]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/swapfile.c
swapin needs gfp_mask for loop on tmpfs
[mirror_ubuntu-kernels.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <linux/swapops.h>
34
35 DEFINE_SPINLOCK(swap_lock);
36 unsigned int nr_swapfiles;
37 long total_swap_pages;
38 static int swap_overflow;
39
40 static const char Bad_file[] = "Bad swap file entry ";
41 static const char Unused_file[] = "Unused swap file entry ";
42 static const char Bad_offset[] = "Bad swap offset entry ";
43 static const char Unused_offset[] = "Unused swap offset entry ";
44
45 struct swap_list_t swap_list = {-1, -1};
46
47 static struct swap_info_struct swap_info[MAX_SWAPFILES];
48
49 static DEFINE_MUTEX(swapon_mutex);
50
51 /*
52 * We need this because the bdev->unplug_fn can sleep and we cannot
53 * hold swap_lock while calling the unplug_fn. And swap_lock
54 * cannot be turned into a mutex.
55 */
56 static DECLARE_RWSEM(swap_unplug_sem);
57
58 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
59 {
60 swp_entry_t entry;
61
62 down_read(&swap_unplug_sem);
63 entry.val = page_private(page);
64 if (PageSwapCache(page)) {
65 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
66 struct backing_dev_info *bdi;
67
68 /*
69 * If the page is removed from swapcache from under us (with a
70 * racy try_to_unuse/swapoff) we need an additional reference
71 * count to avoid reading garbage from page_private(page) above.
72 * If the WARN_ON triggers during a swapoff it maybe the race
73 * condition and it's harmless. However if it triggers without
74 * swapoff it signals a problem.
75 */
76 WARN_ON(page_count(page) <= 1);
77
78 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
79 blk_run_backing_dev(bdi, page);
80 }
81 up_read(&swap_unplug_sem);
82 }
83
84 #define SWAPFILE_CLUSTER 256
85 #define LATENCY_LIMIT 256
86
87 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
88 {
89 unsigned long offset, last_in_cluster;
90 int latency_ration = LATENCY_LIMIT;
91
92 /*
93 * We try to cluster swap pages by allocating them sequentially
94 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
95 * way, however, we resort to first-free allocation, starting
96 * a new cluster. This prevents us from scattering swap pages
97 * all over the entire swap partition, so that we reduce
98 * overall disk seek times between swap pages. -- sct
99 * But we do now try to find an empty cluster. -Andrea
100 */
101
102 si->flags += SWP_SCANNING;
103 if (unlikely(!si->cluster_nr)) {
104 si->cluster_nr = SWAPFILE_CLUSTER - 1;
105 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
106 goto lowest;
107 spin_unlock(&swap_lock);
108
109 offset = si->lowest_bit;
110 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
111
112 /* Locate the first empty (unaligned) cluster */
113 for (; last_in_cluster <= si->highest_bit; offset++) {
114 if (si->swap_map[offset])
115 last_in_cluster = offset + SWAPFILE_CLUSTER;
116 else if (offset == last_in_cluster) {
117 spin_lock(&swap_lock);
118 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
119 goto cluster;
120 }
121 if (unlikely(--latency_ration < 0)) {
122 cond_resched();
123 latency_ration = LATENCY_LIMIT;
124 }
125 }
126 spin_lock(&swap_lock);
127 goto lowest;
128 }
129
130 si->cluster_nr--;
131 cluster:
132 offset = si->cluster_next;
133 if (offset > si->highest_bit)
134 lowest: offset = si->lowest_bit;
135 checks: if (!(si->flags & SWP_WRITEOK))
136 goto no_page;
137 if (!si->highest_bit)
138 goto no_page;
139 if (!si->swap_map[offset]) {
140 if (offset == si->lowest_bit)
141 si->lowest_bit++;
142 if (offset == si->highest_bit)
143 si->highest_bit--;
144 si->inuse_pages++;
145 if (si->inuse_pages == si->pages) {
146 si->lowest_bit = si->max;
147 si->highest_bit = 0;
148 }
149 si->swap_map[offset] = 1;
150 si->cluster_next = offset + 1;
151 si->flags -= SWP_SCANNING;
152 return offset;
153 }
154
155 spin_unlock(&swap_lock);
156 while (++offset <= si->highest_bit) {
157 if (!si->swap_map[offset]) {
158 spin_lock(&swap_lock);
159 goto checks;
160 }
161 if (unlikely(--latency_ration < 0)) {
162 cond_resched();
163 latency_ration = LATENCY_LIMIT;
164 }
165 }
166 spin_lock(&swap_lock);
167 goto lowest;
168
169 no_page:
170 si->flags -= SWP_SCANNING;
171 return 0;
172 }
173
174 swp_entry_t get_swap_page(void)
175 {
176 struct swap_info_struct *si;
177 pgoff_t offset;
178 int type, next;
179 int wrapped = 0;
180
181 spin_lock(&swap_lock);
182 if (nr_swap_pages <= 0)
183 goto noswap;
184 nr_swap_pages--;
185
186 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
187 si = swap_info + type;
188 next = si->next;
189 if (next < 0 ||
190 (!wrapped && si->prio != swap_info[next].prio)) {
191 next = swap_list.head;
192 wrapped++;
193 }
194
195 if (!si->highest_bit)
196 continue;
197 if (!(si->flags & SWP_WRITEOK))
198 continue;
199
200 swap_list.next = next;
201 offset = scan_swap_map(si);
202 if (offset) {
203 spin_unlock(&swap_lock);
204 return swp_entry(type, offset);
205 }
206 next = swap_list.next;
207 }
208
209 nr_swap_pages++;
210 noswap:
211 spin_unlock(&swap_lock);
212 return (swp_entry_t) {0};
213 }
214
215 swp_entry_t get_swap_page_of_type(int type)
216 {
217 struct swap_info_struct *si;
218 pgoff_t offset;
219
220 spin_lock(&swap_lock);
221 si = swap_info + type;
222 if (si->flags & SWP_WRITEOK) {
223 nr_swap_pages--;
224 offset = scan_swap_map(si);
225 if (offset) {
226 spin_unlock(&swap_lock);
227 return swp_entry(type, offset);
228 }
229 nr_swap_pages++;
230 }
231 spin_unlock(&swap_lock);
232 return (swp_entry_t) {0};
233 }
234
235 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
236 {
237 struct swap_info_struct * p;
238 unsigned long offset, type;
239
240 if (!entry.val)
241 goto out;
242 type = swp_type(entry);
243 if (type >= nr_swapfiles)
244 goto bad_nofile;
245 p = & swap_info[type];
246 if (!(p->flags & SWP_USED))
247 goto bad_device;
248 offset = swp_offset(entry);
249 if (offset >= p->max)
250 goto bad_offset;
251 if (!p->swap_map[offset])
252 goto bad_free;
253 spin_lock(&swap_lock);
254 return p;
255
256 bad_free:
257 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
258 goto out;
259 bad_offset:
260 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
261 goto out;
262 bad_device:
263 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
264 goto out;
265 bad_nofile:
266 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
267 out:
268 return NULL;
269 }
270
271 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
272 {
273 int count = p->swap_map[offset];
274
275 if (count < SWAP_MAP_MAX) {
276 count--;
277 p->swap_map[offset] = count;
278 if (!count) {
279 if (offset < p->lowest_bit)
280 p->lowest_bit = offset;
281 if (offset > p->highest_bit)
282 p->highest_bit = offset;
283 if (p->prio > swap_info[swap_list.next].prio)
284 swap_list.next = p - swap_info;
285 nr_swap_pages++;
286 p->inuse_pages--;
287 }
288 }
289 return count;
290 }
291
292 /*
293 * Caller has made sure that the swapdevice corresponding to entry
294 * is still around or has not been recycled.
