tail], idx);
2356 cluster_set_next_flag(&p->free_cluster_tail,
2357 idx, 0);
2358 }
2359 }
2360 idx++;
2361 if (idx == nr_clusters)
2362 idx = 0;
2363 }
2364 return nr_extents;
2365 }
2366
2367 /*
2368 * Helper to sys_swapon determining if a given swap
2369 * backing device queue supports DISCARD operations.
2370 */
2371 static bool swap_discardable(struct swap_info_struct *si)
2372 {
2373 struct request_queue *q = bdev_get_queue(si->bdev);
2374
2375 if (!q || !blk_queue_discard(q))
2376 return false;
2377
2378 return true;
2379 }
2380
2381 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2382 {
2383 struct swap_info_struct *p;
2384 struct filename *name;
2385 struct file *swap_file = NULL;
2386 struct address_space *mapping;
2387 int prio;
2388 int error;
2389 union swap_header *swap_header;
2390 int nr_extents;
2391 sector_t span;
2392 unsigned long maxpages;
2393 unsigned char *swap_map = NULL;
2394 struct swap_cluster_info *cluster_info = NULL;
2395 unsigned long *frontswap_map = NULL;
2396 struct page *page = NULL;
2397 struct inode *inode = NULL;
2398
2399 if (swap_flags & ~SWAP_FLAGS_VALID)
2400 return -EINVAL;
2401
2402 if (!capable(CAP_SYS_ADMIN))
2403 return -EPERM;
2404
2405 p = alloc_swap_info();
2406 if (IS_ERR(p))
2407 return PTR_ERR(p);
2408
2409 INIT_WORK(&p->discard_work, swap_discard_work);
2410
2411 name = getname(specialfile);
2412 if (IS_ERR(name)) {
2413 error = PTR_ERR(name);
2414 name = NULL;
2415 goto bad_swap;
2416 }
2417 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2418 if (IS_ERR(swap_file)) {
2419 error = PTR_ERR(swap_file);
2420 swap_file = NULL;
2421 goto bad_swap;
2422 }
2423
2424 p->swap_file = swap_file;
2425 mapping = swap_file->f_mapping;
2426 inode = mapping->host;
2427
2428 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2429 error = claim_swapfile(p, inode);
2430 if (unlikely(error))
2431 goto bad_swap;
2432
2433 /*
2434 * Read the swap header.
2435 */
2436 if (!mapping->a_ops->readpage) {
2437 error = -EINVAL;
2438 goto bad_swap;
2439 }
2440 page = read_mapping_page(mapping, 0, swap_file);
2441 if (IS_ERR(page)) {
2442 error = PTR_ERR(page);
2443 goto bad_swap;
2444 }
2445 swap_header = kmap(page);
2446
2447 maxpages = read_swap_header(p, swap_header, inode);
2448 if (unlikely(!maxpages)) {
2449 error = -EINVAL;
2450 goto bad_swap;
2451 }
2452
2453 /* OK, set up the swap map and apply the bad block list */
2454 swap_map = vzalloc(maxpages);
2455 if (!swap_map) {
2456 error = -ENOMEM;
2457 goto bad_swap;
2458 }
2459 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2460 int cpu;
2461
2462 p->flags |= SWP_SOLIDSTATE;
2463 /*
2464 * select a random position to start with to help wear leveling
2465 * SSD
2466 */
2467 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2468
2469 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2470 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2471 if (!cluster_info) {
2472 error = -ENOMEM;
2473 goto bad_swap;
2474 }
2475 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2476 if (!p->percpu_cluster) {
2477 error = -ENOMEM;
2478 goto bad_swap;
2479 }
2480 for_each_possible_cpu(cpu) {
2481 struct percpu_cluster *cluster;
2482 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2483 cluster_set_null(&cluster->index);
2484 }
2485 }
2486
2487 error = swap_cgroup_swapon(p->type, maxpages);
2488 if (error)
2489 goto bad_swap;
2490
2491 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2492 cluster_info, maxpages, &span);
2493 if (unlikely(nr_extents < 0)) {
2494 error = nr_extents;
2495 goto bad_swap;
2496 }
2497 /* frontswap enabled? set up bit-per-page map for frontswap */
2498 if (frontswap_enabled)
2499 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2500
2501 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2502 /*
2503 * When discard is enabled for swap with no particular
2504 * policy flagged, we set all swap discard flags here in
2505 * order to sustain backward compatibility with older
2506 * swapon(8) releases.
2507 */
2508 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2509 SWP_PAGE_DISCARD);
2510
2511 /*
2512 * By flagging sys_swapon, a sysadmin can tell us to
2513 * either do single-time area discards only, or to just
2514 * perform discards for released swap page-clusters.
