]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/swapfile.c
mm/sparsemem: fix 'mem_section' will never be NULL gcc 12 warning
[mirror_ubuntu-focal-kernel.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57 * Some modules use swappable objects and may try to swap them out under
58 * memory pressure (via the shrinker). Before doing so, they may wish to
59 * check to see if any swap space is available.
60 */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70
71 /*
72 * all active swap_info_structs
73 * protected with swap_lock, and ordered by priority.
74 */
75 PLIST_HEAD(swap_active_head);
76
77 /*
78 * all available (active, not full) swap_info_structs
79 * protected with swap_avail_lock, ordered by priority.
80 * This is used by get_swap_page() instead of swap_active_head
81 * because swap_active_head includes all swap_info_structs,
82 * but get_swap_page() doesn't need to look at full ones.
83 * This uses its own lock instead of swap_lock because when a
84 * swap_info_struct changes between not-full/full, it needs to
85 * add/remove itself to/from this list, but the swap_info_struct->lock
86 * is held and the locking order requires swap_lock to be taken
87 * before any swap_info_struct->lock.
88 */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93
94 static DEFINE_MUTEX(swapon_mutex);
95
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 if (type >= READ_ONCE(nr_swapfiles))
105 return NULL;
106
107 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
108 return READ_ONCE(swap_info[type]);
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
118 /*
119 * Reclaim the swap entry if there are no more mappings of the
120 * corresponding page
121 */
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
129 {
130 swp_entry_t entry = swp_entry(si->type, offset);
131 struct page *page;
132 int ret = 0;
133
134 page = find_get_page(swap_address_space(entry), offset);
135 if (!page)
136 return 0;
137 /*
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
143 */
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
149 unlock_page(page);
150 }
151 put_page(page);
152 return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
170 */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173 struct swap_extent *se;
174 sector_t start_block;
175 sector_t nr_blocks;
176 int err = 0;
177
178 /* Do not discard the swap header page! */
179 se = first_se(si);
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 if (nr_blocks) {
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL, 0);
185 if (err)
186 return err;
187 cond_resched();
188 }
189
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL, 0);
196 if (err)
197 break;
198
199 cond_resched();
200 }
201 return err; /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 struct swap_extent *se;
208 struct rb_node *rb;
209
210 rb = sis->swap_extent_root.rb_node;
211 while (rb) {
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
214 rb = rb->rb_left;
215 else if (offset >= se->start_page + se->nr_pages)
216 rb = rb->rb_right;
217 else
218 return se;
219 }
220 /* It *must* be present */
221 BUG();
222 }
223
224 sector_t swap_page_sector(struct page *page)
225 {
226 struct swap_info_struct *sis = page_swap_info(page);
227 struct swap_extent *se;
228 sector_t sector;
229 pgoff_t offset;
230
231 offset = __page_file_index(page);
232 se = offset_to_swap_extent(sis, offset);
233 sector = se->start_block + (offset - se->start_page);
234 return sector << (PAGE_SHIFT - 9);
235 }
236
237 /*
238 * swap allocation tell device that a cluster of swap can now be discarded,
239 * to allow the swap device to optimize its wear-levelling.
240 */
241 static void discard_swap_cluster(struct swap_info_struct *si,
242 pgoff_t start_page, pgoff_t nr_pages)
243 {
244 struct swap_extent *se = offset_to_swap_extent(si, start_page);
245
246 while (nr_pages) {
247 pgoff_t offset = start_page - se->start_page;
248 sector_t start_block = se->start_block + offset;
249 sector_t nr_blocks = se->nr_pages - offset;
250
251 if (nr_blocks > nr_pages)
252 nr_blocks = nr_pages;
253 start_page += nr_blocks;
254 nr_pages -= nr_blocks;
255
256 start_block <<= PAGE_SHIFT - 9;
257 nr_blocks <<= PAGE_SHIFT - 9;
258 if (blkdev_issue_discard(si->bdev, start_block,
259 nr_blocks, GFP_NOIO, 0))
260 break;
261
262 se = next_se(se);
263 }
264 }
265
266 #ifdef CONFIG_THP_SWAP
267 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
268
269 #define swap_entry_size(size) (size)
270 #else
271 #define SWAPFILE_CLUSTER 256
272
273 /*
274 * Define swap_entry_size() as constant to let compiler to optimize
275 * out some code if !CONFIG_THP_SWAP
276 */
277 #define swap_entry_size(size) 1
278 #endif
279 #define LATENCY_LIMIT 256
280
281 static inline void cluster_set_flag(struct swap_cluster_info *info,
282 unsigned int flag)
283 {
284 info->flags = flag;
285 }
286
287 static inline unsigned int cluster_count(struct swap_cluster_info *info)
288 {
289 return info->data;
290 }
291
292 static inline void cluster_set_count(struct swap_cluster_info *info,
293 unsigned int c)
294 {
295 info->data = c;
296 }
297
298 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
299 unsigned int c, unsigned int f)
300 {
301 info->flags = f;
302 info->data = c;
303 }
304
305 static inline unsigned int cluster_next(struct swap_cluster_info *info)
306 {
307 return info->data;
308 }
309
310 static inline void cluster_set_next(struct swap_cluster_info *info,
311 unsigned int n)
312 {
313 info->data = n;
314 }
315
316 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
317 unsigned int n, unsigned int f)
318 {
319 info->flags = f;
320 info->data = n;
321 }
322
323 static inline bool cluster_is_free(struct swap_cluster_info *info)
324 {
325 return info->flags & CLUSTER_FLAG_FREE;
326 }
327
328 static inline bool cluster_is_null(struct swap_cluster_info *info)
329 {
330 return info->flags & CLUSTER_FLAG_NEXT_NULL;
331 }
332
333 static inline void cluster_set_null(struct swap_cluster_info *info)
334 {
335 info->flags = CLUSTER_FLAG_NEXT_NULL;
336 info->data = 0;
337 }
338
339 static inline bool cluster_is_huge(struct swap_cluster_info *info)
340 {
341 if (IS_ENABLED(CONFIG_THP_SWAP))
342 return info->flags & CLUSTER_FLAG_HUGE;
343 return false;
344 }
345
346 static inline void cluster_clear_huge(struct swap_cluster_info *info)
347 {
348 info->flags &= ~CLUSTER_FLAG_HUGE;
349 }
350
351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352 unsigned long offset)
353 {
354 struct swap_cluster_info *ci;
355
356 ci = si->cluster_info;
357 if (ci) {
358 ci += offset / SWAPFILE_CLUSTER;
359 spin_lock(&ci->lock);
360 }
361 return ci;
362 }
363
364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366 if (ci)
367 spin_unlock(&ci->lock);
368 }
369
370 /*
371 * Determine the locking method in use for this device. Return
372 * swap_cluster_info if SSD-style cluster-based locking is in place.
373 */
374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375 struct swap_info_struct *si, unsigned long offset)
376 {
377 struct swap_cluster_info *ci;
378
379 /* Try to use fine-grained SSD-style locking if available: */
380 ci = lock_cluster(si, offset);
381 /* Otherwise, fall back to traditional, coarse locking: */
382 if (!ci)
383 spin_lock(&si->lock);
384
385 return ci;
386 }
387
388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389 struct swap_cluster_info *ci)
390 {
391 if (ci)
392 unlock_cluster(ci);
393 else
394 spin_unlock(&si->lock);
395 }
396
397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399 return cluster_is_null(&list->head);
400 }
401
402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404 return cluster_next(&list->head);
405 }
406
407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409 cluster_set_null(&list->head);
410 cluster_set_null(&list->tail);
411 }
412
413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414 struct swap_cluster_info *ci,
415 unsigned int idx)
416 {
417 if (cluster_list_empty(list)) {
418 cluster_set_next_flag(&list->head, idx, 0);
419 cluster_set_next_flag(&list->tail, idx, 0);
420 } else {
421 struct swap_cluster_info *ci_tail;
422 unsigned int tail = cluster_next(&list->tail);
423
424 /*
425 * Nested cluster lock, but both cluster locks are
426 * only acquired when we held swap_info_struct->lock
427 */
428 ci_tail = ci + tail;
429 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430 cluster_set_next(ci_tail, idx);
431 spin_unlock(&ci_tail->lock);
432 cluster_set_next_flag(&list->tail, idx, 0);
433 }
434 }
435
436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437 struct swap_cluster_info *ci)
438 {
439 unsigned int idx;
440
441 idx = cluster_next(&list->head);
442 if (cluster_next(&list->tail) == idx) {
443 cluster_set_null(&list->head);
444 cluster_set_null(&list->tail);
445 } else
446 cluster_set_next_flag(&list->head,
447 cluster_next(&ci[idx]), 0);
448
449 return idx;
450 }
451
452 /* Add a cluster to discard list and schedule it to do discard */
453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454 unsigned int idx)
455 {
456 /*
457 * If scan_swap_map() can't find a free cluster, it will check
458 * si->swap_map directly. To make sure the discarding cluster isn't
459 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
460 * will be cleared after discard
461 */
462 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464
465 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466
467 schedule_work(&si->discard_work);
468 }
469
470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472 struct swap_cluster_info *ci = si->cluster_info;
473
474 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475 cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477
478 /*
479 * Doing discard actually. After a cluster discard is finished, the cluster
480 * will be added to free cluster list. caller should hold si->lock.
481 */
482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484 struct swap_cluster_info *info, *ci;
485 unsigned int idx;
486
487 info = si->cluster_info;
488
489 while (!cluster_list_empty(&si->discard_clusters)) {
490 idx = cluster_list_del_first(&si->discard_clusters, info);
491 spin_unlock(&si->lock);
492
493 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494 SWAPFILE_CLUSTER);
495
496 spin_lock(&si->lock);
497 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498 __free_cluster(si, idx);
499 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500 0, SWAPFILE_CLUSTER);
501 unlock_cluster(ci);
502 }
503 }
504
505 static void swap_discard_work(struct work_struct *work)
506 {
507 struct swap_info_struct *si;
508
509 si = container_of(work, struct swap_info_struct, discard_work);
510
511 spin_lock(&si->lock);
512 swap_do_scheduled_discard(si);
513 spin_unlock(&si->lock);
514 }
515
516 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
517 {
518 struct swap_cluster_info *ci = si->cluster_info;
519
520 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
521 cluster_list_del_first(&si->free_clusters, ci);
522 cluster_set_count_flag(ci + idx, 0, 0);
523 }
524
525 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
526 {
527 struct swap_cluster_info *ci = si->cluster_info + idx;
528
529 VM_BUG_ON(cluster_count(ci) != 0);
530 /*
531 * If the swap is discardable, prepare discard the cluster
532 * instead of free it immediately. The cluster will be freed
533 * after discard.
534 */
535 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
536 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
537 swap_cluster_schedule_discard(si, idx);
538 return;
539 }
540
541 __free_cluster(si, idx);
542 }
543
544 /*
545 * The cluster corresponding to page_nr will be used. The cluster will be
546 * removed from free cluster list and its usage counter will be increased.
547 */
548 static void inc_cluster_info_page(struct swap_info_struct *p,
549 struct swap_cluster_info *cluster_info, unsigned long page_nr)
550 {
551 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
552
553 if (!cluster_info)
554 return;
555 if (cluster_is_free(&cluster_info[idx]))
556 alloc_cluster(p, idx);
557
558 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
559 cluster_set_count(&cluster_info[idx],
560 cluster_count(&cluster_info[idx]) + 1);
561 }
562
563 /*
564 * The cluster corresponding to page_nr decreases one usage. If the usage
565 * counter becomes 0, which means no page in the cluster is in using, we can
566 * optionally discard the cluster and add it to free cluster list.
567 */
568 static void dec_cluster_info_page(struct swap_info_struct *p,
569 struct swap_cluster_info *cluster_info, unsigned long page_nr)
570 {
571 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
572
573 if (!cluster_info)
574 return;
575
576 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
577 cluster_set_count(&cluster_info[idx],
578 cluster_count(&cluster_info[idx]) - 1);
579
580 if (cluster_count(&cluster_info[idx]) == 0)
581 free_cluster(p, idx);
582 }
583
584 /*
585 * It's possible scan_swap_map() uses a free cluster in the middle of free
586 * cluster list. Avoiding such abuse to avoid list corruption.
587 */
588 static bool
589 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
590 unsigned long offset)
591 {
592 struct percpu_cluster *percpu_cluster;
593 bool conflict;
594
595 offset /= SWAPFILE_CLUSTER;
596 conflict = !cluster_list_empty(&si->free_clusters) &&
597 offset != cluster_list_first(&si->free_clusters) &&
598 cluster_is_free(&si->cluster_info[offset]);
599
600 if (!conflict)
601 return false;
602
603 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
604 cluster_set_null(&percpu_cluster->index);
605 return true;
606 }
607
608 /*
609 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
610 * might involve allocating a new cluster for current CPU too.