295 */
296 void swap_free(swp_entry_t entry)
297 {
298 struct swap_info_struct * p;
299
300 p = swap_info_get(entry);
301 if (p) {
302 swap_entry_free(p, swp_offset(entry));
303 spin_unlock(&swap_lock);
304 }
305 }
306
307 /*
308 * How many references to page are currently swapped out?
309 */
310 static inline int page_swapcount(struct page *page)
311 {
312 int count = 0;
313 struct swap_info_struct *p;
314 swp_entry_t entry;
315
316 entry.val = page_private(page);
317 p = swap_info_get(entry);
318 if (p) {
319 /* Subtract the 1 for the swap cache itself */
320 count = p->swap_map[swp_offset(entry)] - 1;
321 spin_unlock(&swap_lock);
322 }
323 return count;
324 }
325
326 /*
327 * We can use this swap cache entry directly
328 * if there are no other references to it.
329 */
330 int can_share_swap_page(struct page *page)
331 {
332 int count;
333
334 BUG_ON(!PageLocked(page));
335 count = page_mapcount(page);
336 if (count <= 1 && PageSwapCache(page))
337 count += page_swapcount(page);
338 return count == 1;
339 }
340
341 /*
342 * Work out if there are any other processes sharing this
343 * swap cache page. Free it if you can. Return success.
344 */
345 int remove_exclusive_swap_page(struct page *page)
346 {
347 int retval;
348 struct swap_info_struct * p;
349 swp_entry_t entry;
350
351 BUG_ON(PagePrivate(page));
352 BUG_ON(!PageLocked(page));
353
354 if (!PageSwapCache(page))
355 return 0;
356 if (PageWriteback(page))
357 return 0;
358 if (page_count(page) != 2) /* 2: us + cache */
359 return 0;
360
361 entry.val = page_private(page);
362 p = swap_info_get(entry);
363 if (!p)
364 return 0;
365
366 /* Is the only swap cache user the cache itself? */
367 retval = 0;
368 if (p->swap_map[swp_offset(entry)] == 1) {
369 /* Recheck the page count with the swapcache lock held.. */
370 write_lock_irq(&swapper_space.tree_lock);
371 if ((page_count(page) == 2) && !PageWriteback(page)) {
372 __delete_from_swap_cache(page);
373 SetPageDirty(page);
374 retval = 1;
375 }
376 write_unlock_irq(&swapper_space.tree_lock);
377 }
378 spin_unlock(&swap_lock);
379
380 if (retval) {
381 swap_free(entry);
382 page_cache_release(page);
383 }
384
385 return retval;
386 }
387
388 /*
389 * Free the swap entry like above, but also try to
390 * free the page cache entry if it is the last user.
391 */
392 void free_swap_and_cache(swp_entry_t entry)
393 {
394 struct swap_info_struct * p;
395 struct page *page = NULL;
396
397 if (is_migration_entry(entry))
398 return;
399
400 p = swap_info_get(entry);
401 if (p) {
402 if (swap_entry_free(p, swp_offset(entry)) == 1) {
403 page = find_get_page(&swapper_space, entry.val);
404 if (page && unlikely(TestSetPageLocked(page))) {
405 page_cache_release(page);
406 page = NULL;
407 }
408 }
409 spin_unlock(&swap_lock);
410 }
411 if (page) {
412 int one_user;
413
414 BUG_ON(PagePrivate(page));
415 one_user = (page_count(page) == 2);
416 /* Only cache user (+us), or swap space full? Free it! */
417 /* Also recheck PageSwapCache after page is locked (above) */
418 if (PageSwapCache(page) && !PageWriteback(page) &&
419 (one_user || vm_swap_full())) {
420 delete_from_swap_cache(page);
421 SetPageDirty(page);
422 }
423 unlock_page(page);
424 page_cache_release(page);
425 }
426 }
427
428 #ifdef CONFIG_HIBERNATION
429 /*
430 * Find the swap type that corresponds to given device (if any).
431 *
432 * @offset - number of the PAGE_SIZE-sized block of the device, starting
433 * from 0, in which the swap header is expected to be located.
434 *
435 * This is needed for the suspend to disk (aka swsusp).