2515 * Now it's time to adjust the p->flags accordingly.
2516 */
2517 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2518 p->flags &= ~SWP_PAGE_DISCARD;
2519 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2520 p->flags &= ~SWP_AREA_DISCARD;
2521
2522 /* issue a swapon-time discard if it's still required */
2523 if (p->flags & SWP_AREA_DISCARD) {
2524 int err = discard_swap(p);
2525 if (unlikely(err))
2526 pr_err("swapon: discard_swap(%p): %d\n",
2527 p, err);
2528 }
2529 }
2530
2531 mutex_lock(&swapon_mutex);
2532 prio = -1;
2533 if (swap_flags & SWAP_FLAG_PREFER)
2534 prio =
2535 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2536 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2537
2538 pr_info("Adding %uk swap on %s. "
2539 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2540 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2541 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2542 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2543 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2544 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2545 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2546 (frontswap_map) ? "FS" : "");
2547
2548 mutex_unlock(&swapon_mutex);
2549 atomic_inc(&proc_poll_event);
2550 wake_up_interruptible(&proc_poll_wait);
2551
2552 if (S_ISREG(inode->i_mode))
2553 inode->i_flags |= S_SWAPFILE;
2554 error = 0;
2555 goto out;
2556 bad_swap:
2557 free_percpu(p->percpu_cluster);
2558 p->percpu_cluster = NULL;
2559 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2560 set_blocksize(p->bdev, p->old_block_size);
2561 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2562 }
2563 destroy_swap_extents(p);
2564 swap_cgroup_swapoff(p->type);
2565 spin_lock(&swap_lock);
2566 p->swap_file = NULL;
2567 p->flags = 0;
2568 spin_unlock(&swap_lock);
2569 vfree(swap_map);
2570 vfree(cluster_info);
2571 if (swap_file) {
2572 if (inode && S_ISREG(inode->i_mode)) {
2573 mutex_unlock(&inode->i_mutex);
2574 inode = NULL;
2575 }
2576 filp_close(swap_file, NULL);
2577 }
2578 out:
2579 if (page && !IS_ERR(page)) {
2580 kunmap(page);
2581 page_cache_release(page);
2582 }
2583 if (name)
2584 putname(name);
2585 if (inode && S_ISREG(inode->i_mode))
2586 mutex_unlock(&inode->i_mutex);
2587 return error;
2588 }
2589
2590 void si_swapinfo(struct sysinfo *val)
2591 {
2592 unsigned int type;
2593 unsigned long nr_to_be_unused = 0;
2594
2595 spin_lock(&swap_lock);
2596 for (type = 0; type < nr_swapfiles; type++) {
2597 struct swap_info_struct *si = swap_info[type];
2598
2599 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2600 nr_to_be_unused += si->inuse_pages;
2601 }
2602 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2603 val->totalswap = total_swap_pages + nr_to_be_unused;
2604 spin_unlock(&swap_lock);
2605 }
2606
2607 /*
2608 * Verify that a swap entry is valid and increment its swap map count.
2609 *
2610 * Returns error code in following case.
2611 * - success -> 0
2612 * - swp_entry is invalid -> EINVAL
2613 * - swp_entry is migration entry -> EINVAL
2614 * - swap-cache reference is requested but there is already one. -> EEXIST
2615 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2616 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2617 */
2618 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2619 {
2620 struct swap_info_struct *p;
2621 unsigned long offset, type;
2622 unsigned char count;
2623 unsigned char has_cache;
2624 int err = -EINVAL;
2625
2626 if (non_swap_entry(entry))
2627 goto out;
2628
2629 type = swp_type(entry);
2630 if (type >= nr_swapfiles)
2631 goto bad_file;
2632 p = swap_info[type];
2633 offset = swp_offset(entry);
2634
2635 spin_lock(&p->lock);
2636 if (unlikely(offset >= p->max))
2637 goto unlock_out;
2638
2639 count = p->swap_map[offset];
2640
2641 /*
2642 * swapin_readahead() doesn't check if a swap entry is valid, so the
2643 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2644 */
2645 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2646 err = -ENOENT;
2647 goto unlock_out;
2648 }
2649
2650 has_cache = count & SWAP_HAS_CACHE;
2651 count &= ~SWAP_HAS_CACHE;
2652 err = 0;
2653
2654 if (usage == SWAP_HAS_CACHE) {
2655
2656 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2657 if (!has_cache && count)
2658 has_cache = SWAP_HAS_CACHE;
2659 else if (has_cache) /* someone else added cache */
2660 err = -EEXIST;
2661 else /* no users remaining */
2662 err = -ENOENT;
2663
2664 } else if (count || has_cache) {
2665
2666 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2667 count += usage;
2668 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2669 err = -EINVAL;
2670 else if (swap_count_continued(p, offset, count))
2671 count = COUNT_CONTINUED;
2672 else
2673 err = -ENOMEM;
2674 } else
2675 err = -ENOENT; /* unused swap entry */
2676
2677 p->swap_map[offset] = count | has_cache;
2678
2679 unlock_out:
2680 spin_unlock(&p->lock);
2681 out:
2682 return err;
2683
2684 bad_file:
2685 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2686 goto out;
2687 }
2688
2689 /*
2690 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2691 * (in which case its reference count is never incremented).