611 */
612 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
613 unsigned long *offset, unsigned long *scan_base)
614 {
615 struct percpu_cluster *cluster;
616 struct swap_cluster_info *ci;
617 bool found_free;
618 unsigned long tmp, max;
619
620 new_cluster:
621 cluster = this_cpu_ptr(si->percpu_cluster);
622 if (cluster_is_null(&cluster->index)) {
623 if (!cluster_list_empty(&si->free_clusters)) {
624 cluster->index = si->free_clusters.head;
625 cluster->next = cluster_next(&cluster->index) *
626 SWAPFILE_CLUSTER;
627 } else if (!cluster_list_empty(&si->discard_clusters)) {
628 /*
629 * we don't have free cluster but have some clusters in
630 * discarding, do discard now and reclaim them
631 */
632 swap_do_scheduled_discard(si);
633 *scan_base = *offset = si->cluster_next;
634 goto new_cluster;
635 } else
636 return false;
637 }
638
639 found_free = false;
640
641 /*
642 * Other CPUs can use our cluster if they can't find a free cluster,
643 * check if there is still free entry in the cluster
644 */
645 tmp = cluster->next;
646 max = min_t(unsigned long, si->max,
647 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
648 if (tmp >= max) {
649 cluster_set_null(&cluster->index);
650 goto new_cluster;
651 }
652 ci = lock_cluster(si, tmp);
653 while (tmp < max) {
654 if (!si->swap_map[tmp]) {
655 found_free = true;
656 break;
657 }
658 tmp++;
659 }
660 unlock_cluster(ci);
661 if (!found_free) {
662 cluster_set_null(&cluster->index);
663 goto new_cluster;
664 }
665 cluster->next = tmp + 1;
666 *offset = tmp;
667 *scan_base = tmp;
668 return found_free;
669 }
670
671 static void __del_from_avail_list(struct swap_info_struct *p)
672 {
673 int nid;
674
675 for_each_node(nid)
676 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
677 }
678
679 static void del_from_avail_list(struct swap_info_struct *p)
680 {
681 spin_lock(&swap_avail_lock);
682 __del_from_avail_list(p);
683 spin_unlock(&swap_avail_lock);
684 }
685
686 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
687 unsigned int nr_entries)
688 {
689 unsigned int end = offset + nr_entries - 1;
690
691 if (offset == si->lowest_bit)
692 si->lowest_bit += nr_entries;
693 if (end == si->highest_bit)
694 si->highest_bit -= nr_entries;
695 si->inuse_pages += nr_entries;
696 if (si->inuse_pages == si->pages) {
697 si->lowest_bit = si->max;
698 si->highest_bit = 0;
699 del_from_avail_list(si);
700 }
701 }
702
703 static void add_to_avail_list(struct swap_info_struct *p)
704 {
705 int nid;
706
707 spin_lock(&swap_avail_lock);
708 for_each_node(nid) {
709 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
710 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
711 }
712 spin_unlock(&swap_avail_lock);
713 }
714
715 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
716 unsigned int nr_entries)
717 {
718 unsigned long end = offset + nr_entries - 1;
719 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
720
721 if (offset < si->lowest_bit)
722 si->lowest_bit = offset;
723 if (end > si->highest_bit) {
724 bool was_full = !si->highest_bit;
725
726 si->highest_bit = end;
727 if (was_full && (si->flags & SWP_WRITEOK))
728 add_to_avail_list(si);
729 }
730 atomic_long_add(nr_entries, &nr_swap_pages);
731 si->inuse_pages -= nr_entries;
732 if (si->flags & SWP_BLKDEV)
733 swap_slot_free_notify =
734 si->bdev->bd_disk->fops->swap_slot_free_notify;
735 else
736 swap_slot_free_notify = NULL;
737 while (offset <= end) {
738 frontswap_invalidate_page(si->type, offset);
739 if (swap_slot_free_notify)
740 swap_slot_free_notify(si->bdev, offset);
741 offset++;
742 }
743 }
744
745 static int scan_swap_map_slots(struct swap_info_struct *si,
746 unsigned char usage, int nr,
747 swp_entry_t slots[])
748 {
749 struct swap_cluster_info *ci;
750 unsigned long offset;
751 unsigned long scan_base;
752 unsigned long last_in_cluster = 0;
753 int latency_ration = LATENCY_LIMIT;
754 int n_ret = 0;
755
756 if (nr > SWAP_BATCH)
757 nr = SWAP_BATCH;
758
759 /*
760 * We try to cluster swap pages by allocating them sequentially
761 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
762 * way, however, we resort to first-free allocation, starting
763 * a new cluster. This prevents us from scattering swap pages
764 * all over the entire swap partition, so that we reduce
765 * overall disk seek times between swap pages. -- sct
766 * But we do now try to find an empty cluster. -Andrea
767 * And we let swap pages go all over an SSD partition. Hugh
768 */
769
770 si->flags += SWP_SCANNING;
771 scan_base = offset = si->cluster_next;
772
773 /* SSD algorithm */
774 if (si->cluster_info) {
775 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
776 goto checks;
777 else
778 goto scan;
779 }
780
781 if (unlikely(!si->cluster_nr--)) {
782 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
783 si->cluster_nr = SWAPFILE_CLUSTER - 1;
784 goto checks;
785 }
786
787 spin_unlock(&si->lock);
788
789 /*
790 * If seek is expensive, start searching for new cluster from
791 * start of partition, to minimize the span of allocated swap.
792 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
793 * case, just handled by scan_swap_map_try_ssd_cluster() above.
794 */
795 scan_base = offset = si->lowest_bit;
796 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
797
798 /* Locate the first empty (unaligned) cluster */
799 for (; last_in_cluster <= si->highest_bit; offset++) {
800 if (si->swap_map[offset])
801 last_in_cluster = offset + SWAPFILE_CLUSTER;
802 else if (offset == last_in_cluster) {
803 spin_lock(&si->lock);
804 offset -= SWAPFILE_CLUSTER - 1;
805 si->cluster_next = offset;
806 si->cluster_nr = SWAPFILE_CLUSTER - 1;
807 goto checks;
808 }
809 if (unlikely(--latency_ration < 0)) {
810 cond_resched();
811 latency_ration = LATENCY_LIMIT;
812 }
813 }
814
815 offset = scan_base;
816 spin_lock(&si->lock);
817 si->cluster_nr = SWAPFILE_CLUSTER - 1;
818 }
819
820 checks:
821 if (si->cluster_info) {
822 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
823 /* take a break if we already got some slots */
824 if (n_ret)
825 goto done;
826 if (!scan_swap_map_try_ssd_cluster(si, &offset,
827 &scan_base))
828 goto scan;
829 }
830 }
831 if (!(si->flags & SWP_WRITEOK))
832 goto no_page;
833 if (!si->highest_bit)
834 goto no_page;
835 if (offset > si->highest_bit)
836 scan_base = offset = si->lowest_bit;
837
838 ci = lock_cluster(si, offset);
839 /* reuse swap entry of cache-only swap if not busy. */
840 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
841 int swap_was_freed;
842 unlock_cluster(ci);
843 spin_unlock(&si->lock);
844 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
845 spin_lock(&si->lock);
846 /* entry was freed successfully, try to use this again */
847 if (swap_was_freed)
848 goto checks;
849 goto scan; /* check next one */
850 }
851
852 if (si->swap_map[offset]) {
853 unlock_cluster(ci);
854 if (!n_ret)
855 goto scan;
856 else
857 goto done;
858 }
859 si->swap_map[offset] = usage;
860 inc_cluster_info_page(si, si->cluster_info, offset);
861 unlock_cluster(ci);
862
863 swap_range_alloc(si, offset, 1);
864 si->cluster_next = offset + 1;
865 slots[n_ret++] = swp_entry(si->type, offset);
866
867 /* got enough slots or reach max slots? */
868 if ((n_ret == nr) || (offset >= si->highest_bit))
869 goto done;
870
871 /* search for next available slot */
872
873 /* time to take a break? */
874 if (unlikely(--latency_ration < 0)) {
875 if (n_ret)
876 goto done;
877 spin_unlock(&si->lock);
878 cond_resched();
879 spin_lock(&si->lock);
880 latency_ration = LATENCY_LIMIT;
881 }
882
883 /* try to get more slots in cluster */
884 if (si->cluster_info) {
885 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
886 goto checks;
887 else
888 goto done;
889 }
890 /* non-ssd case */
891 ++offset;
892
893 /* non-ssd case, still more slots in cluster? */
894 if (si->cluster_nr && !si->swap_map[offset]) {
895 --si->cluster_nr;
896 goto checks;
897 }
898
899 done:
900 si->flags -= SWP_SCANNING;
901 return n_ret;
902
903 scan:
904 spin_unlock(&si->lock);
905 while (++offset <= si->highest_bit) {
906 if (!si->swap_map[offset]) {
907 spin_lock(&si->lock);
908 goto checks;
909 }
910 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
911 spin_lock(&si->lock);
912 goto checks;
913 }
914 if (unlikely(--latency_ration < 0)) {
915 cond_resched();
916 latency_ration = LATENCY_LIMIT;
917 }
918 }
919 offset = si->lowest_bit;
920 while (offset < scan_base) {
921 if (!si->swap_map[offset]) {
922 spin_lock(&si->lock);
923 goto checks;
924 }
925 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
926 spin_lock(&si->lock);
927 goto checks;
928 }
929 if (unlikely(--latency_ration < 0)) {
930 cond_resched();
931 latency_ration = LATENCY_LIMIT;
932 }
933 offset++;
934 }
935 spin_lock(&si->lock);
936
937 no_page:
938 si->flags -= SWP_SCANNING;
939 return n_ret;
940 }
941
942 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
943 {
944 unsigned long idx;
945 struct swap_cluster_info *ci;
946 unsigned long offset, i;
947 unsigned char *map;
948
949 /*
950 * Should not even be attempting cluster allocations when huge
951 * page swap is disabled. Warn and fail the allocation.
952 */
953 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
954 VM_WARN_ON_ONCE(1);
955 return 0;
956 }
957
958 if (cluster_list_empty(&si->free_clusters))
959 return 0;
960
961 idx = cluster_list_first(&si->free_clusters);
962 offset = idx * SWAPFILE_CLUSTER;
963 ci = lock_cluster(si, offset);
964 alloc_cluster(si, idx);
965 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
966
967 map = si->swap_map + offset;
968 for (i = 0; i < SWAPFILE_CLUSTER; i++)
969 map[i] = SWAP_HAS_CACHE;
970 unlock_cluster(ci);
971 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
972 *slot = swp_entry(si->type, offset);
973
974 return 1;
975 }
976
977 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
978 {
979 unsigned long offset = idx * SWAPFILE_CLUSTER;
980 struct swap_cluster_info *ci;
981
982 ci = lock_cluster(si, offset);
983 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
984 cluster_set_count_flag(ci, 0, 0);
985 free_cluster(si, idx);
986 unlock_cluster(ci);
987 swap_range_free(si, offset, SWAPFILE_CLUSTER);
988 }
989
990 static unsigned long scan_swap_map(struct swap_info_struct *si,
991 unsigned char usage)
992 {
993 swp_entry_t entry;
994 int n_ret;
995
996 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
997
998 if (n_ret)
999 return swp_offset(entry);
1000 else
1001 return 0;
1002
1003 }
1004
1005 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1006 {
1007 unsigned long size = swap_entry_size(entry_size);
1008 struct swap_info_struct *si, *next;
1009 long avail_pgs;
1010 int n_ret = 0;
1011 int node;
1012
1013 /* Only single cluster request supported */
1014 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1015
1016 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1017 if (avail_pgs <= 0)
1018 goto noswap;
1019
1020 if (n_goal > SWAP_BATCH)
1021 n_goal = SWAP_BATCH;
1022
1023 if (n_goal > avail_pgs)
1024 n_goal = avail_pgs;
1025
1026 atomic_long_sub(n_goal * size, &nr_swap_pages);
1027
1028 spin_lock(&swap_avail_lock);
1029
1030 start_over:
1031 node = numa_node_id();
1032 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1033 /* requeue si to after same-priority siblings */
1034 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1035 spin_unlock(&swap_avail_lock);
1036 spin_lock(&si->lock);
1037 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1038 spin_lock(&swap_avail_lock);
1039 if (plist_node_empty(&si->avail_lists[node])) {
1040 spin_unlock(&si->lock);
1041 goto nextsi;
1042 }
1043 WARN(!si->highest_bit,
1044 "swap_info %d in list but !highest_bit\n",
1045 si->type);
1046 WARN(!(si->flags & SWP_WRITEOK),
1047 "swap_info %d in list but !SWP_WRITEOK\n",
1048 si->type);
1049 __del_from_avail_list(si);
1050 spin_unlock(&si->lock);
1051 goto nextsi;
1052 }
1053 if (size == SWAPFILE_CLUSTER) {
1054 if (si->flags & SWP_BLKDEV)
1055 n_ret = swap_alloc_cluster(si, swp_entries);
1056 } else
1057 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1058 n_goal, swp_entries);
1059 spin_unlock(&si->lock);
1060 if (n_ret || size == SWAPFILE_CLUSTER)
1061 goto check_out;
1062 pr_debug("scan_swap_map of si %d failed to find offset\n",
1063 si->type);
1064
1065 spin_lock(&swap_avail_lock);
1066 nextsi:
1067 /*
1068 * if we got here, it's likely that si was almost full before,
1069 * and since scan_swap_map() can drop the si->lock, multiple
1070 * callers probably all tried to get a page from the same si
1071 * and it filled up before we could get one; or, the si filled
1072 * up between us dropping swap_avail_lock and taking si->lock.
1073 * Since we dropped the swap_avail_lock, the swap_avail_head
1074 * list may have been modified; so if next is still in the
1075 * swap_avail_head list then try it, otherwise start over
1076 * if we have not gotten any slots.