436 */
437 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
438 {
439 struct block_device *bdev = NULL;
440 int i;
441
442 if (device)
443 bdev = bdget(device);
444
445 spin_lock(&swap_lock);
446 for (i = 0; i < nr_swapfiles; i++) {
447 struct swap_info_struct *sis = swap_info + i;
448
449 if (!(sis->flags & SWP_WRITEOK))
450 continue;
451
452 if (!bdev) {
453 if (bdev_p)
454 *bdev_p = sis->bdev;
455
456 spin_unlock(&swap_lock);
457 return i;
458 }
459 if (bdev == sis->bdev) {
460 struct swap_extent *se;
461
462 se = list_entry(sis->extent_list.next,
463 struct swap_extent, list);
464 if (se->start_block == offset) {
465 if (bdev_p)
466 *bdev_p = sis->bdev;
467
468 spin_unlock(&swap_lock);
469 bdput(bdev);
470 return i;
471 }
472 }
473 }
474 spin_unlock(&swap_lock);
475 if (bdev)
476 bdput(bdev);
477
478 return -ENODEV;
479 }
480
481 /*
482 * Return either the total number of swap pages of given type, or the number
483 * of free pages of that type (depending on @free)
484 *
485 * This is needed for software suspend
486 */
487 unsigned int count_swap_pages(int type, int free)
488 {
489 unsigned int n = 0;
490
491 if (type < nr_swapfiles) {
492 spin_lock(&swap_lock);
493 if (swap_info[type].flags & SWP_WRITEOK) {
494 n = swap_info[type].pages;
495 if (free)
496 n -= swap_info[type].inuse_pages;
497 }
498 spin_unlock(&swap_lock);
499 }
500 return n;
501 }
502 #endif
503
504 /*
505 * No need to decide whether this PTE shares the swap entry with others,
506 * just let do_wp_page work it out if a write is requested later - to
507 * force COW, vm_page_prot omits write permission from any private vma.
508 */
509 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
510 unsigned long addr, swp_entry_t entry, struct page *page)
511 {
512 inc_mm_counter(vma->vm_mm, anon_rss);
513 get_page(page);
514 set_pte_at(vma->vm_mm, addr, pte,
515 pte_mkold(mk_pte(page, vma->vm_page_prot)));
516 page_add_anon_rmap(page, vma, addr);
517 swap_free(entry);
518 /*
519 * Move the page to the active list so it is not
520 * immediately swapped out again after swapon.
521 */
522 activate_page(page);
523 }
524
525 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
526 unsigned long addr, unsigned long end,
527 swp_entry_t entry, struct page *page)
528 {
529 pte_t swp_pte = swp_entry_to_pte(entry);
530 pte_t *pte;
531 spinlock_t *ptl;
532 int found = 0;
533
534 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
535 do {
536 /*
537 * swapoff spends a _lot_ of time in this loop!
538 * Test inline before going to call unuse_pte.
539 */
540 if (unlikely(pte_same(*pte, swp_pte))) {
541 unuse_pte(vma, pte++, addr, entry, page);
542 found = 1;
543 break;
544 }
545 } while (pte++, addr += PAGE_SIZE, addr != end);
546 pte_unmap_unlock(pte - 1, ptl);
547 return found;
548 }
549
550 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
551 unsigned long addr, unsigned long end,
552 swp_entry_t entry, struct page *page)
553 {
554 pmd_t *pmd;
555 unsigned long next;
556
557 pmd = pmd_offset(pud, addr);
558 do {
559 next = pmd_addr_end(addr, end);
560 if (pmd_none_or_clear_bad(pmd))
561 continue;
562 if (unuse_pte_range(vma, pmd, addr, next, entry, page))
563 return 1;
564 } while (pmd++, addr = next, addr != end);
565 return 0;
566 }
567
568 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
569 unsigned long addr, unsigned long end,
570 swp_entry_t entry, struct page *page)
571 {
572 pud_t *pud;
573 unsigned long next;
574
575 pud = pud_offset(pgd, addr);
576 do {
577 next = pud_addr_end(addr, end);
578 if (pud_none_or_clear_bad(pud))
579 continue;
580 if (unuse_pmd_range(vma, pud, addr, next, entry, page))
581 return 1;
582 } while (pud++, addr = next, addr != end);
583 return 0;
584 }
585
586 static int unuse_vma(struct vm_area_struct *vma,
587 swp_entry_t entry, struct page *page)
588 {
589 pgd_t *pgd;
590 unsigned long addr, end, next;
591
592 if (page->mapping) {
593 addr = page_address_in_vma(page, vma);
594 if (addr == -EFAULT)
595 return 0;
596 else
597 end = addr + PAGE_SIZE;
598 } else {
599 addr = vma->vm_start;
600 end = vma->vm_end;
601 }
602
603 pgd = pgd_offset(vma->vm_mm, addr);
604 do {
605 next = pgd_addr_end(addr, end);
606 if (pgd_none_or_clear_bad(pgd))
607 continue;
608 if (unuse_pud_range(vma, pgd, addr, next, entry, page))
609 return 1;
610 } while (pgd++, addr = next, addr != end);
611 return 0;
612 }
613
614 static int unuse_mm(struct mm_struct *mm,
615 swp_entry_t entry, struct page *page)
616 {
617 struct vm_area_struct *vma;
618
619 if (!down_read_trylock(&mm->mmap_sem)) {
620 /*
621 * Activate page so shrink_cache is unlikely to unmap its
622 * ptes while lock is dropped, so swapoff can make progress.
623 */
624 activate_page(page);
625 unlock_page(page);
626 down_read(&mm->mmap_sem);
627 lock_page(page);
628 }
629 for (vma = mm->mmap; vma; vma = vma->vm_next) {
630 if (vma->anon_vma && unuse_vma(vma, entry, page))
631 break;
632 }
633 up_read(&mm->mmap_sem);
634 /*
635 * Currently unuse_mm cannot fail, but leave error handling
636 * at call sites for now, since we change it from time to time.
637 */
638 return 0;
639 }
640
641 /*
642 * Scan swap_map from current position to next entry still in use.
643 * Recycle to start on reaching the end, returning 0 when empty.
644 */
645 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
646 unsigned int prev)
647 {
648 unsigned int max = si->max;
649 unsigned int i = prev;
650 int count;
651
652 /*
653 * No need for swap_lock here: we're just looking
654 * for whether an entry is in use, not modifying it; false
655 * hits are okay, and sys_swapoff() has already prevented new
656 * allocations from this area (while holding swap_lock).