2692 */
2693 void swap_shmem_alloc(swp_entry_t entry)
2694 {
2695 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2696 }
2697
2698 /*
2699 * Increase reference count of swap entry by 1.
2700 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2701 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2702 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2703 * might occur if a page table entry has got corrupted.
2704 */
2705 int swap_duplicate(swp_entry_t entry)
2706 {
2707 int err = 0;
2708
2709 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2710 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2711 return err;
2712 }
2713
2714 /*
2715 * @entry: swap entry for which we allocate swap cache.
2716 *
2717 * Called when allocating swap cache for existing swap entry,
2718 * This can return error codes. Returns 0 at success.
2719 * -EBUSY means there is a swap cache.
2720 * Note: return code is different from swap_duplicate().
2721 */
2722 int swapcache_prepare(swp_entry_t entry)
2723 {
2724 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2725 }
2726
2727 struct swap_info_struct *page_swap_info(struct page *page)
2728 {
2729 swp_entry_t swap = { .val = page_private(page) };
2730 BUG_ON(!PageSwapCache(page));
2731 return swap_info[swp_type(swap)];
2732 }
2733
2734 /*
2735 * out-of-line __page_file_ methods to avoid include hell.
2736 */
2737 struct address_space *__page_file_mapping(struct page *page)
2738 {
2739 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2740 return page_swap_info(page)->swap_file->f_mapping;
2741 }
2742 EXPORT_SYMBOL_GPL(__page_file_mapping);
2743
2744 pgoff_t __page_file_index(struct page *page)
2745 {
2746 swp_entry_t swap = { .val = page_private(page) };
2747 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2748 return swp_offset(swap);
2749 }
2750 EXPORT_SYMBOL_GPL(__page_file_index);
2751
2752 /*
2753 * add_swap_count_continuation - called when a swap count is duplicated
2754 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2755 * page of the original vmalloc'ed swap_map, to hold the continuation count
2756 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2757 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2758 *
2759 * These continuation pages are seldom referenced: the common paths all work
2760 * on the original swap_map, only referring to a continuation page when the
2761 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2762 *
2763 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2764 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2765 * can be called after dropping locks.
2766 */
2767 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2768 {
2769 struct swap_info_struct *si;
2770 struct page *head;
2771 struct page *page;
2772 struct page *list_page;
2773 pgoff_t offset;
2774 unsigned char count;
2775
2776 /*
2777 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2778 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2779 */
2780 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2781
2782 si = swap_info_get(entry);
2783 if (!si) {
2784 /*
2785 * An acceptable race has occurred since the failing
2786 * __swap_duplicate(): the swap entry has been freed,
2787 * perhaps even the whole swap_map cleared for swapoff.
2788 */
2789 goto outer;
2790 }
2791
2792 offset = swp_offset(entry);
2793 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2794
2795 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2796 /*
2797 * The higher the swap count, the more likely it is that tasks
2798 * will race to add swap count continuation: we need to avoid
2799 * over-provisioning.
2800 */
2801 goto out;
2802 }
2803
2804 if (!page) {
2805 spin_unlock(&si->lock);
2806 return -ENOMEM;
2807 }
2808
2809 /*
2810 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2811 * no architecture is using highmem pages for kernel page tables: so it
2812 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2813 */
2814 head = vmalloc_to_page(si->swap_map + offset);
2815 offset &= ~PAGE_MASK;
2816
2817 /*
2818 * Page allocation does not initialize the page's lru field,
2819 * but it does always reset its private field.
2820 */
2821 if (!page_private(head)) {
2822 BUG_ON(count & COUNT_CONTINUED);
2823 INIT_LIST_HEAD(&head->lru);
2824 set_page_private(head, SWP_CONTINUED);
2825 si->flags |= SWP_CONTINUED;
2826 }
2827
2828 list_for_each_entry(list_page, &head->lru, lru) {
2829 unsigned char *map;
2830
2831 /*
2832 * If the previous map said no continuation, but we've found
2833 * a continuation page, free our allocation and use this one.