1077 */
1078 if (plist_node_empty(&next->avail_lists[node]))
1079 goto start_over;
1080 }
1081
1082 spin_unlock(&swap_avail_lock);
1083
1084 check_out:
1085 if (n_ret < n_goal)
1086 atomic_long_add((long)(n_goal - n_ret) * size,
1087 &nr_swap_pages);
1088 noswap:
1089 return n_ret;
1090 }
1091
1092 /* The only caller of this function is now suspend routine */
1093 swp_entry_t get_swap_page_of_type(int type)
1094 {
1095 struct swap_info_struct *si = swap_type_to_swap_info(type);
1096 pgoff_t offset;
1097
1098 if (!si)
1099 goto fail;
1100
1101 spin_lock(&si->lock);
1102 if (si->flags & SWP_WRITEOK) {
1103 atomic_long_dec(&nr_swap_pages);
1104 /* This is called for allocating swap entry, not cache */
1105 offset = scan_swap_map(si, 1);
1106 if (offset) {
1107 spin_unlock(&si->lock);
1108 return swp_entry(type, offset);
1109 }
1110 atomic_long_inc(&nr_swap_pages);
1111 }
1112 spin_unlock(&si->lock);
1113 fail:
1114 return (swp_entry_t) {0};
1115 }
1116
1117 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1118 {
1119 struct swap_info_struct *p;
1120 unsigned long offset;
1121
1122 if (!entry.val)
1123 goto out;
1124 p = swp_swap_info(entry);
1125 if (!p)
1126 goto bad_nofile;
1127 if (!(p->flags & SWP_USED))
1128 goto bad_device;
1129 offset = swp_offset(entry);
1130 if (offset >= p->max)
1131 goto bad_offset;
1132 return p;
1133
1134 bad_offset:
1135 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1136 goto out;
1137 bad_device:
1138 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1139 goto out;
1140 bad_nofile:
1141 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1142 out:
1143 return NULL;
1144 }
1145
1146 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1147 {
1148 struct swap_info_struct *p;
1149
1150 p = __swap_info_get(entry);
1151 if (!p)
1152 goto out;
1153 if (!p->swap_map[swp_offset(entry)])
1154 goto bad_free;
1155 return p;
1156
1157 bad_free:
1158 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1159 goto out;
1160 out:
1161 return NULL;
1162 }
1163
1164 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1165 {
1166 struct swap_info_struct *p;
1167
1168 p = _swap_info_get(entry);
1169 if (p)
1170 spin_lock(&p->lock);
1171 return p;
1172 }
1173
1174 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1175 struct swap_info_struct *q)
1176 {
1177 struct swap_info_struct *p;
1178
1179 p = _swap_info_get(entry);
1180
1181 if (p != q) {
1182 if (q != NULL)
1183 spin_unlock(&q->lock);
1184 if (p != NULL)
1185 spin_lock(&p->lock);
1186 }
1187 return p;
1188 }
1189
1190 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1191 unsigned long offset,
1192 unsigned char usage)
1193 {
1194 unsigned char count;
1195 unsigned char has_cache;
1196
1197 count = p->swap_map[offset];
1198
1199 has_cache = count & SWAP_HAS_CACHE;
1200 count &= ~SWAP_HAS_CACHE;
1201
1202 if (usage == SWAP_HAS_CACHE) {
1203 VM_BUG_ON(!has_cache);
1204 has_cache = 0;
1205 } else if (count == SWAP_MAP_SHMEM) {
1206 /*
1207 * Or we could insist on shmem.c using a special
1208 * swap_shmem_free() and free_shmem_swap_and_cache()...
1209 */
1210 count = 0;
1211 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1212 if (count == COUNT_CONTINUED) {
1213 if (swap_count_continued(p, offset, count))
1214 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1215 else
1216 count = SWAP_MAP_MAX;
1217 } else
1218 count--;
1219 }
1220
1221 usage = count | has_cache;
1222 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1223
1224 return usage;
1225 }
1226
1227 /*
1228 * Check whether swap entry is valid in the swap device. If so,
1229 * return pointer to swap_info_struct, and keep the swap entry valid
1230 * via preventing the swap device from being swapoff, until
1231 * put_swap_device() is called. Otherwise return NULL.
1232 *
1233 * The entirety of the RCU read critical section must come before the
1234 * return from or after the call to synchronize_rcu() in
1235 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1236 * true, the si->map, si->cluster_info, etc. must be valid in the
1237 * critical section.
1238 *
1239 * Notice that swapoff or swapoff+swapon can still happen before the
1240 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1241 * in put_swap_device() if there isn't any other way to prevent
1242 * swapoff, such as page lock, page table lock, etc. The caller must
1243 * be prepared for that. For example, the following situation is
1244 * possible.
1245 *
1246 * CPU1 CPU2
1247 * do_swap_page()
1248 * ... swapoff+swapon
1249 * __read_swap_cache_async()
1250 * swapcache_prepare()
1251 * __swap_duplicate()
1252 * // check swap_map
1253 * // verify PTE not changed
1254 *
1255 * In __swap_duplicate(), the swap_map need to be checked before
1256 * changing partly because the specified swap entry may be for another
1257 * swap device which has been swapoff. And in do_swap_page(), after
1258 * the page is read from the swap device, the PTE is verified not
1259 * changed with the page table locked to check whether the swap device
1260 * has been swapoff or swapoff+swapon.
1261 */
1262 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1263 {
1264 struct swap_info_struct *si;
1265 unsigned long offset;
1266
1267 if (!entry.val)
1268 goto out;
1269 si = swp_swap_info(entry);
1270 if (!si)
1271 goto bad_nofile;
1272
1273 rcu_read_lock();
1274 if (!(si->flags & SWP_VALID))
1275 goto unlock_out;
1276 offset = swp_offset(entry);
1277 if (offset >= si->max)
1278 goto unlock_out;
1279
1280 return si;
1281 bad_nofile:
1282 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1283 out:
1284 return NULL;
1285 unlock_out:
1286 rcu_read_unlock();
1287 return NULL;
1288 }
1289
1290 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1291 swp_entry_t entry, unsigned char usage)
1292 {
1293 struct swap_cluster_info *ci;
1294 unsigned long offset = swp_offset(entry);
1295
1296 ci = lock_cluster_or_swap_info(p, offset);
1297 usage = __swap_entry_free_locked(p, offset, usage);
1298 unlock_cluster_or_swap_info(p, ci);
1299 if (!usage)
1300 free_swap_slot(entry);
1301
1302 return usage;
1303 }
1304
1305 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1306 {
1307 struct swap_cluster_info *ci;
1308 unsigned long offset = swp_offset(entry);
1309 unsigned char count;
1310
1311 ci = lock_cluster(p, offset);
1312 count = p->swap_map[offset];
1313 VM_BUG_ON(count != SWAP_HAS_CACHE);
1314 p->swap_map[offset] = 0;
1315 dec_cluster_info_page(p, p->cluster_info, offset);
1316 unlock_cluster(ci);
1317
1318 mem_cgroup_uncharge_swap(entry, 1);
1319 swap_range_free(p, offset, 1);
1320 }
1321
1322 /*
1323 * Caller has made sure that the swap device corresponding to entry
1324 * is still around or has not been recycled.
1325 */
1326 void swap_free(swp_entry_t entry)
1327 {
1328 struct swap_info_struct *p;
1329
1330 p = _swap_info_get(entry);
1331 if (p)
1332 __swap_entry_free(p, entry, 1);
1333 }
1334
1335 /*
1336 * Called after dropping swapcache to decrease refcnt to swap entries.
1337 */
1338 void put_swap_page(struct page *page, swp_entry_t entry)
1339 {
1340 unsigned long offset = swp_offset(entry);
1341 unsigned long idx = offset / SWAPFILE_CLUSTER;
1342 struct swap_cluster_info *ci;
1343 struct swap_info_struct *si;
1344 unsigned char *map;
1345 unsigned int i, free_entries = 0;
1346 unsigned char val;
1347 int size = swap_entry_size(hpage_nr_pages(page));
1348
1349 si = _swap_info_get(entry);
1350 if (!si)
1351 return;
1352
1353 ci = lock_cluster_or_swap_info(si, offset);
1354 if (size == SWAPFILE_CLUSTER) {
1355 VM_BUG_ON(!cluster_is_huge(ci));
1356 map = si->swap_map + offset;
1357 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1358 val = map[i];
1359 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1360 if (val == SWAP_HAS_CACHE)
1361 free_entries++;
1362 }
1363 cluster_clear_huge(ci);
1364 if (free_entries == SWAPFILE_CLUSTER) {
1365 unlock_cluster_or_swap_info(si, ci);
1366 spin_lock(&si->lock);
1367 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1368 swap_free_cluster(si, idx);
1369 spin_unlock(&si->lock);
1370 return;
1371 }
1372 }
1373 for (i = 0; i < size; i++, entry.val++) {
1374 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1375 unlock_cluster_or_swap_info(si, ci);
1376 free_swap_slot(entry);
1377 if (i == size - 1)
1378 return;
1379 lock_cluster_or_swap_info(si, offset);
1380 }
1381 }
1382 unlock_cluster_or_swap_info(si, ci);
1383 }
1384
1385 #ifdef CONFIG_THP_SWAP
1386 int split_swap_cluster(swp_entry_t entry)
1387 {
1388 struct swap_info_struct *si;
1389 struct swap_cluster_info *ci;
1390 unsigned long offset = swp_offset(entry);
1391
1392 si = _swap_info_get(entry);
1393 if (!si)
1394 return -EBUSY;
1395 ci = lock_cluster(si, offset);
1396 cluster_clear_huge(ci);
1397 unlock_cluster(ci);
1398 return 0;
1399 }
1400 #endif
1401
1402 static int swp_entry_cmp(const void *ent1, const void *ent2)
1403 {
1404 const swp_entry_t *e1 = ent1, *e2 = ent2;
1405
1406 return (int)swp_type(*e1) - (int)swp_type(*e2);
1407 }
1408
1409 void swapcache_free_entries(swp_entry_t *entries, int n)
1410 {
1411 struct swap_info_struct *p, *prev;
1412 int i;
1413
1414 if (n <= 0)
1415 return;
1416
1417 prev = NULL;
1418 p = NULL;
1419
1420 /*
1421 * Sort swap entries by swap device, so each lock is only taken once.
1422 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1423 * so low that it isn't necessary to optimize further.
1424 */
1425 if (nr_swapfiles > 1)
1426 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1427 for (i = 0; i < n; ++i) {
1428 p = swap_info_get_cont(entries[i], prev);
1429 if (p)
1430 swap_entry_free(p, entries[i]);
1431 prev = p;
1432 }
1433 if (p)
1434 spin_unlock(&p->lock);
1435 }
1436
1437 /*
1438 * How many references to page are currently swapped out?
1439 * This does not give an exact answer when swap count is continued,
1440 * but does include the high COUNT_CONTINUED flag to allow for that.
1441 */
1442 int page_swapcount(struct page *page)
1443 {
1444 int count = 0;
1445 struct swap_info_struct *p;
1446 struct swap_cluster_info *ci;
1447 swp_entry_t entry;
1448 unsigned long offset;
1449
1450 entry.val = page_private(page);
1451 p = _swap_info_get(entry);
1452 if (p) {
1453 offset = swp_offset(entry);
1454 ci = lock_cluster_or_swap_info(p, offset);
1455 count = swap_count(p->swap_map[offset]);
1456 unlock_cluster_or_swap_info(p, ci);
1457 }
1458 return count;
1459 }
1460
1461 int __swap_count(swp_entry_t entry)
1462 {
1463 struct swap_info_struct *si;
1464 pgoff_t offset = swp_offset(entry);
1465 int count = 0;
1466
1467 si = get_swap_device(entry);
1468 if (si) {
1469 count = swap_count(si->swap_map[offset]);
1470 put_swap_device(si);
1471 }
1472 return count;
1473 }
1474
1475 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1476 {
1477 int count = 0;
1478 pgoff_t offset = swp_offset(entry);
1479 struct swap_cluster_info *ci;
1480
1481 ci = lock_cluster_or_swap_info(si, offset);
1482 count = swap_count(si->swap_map[offset]);
1483 unlock_cluster_or_swap_info(si, ci);
1484 return count;
1485 }
1486
1487 /*
1488 * How many references to @entry are currently swapped out?
1489 * This does not give an exact answer when swap count is continued,
1490 * but does include the high COUNT_CONTINUED flag to allow for that.
1491 */
1492 int __swp_swapcount(swp_entry_t entry)
1493 {
1494 int count = 0;
1495 struct swap_info_struct *si;
1496
1497 si = get_swap_device(entry);
1498 if (si) {
1499 count = swap_swapcount(si, entry);
1500 put_swap_device(si);
1501 }
1502 return count;
1503 }
1504
1505 /*
1506 * How many references to @entry are currently swapped out?
1507 * This considers COUNT_CONTINUED so it returns exact answer.