657 */
658 for (;;) {
659 if (++i >= max) {
660 if (!prev) {
661 i = 0;
662 break;
663 }
664 /*
665 * No entries in use at top of swap_map,
666 * loop back to start and recheck there.
667 */
668 max = prev + 1;
669 prev = 0;
670 i = 1;
671 }
672 count = si->swap_map[i];
673 if (count && count != SWAP_MAP_BAD)
674 break;
675 }
676 return i;
677 }
678
679 /*
680 * We completely avoid races by reading each swap page in advance,
681 * and then search for the process using it. All the necessary
682 * page table adjustments can then be made atomically.
683 */
684 static int try_to_unuse(unsigned int type)
685 {
686 struct swap_info_struct * si = &swap_info[type];
687 struct mm_struct *start_mm;
688 unsigned short *swap_map;
689 unsigned short swcount;
690 struct page *page;
691 swp_entry_t entry;
692 unsigned int i = 0;
693 int retval = 0;
694 int reset_overflow = 0;
695 int shmem;
696
697 /*
698 * When searching mms for an entry, a good strategy is to
699 * start at the first mm we freed the previous entry from
700 * (though actually we don't notice whether we or coincidence
701 * freed the entry). Initialize this start_mm with a hold.
702 *
703 * A simpler strategy would be to start at the last mm we
704 * freed the previous entry from; but that would take less
705 * advantage of mmlist ordering, which clusters forked mms
706 * together, child after parent. If we race with dup_mmap(), we
707 * prefer to resolve parent before child, lest we miss entries
708 * duplicated after we scanned child: using last mm would invert
709 * that. Though it's only a serious concern when an overflowed
710 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
711 */
712 start_mm = &init_mm;
713 atomic_inc(&init_mm.mm_users);
714
715 /*
716 * Keep on scanning until all entries have gone. Usually,
717 * one pass through swap_map is enough, but not necessarily:
718 * there are races when an instance of an entry might be missed.
719 */
720 while ((i = find_next_to_unuse(si, i)) != 0) {
721 if (signal_pending(current)) {
722 retval = -EINTR;
723 break;
724 }
725
726 /*
727 * Get a page for the entry, using the existing swap
728 * cache page if there is one. Otherwise, get a clean
729 * page and read the swap into it.
730 */
731 swap_map = &si->swap_map[i];
732 entry = swp_entry(type, i);
733 page = read_swap_cache_async(entry,
734 GFP_HIGHUSER_MOVABLE, NULL, 0);
735 if (!page) {
736 /*
737 * Either swap_duplicate() failed because entry
738 * has been freed independently, and will not be
739 * reused since sys_swapoff() already disabled
740 * allocation from here, or alloc_page() failed.
741 */
742 if (!*swap_map)
743 continue;
744 retval = -ENOMEM;
745 break;
746 }
747
748 /*
749 * Don't hold on to start_mm if it looks like exiting.
750 */
751 if (atomic_read(&start_mm->mm_users) == 1) {
752 mmput(start_mm);
753 start_mm = &init_mm;
754 atomic_inc(&init_mm.mm_users);
755 }
756
757 /*
758 * Wait for and lock page. When do_swap_page races with
759 * try_to_unuse, do_swap_page can handle the fault much
760 * faster than try_to_unuse can locate the entry. This
761 * apparently redundant "wait_on_page_locked" lets try_to_unuse
762 * defer to do_swap_page in such a case - in some tests,
763 * do_swap_page and try_to_unuse repeatedly compete.
764 */
765 wait_on_page_locked(page);
766 wait_on_page_writeback(page);
767 lock_page(page);
768 wait_on_page_writeback(page);
769
770 /*
771 * Remove all references to entry.
772 * Whenever we reach init_mm, there's no address space
773 * to search, but use it as a reminder to search shmem.
774 */
775 shmem = 0;
776 swcount = *swap_map;
777 if (swcount > 1) {
778 if (start_mm == &init_mm)
779 shmem = shmem_unuse(entry, page);
780 else
781 retval = unuse_mm(start_mm, entry, page);
782 }
783 if (*swap_map > 1) {
784 int set_start_mm = (*swap_map >= swcount);
785 struct list_head *p = &start_mm->mmlist;
786 struct mm_struct *new_start_mm = start_mm;
787 struct mm_struct *prev_mm = start_mm;
788 struct mm_struct *mm;
789
790 atomic_inc(&new_start_mm->mm_users);
791 atomic_inc(&prev_mm->mm_users);
792 spin_lock(&mmlist_lock);
793 while (*swap_map > 1 && !retval &&
794 (p = p->next) != &start_mm->mmlist) {
795 mm = list_entry(p, struct mm_struct, mmlist);
796 if (!atomic_inc_not_zero(&mm->mm_users))
797 continue;
798 spin_unlock(&mmlist_lock);
799 mmput(prev_mm);
800 prev_mm = mm;
801
802 cond_resched();
803
804 swcount = *swap_map;
805 if (swcount <= 1)
806 ;
807 else if (mm == &init_mm) {
808 set_start_mm = 1;
809 shmem = shmem_unuse(entry, page);
810 } else
811 retval = unuse_mm(mm, entry, page);
812 if (set_start_mm && *swap_map < swcount) {
813 mmput(new_start_mm);
814 atomic_inc(&mm->mm_users);
815 new_start_mm = mm;
816 set_start_mm = 0;
817 }
818 spin_lock(&mmlist_lock);
819 }
820 spin_unlock(&mmlist_lock);
821 mmput(prev_mm);
822 mmput(start_mm);
823 start_mm = new_start_mm;
824 }
825 if (retval) {
826 unlock_page(page);
827 page_cache_release(page);
828 break;
829 }
830
831 /*
832 * How could swap count reach 0x7fff when the maximum
833 * pid is 0x7fff, and there's no way to repeat a swap
834 * page within an mm (except in shmem, where it's the
835 * shared object which takes the reference count)?
836 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
837 *
838 * If that's wrong, then we should worry more about
839 * exit_mmap() and do_munmap() cases described above:
840 * we might be resetting SWAP_MAP_MAX too early here.
841 * We know "Undead"s can happen, they're okay, so don't
842 * report them; but do report if we reset SWAP_MAP_MAX.