2834 */
2835 if (!(count & COUNT_CONTINUED))
2836 goto out;
2837
2838 map = kmap_atomic(list_page) + offset;
2839 count = *map;
2840 kunmap_atomic(map);
2841
2842 /*
2843 * If this continuation count now has some space in it,
2844 * free our allocation and use this one.
2845 */
2846 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2847 goto out;
2848 }
2849
2850 list_add_tail(&page->lru, &head->lru);
2851 page = NULL; /* now it's attached, don't free it */
2852 out:
2853 spin_unlock(&si->lock);
2854 outer:
2855 if (page)
2856 __free_page(page);
2857 return 0;
2858 }
2859
2860 /*
2861 * swap_count_continued - when the original swap_map count is incremented
2862 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2863 * into, carry if so, or else fail until a new continuation page is allocated;
2864 * when the original swap_map count is decremented from 0 with continuation,
2865 * borrow from the continuation and report whether it still holds more.
2866 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2867 */
2868 static bool swap_count_continued(struct swap_info_struct *si,
2869 pgoff_t offset, unsigned char count)
2870 {
2871 struct page *head;
2872 struct page *page;
2873 unsigned char *map;
2874
2875 head = vmalloc_to_page(si->swap_map + offset);
2876 if (page_private(head) != SWP_CONTINUED) {
2877 BUG_ON(count & COUNT_CONTINUED);
2878 return false; /* need to add count continuation */
2879 }
2880
2881 offset &= ~PAGE_MASK;
2882 page = list_entry(head->lru.next, struct page, lru);
2883 map = kmap_atomic(page) + offset;
2884
2885 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2886 goto init_map; /* jump over SWAP_CONT_MAX checks */
2887
2888 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2889 /*
2890 * Think of how you add 1 to 999
2891 */
2892 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2893 kunmap_atomic(map);
2894 page = list_entry(page->lru.next, struct page, lru);
2895 BUG_ON(page == head);
2896 map = kmap_atomic(page) + offset;
2897 }
2898 if (*map == SWAP_CONT_MAX) {
2899 kunmap_atomic(map);
2900 page = list_entry(page->lru.next, struct page, lru);
2901 if (page == head)
2902 return false; /* add count continuation */
2903 map = kmap_atomic(page) + offset;
2904 init_map: *map = 0; /* we didn't zero the page */
2905 }
2906 *map += 1;
2907 kunmap_atomic(map);
2908 page = list_entry(page->lru.prev, struct page, lru);
2909 while (page != head) {
2910 map = kmap_atomic(page) + offset;
2911 *map = COUNT_CONTINUED;
2912 kunmap_atomic(map);
2913 page = list_entry(page->lru.prev, struct page, lru);
2914 }
2915 return true; /* incremented */
2916
2917 } else { /* decrementing */
2918 /*
2919 * Think of how you subtract 1 from 1000
2920 */
2921 BUG_ON(count != COUNT_CONTINUED);
2922 while (*map == COUNT_CONTINUED) {
2923 kunmap_atomic(map);
2924 page = list_entry(page->lru.next, struct page, lru);
2925 BUG_ON(page == head);
2926 map = kmap_atomic(page) + offset;
2927 }
2928 BUG_ON(*map == 0);
2929 *map -= 1;
2930 if (*map == 0)
2931 count = 0;
2932 kunmap_atomic(map);
2933 page = list_entry(page->lru.prev, struct page, lru);
2934 while (page != head) {
2935 map = kmap_atomic(page) + offset;
2936 *map = SWAP_CONT_MAX | count;
2937 count = COUNT_CONTINUED;
2938 kunmap_atomic(map);
2939 page = list_entry(page->lru.prev, struct page, lru);
2940 }
2941 return count == COUNT_CONTINUED;
2942 }
2943 }
2944
2945 /*
2946 * free_swap_count_continuations - swapoff free all the continuation pages
2947 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2948 */
2949 static void free_swap_count_continuations(struct swap_info_struct *si)
2950 {
2951 pgoff_t offset;
2952
2953 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2954 struct page *head;
2955 head = vmalloc_to_page(si->swap_map + offset);
2956 if (page_private(head)) {
2957 struct page *page, *next;
2958
2959 list_for_each_entry_safe(page, next, &head->lru, lru) {
2960 list_del(&page->lru);
2961 __free_page(page);
2962 }
2963 }
2964 }
2965 }