1508 */
1509 int swp_swapcount(swp_entry_t entry)
1510 {
1511 int count, tmp_count, n;
1512 struct swap_info_struct *p;
1513 struct swap_cluster_info *ci;
1514 struct page *page;
1515 pgoff_t offset;
1516 unsigned char *map;
1517
1518 p = _swap_info_get(entry);
1519 if (!p)
1520 return 0;
1521
1522 offset = swp_offset(entry);
1523
1524 ci = lock_cluster_or_swap_info(p, offset);
1525
1526 count = swap_count(p->swap_map[offset]);
1527 if (!(count & COUNT_CONTINUED))
1528 goto out;
1529
1530 count &= ~COUNT_CONTINUED;
1531 n = SWAP_MAP_MAX + 1;
1532
1533 page = vmalloc_to_page(p->swap_map + offset);
1534 offset &= ~PAGE_MASK;
1535 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1536
1537 do {
1538 page = list_next_entry(page, lru);
1539 map = kmap_atomic(page);
1540 tmp_count = map[offset];
1541 kunmap_atomic(map);
1542
1543 count += (tmp_count & ~COUNT_CONTINUED) * n;
1544 n *= (SWAP_CONT_MAX + 1);
1545 } while (tmp_count & COUNT_CONTINUED);
1546 out:
1547 unlock_cluster_or_swap_info(p, ci);
1548 return count;
1549 }
1550
1551 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1552 swp_entry_t entry)
1553 {
1554 struct swap_cluster_info *ci;
1555 unsigned char *map = si->swap_map;
1556 unsigned long roffset = swp_offset(entry);
1557 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1558 int i;
1559 bool ret = false;
1560
1561 ci = lock_cluster_or_swap_info(si, offset);
1562 if (!ci || !cluster_is_huge(ci)) {
1563 if (swap_count(map[roffset]))
1564 ret = true;
1565 goto unlock_out;
1566 }
1567 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1568 if (swap_count(map[offset + i])) {
1569 ret = true;
1570 break;
1571 }
1572 }
1573 unlock_out:
1574 unlock_cluster_or_swap_info(si, ci);
1575 return ret;
1576 }
1577
1578 static bool page_swapped(struct page *page)
1579 {
1580 swp_entry_t entry;
1581 struct swap_info_struct *si;
1582
1583 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1584 return page_swapcount(page) != 0;
1585
1586 page = compound_head(page);
1587 entry.val = page_private(page);
1588 si = _swap_info_get(entry);
1589 if (si)
1590 return swap_page_trans_huge_swapped(si, entry);
1591 return false;
1592 }
1593
1594 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1595 int *total_swapcount)
1596 {
1597 int i, map_swapcount, _total_mapcount, _total_swapcount;
1598 unsigned long offset = 0;
1599 struct swap_info_struct *si;
1600 struct swap_cluster_info *ci = NULL;
1601 unsigned char *map = NULL;
1602 int mapcount, swapcount = 0;
1603
1604 /* hugetlbfs shouldn't call it */
1605 VM_BUG_ON_PAGE(PageHuge(page), page);
1606
1607 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1608 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1609 if (PageSwapCache(page))
1610 swapcount = page_swapcount(page);
1611 if (total_swapcount)
1612 *total_swapcount = swapcount;
1613 return mapcount + swapcount;
1614 }
1615
1616 page = compound_head(page);
1617
1618 _total_mapcount = _total_swapcount = map_swapcount = 0;
1619 if (PageSwapCache(page)) {
1620 swp_entry_t entry;
1621
1622 entry.val = page_private(page);
1623 si = _swap_info_get(entry);
1624 if (si) {
1625 map = si->swap_map;
1626 offset = swp_offset(entry);
1627 }
1628 }
1629 if (map)
1630 ci = lock_cluster(si, offset);
1631 for (i = 0; i < HPAGE_PMD_NR; i++) {
1632 mapcount = atomic_read(&page[i]._mapcount) + 1;
1633 _total_mapcount += mapcount;
1634 if (map) {
1635 swapcount = swap_count(map[offset + i]);
1636 _total_swapcount += swapcount;
1637 }
1638 map_swapcount = max(map_swapcount, mapcount + swapcount);
1639 }
1640 unlock_cluster(ci);
1641 if (PageDoubleMap(page)) {
1642 map_swapcount -= 1;
1643 _total_mapcount -= HPAGE_PMD_NR;
1644 }
1645 mapcount = compound_mapcount(page);
1646 map_swapcount += mapcount;
1647 _total_mapcount += mapcount;
1648 if (total_mapcount)
1649 *total_mapcount = _total_mapcount;
1650 if (total_swapcount)
1651 *total_swapcount = _total_swapcount;
1652
1653 return map_swapcount;
1654 }
1655
1656 /*
1657 * We can write to an anon page without COW if there are no other references
1658 * to it. And as a side-effect, free up its swap: because the old content
1659 * on disk will never be read, and seeking back there to write new content
1660 * later would only waste time away from clustering.
1661 *
1662 * NOTE: total_map_swapcount should not be relied upon by the caller if
1663 * reuse_swap_page() returns false, but it may be always overwritten
1664 * (see the other implementation for CONFIG_SWAP=n).
1665 */
1666 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1667 {
1668 int count, total_mapcount, total_swapcount;
1669
1670 VM_BUG_ON_PAGE(!PageLocked(page), page);
1671 if (unlikely(PageKsm(page)))
1672 return false;
1673 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1674 &total_swapcount);
1675 if (total_map_swapcount)
1676 *total_map_swapcount = total_mapcount + total_swapcount;
1677 if (count == 1 && PageSwapCache(page) &&
1678 (likely(!PageTransCompound(page)) ||
1679 /* The remaining swap count will be freed soon */
1680 total_swapcount == page_swapcount(page))) {
1681 if (!PageWriteback(page)) {
1682 page = compound_head(page);
1683 delete_from_swap_cache(page);
1684 SetPageDirty(page);
1685 } else {
1686 swp_entry_t entry;
1687 struct swap_info_struct *p;
1688
1689 entry.val = page_private(page);
1690 p = swap_info_get(entry);
1691 if (p->flags & SWP_STABLE_WRITES) {
1692 spin_unlock(&p->lock);
1693 return false;
1694 }
1695 spin_unlock(&p->lock);
1696 }
1697 }
1698
1699 return count <= 1;
1700 }
1701
1702 /*
1703 * If swap is getting full, or if there are no more mappings of this page,
1704 * then try_to_free_swap is called to free its swap space.
1705 */
1706 int try_to_free_swap(struct page *page)
1707 {
1708 VM_BUG_ON_PAGE(!PageLocked(page), page);
1709
1710 if (!PageSwapCache(page))
1711 return 0;
1712 if (PageWriteback(page))
1713 return 0;
1714 if (page_swapped(page))
1715 return 0;
1716
1717 /*
1718 * Once hibernation has begun to create its image of memory,
1719 * there's a danger that one of the calls to try_to_free_swap()
1720 * - most probably a call from __try_to_reclaim_swap() while
1721 * hibernation is allocating its own swap pages for the image,
1722 * but conceivably even a call from memory reclaim - will free
1723 * the swap from a page which has already been recorded in the
1724 * image as a clean swapcache page, and then reuse its swap for
1725 * another page of the image. On waking from hibernation, the
1726 * original page might be freed under memory pressure, then
1727 * later read back in from swap, now with the wrong data.
1728 *
1729 * Hibernation suspends storage while it is writing the image
1730 * to disk so check that here.
1731 */
1732 if (pm_suspended_storage())
1733 return 0;
1734
1735 page = compound_head(page);
1736 delete_from_swap_cache(page);
1737 SetPageDirty(page);
1738 return 1;
1739 }
1740
1741 /*
1742 * Free the swap entry like above, but also try to
1743 * free the page cache entry if it is the last user.
1744 */
1745 int free_swap_and_cache(swp_entry_t entry)
1746 {
1747 struct swap_info_struct *p;
1748 unsigned char count;
1749
1750 if (non_swap_entry(entry))
1751 return 1;
1752
1753 p = _swap_info_get(entry);
1754 if (p) {
1755 count = __swap_entry_free(p, entry, 1);
1756 if (count == SWAP_HAS_CACHE &&
1757 !swap_page_trans_huge_swapped(p, entry))
1758 __try_to_reclaim_swap(p, swp_offset(entry),
1759 TTRS_UNMAPPED | TTRS_FULL);
1760 }
1761 return p != NULL;
1762 }
1763
1764 #ifdef CONFIG_HIBERNATION
1765 /*
1766 * Find the swap type that corresponds to given device (if any).
1767 *
1768 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1769 * from 0, in which the swap header is expected to be located.
1770 *
1771 * This is needed for the suspend to disk (aka swsusp).
1772 */
1773 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1774 {
1775 struct block_device *bdev = NULL;
1776 int type;
1777
1778 if (device)
1779 bdev = bdget(device);
1780
1781 spin_lock(&swap_lock);
1782 for (type = 0; type < nr_swapfiles; type++) {
1783 struct swap_info_struct *sis = swap_info[type];
1784
1785 if (!(sis->flags & SWP_WRITEOK))
1786 continue;
1787
1788 if (!bdev) {
1789 if (bdev_p)
1790 *bdev_p = bdgrab(sis->bdev);
1791
1792 spin_unlock(&swap_lock);
1793 return type;
1794 }
1795 if (bdev == sis->bdev) {
1796 struct swap_extent *se = first_se(sis);
1797
1798 if (se->start_block == offset) {
1799 if (bdev_p)
1800 *bdev_p = bdgrab(sis->bdev);
1801
1802 spin_unlock(&swap_lock);
1803 bdput(bdev);
1804 return type;
1805 }
1806 }
1807 }
1808 spin_unlock(&swap_lock);
1809 if (bdev)
1810 bdput(bdev);
1811
1812 return -ENODEV;
1813 }
1814
1815 /*
1816 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1817 * corresponding to given index in swap_info (swap type).
1818 */
1819 sector_t swapdev_block(int type, pgoff_t offset)
1820 {
1821 struct block_device *bdev;
1822 struct swap_info_struct *si = swap_type_to_swap_info(type);
1823
1824 if (!si || !(si->flags & SWP_WRITEOK))
1825 return 0;
1826 return map_swap_entry(swp_entry(type, offset), &bdev);
1827 }
1828
1829 /*
1830 * Return either the total number of swap pages of given type, or the number
1831 * of free pages of that type (depending on @free)
1832 *
1833 * This is needed for software suspend
1834 */
1835 unsigned int count_swap_pages(int type, int free)
1836 {
1837 unsigned int n = 0;
1838
1839 spin_lock(&swap_lock);
1840 if ((unsigned int)type < nr_swapfiles) {
1841 struct swap_info_struct *sis = swap_info[type];
1842
1843 spin_lock(&sis->lock);
1844 if (sis->flags & SWP_WRITEOK) {
1845 n = sis->pages;
1846 if (free)
1847 n -= sis->inuse_pages;
1848 }
1849 spin_unlock(&sis->lock);
1850 }
1851 spin_unlock(&swap_lock);
1852 return n;
1853 }
1854 #endif /* CONFIG_HIBERNATION */
1855
1856 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1857 {
1858 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1859 }
1860
1861 /*
1862 * No need to decide whether this PTE shares the swap entry with others,
1863 * just let do_wp_page work it out if a write is requested later - to
1864 * force COW, vm_page_prot omits write permission from any private vma.
1865 */
1866 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1867 unsigned long addr, swp_entry_t entry, struct page *page)
1868 {
1869 struct page *swapcache;
1870 struct mem_cgroup *memcg;
1871 spinlock_t *ptl;
1872 pte_t *pte;
1873 int ret = 1;
1874
1875 swapcache = page;
1876 page = ksm_might_need_to_copy(page, vma, addr);
1877 if (unlikely(!page))
1878 return -ENOMEM;
1879
1880 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1881 &memcg, false)) {
1882 ret = -ENOMEM;
1883 goto out_nolock;
1884 }
1885
1886 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1887 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1888 mem_cgroup_cancel_charge(page, memcg, false);
1889 ret = 0;
1890 goto out;
1891 }
1892
1893 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1894 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1895 get_page(page);
1896 set_pte_at(vma->vm_mm, addr, pte,
1897 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1898 if (page == swapcache) {
1899 page_add_anon_rmap(page, vma, addr, false);
1900 mem_cgroup_commit_charge(page, memcg, true, false);
1901 } else { /* ksm created a completely new copy */
1902 page_add_new_anon_rmap(page, vma, addr, false);
1903 mem_cgroup_commit_charge(page, memcg, false, false);
1904 lru_cache_add_active_or_unevictable(page, vma);
1905 }
1906 swap_free(entry);
1907 /*
1908 * Move the page to the active list so it is not
1909 * immediately swapped out again after swapon.