843 */
844 if (*swap_map == SWAP_MAP_MAX) {
845 spin_lock(&swap_lock);
846 *swap_map = 1;
847 spin_unlock(&swap_lock);
848 reset_overflow = 1;
849 }
850
851 /*
852 * If a reference remains (rare), we would like to leave
853 * the page in the swap cache; but try_to_unmap could
854 * then re-duplicate the entry once we drop page lock,
855 * so we might loop indefinitely; also, that page could
856 * not be swapped out to other storage meanwhile. So:
857 * delete from cache even if there's another reference,
858 * after ensuring that the data has been saved to disk -
859 * since if the reference remains (rarer), it will be
860 * read from disk into another page. Splitting into two
861 * pages would be incorrect if swap supported "shared
862 * private" pages, but they are handled by tmpfs files.
863 *
864 * Note shmem_unuse already deleted a swappage from
865 * the swap cache, unless the move to filepage failed:
866 * in which case it left swappage in cache, lowered its
867 * swap count to pass quickly through the loops above,
868 * and now we must reincrement count to try again later.
869 */
870 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
871 struct writeback_control wbc = {
872 .sync_mode = WB_SYNC_NONE,
873 };
874
875 swap_writepage(page, &wbc);
876 lock_page(page);
877 wait_on_page_writeback(page);
878 }
879 if (PageSwapCache(page)) {
880 if (shmem)
881 swap_duplicate(entry);
882 else
883 delete_from_swap_cache(page);
884 }
885
886 /*
887 * So we could skip searching mms once swap count went
888 * to 1, we did not mark any present ptes as dirty: must
889 * mark page dirty so shrink_page_list will preserve it.
890 */
891 SetPageDirty(page);
892 unlock_page(page);
893 page_cache_release(page);
894
895 /*
896 * Make sure that we aren't completely killing
897 * interactive performance.
898 */
899 cond_resched();
900 }
901
902 mmput(start_mm);
903 if (reset_overflow) {
904 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
905 swap_overflow = 0;
906 }
907 return retval;
908 }
909
910 /*
911 * After a successful try_to_unuse, if no swap is now in use, we know
912 * we can empty the mmlist. swap_lock must be held on entry and exit.
913 * Note that mmlist_lock nests inside swap_lock, and an mm must be
914 * added to the mmlist just after page_duplicate - before would be racy.
915 */
916 static void drain_mmlist(void)
917 {
918 struct list_head *p, *next;
919 unsigned int i;
920
921 for (i = 0; i < nr_swapfiles; i++)
922 if (swap_info[i].inuse_pages)
923 return;
924 spin_lock(&mmlist_lock);
925 list_for_each_safe(p, next, &init_mm.mmlist)
926 list_del_init(p);
927 spin_unlock(&mmlist_lock);
928 }
929
930 /*
931 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
932 * corresponds to page offset `offset'.
933 */
934 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
935 {
936 struct swap_extent *se = sis->curr_swap_extent;
937 struct swap_extent *start_se = se;
938
939 for ( ; ; ) {
940 struct list_head *lh;
941
942 if (se->start_page <= offset &&
943 offset < (se->start_page + se->nr_pages)) {
944 return se->start_block + (offset - se->start_page);
945 }
946 lh = se->list.next;
947 if (lh == &sis->extent_list)
948 lh = lh->next;
949 se = list_entry(lh, struct swap_extent, list);
950 sis->curr_swap_extent = se;
951 BUG_ON(se == start_se); /* It *must* be present */
952 }
953 }
954
955 #ifdef CONFIG_HIBERNATION
956 /*
957 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
958 * corresponding to given index in swap_info (swap type).
959 */
960 sector_t swapdev_block(int swap_type, pgoff_t offset)
961 {
962 struct swap_info_struct *sis;
963
964 if (swap_type >= nr_swapfiles)
965 return 0;
966
967 sis = swap_info + swap_type;
968 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
969 }
970 #endif /* CONFIG_HIBERNATION */
971
972 /*
973 * Free all of a swapdev's extent information
974 */
975 static void destroy_swap_extents(struct swap_info_struct *sis)
976 {
977 while (!list_empty(&sis->extent_list)) {
978 struct swap_extent *se;
979
980 se = list_entry(sis->extent_list.next,
981 struct swap_extent, list);
982 list_del(&se->list);
983 kfree(se);
984 }
985 }
986
987 /*
988 * Add a block range (and the corresponding page range) into this swapdev's
989 * extent list. The extent list is kept sorted in page order.
990 *
991 * This function rather assumes that it is called in ascending page order.
992 */
993 static int
994 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
995 unsigned long nr_pages, sector_t start_block)
996 {
997 struct swap_extent *se;
998 struct swap_extent *new_se;
999 struct list_head *lh;
1000
1001 lh = sis->extent_list.prev; /* The highest page extent */
1002 if (lh != &sis->extent_list) {
1003 se = list_entry(lh, struct swap_extent, list);
1004 BUG_ON(se->start_page + se->nr_pages != start_page);
1005 if (se->start_block + se->nr_pages == start_block) {
1006 /* Merge it */
1007 se->nr_pages += nr_pages;
1008 return 0;
1009 }
1010 }
1011
1012 /*
1013 * No merge. Insert a new extent, preserving ordering.
1014 */
1015 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1016 if (new_se == NULL)
1017 return -ENOMEM;
1018 new_se->start_page = start_page;
1019 new_se->nr_pages = nr_pages;
1020 new_se->start_block = start_block;
1021
1022 list_add_tail(&new_se->list, &sis->extent_list);
1023 return 1;
1024 }
1025
1026 /*
1027 * A `swap extent' is a simple thing which maps a contiguous range of pages
1028 * onto a contiguous range of disk blocks. An ordered list of swap extents
1029 * is built at swapon time and is then used at swap_writepage/swap_readpage
1030 * time for locating where on disk a page belongs.
1031 *
1032 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1033 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1034 * swap files identically.
1035 *
1036 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1037 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1038 * swapfiles are handled *identically* after swapon time.
1039 *
1040 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1041 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1042 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1043 * requirements, they are simply tossed out - we will never use those blocks
1044 * for swapping.
1045 *
1046 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1047 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1048 * which will scribble on the fs.
1049 *
1050 * The amount of disk space which a single swap extent represents varies.
1051 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1052 * extents in the list. To avoid much list walking, we cache the previous
1053 * search location in `curr_swap_extent', and start new searches from there.
1054 * This is extremely effective. The average number of iterations in
1055 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1056 */
1057 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1058 {
1059 struct inode *inode;
1060 unsigned blocks_per_page;
1061 unsigned long page_no;
1062 unsigned blkbits;
1063 sector_t probe_block;
1064 sector_t last_block;
1065 sector_t lowest_block = -1;
1066 sector_t highest_block = 0;
1067 int nr_extents = 0;
1068 int ret;
1069
1070 inode = sis->swap_file->f_mapping->host;
1071 if (S_ISBLK(inode->i_mode)) {
1072 ret = add_swap_extent(sis, 0, sis->max, 0);
1073 *span = sis->pages;
1074 goto done;
1075 }
1076
1077 blkbits = inode->i_blkbits;
1078 blocks_per_page = PAGE_SIZE >> blkbits;
1079
1080 /*
1081 * Map all the blocks into the extent list. This code doesn't try
1082 * to be very smart.
1083 */
1084 probe_block = 0;
1085 page_no = 0;
1086 last_block = i_size_read(inode) >> blkbits;
1087 while ((probe_block + blocks_per_page) <= last_block &&
1088 page_no < sis->max) {
1089 unsigned block_in_page;
1090 sector_t first_block;
1091
1092 first_block = bmap(inode, probe_block);
1093 if (first_block == 0)
1094 goto bad_bmap;
1095
1096 /*
1097 * It must be PAGE_SIZE aligned on-disk
1098 */
1099 if (first_block & (blocks_per_page - 1)) {
1100 probe_block++;
1101 goto reprobe;
1102 }
1103
1104 for (block_in_page = 1; block_in_page < blocks_per_page;
1105 block_in_page++) {
1106 sector_t block;
1107
1108 block = bmap(inode, probe_block + block_in_page);
1109 if (block == 0)
1110 goto bad_bmap;
1111 if (block != first_block + block_in_page) {
1112 /* Discontiguity */
1113 probe_block++;
1114 goto reprobe;
1115 }
1116 }
1117
1118 first_block >>= (PAGE_SHIFT - blkbits);
1119 if (page_no) { /* exclude the header page */
1120 if (first_block < lowest_block)
1121 lowest_block = first_block;
1122 if (first_block > highest_block)
1123 highest_block = first_block;
1124 }
1125
1126 /*
1127 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1128 */
1129 ret = add_swap_extent(sis, page_no, 1, first_block);
1130 if (ret < 0)
1131 goto out;
1132 nr_extents += ret;
1133 page_no++;
1134 probe_block += blocks_per_page;
1135 reprobe:
1136 continue;
1137 }
1138 ret = nr_extents;
1139 *span = 1 + highest_block - lowest_block;
1140 if (page_no == 0)
1141 page_no = 1; /* force Empty message */
1142 sis->max = page_no;
1143 sis->pages = page_no - 1;
1144 sis->highest_bit = page_no - 1;
1145 done:
1146 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1147 struct swap_extent, list);
1148 goto out;
1149 bad_bmap:
1150 printk(KERN_ERR "swapon: swapfile has holes\n");
1151 ret = -EINVAL;
1152 out:
1153 return ret;
1154 }
1155
1156 #if 0 /* We don't need this yet */
1157 #include <linux/backing-dev.h>
1158 int page_queue_congested(struct page *page)
1159 {
1160 struct backing_dev_info *bdi;
1161
1162 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1163
1164 if (PageSwapCache(page)) {
1165 swp_entry_t entry = { .val = page_private(page) };
1166 struct swap_info_struct *sis;
1167
1168 sis = get_swap_info_struct(swp_type(entry));
1169 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1170 } else
1171 bdi = page->mapping->backing_dev_info;
1172 return bdi_write_congested(bdi);
1173 }
1174 #endif
1175
1176 asmlinkage long sys_swapoff(const char __user * specialfile)
1177 {
1178 struct swap_info_struct * p = NULL;
1179 unsigned short *swap_map;
1180 struct file *swap_file, *victim;
1181 struct address_space *mapping;
1182 struct inode *inode;
1183 char * pathname;
1184 int i, type, prev;
1185 int err;
1186
1187 if (!capable(CAP_SYS_ADMIN))
1188 return -EPERM;
1189
1190 pathname = getname(specialfile);
1191 err = PTR_ERR(pathname);
1192 if (IS_ERR(pathname))
1193 goto out;
1194
1195 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1196 putname(pathname);
1197 err = PTR_ERR(victim);
1198 if (IS_ERR(victim))
1199 goto out;
1200
1201 mapping = victim->f_mapping;
1202 prev = -1;
1203 spin_lock(&swap_lock);
1204 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1205 p = swap_info + type;
1206 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1207 if (p->swap_file->f_mapping == mapping)
1208 break;
1209 }
1210 prev = type;
1211 }
1212 if (type < 0) {
1213 err = -EINVAL;
1214 spin_unlock(&swap_lock);
1215 goto out_dput;
1216 }
1217 if (!security_vm_enough_memory(p->pages))
1218 vm_unacct_memory(p->pages);
1219 else {
1220 err = -ENOMEM;
1221 spin_unlock(&swap_lock);
1222 goto out_dput;
1223 }
1224 if (prev < 0) {
1225 swap_list.head = p->next;
1226 } else {
1227 swap_info[prev].next = p->next;
1228 }
1229 if (type == swap_list.next) {
1230 /* just pick something that's safe... */
1231 swap_list.next = swap_list.head;
1232 }
1233 nr_swap_pages -= p->pages;
1234 total_swap_pages -= p->pages;
1235 p->flags &= ~SWP_WRITEOK;