1910 */
1911 activate_page(page);
1912 out:
1913 pte_unmap_unlock(pte, ptl);
1914 out_nolock:
1915 if (page != swapcache) {
1916 unlock_page(page);
1917 put_page(page);
1918 }
1919 return ret;
1920 }
1921
1922 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1923 unsigned long addr, unsigned long end,
1924 unsigned int type, bool frontswap,
1925 unsigned long *fs_pages_to_unuse)
1926 {
1927 struct page *page;
1928 swp_entry_t entry;
1929 pte_t *pte;
1930 struct swap_info_struct *si;
1931 unsigned long offset;
1932 int ret = 0;
1933 volatile unsigned char *swap_map;
1934
1935 si = swap_info[type];
1936 pte = pte_offset_map(pmd, addr);
1937 do {
1938 struct vm_fault vmf;
1939
1940 if (!is_swap_pte(*pte))
1941 continue;
1942
1943 entry = pte_to_swp_entry(*pte);
1944 if (swp_type(entry) != type)
1945 continue;
1946
1947 offset = swp_offset(entry);
1948 if (frontswap && !frontswap_test(si, offset))
1949 continue;
1950
1951 pte_unmap(pte);
1952 swap_map = &si->swap_map[offset];
1953 vmf.vma = vma;
1954 vmf.address = addr;
1955 vmf.pmd = pmd;
1956 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1957 if (!page) {
1958 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1959 goto try_next;
1960 return -ENOMEM;
1961 }
1962
1963 lock_page(page);
1964 wait_on_page_writeback(page);
1965 ret = unuse_pte(vma, pmd, addr, entry, page);
1966 if (ret < 0) {
1967 unlock_page(page);
1968 put_page(page);
1969 goto out;
1970 }
1971
1972 try_to_free_swap(page);
1973 unlock_page(page);
1974 put_page(page);
1975
1976 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1977 ret = FRONTSWAP_PAGES_UNUSED;
1978 goto out;
1979 }
1980 try_next:
1981 pte = pte_offset_map(pmd, addr);
1982 } while (pte++, addr += PAGE_SIZE, addr != end);
1983 pte_unmap(pte - 1);
1984
1985 ret = 0;
1986 out:
1987 return ret;
1988 }
1989
1990 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1991 unsigned long addr, unsigned long end,
1992 unsigned int type, bool frontswap,
1993 unsigned long *fs_pages_to_unuse)
1994 {
1995 pmd_t *pmd;
1996 unsigned long next;
1997 int ret;
1998
1999 pmd = pmd_offset(pud, addr);
2000 do {
2001 cond_resched();
2002 next = pmd_addr_end(addr, end);
2003 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2004 continue;
2005 ret = unuse_pte_range(vma, pmd, addr, next, type,
2006 frontswap, fs_pages_to_unuse);
2007 if (ret)
2008 return ret;
2009 } while (pmd++, addr = next, addr != end);
2010 return 0;
2011 }
2012
2013 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2014 unsigned long addr, unsigned long end,
2015 unsigned int type, bool frontswap,
2016 unsigned long *fs_pages_to_unuse)
2017 {
2018 pud_t *pud;
2019 unsigned long next;
2020 int ret;
2021
2022 pud = pud_offset(p4d, addr);
2023 do {
2024 next = pud_addr_end(addr, end);
2025 if (pud_none_or_clear_bad(pud))
2026 continue;
2027 ret = unuse_pmd_range(vma, pud, addr, next, type,
2028 frontswap, fs_pages_to_unuse);
2029 if (ret)
2030 return ret;
2031 } while (pud++, addr = next, addr != end);
2032 return 0;
2033 }
2034
2035 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2036 unsigned long addr, unsigned long end,
2037 unsigned int type, bool frontswap,
2038 unsigned long *fs_pages_to_unuse)
2039 {
2040 p4d_t *p4d;
2041 unsigned long next;
2042 int ret;
2043
2044 p4d = p4d_offset(pgd, addr);
2045 do {
2046 next = p4d_addr_end(addr, end);
2047 if (p4d_none_or_clear_bad(p4d))
2048 continue;
2049 ret = unuse_pud_range(vma, p4d, addr, next, type,
2050 frontswap, fs_pages_to_unuse);
2051 if (ret)
2052 return ret;
2053 } while (p4d++, addr = next, addr != end);
2054 return 0;
2055 }
2056
2057 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2058 bool frontswap, unsigned long *fs_pages_to_unuse)
2059 {
2060 pgd_t *pgd;
2061 unsigned long addr, end, next;
2062 int ret;
2063
2064 addr = vma->vm_start;
2065 end = vma->vm_end;
2066
2067 pgd = pgd_offset(vma->vm_mm, addr);
2068 do {
2069 next = pgd_addr_end(addr, end);
2070 if (pgd_none_or_clear_bad(pgd))
2071 continue;
2072 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2073 frontswap, fs_pages_to_unuse);
2074 if (ret)
2075 return ret;
2076 } while (pgd++, addr = next, addr != end);
2077 return 0;
2078 }
2079
2080 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2081 bool frontswap, unsigned long *fs_pages_to_unuse)
2082 {
2083 struct vm_area_struct *vma;
2084 int ret = 0;
2085
2086 down_read(&mm->mmap_sem);
2087 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2088 if (vma->anon_vma) {
2089 ret = unuse_vma(vma, type, frontswap,
2090 fs_pages_to_unuse);
2091 if (ret)
2092 break;
2093 }
2094 cond_resched();
2095 }
2096 up_read(&mm->mmap_sem);
2097 return ret;
2098 }
2099
2100 /*
2101 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2102 * from current position to next entry still in use. Return 0
2103 * if there are no inuse entries after prev till end of the map.
2104 */
2105 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2106 unsigned int prev, bool frontswap)
2107 {
2108 unsigned int i;
2109 unsigned char count;
2110
2111 /*
2112 * No need for swap_lock here: we're just looking
2113 * for whether an entry is in use, not modifying it; false
2114 * hits are okay, and sys_swapoff() has already prevented new
2115 * allocations from this area (while holding swap_lock).
2116 */
2117 for (i = prev + 1; i < si->max; i++) {
2118 count = READ_ONCE(si->swap_map[i]);
2119 if (count && swap_count(count) != SWAP_MAP_BAD)
2120 if (!frontswap || frontswap_test(si, i))
2121 break;
2122 if ((i % LATENCY_LIMIT) == 0)
2123 cond_resched();
2124 }
2125
2126 if (i == si->max)
2127 i = 0;
2128
2129 return i;
2130 }
2131
2132 /*
2133 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2134 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2135 */
2136 int try_to_unuse(unsigned int type, bool frontswap,
2137 unsigned long pages_to_unuse)
2138 {
2139 struct mm_struct *prev_mm;
2140 struct mm_struct *mm;
2141 struct list_head *p;
2142 int retval = 0;
2143 struct swap_info_struct *si = swap_info[type];
2144 struct page *page;
2145 swp_entry_t entry;
2146 unsigned int i;
2147
2148 if (!READ_ONCE(si->inuse_pages))
2149 return 0;
2150
2151 if (!frontswap)
2152 pages_to_unuse = 0;
2153
2154 retry:
2155 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2156 if (retval)
2157 goto out;
2158
2159 prev_mm = &init_mm;
2160 mmget(prev_mm);
2161
2162 spin_lock(&mmlist_lock);
2163 p = &init_mm.mmlist;
2164 while (READ_ONCE(si->inuse_pages) &&
2165 !signal_pending(current) &&
2166 (p = p->next) != &init_mm.mmlist) {
2167
2168 mm = list_entry(p, struct mm_struct, mmlist);
2169 if (!mmget_not_zero(mm))
2170 continue;
2171 spin_unlock(&mmlist_lock);
2172 mmput(prev_mm);
2173 prev_mm = mm;
2174 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2175
2176 if (retval) {
2177 mmput(prev_mm);
2178 goto out;
2179 }
2180
2181 /*
2182 * Make sure that we aren't completely killing
2183 * interactive performance.
2184 */
2185 cond_resched();
2186 spin_lock(&mmlist_lock);
2187 }
2188 spin_unlock(&mmlist_lock);
2189
2190 mmput(prev_mm);
2191
2192 i = 0;
2193 while (READ_ONCE(si->inuse_pages) &&
2194 !signal_pending(current) &&
2195 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2196
2197 entry = swp_entry(type, i);
2198 page = find_get_page(swap_address_space(entry), i);
2199 if (!page)
2200 continue;
2201
2202 /*
2203 * It is conceivable that a racing task removed this page from
2204 * swap cache just before we acquired the page lock. The page
2205 * might even be back in swap cache on another swap area. But
2206 * that is okay, try_to_free_swap() only removes stale pages.
2207 */
2208 lock_page(page);
2209 wait_on_page_writeback(page);
2210 try_to_free_swap(page);
2211 unlock_page(page);
2212 put_page(page);
2213
2214 /*
2215 * For frontswap, we just need to unuse pages_to_unuse, if
2216 * it was specified. Need not check frontswap again here as
2217 * we already zeroed out pages_to_unuse if not frontswap.
2218 */
2219 if (pages_to_unuse && --pages_to_unuse == 0)
2220 goto out;
2221 }
2222
2223 /*
2224 * Lets check again to see if there are still swap entries in the map.
2225 * If yes, we would need to do retry the unuse logic again.
2226 * Under global memory pressure, swap entries can be reinserted back
2227 * into process space after the mmlist loop above passes over them.
2228 *
2229 * Limit the number of retries? No: when mmget_not_zero() above fails,
2230 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2231 * at its own independent pace; and even shmem_writepage() could have
2232 * been preempted after get_swap_page(), temporarily hiding that swap.
2233 * It's easy and robust (though cpu-intensive) just to keep retrying.
2234 */
2235 if (READ_ONCE(si->inuse_pages)) {
2236 if (!signal_pending(current))
2237 goto retry;
2238 retval = -EINTR;
2239 }
2240 out:
2241 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2242 }
2243
2244 /*
2245 * After a successful try_to_unuse, if no swap is now in use, we know
2246 * we can empty the mmlist. swap_lock must be held on entry and exit.
2247 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2248 * added to the mmlist just after page_duplicate - before would be racy.
2249 */
2250 static void drain_mmlist(void)
2251 {
2252 struct list_head *p, *next;
2253 unsigned int type;
2254
2255 for (type = 0; type < nr_swapfiles; type++)
2256 if (swap_info[type]->inuse_pages)
2257 return;
2258 spin_lock(&mmlist_lock);
2259 list_for_each_safe(p, next, &init_mm.mmlist)
2260 list_del_init(p);
2261 spin_unlock(&mmlist_lock);
2262 }
2263
2264 /*
2265 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2266 * corresponds to page offset for the specified swap entry.
2267 * Note that the type of this function is sector_t, but it returns page offset
2268 * into the bdev, not sector offset.
2269 */
2270 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2271 {
2272 struct swap_info_struct *sis;
2273 struct swap_extent *se;
2274 pgoff_t offset;
2275
2276 sis = swp_swap_info(entry);
2277 *bdev = sis->bdev;
2278
2279 offset = swp_offset(entry);
2280 se = offset_to_swap_extent(sis, offset);
2281 return se->start_block + (offset - se->start_page);
2282 }
2283
2284 /*
2285 * Returns the page offset into bdev for the specified page's swap entry.
2286 */
2287 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2288 {
2289 swp_entry_t entry;
2290 entry.val = page_private(page);
2291 return map_swap_entry(entry, bdev);
2292 }
2293
2294 /*
2295 * Free all of a swapdev's extent information
2296 */
2297 static void destroy_swap_extents(struct swap_info_struct *sis)
2298 {
2299 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2300 struct rb_node *rb = sis->swap_extent_root.rb_node;
2301 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2302
2303 rb_erase(rb, &sis->swap_extent_root);
2304 kfree(se);
2305 }
2306
2307 if (sis->flags & SWP_ACTIVATED) {
2308 struct file *swap_file = sis->swap_file;
2309 struct address_space *mapping = swap_file->f_mapping;
2310
2311 sis->flags &= ~SWP_ACTIVATED;
2312 if (mapping->a_ops->swap_deactivate)
2313 mapping->a_ops->swap_deactivate(swap_file);
2314 }
2315 }
2316
2317 /*
2318 * Add a block range (and the corresponding page range) into this swapdev's
2319 * extent tree.
2320 *
2321 * This function rather assumes that it is called in ascending page order.
2322 */
2323 int
2324 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2325 unsigned long nr_pages, sector_t start_block)
2326 {
2327 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2328 struct swap_extent *se;
2329 struct swap_extent *new_se;
2330
2331 /*
2332 * place the new node at the right most since the
2333 * function is called in ascending page order.
2334 */
2335 while (*link) {
2336 parent = *link;
2337 link = &parent->rb_right;
2338 }
2339
2340 if (parent) {
2341 se = rb_entry(parent, struct swap_extent, rb_node);
2342 BUG_ON(se->start_page + se->nr_pages != start_page);
2343 if (se->start_block + se->nr_pages == start_block) {
2344 /* Merge it */
2345 se->nr_pages += nr_pages;
2346 return 0;
2347 }
2348 }
2349
2350 /* No merge, insert a new extent. */
2351 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2352 if (new_se == NULL)
2353 return -ENOMEM;
2354 new_se->start_page = start_page;
2355 new_se->nr_pages = nr_pages;
2356 new_se->start_block = start_block;
2357
2358 rb_link_node(&new_se->rb_node, parent, link);
2359 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2360 return 1;
2361 }
2362 EXPORT_SYMBOL_GPL(add_swap_extent);
2363
2364 /*
2365 * A `swap extent' is a simple thing which maps a contiguous range of pages
2366 * onto a contiguous range of disk blocks. An ordered list of swap extents
2367 * is built at swapon time and is then used at swap_writepage/swap_readpage
2368 * time for locating where on disk a page belongs.
2369 *
2370 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2371 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2372 * swap files identically.
2373 *
2374 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2375 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2376 * swapfiles are handled *identically* after swapon time.
2377 *
2378 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2379 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2380 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2381 * requirements, they are simply tossed out - we will never use those blocks
2382 * for swapping.
2383 *
2384 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2385 * prevents users from writing to the swap device, which will corrupt memory.
2386 *
2387 * The amount of disk space which a single swap extent represents varies.
2388 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2389 * extents in the list. To avoid much list walking, we cache the previous
2390 * search location in `curr_swap_extent', and start new searches from there.
2391 * This is extremely effective. The average number of iterations in
2392 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2393 */
2394 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2395 {
2396 struct file *swap_file = sis->swap_file;
2397 struct address_space *mapping = swap_file->f_mapping;
2398 struct inode *inode = mapping->host;
2399 int ret;
2400
2401 if (S_ISBLK(inode->i_mode)) {
2402 ret = add_swap_extent(sis, 0, sis->max, 0);
2403 *span = sis->pages;
2404 return ret;
2405 }
2406
2407 if (mapping->a_ops->swap_activate) {
2408 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2409 if (ret >= 0)
2410 sis->flags |= SWP_ACTIVATED;
2411 if (!ret) {
2412 sis->flags |= SWP_FS;
2413 ret = add_swap_extent(sis, 0, sis->max, 0);
2414 *span = sis->pages;
2415 }
2416 return ret;
2417 }
2418
2419 return generic_swapfile_activate(sis, swap_file, span);
2420 }
2421
2422 static int swap_node(struct swap_info_struct *p)
2423 {
2424 struct block_device *bdev;
2425
2426 if (p->bdev)
2427 bdev = p->bdev;
2428 else
2429 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2430
2431 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2432 }
2433
2434 static void setup_swap_info(struct swap_info_struct *p, int prio,
2435 unsigned char *swap_map,
2436 struct swap_cluster_info *cluster_info)
2437 {
2438 int i;
2439
2440 if (prio >= 0)
2441 p->prio = prio;
2442 else
2443 p->prio = --least_priority;
2444 /*
2445 * the plist prio is negated because plist ordering is
2446 * low-to-high, while swap ordering is high-to-low
2447 */
2448 p->list.prio = -p->prio;
2449 for_each_node(i) {
2450 if (p->prio >= 0)
2451 p->avail_lists[i].prio = -p->prio;
2452 else {
2453 if (swap_node(p) == i)
2454 p->avail_lists[i].prio = 1;
2455 else
2456 p->avail_lists[i].prio = -p->prio;
2457 }
2458 }
2459 p->swap_map = swap_map;
2460 p->cluster_info = cluster_info;
2461 }
2462
2463 static void _enable_swap_info(struct swap_info_struct *p)
2464 {
2465 p->flags |= SWP_WRITEOK | SWP_VALID;
2466 atomic_long_add(p->pages, &nr_swap_pages);
2467 total_swap_pages += p->pages;
2468
2469 assert_spin_locked(&swap_lock);
2470 /*
2471 * both lists are plists, and thus priority ordered.
2472 * swap_active_head needs to be priority ordered for swapoff(),
2473 * which on removal of any swap_info_struct with an auto-assigned
2474 * (i.e. negative) priority increments the auto-assigned priority
2475 * of any lower-priority swap_info_structs.
2476 * swap_avail_head needs to be priority ordered for get_swap_page(),
2477 * which allocates swap pages from the highest available priority
2478 * swap_info_struct.
2479 */
2480 plist_add(&p->list, &swap_active_head);
2481 add_to_avail_list(p);
2482 }
2483
2484 static void enable_swap_info(struct swap_info_struct *p, int prio,
2485 unsigned char *swap_map,
2486 struct swap_cluster_info *cluster_info,
2487 unsigned long *frontswap_map)
2488 {
2489 frontswap_init(p->type, frontswap_map);
2490 spin_lock(&swap_lock);
2491 spin_lock(&p->lock);
2492 setup_swap_info(p, prio, swap_map, cluster_info);
2493 spin_unlock(&p->lock);
2494 spin_unlock(&swap_lock);
2495 /*
2496 * Guarantee swap_map, cluster_info, etc. fields are valid
2497 * between get/put_swap_device() if SWP_VALID bit is set
2498 */
2499 synchronize_rcu();
2500 spin_lock(&swap_lock);
2501 spin_lock(&p->lock);
2502 _enable_swap_info(p);
2503 spin_unlock(&p->lock);
2504 spin_unlock(&swap_lock);
2505 }
2506
2507 static void reinsert_swap_info(struct swap_info_struct *p)
2508 {
2509 spin_lock(&swap_lock);
2510 spin_lock(&p->lock);
2511 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2512 _enable_swap_info(p);
2513 spin_unlock(&p->lock);
2514 spin_unlock(&swap_lock);
2515 }
2516
2517 bool has_usable_swap(void)
2518 {
2519 bool ret = true;
2520
2521 spin_lock(&swap_lock);
2522 if (plist_head_empty(&swap_active_head))
2523 ret = false;
2524 spin_unlock(&swap_lock);
2525 return ret;
2526 }
2527
2528 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2529 {
2530 struct swap_info_struct *p = NULL;
2531 unsigned char *swap_map;
2532 struct swap_cluster_info *cluster_info;
2533 unsigned long *frontswap_map;
2534 struct file *swap_file, *victim;
2535 struct address_space *mapping;
2536 struct inode *inode;
2537 struct filename *pathname;
2538 int err, found = 0;
2539 unsigned int old_block_size;
2540
2541 if (!capable(CAP_SYS_ADMIN))
2542 return -EPERM;
2543
2544 BUG_ON(!current->mm);
2545
2546 pathname = getname(specialfile);
2547 if (IS_ERR(pathname))
2548 return PTR_ERR(pathname);
2549
2550 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2551 err = PTR_ERR(victim);
2552 if (IS_ERR(victim))
2553 goto out;
2554
2555 mapping = victim->f_mapping;
2556 spin_lock(&swap_lock);
2557 plist_for_each_entry(p, &swap_active_head, list) {
2558 if (p->flags & SWP_WRITEOK) {
2559 if (p->swap_file->f_mapping == mapping) {
2560 found = 1;
2561 break;
2562 }
2563 }
2564 }
2565 if (!found) {
2566 err = -EINVAL;
2567 spin_unlock(&swap_lock);
2568 goto out_dput;
2569 }
2570 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2571 vm_unacct_memory(p->pages);
2572 else {
2573 err = -ENOMEM;
2574 spin_unlock(&swap_lock);
2575 goto out_dput;
2576 }
2577 del_from_avail_list(p);
2578 spin_lock(&p->lock);
2579 if (p->prio < 0) {
2580 struct swap_info_struct *si = p;
2581 int nid;
2582
2583 plist_for_each_entry_continue(si, &swap_active_head, list) {
2584 si->prio++;
2585 si->list.prio--;
2586 for_each_node(nid) {
2587 if (si->avail_lists[nid].prio != 1)
2588 si->avail_lists[nid].prio--;
2589 }
2590 }
2591 least_priority++;
2592 }
2593 plist_del(&p->list, &swap_active_head);
2594 atomic_long_sub(p->pages, &nr_swap_pages);
2595 total_swap_pages -= p->pages;
2596 p->flags &= ~SWP_WRITEOK;
2597 spin_unlock(&p->lock);
2598 spin_unlock(&swap_lock);
2599
2600 disable_swap_slots_cache_lock();
2601
2602 set_current_oom_origin();
2603 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2604 clear_current_oom_origin();
2605
2606 if (err) {
2607 /* re-insert swap space back into swap_list */
2608 reinsert_swap_info(p);
2609 reenable_swap_slots_cache_unlock();
2610 goto out_dput;
2611 }
2612
2613 reenable_swap_slots_cache_unlock();
2614
2615 spin_lock(&swap_lock);
2616 spin_lock(&p->lock);
2617 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2618 spin_unlock(&p->lock);
2619 spin_unlock(&swap_lock);
2620 /*
2621 * wait for swap operations protected by get/put_swap_device()
2622 * to complete
2623 */
2624 synchronize_rcu();
2625
2626 flush_work(&p->discard_work);
2627
2628 destroy_swap_extents(p);
2629 if (p->flags & SWP_CONTINUED)
2630 free_swap_count_continuations(p);
2631
2632 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2633 atomic_dec(&nr_rotate_swap);
2634
2635 mutex_lock(&swapon_mutex);
2636 spin_lock(&swap_lock);
2637 spin_lock(&p->lock);
2638 drain_mmlist();
2639
2640 /* wait for anyone still in scan_swap_map */
2641 p->highest_bit = 0; /* cuts scans short */
2642 while (p->flags >= SWP_SCANNING) {
2643 spin_unlock(&p->lock);
2644 spin_unlock(&swap_lock);
2645 schedule_timeout_uninterruptible(1);
2646 spin_lock(&swap_lock);
2647 spin_lock(&p->lock);
2648 }
2649
2650 swap_file = p->swap_file;
2651 old_block_size = p->old_block_size;
2652 p->swap_file = NULL;
2653 p->max = 0;
2654 swap_map = p->swap_map;
2655 p->swap_map = NULL;
2656 cluster_info = p->cluster_info;
2657 p->cluster_info = NULL;
2658 frontswap_map = frontswap_map_get(p);
2659 spin_unlock(&p->lock);
2660 spin_unlock(&swap_lock);
2661 frontswap_invalidate_area(p->type);
2662 frontswap_map_set(p, NULL);
2663 mutex_unlock(&swapon_mutex);
2664 free_percpu(p->percpu_cluster);
2665 p->percpu_cluster = NULL;
2666 vfree(swap_map);
2667 kvfree(cluster_info);
2668 kvfree(frontswap_map);
2669 /* Destroy swap account information */
2670 swap_cgroup_swapoff(p->type);
2671 exit_swap_address_space(p->type);
2672
2673 inode = mapping->host;
2674 if (S_ISBLK(inode->i_mode)) {
2675 struct block_device *bdev = I_BDEV(inode);
2676
2677 set_blocksize(bdev, old_block_size);
2678 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2679 }
2680
2681 inode_lock(inode);
2682 inode->i_flags &= ~S_SWAPFILE;
2683 inode_unlock(inode);
2684 filp_close(swap_file, NULL);
2685
2686 /*
2687 * Clear the SWP_USED flag after all resources are freed so that swapon
2688 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2689 * not hold p->lock after we cleared its SWP_WRITEOK.
2690 */
2691 spin_lock(&swap_lock);
2692 p->flags = 0;
2693 spin_unlock(&swap_lock);
2694
2695 err = 0;
2696 atomic_inc(&proc_poll_event);
2697 wake_up_interruptible(&proc_poll_wait);
2698
2699 out_dput:
2700 filp_close(victim, NULL);
2701 out:
2702 putname(pathname);
2703 return err;
2704 }
2705
2706 #ifdef CONFIG_PROC_FS
2707 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2708 {
2709 struct seq_file *seq = file->private_data;
2710
2711 poll_wait(file, &proc_poll_wait, wait);
2712
2713 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2714 seq->poll_event = atomic_read(&proc_poll_event);
2715 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2716 }
2717
2718 return EPOLLIN | EPOLLRDNORM;
2719 }
2720
2721 /* iterator */
2722 static void *swap_start(struct seq_file *swap, loff_t *pos)
2723 {
2724 struct swap_info_struct *si;
2725 int type;
2726 loff_t l = *pos;
2727
2728 mutex_lock(&swapon_mutex);
2729
2730 if (!l)
2731 return SEQ_START_TOKEN;
2732
2733 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2734 if (!(si->flags & SWP_USED) || !si->swap_map)
2735 continue;
2736 if (!--l)
2737 return si;
2738 }
2739
2740 return NULL;
2741 }
2742
2743 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2744 {
2745 struct swap_info_struct *si = v;
2746 int type;
2747
2748 if (v == SEQ_START_TOKEN)
2749 type = 0;
2750 else
2751 type = si->type + 1;
2752
2753 ++(*pos);
2754 for (; (si = swap_type_to_swap_info(type)); type++) {
2755 if (!(si->flags & SWP_USED) || !si->swap_map)
2756 continue;
2757 return si;
2758 }
2759
2760 return NULL;
2761 }
2762
2763 static void swap_stop(struct seq_file *swap, void *v)
2764 {
2765 mutex_unlock(&swapon_mutex);
2766 }
2767
2768 static int swap_show(struct seq_file *swap, void *v)
2769 {
2770 struct swap_info_struct *si = v;
2771 struct file *file;
2772 int len;
2773
2774 if (si == SEQ_START_TOKEN) {
2775 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2776 return 0;
2777 }
2778
2779 file = si->swap_file;
2780 len = seq_file_path(swap, file, " \t\n\\");
2781 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2782 len < 40 ? 40 - len : 1, " ",
2783 S_ISBLK(file_inode(file)->i_mode) ?
2784 "partition" : "file\t",
2785 si->pages << (PAGE_SHIFT - 10),
2786 si->inuse_pages << (PAGE_SHIFT - 10),
2787 si->prio);
2788 return 0;
2789 }
2790
2791 static const struct seq_operations swaps_op = {
2792 .start = swap_start,
2793 .next = swap_next,
2794 .stop = swap_stop,
2795 .show = swap_show
2796 };
2797
2798 static int swaps_open(struct inode *inode, struct file *file)
2799 {
2800 struct seq_file *seq;
2801 int ret;
2802
2803 ret = seq_open(file, &swaps_op);
2804 if (ret)
2805 return ret;
2806
2807 seq = file->private_data;
2808 seq->poll_event = atomic_read(&proc_poll_event);
2809 return 0;
2810 }
2811
2812 static const struct file_operations proc_swaps_operations = {
2813 .open = swaps_open,
2814 .read = seq_read,
2815 .llseek = seq_lseek,
2816 .release = seq_release,
2817 .poll = swaps_poll,
2818 };
2819
2820 static int __init procswaps_init(void)
2821 {
2822 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2823 return 0;
2824 }
2825 __initcall(procswaps_init);
2826 #endif /* CONFIG_PROC_FS */
2827
2828 #ifdef MAX_SWAPFILES_CHECK
2829 static int __init max_swapfiles_check(void)
2830 {
2831 MAX_SWAPFILES_CHECK();
2832 return 0;
2833 }
2834 late_initcall(max_swapfiles_check);
2835 #endif
2836
2837 static struct swap_info_struct *alloc_swap_info(void)
2838 {
2839 struct swap_info_struct *p;
2840 struct swap_info_struct *defer = NULL;
2841 unsigned int type;
2842 int i;
2843
2844 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2845 if (!p)
2846 return ERR_PTR(-ENOMEM);
2847
2848 spin_lock(&swap_lock);
2849 for (type = 0; type < nr_swapfiles; type++) {
2850 if (!(swap_info[type]->flags & SWP_USED))
2851 break;
2852 }
2853 if (type >= MAX_SWAPFILES) {
2854 spin_unlock(&swap_lock);
2855 kvfree(p);
2856 return ERR_PTR(-EPERM);
2857 }
2858 if (type >= nr_swapfiles) {
2859 p->type = type;
2860 WRITE_ONCE(swap_info[type], p);
2861 /*
2862 * Write swap_info[type] before nr_swapfiles, in case a
2863 * racing procfs swap_start() or swap_next() is reading them.
2864 * (We never shrink nr_swapfiles, we never free this entry.)
2865 */
2866 smp_wmb();
2867 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2868 } else {
2869 defer = p;
2870 p = swap_info[type];
2871 /*
2872 * Do not memset this entry: a racing procfs swap_next()
2873 * would be relying on p->type to remain valid.