1236 spin_unlock(&swap_lock);
1237
1238 current->flags |= PF_SWAPOFF;
1239 err = try_to_unuse(type);
1240 current->flags &= ~PF_SWAPOFF;
1241
1242 if (err) {
1243 /* re-insert swap space back into swap_list */
1244 spin_lock(&swap_lock);
1245 for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1246 if (p->prio >= swap_info[i].prio)
1247 break;
1248 p->next = i;
1249 if (prev < 0)
1250 swap_list.head = swap_list.next = p - swap_info;
1251 else
1252 swap_info[prev].next = p - swap_info;
1253 nr_swap_pages += p->pages;
1254 total_swap_pages += p->pages;
1255 p->flags |= SWP_WRITEOK;
1256 spin_unlock(&swap_lock);
1257 goto out_dput;
1258 }
1259
1260 /* wait for any unplug function to finish */
1261 down_write(&swap_unplug_sem);
1262 up_write(&swap_unplug_sem);
1263
1264 destroy_swap_extents(p);
1265 mutex_lock(&swapon_mutex);
1266 spin_lock(&swap_lock);
1267 drain_mmlist();
1268
1269 /* wait for anyone still in scan_swap_map */
1270 p->highest_bit = 0; /* cuts scans short */
1271 while (p->flags >= SWP_SCANNING) {
1272 spin_unlock(&swap_lock);
1273 schedule_timeout_uninterruptible(1);
1274 spin_lock(&swap_lock);
1275 }
1276
1277 swap_file = p->swap_file;
1278 p->swap_file = NULL;
1279 p->max = 0;
1280 swap_map = p->swap_map;
1281 p->swap_map = NULL;
1282 p->flags = 0;
1283 spin_unlock(&swap_lock);
1284 mutex_unlock(&swapon_mutex);
1285 vfree(swap_map);
1286 inode = mapping->host;
1287 if (S_ISBLK(inode->i_mode)) {
1288 struct block_device *bdev = I_BDEV(inode);
1289 set_blocksize(bdev, p->old_block_size);
1290 bd_release(bdev);
1291 } else {
1292 mutex_lock(&inode->i_mutex);
1293 inode->i_flags &= ~S_SWAPFILE;
1294 mutex_unlock(&inode->i_mutex);
1295 }
1296 filp_close(swap_file, NULL);
1297 err = 0;
1298
1299 out_dput:
1300 filp_close(victim, NULL);
1301 out:
1302 return err;
1303 }
1304
1305 #ifdef CONFIG_PROC_FS
1306 /* iterator */
1307 static void *swap_start(struct seq_file *swap, loff_t *pos)
1308 {
1309 struct swap_info_struct *ptr = swap_info;
1310 int i;
1311 loff_t l = *pos;
1312
1313 mutex_lock(&swapon_mutex);
1314
1315 if (!l)
1316 return SEQ_START_TOKEN;
1317
1318 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1319 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1320 continue;
1321 if (!--l)
1322 return ptr;
1323 }
1324
1325 return NULL;
1326 }
1327
1328 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1329 {
1330 struct swap_info_struct *ptr;
1331 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1332
1333 if (v == SEQ_START_TOKEN)
1334 ptr = swap_info;
1335 else {
1336 ptr = v;
1337 ptr++;
1338 }
1339
1340 for (; ptr < endptr; ptr++) {
1341 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1342 continue;
1343 ++*pos;
1344 return ptr;
1345 }
1346
1347 return NULL;
1348 }
1349
1350 static void swap_stop(struct seq_file *swap, void *v)
1351 {
1352 mutex_unlock(&swapon_mutex);
1353 }
1354
1355 static int swap_show(struct seq_file *swap, void *v)
1356 {
1357 struct swap_info_struct *ptr = v;
1358 struct file *file;
1359 int len;
1360
1361 if (ptr == SEQ_START_TOKEN) {
1362 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1363 return 0;
1364 }
1365
1366 file = ptr->swap_file;
1367 len = seq_path(swap, file->f_path.mnt, file->f_path.dentry, " \t\n\\");
1368 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1369 len < 40 ? 40 - len : 1, " ",
1370 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1371 "partition" : "file\t",
1372 ptr->pages << (PAGE_SHIFT - 10),
1373 ptr->inuse_pages << (PAGE_SHIFT - 10),
1374 ptr->prio);
1375 return 0;
1376 }
1377
1378 static const struct seq_operations swaps_op = {
1379 .start = swap_start,
1380 .next = swap_next,
1381 .stop = swap_stop,
1382 .show = swap_show
1383 };
1384
1385 static int swaps_open(struct inode *inode, struct file *file)
1386 {
1387 return seq_open(file, &swaps_op);
1388 }
1389
1390 static const struct file_operations proc_swaps_operations = {
1391 .open = swaps_open,
1392 .read = seq_read,
1393 .llseek = seq_lseek,
1394 .release = seq_release,
1395 };
1396
1397 static int __init procswaps_init(void)
1398 {
1399 struct proc_dir_entry *entry;
1400
1401 entry = create_proc_entry("swaps", 0, NULL);
1402 if (entry)
1403 entry->proc_fops = &proc_swaps_operations;
1404 return 0;
1405 }
1406 __initcall(procswaps_init);
1407 #endif /* CONFIG_PROC_FS */
1408
1409 /*
1410 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1411 *
1412 * The swapon system call
1413 */
1414 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1415 {
1416 struct swap_info_struct * p;
1417 char *name = NULL;
1418 struct block_device *bdev = NULL;
1419 struct file *swap_file = NULL;
1420 struct address_space *mapping;
1421 unsigned int type;
1422 int i, prev;
1423 int error;
1424 static int least_priority;
1425 union swap_header *swap_header = NULL;
1426 int swap_header_version;
1427 unsigned int nr_good_pages = 0;
1428 int nr_extents = 0;
1429 sector_t span;
1430 unsigned long maxpages = 1;
1431 int swapfilesize;
1432 unsigned short *swap_map;
1433 struct page *page = NULL;
1434 struct inode *inode = NULL;
1435 int did_down = 0;
1436
1437 if (!capable(CAP_SYS_ADMIN))
1438 return -EPERM;
1439 spin_lock(&swap_lock);
1440 p = swap_info;
1441 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1442 if (!(p->flags & SWP_USED))
1443 break;