2874 */
2875 }
2876 p->swap_extent_root = RB_ROOT;
2877 plist_node_init(&p->list, 0);
2878 for_each_node(i)
2879 plist_node_init(&p->avail_lists[i], 0);
2880 p->flags = SWP_USED;
2881 spin_unlock(&swap_lock);
2882 kvfree(defer);
2883 spin_lock_init(&p->lock);
2884 spin_lock_init(&p->cont_lock);
2885
2886 return p;
2887 }
2888
2889 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2890 {
2891 int error;
2892
2893 if (S_ISBLK(inode->i_mode)) {
2894 p->bdev = bdgrab(I_BDEV(inode));
2895 error = blkdev_get(p->bdev,
2896 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2897 if (error < 0) {
2898 p->bdev = NULL;
2899 return error;
2900 }
2901 p->old_block_size = block_size(p->bdev);
2902 error = set_blocksize(p->bdev, PAGE_SIZE);
2903 if (error < 0)
2904 return error;
2905 p->flags |= SWP_BLKDEV;
2906 } else if (S_ISREG(inode->i_mode)) {
2907 p->bdev = inode->i_sb->s_bdev;
2908 }
2909
2910 return 0;
2911 }
2912
2913
2914 /*
2915 * Find out how many pages are allowed for a single swap device. There
2916 * are two limiting factors:
2917 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2918 * 2) the number of bits in the swap pte, as defined by the different
2919 * architectures.
2920 *
2921 * In order to find the largest possible bit mask, a swap entry with
2922 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2923 * decoded to a swp_entry_t again, and finally the swap offset is
2924 * extracted.
2925 *
2926 * This will mask all the bits from the initial ~0UL mask that can't
2927 * be encoded in either the swp_entry_t or the architecture definition
2928 * of a swap pte.
2929 */
2930 unsigned long generic_max_swapfile_size(void)
2931 {
2932 return swp_offset(pte_to_swp_entry(
2933 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2934 }
2935
2936 /* Can be overridden by an architecture for additional checks. */
2937 __weak unsigned long max_swapfile_size(void)
2938 {
2939 return generic_max_swapfile_size();
2940 }
2941
2942 static unsigned long read_swap_header(struct swap_info_struct *p,
2943 union swap_header *swap_header,
2944 struct inode *inode)
2945 {
2946 int i;
2947 unsigned long maxpages;
2948 unsigned long swapfilepages;
2949 unsigned long last_page;
2950
2951 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2952 pr_err("Unable to find swap-space signature\n");
2953 return 0;
2954 }
2955
2956 /* swap partition endianess hack... */
2957 if (swab32(swap_header->info.version) == 1) {
2958 swab32s(&swap_header->info.version);
2959 swab32s(&swap_header->info.last_page);
2960 swab32s(&swap_header->info.nr_badpages);
2961 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2962 return 0;
2963 for (i = 0; i < swap_header->info.nr_badpages; i++)
2964 swab32s(&swap_header->info.badpages[i]);
2965 }
2966 /* Check the swap header's sub-version */
2967 if (swap_header->info.version != 1) {
2968 pr_warn("Unable to handle swap header version %d\n",
2969 swap_header->info.version);
2970 return 0;
2971 }
2972
2973 p->lowest_bit = 1;
2974 p->cluster_next = 1;
2975 p->cluster_nr = 0;
2976
2977 maxpages = max_swapfile_size();
2978 last_page = swap_header->info.last_page;
2979 if (!last_page) {
2980 pr_warn("Empty swap-file\n");
2981 return 0;
2982 }
2983 if (last_page > maxpages) {
2984 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2985 maxpages << (PAGE_SHIFT - 10),
2986 last_page << (PAGE_SHIFT - 10));
2987 }
2988 if (maxpages > last_page) {
2989 maxpages = last_page + 1;
2990 /* p->max is an unsigned int: don't overflow it */
2991 if ((unsigned int)maxpages == 0)
2992 maxpages = UINT_MAX;
2993 }
2994 p->highest_bit = maxpages - 1;
2995
2996 if (!maxpages)
2997 return 0;
2998 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2999 if (swapfilepages && maxpages > swapfilepages) {
3000 pr_warn("Swap area shorter than signature indicates\n");
3001 return 0;
3002 }
3003 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3004 return 0;
3005 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3006 return 0;
3007
3008 return maxpages;
3009 }
3010
3011 #define SWAP_CLUSTER_INFO_COLS \
3012 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3013 #define SWAP_CLUSTER_SPACE_COLS \
3014 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3015 #define SWAP_CLUSTER_COLS \
3016 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3017
3018 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3019 union swap_header *swap_header,
3020 unsigned char *swap_map,
3021 struct swap_cluster_info *cluster_info,
3022 unsigned long maxpages,
3023 sector_t *span)
3024 {
3025 unsigned int j, k;
3026 unsigned int nr_good_pages;
3027 int nr_extents;
3028 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3029 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3030 unsigned long i, idx;
3031
3032 nr_good_pages = maxpages - 1; /* omit header page */
3033
3034 cluster_list_init(&p->free_clusters);
3035 cluster_list_init(&p->discard_clusters);
3036
3037 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3038 unsigned int page_nr = swap_header->info.badpages[i];
3039 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3040 return -EINVAL;
3041 if (page_nr < maxpages) {
3042 swap_map[page_nr] = SWAP_MAP_BAD;
3043 nr_good_pages--;
3044 /*
3045 * Haven't marked the cluster free yet, no list
3046 * operation involved
3047 */
3048 inc_cluster_info_page(p, cluster_info, page_nr);
3049 }
3050 }
3051
3052 /* Haven't marked the cluster free yet, no list operation involved */
3053 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3054 inc_cluster_info_page(p, cluster_info, i);
3055
3056 if (nr_good_pages) {
3057 swap_map[0] = SWAP_MAP_BAD;
3058 /*
3059 * Not mark the cluster free yet, no list
3060 * operation involved
3061 */
3062 inc_cluster_info_page(p, cluster_info, 0);
3063 p->max = maxpages;
3064 p->pages = nr_good_pages;
3065 nr_extents = setup_swap_extents(p, span);
3066 if (nr_extents < 0)
3067 return nr_extents;
3068 nr_good_pages = p->pages;
3069 }
3070 if (!nr_good_pages) {
3071 pr_warn("Empty swap-file\n");
3072 return -EINVAL;
3073 }
3074
3075 if (!cluster_info)
3076 return nr_extents;
3077
3078
3079 /*
3080 * Reduce false cache line sharing between cluster_info and
3081 * sharing same address space.
3082 */
3083 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3084 j = (k + col) % SWAP_CLUSTER_COLS;
3085 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3086 idx = i * SWAP_CLUSTER_COLS + j;
3087 if (idx >= nr_clusters)
3088 continue;
3089 if (cluster_count(&cluster_info[idx]))
3090 continue;
3091 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3092 cluster_list_add_tail(&p->free_clusters, cluster_info,
3093 idx);
3094 }
3095 }
3096 return nr_extents;
3097 }
3098
3099 /*
3100 * Helper to sys_swapon determining if a given swap
3101 * backing device queue supports DISCARD operations.
3102 */
3103 static bool swap_discardable(struct swap_info_struct *si)
3104 {
3105 struct request_queue *q = bdev_get_queue(si->bdev);
3106
3107 if (!q || !blk_queue_discard(q))
3108 return false;
3109
3110 return true;
3111 }
3112
3113 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3114 {
3115 struct swap_info_struct *p;
3116 struct filename *name;
3117 struct file *swap_file = NULL;
3118 struct address_space *mapping;
3119 int prio;
3120 int error;
3121 union swap_header *swap_header;
3122 int nr_extents;
3123 sector_t span;
3124 unsigned long maxpages;
3125 unsigned char *swap_map = NULL;
3126 struct swap_cluster_info *cluster_info = NULL;
3127 unsigned long *frontswap_map = NULL;
3128 struct page *page = NULL;
3129 struct inode *inode = NULL;
3130 bool inced_nr_rotate_swap = false;
3131
3132 if (swap_flags & ~SWAP_FLAGS_VALID)
3133 return -EINVAL;
3134
3135 if (!capable(CAP_SYS_ADMIN))
3136 return -EPERM;
3137
3138 if (!swap_avail_heads)
3139 return -ENOMEM;
3140
3141 p = alloc_swap_info();
3142 if (IS_ERR(p))
3143 return PTR_ERR(p);
3144
3145 INIT_WORK(&p->discard_work, swap_discard_work);
3146
3147 name = getname(specialfile);
3148 if (IS_ERR(name)) {
3149 error = PTR_ERR(name);
3150 name = NULL;
3151 goto bad_swap;
3152 }
3153 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3154 if (IS_ERR(swap_file)) {
3155 error = PTR_ERR(swap_file);
3156 swap_file = NULL;
3157 goto bad_swap;
3158 }
3159
3160 p->swap_file = swap_file;
3161 mapping = swap_file->f_mapping;
3162 inode = mapping->host;
3163
3164 error = claim_swapfile(p, inode);
3165 if (unlikely(error))
3166 goto bad_swap;
3167
3168 inode_lock(inode);
3169 if (IS_SWAPFILE(inode)) {
3170 error = -EBUSY;
3171 goto bad_swap_unlock_inode;
3172 }
3173
3174 /*
3175 * Read the swap header.
3176 */
3177 if (!mapping->a_ops->readpage) {
3178 error = -EINVAL;
3179 goto bad_swap_unlock_inode;
3180 }
3181 page = read_mapping_page(mapping, 0, swap_file);
3182 if (IS_ERR(page)) {
3183 error = PTR_ERR(page);
3184 goto bad_swap;
3185 }
3186 swap_header = kmap(page);
3187
3188 maxpages = read_swap_header(p, swap_header, inode);
3189 if (unlikely(!maxpages)) {
3190 error = -EINVAL;
3191 goto bad_swap_unlock_inode;
3192 }
3193
3194 /* OK, set up the swap map and apply the bad block list */
3195 swap_map = vzalloc(maxpages);
3196 if (!swap_map) {
3197 error = -ENOMEM;
3198 goto bad_swap_unlock_inode;
3199 }
3200
3201 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3202 p->flags |= SWP_STABLE_WRITES;
3203
3204 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3205 p->flags |= SWP_SYNCHRONOUS_IO;
3206
3207 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3208 int cpu;
3209 unsigned long ci, nr_cluster;
3210
3211 p->flags |= SWP_SOLIDSTATE;
3212 /*
3213 * select a random position to start with to help wear leveling
3214 * SSD
3215 */
3216 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3217 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3218
3219 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3220 GFP_KERNEL);
3221 if (!cluster_info) {
3222 error = -ENOMEM;
3223 goto bad_swap_unlock_inode;
3224 }
3225
3226 for (ci = 0; ci < nr_cluster; ci++)
3227 spin_lock_init(&((cluster_info + ci)->lock));
3228
3229 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3230 if (!p->percpu_cluster) {
3231 error = -ENOMEM;
3232 goto bad_swap_unlock_inode;
3233 }
3234 for_each_possible_cpu(cpu) {
3235 struct percpu_cluster *cluster;
3236 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3237 cluster_set_null(&cluster->index);
3238 }
3239 } else {
3240 atomic_inc(&nr_rotate_swap);
3241 inced_nr_rotate_swap = true;
3242 }
3243
3244 error = swap_cgroup_swapon(p->type, maxpages);
3245 if (error)
3246 goto bad_swap_unlock_inode;
3247
3248 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3249 cluster_info, maxpages, &span);
3250 if (unlikely(nr_extents < 0)) {
3251 error = nr_extents;
3252 goto bad_swap_unlock_inode;
3253 }
3254 /* frontswap enabled? set up bit-per-page map for frontswap */
3255 if (IS_ENABLED(CONFIG_FRONTSWAP))
3256 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3257 sizeof(long),
3258 GFP_KERNEL);
3259
3260 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3261 /*
3262 * When discard is enabled for swap with no particular
3263 * policy flagged, we set all swap discard flags here in
3264 * order to sustain backward compatibility with older
3265 * swapon(8) releases.
3266 */
3267 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3268 SWP_PAGE_DISCARD);
3269
3270 /*
3271 * By flagging sys_swapon, a sysadmin can tell us to
3272 * either do single-time area discards only, or to just
3273 * perform discards for released swap page-clusters.
3274 * Now it's time to adjust the p->flags accordingly.
3275 */
3276 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3277 p->flags &= ~SWP_PAGE_DISCARD;
3278 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3279 p->flags &= ~SWP_AREA_DISCARD;
3280
3281 /* issue a swapon-time discard if it's still required */
3282 if (p->flags & SWP_AREA_DISCARD) {
3283 int err = discard_swap(p);
3284 if (unlikely(err))
3285 pr_err("swapon: discard_swap(%p): %d\n",
3286 p, err);
3287 }
3288 }
3289
3290 error = init_swap_address_space(p->type, maxpages);
3291 if (error)
3292 goto bad_swap_unlock_inode;
3293
3294 /*
3295 * Flush any pending IO and dirty mappings before we start using this
3296 * swap device.
3297 */
3298 inode->i_flags |= S_SWAPFILE;
3299 error = inode_drain_writes(inode);
3300 if (error) {
3301 inode->i_flags &= ~S_SWAPFILE;
3302 goto free_swap_address_space;
3303 }
3304
3305 mutex_lock(&swapon_mutex);
3306 prio = -1;
3307 if (swap_flags & SWAP_FLAG_PREFER)
3308 prio =
3309 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3310 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3311
3312 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3313 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3314 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3315 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3316 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3317 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3318 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3319 (frontswap_map) ? "FS" : "");
3320
3321 mutex_unlock(&swapon_mutex);
3322 atomic_inc(&proc_poll_event);
3323 wake_up_interruptible(&proc_poll_wait);
3324
3325 error = 0;
3326 goto out;
3327 free_swap_address_space:
3328 exit_swap_address_space(p->type);
3329 bad_swap_unlock_inode:
3330 inode_unlock(inode);
3331 bad_swap:
3332 free_percpu(p->percpu_cluster);
3333 p->percpu_cluster = NULL;
3334 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3335 set_blocksize(p->bdev, p->old_block_size);
3336 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3337 }
3338 inode = NULL;
3339 destroy_swap_extents(p);
3340 swap_cgroup_swapoff(p->type);
3341 spin_lock(&swap_lock);
3342 p->swap_file = NULL;
3343 p->flags = 0;
3344 spin_unlock(&swap_lock);
3345 vfree(swap_map);
3346 kvfree(cluster_info);
3347 kvfree(frontswap_map);
3348 if (inced_nr_rotate_swap)
3349 atomic_dec(&nr_rotate_swap);
3350 if (swap_file)
3351 filp_close(swap_file, NULL);
3352 out:
3353 if (page && !IS_ERR(page)) {
3354 kunmap(page);
3355 put_page(page);
3356 }
3357 if (name)
3358 putname(name);
3359 if (inode)
3360 inode_unlock(inode);
3361 if (!error)
3362 enable_swap_slots_cache();
3363 return error;
3364 }
3365
3366 void si_swapinfo(struct sysinfo *val)
3367 {
3368 unsigned int type;
3369 unsigned long nr_to_be_unused = 0;
3370
3371 spin_lock(&swap_lock);
3372 for (type = 0; type < nr_swapfiles; type++) {
3373 struct swap_info_struct *si = swap_info[type];
3374
3375 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3376 nr_to_be_unused += si->inuse_pages;
3377 }
3378 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3379 val->totalswap = total_swap_pages + nr_to_be_unused;
3380 spin_unlock(&swap_lock);
3381 }
3382
3383 /*
3384 * Verify that a swap entry is valid and increment its swap map count.
3385 *
3386 * Returns error code in following case.
3387 * - success -> 0
3388 * - swp_entry is invalid -> EINVAL
3389 * - swp_entry is migration entry -> EINVAL
3390 * - swap-cache reference is requested but there is already one. -> EEXIST
3391 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3392 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3393 */
3394 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3395 {
3396 struct swap_info_struct *p;
3397 struct swap_cluster_info *ci;
3398 unsigned long offset;
3399 unsigned char count;
3400 unsigned char has_cache;
3401 int err = -EINVAL;
3402
3403 p = get_swap_device(entry);
3404 if (!p)
3405 goto out;
3406
3407 offset = swp_offset(entry);
3408 ci = lock_cluster_or_swap_info(p, offset);
3409
3410 count = p->swap_map[offset];
3411
3412 /*
3413 * swapin_readahead() doesn't check if a swap entry is valid, so the
3414 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3415 */
3416 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3417 err = -ENOENT;
3418 goto unlock_out;
3419 }
3420
3421 has_cache = count & SWAP_HAS_CACHE;
3422 count &= ~SWAP_HAS_CACHE;
3423 err = 0;
3424
3425 if (usage == SWAP_HAS_CACHE) {
3426
3427 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3428 if (!has_cache && count)
3429 has_cache = SWAP_HAS_CACHE;
3430 else if (has_cache) /* someone else added cache */
3431 err = -EEXIST;
3432 else /* no users remaining */
3433 err = -ENOENT;
3434
3435 } else if (count || has_cache) {
3436
3437 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3438 count += usage;
3439 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3440 err = -EINVAL;
3441 else if (swap_count_continued(p, offset, count))
3442 count = COUNT_CONTINUED;
3443 else
3444 err = -ENOMEM;
3445 } else
3446 err = -ENOENT; /* unused swap entry */
3447
3448 p->swap_map[offset] = count | has_cache;
3449
3450 unlock_out:
3451 unlock_cluster_or_swap_info(p, ci);
3452 out:
3453 if (p)
3454 put_swap_device(p);
3455 return err;
3456 }
3457
3458 /*
3459 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3460 * (in which case its reference count is never incremented).
3461 */
3462 void swap_shmem_alloc(swp_entry_t entry)
3463 {
3464 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3465 }
3466
3467 /*
3468 * Increase reference count of swap entry by 1.
3469 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3470 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3471 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3472 * might occur if a page table entry has got corrupted.
3473 */
3474 int swap_duplicate(swp_entry_t entry)
3475 {
3476 int err = 0;
3477
3478 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3479 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3480 return err;
3481 }
3482
3483 /*
3484 * @entry: swap entry for which we allocate swap cache.
3485 *
3486 * Called when allocating swap cache for existing swap entry,
3487 * This can return error codes. Returns 0 at success.
3488 * -EBUSY means there is a swap cache.
3489 * Note: return code is different from swap_duplicate().
3490 */
3491 int swapcache_prepare(swp_entry_t entry)
3492 {
3493 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3494 }
3495
3496 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3497 {
3498 return swap_type_to_swap_info(swp_type(entry));
3499 }
3500
3501 struct swap_info_struct *page_swap_info(struct page *page)
3502 {
3503 swp_entry_t entry = { .val = page_private(page) };
3504 return swp_swap_info(entry);
3505 }
3506
3507 /*
3508 * out-of-line __page_file_ methods to avoid include hell.
3509 */
3510 struct address_space *__page_file_mapping(struct page *page)
3511 {
3512 return page_swap_info(page)->swap_file->f_mapping;
3513 }
3514 EXPORT_SYMBOL_GPL(__page_file_mapping);
3515
3516 pgoff_t __page_file_index(struct page *page)
3517 {
3518 swp_entry_t swap = { .val = page_private(page) };
3519 return swp_offset(swap);
3520 }
3521 EXPORT_SYMBOL_GPL(__page_file_index);
3522
3523 /*
3524 * add_swap_count_continuation - called when a swap count is duplicated
3525 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3526 * page of the original vmalloc'ed swap_map, to hold the continuation count
3527 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3528 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3529 *
3530 * These continuation pages are seldom referenced: the common paths all work
3531 * on the original swap_map, only referring to a continuation page when the
3532 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3533 *
3534 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3535 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3536 * can be called after dropping locks.
3537 */
3538 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3539 {
3540 struct swap_info_struct *si;
3541 struct swap_cluster_info *ci;
3542 struct page *head;
3543 struct page *page;
3544 struct page *list_page;
3545 pgoff_t offset;
3546 unsigned char count;
3547 int ret = 0;
3548
3549 /*
3550 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3551 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3552 */
3553 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3554
3555 si = get_swap_device(entry);
3556 if (!si) {
3557 /*
3558 * An acceptable race has occurred since the failing
3559 * __swap_duplicate(): the swap device may be swapoff
3560 */
3561 goto outer;
3562 }
3563 spin_lock(&si->lock);
3564
3565 offset = swp_offset(entry);
3566
3567 ci = lock_cluster(si, offset);
3568
3569 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3570
3571 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3572 /*
3573 * The higher the swap count, the more likely it is that tasks
3574 * will race to add swap count continuation: we need to avoid
3575 * over-provisioning.
3576 */
3577 goto out;
3578 }
3579
3580 if (!page) {
3581 ret = -ENOMEM;
3582 goto out;
3583 }
3584
3585 /*
3586 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3587 * no architecture is using highmem pages for kernel page tables: so it
3588 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3589 */
3590 head = vmalloc_to_page(si->swap_map + offset);
3591 offset &= ~PAGE_MASK;
3592
3593 spin_lock(&si->cont_lock);
3594 /*
3595 * Page allocation does not initialize the page's lru field,
3596 * but it does always reset its private field.
3597 */
3598 if (!page_private(head)) {
3599 BUG_ON(count & COUNT_CONTINUED);
3600 INIT_LIST_HEAD(&head->lru);
3601 set_page_private(head, SWP_CONTINUED);
3602 si->flags |= SWP_CONTINUED;
3603 }
3604
3605 list_for_each_entry(list_page, &head->lru, lru) {
3606 unsigned char *map;
3607
3608 /*
3609 * If the previous map said no continuation, but we've found
3610 * a continuation page, free our allocation and use this one.
3611 */
3612 if (!(count & COUNT_CONTINUED))
3613 goto out_unlock_cont;
3614
3615 map = kmap_atomic(list_page) + offset;
3616 count = *map;
3617 kunmap_atomic(map);
3618
3619 /*
3620 * If this continuation count now has some space in it,
3621 * free our allocation and use this one.
3622 */
3623 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3624 goto out_unlock_cont;
3625 }
3626
3627 list_add_tail(&page->lru, &head->lru);
3628 page = NULL; /* now it's attached, don't free it */
3629 out_unlock_cont:
3630 spin_unlock(&si->cont_lock);
3631 out:
3632 unlock_cluster(ci);
3633 spin_unlock(&si->lock);
3634 put_swap_device(si);
3635 outer:
3636 if (page)
3637 __free_page(page);
3638 return ret;
3639 }
3640
3641 /*
3642 * swap_count_continued - when the original swap_map count is incremented
3643 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3644 * into, carry if so, or else fail until a new continuation page is allocated;
3645 * when the original swap_map count is decremented from 0 with continuation,
3646 * borrow from the continuation and report whether it still holds more.
3647 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3648 * lock.
3649 */
3650 static bool swap_count_continued(struct swap_info_struct *si,
3651 pgoff_t offset, unsigned char count)
3652 {
3653 struct page *head;
3654 struct page *page;
3655 unsigned char *map;
3656 bool ret;
3657
3658 head = vmalloc_to_page(si->swap_map + offset);
3659 if (page_private(head) != SWP_CONTINUED) {
3660 BUG_ON(count & COUNT_CONTINUED);
3661 return false; /* need to add count continuation */
3662 }
3663
3664 spin_lock(&si->cont_lock);
3665 offset &= ~PAGE_MASK;
3666 page = list_entry(head->lru.next, struct page, lru);
3667 map = kmap_atomic(page) + offset;
3668
3669 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3670 goto init_map; /* jump over SWAP_CONT_MAX checks */
3671
3672 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3673 /*
3674 * Think of how you add 1 to 999
3675 */
3676 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3677 kunmap_atomic(map);
3678 page = list_entry(page->lru.next, struct page, lru);
3679 BUG_ON(page == head);
3680 map = kmap_atomic(page) + offset;
3681 }
3682 if (*map == SWAP_CONT_MAX) {
3683 kunmap_atomic(map);
3684 page = list_entry(page->lru.next, struct page, lru);
3685 if (page == head) {
3686 ret = false; /* add count continuation */
3687 goto out;
3688 }
3689 map = kmap_atomic(page) + offset;
3690 init_map: *map = 0; /* we didn't zero the page */
3691 }
3692 *map += 1;
3693 kunmap_atomic(map);
3694 page = list_entry(page->lru.prev, struct page, lru);
3695 while (page != head) {
3696 map = kmap_atomic(page) + offset;
3697 *map = COUNT_CONTINUED;
3698 kunmap_atomic(map);
3699 page = list_entry(page->lru.prev, struct page, lru);
3700 }
3701 ret = true; /* incremented */
3702
3703 } else { /* decrementing */
3704 /*
3705 * Think of how you subtract 1 from 1000
3706 */
3707 BUG_ON(count != COUNT_CONTINUED);
3708 while (*map == COUNT_CONTINUED) {
3709 kunmap_atomic(map);
3710 page = list_entry(page->lru.next, struct page, lru);
3711 BUG_ON(page == head);
3712 map = kmap_atomic(page) + offset;
3713 }
3714 BUG_ON(*map == 0);
3715 *map -= 1;
3716 if (*map == 0)
3717 count = 0;
3718 kunmap_atomic(map);
3719 page = list_entry(page->lru.prev, struct page, lru);
3720 while (page != head) {
3721 map = kmap_atomic(page) + offset;
3722 *map = SWAP_CONT_MAX | count;
3723 count = COUNT_CONTINUED;
3724 kunmap_atomic(map);
3725 page = list_entry(page->lru.prev, struct page, lru);
3726 }
3727 ret = count == COUNT_CONTINUED;
3728 }
3729 out:
3730 spin_unlock(&si->cont_lock);
3731 return ret;
3732 }
3733
3734 /*
3735 * free_swap_count_continuations - swapoff free all the continuation pages
3736 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3737 */
3738 static void free_swap_count_continuations(struct swap_info_struct *si)
3739 {
3740 pgoff_t offset;
3741
3742 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3743 struct page *head;
3744 head = vmalloc_to_page(si->swap_map + offset);
3745 if (page_private(head)) {
3746 struct page *page, *next;
3747
3748 list_for_each_entry_safe(page, next, &head->lru, lru) {
3749 list_del(&page->lru);
3750 __free_page(page);
3751 }
3752 }
3753 }
3754 }
3755
3756 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3757 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3758 gfp_t gfp_mask)
3759 {
3760 struct swap_info_struct *si, *next;
3761 if (!(gfp_mask & __GFP_IO) || !memcg)
3762 return;
3763
3764 if (!blk_cgroup_congested())
3765 return;
3766
3767 /*
3768 * We've already scheduled a throttle, avoid taking the global swap
3769 * lock.
3770 */
3771 if (current->throttle_queue)
3772 return;
3773
3774 spin_lock(&swap_avail_lock);
3775 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3776 avail_lists[node]) {
3777 if (si->bdev) {
3778 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3779 true);
3780 break;
3781 }
3782 }
3783 spin_unlock(&swap_avail_lock);
3784 }
3785 #endif
3786
3787 static int __init swapfile_init(void)
3788 {
3789 int nid;
3790
3791 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3792 GFP_KERNEL);
3793 if (!swap_avail_heads) {
3794 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3795 return -ENOMEM;
3796 }
3797
3798 for_each_node(nid)
3799 plist_head_init(&swap_avail_heads[nid]);
3800
3801 return 0;
3802 }
3803 subsys_initcall(swapfile_init);