1444 error = -EPERM;
1445 if (type >= MAX_SWAPFILES) {
1446 spin_unlock(&swap_lock);
1447 goto out;
1448 }
1449 if (type >= nr_swapfiles)
1450 nr_swapfiles = type+1;
1451 INIT_LIST_HEAD(&p->extent_list);
1452 p->flags = SWP_USED;
1453 p->swap_file = NULL;
1454 p->old_block_size = 0;
1455 p->swap_map = NULL;
1456 p->lowest_bit = 0;
1457 p->highest_bit = 0;
1458 p->cluster_nr = 0;
1459 p->inuse_pages = 0;
1460 p->next = -1;
1461 if (swap_flags & SWAP_FLAG_PREFER) {
1462 p->prio =
1463 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1464 } else {
1465 p->prio = --least_priority;
1466 }
1467 spin_unlock(&swap_lock);
1468 name = getname(specialfile);
1469 error = PTR_ERR(name);
1470 if (IS_ERR(name)) {
1471 name = NULL;
1472 goto bad_swap_2;
1473 }
1474 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1475 error = PTR_ERR(swap_file);
1476 if (IS_ERR(swap_file)) {
1477 swap_file = NULL;
1478 goto bad_swap_2;
1479 }
1480
1481 p->swap_file = swap_file;
1482 mapping = swap_file->f_mapping;
1483 inode = mapping->host;
1484
1485 error = -EBUSY;
1486 for (i = 0; i < nr_swapfiles; i++) {
1487 struct swap_info_struct *q = &swap_info[i];
1488
1489 if (i == type || !q->swap_file)
1490 continue;
1491 if (mapping == q->swap_file->f_mapping)
1492 goto bad_swap;
1493 }
1494
1495 error = -EINVAL;
1496 if (S_ISBLK(inode->i_mode)) {
1497 bdev = I_BDEV(inode);
1498 error = bd_claim(bdev, sys_swapon);
1499 if (error < 0) {
1500 bdev = NULL;
1501 error = -EINVAL;
1502 goto bad_swap;
1503 }
1504 p->old_block_size = block_size(bdev);
1505 error = set_blocksize(bdev, PAGE_SIZE);
1506 if (error < 0)
1507 goto bad_swap;
1508 p->bdev = bdev;
1509 } else if (S_ISREG(inode->i_mode)) {
1510 p->bdev = inode->i_sb->s_bdev;
1511 mutex_lock(&inode->i_mutex);
1512 did_down = 1;
1513 if (IS_SWAPFILE(inode)) {
1514 error = -EBUSY;
1515 goto bad_swap;
1516 }
1517 } else {
1518 goto bad_swap;
1519 }
1520
1521 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1522
1523 /*
1524 * Read the swap header.
1525 */
1526 if (!mapping->a_ops->readpage) {
1527 error = -EINVAL;
1528 goto bad_swap;
1529 }
1530 page = read_mapping_page(mapping, 0, swap_file);
1531 if (IS_ERR(page)) {
1532 error = PTR_ERR(page);
1533 goto bad_swap;
1534 }
1535 kmap(page);
1536 swap_header = page_address(page);
1537
1538 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1539 swap_header_version = 1;
1540 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1541 swap_header_version = 2;
1542 else {
1543 printk(KERN_ERR "Unable to find swap-space signature\n");
1544 error = -EINVAL;
1545 goto bad_swap;
1546 }
1547
1548 switch (swap_header_version) {
1549 case 1:
1550 printk(KERN_ERR "version 0 swap is no longer supported. "
1551 "Use mkswap -v1 %s\n", name);
1552 error = -EINVAL;
1553 goto bad_swap;
1554 case 2:
1555 /* Check the swap header's sub-version and the size of
1556 the swap file and bad block lists */
1557 if (swap_header->info.version != 1) {
1558 printk(KERN_WARNING
1559 "Unable to handle swap header version %d\n",
1560 swap_header->info.version);
1561 error = -EINVAL;
1562 goto bad_swap;
1563 }
1564
1565 p->lowest_bit = 1;
1566 p->cluster_next = 1;
1567
1568 /*
1569 * Find out how many pages are allowed for a single swap
1570 * device. There are two limiting factors: 1) the number of
1571 * bits for the swap offset in the swp_entry_t type and
1572 * 2) the number of bits in the a swap pte as defined by
1573 * the different architectures. In order to find the
1574 * largest possible bit mask a swap entry with swap type 0
1575 * and swap offset ~0UL is created, encoded to a swap pte,
1576 * decoded to a swp_entry_t again and finally the swap
1577 * offset is extracted. This will mask all the bits from
1578 * the initial ~0UL mask that can't be encoded in either
1579 * the swp_entry_t or the architecture definition of a
1580 * swap pte.
1581 */
1582 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1583 if (maxpages > swap_header->info.last_page)
1584 maxpages = swap_header->info.last_page;
1585 p->highest_bit = maxpages - 1;
1586
1587 error = -EINVAL;
1588 if (!maxpages)
1589 goto bad_swap;
1590 if (swapfilesize && maxpages > swapfilesize) {
1591 printk(KERN_WARNING
1592 "Swap area shorter than signature indicates\n");
1593 goto bad_swap;
1594 }
1595 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1596 goto bad_swap;
1597 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1598 goto bad_swap;
1599
1600 /* OK, set up the swap map and apply the bad block list */
1601 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1602 error = -ENOMEM;
1603 goto bad_swap;
1604 }
1605
1606 error = 0;
1607 memset(p->swap_map, 0, maxpages * sizeof(short));
1608 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1609 int page_nr = swap_header->info.badpages[i];
1610 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1611 error = -EINVAL;
1612 else
1613 p->swap_map[page_nr] = SWAP_MAP_BAD;
1614 }
1615 nr_good_pages = swap_header->info.last_page -
1616 swap_header->info.nr_badpages -
1617 1 /* header page */;
1618 if (error)
1619 goto bad_swap;
1620 }
1621
1622 if (nr_good_pages) {
1623 p->swap_map[0] = SWAP_MAP_BAD;
1624 p->max = maxpages;
1625 p->pages = nr_good_pages;
1626 nr_extents = setup_swap_extents(p, &span);
1627 if (nr_extents < 0) {
1628 error = nr_extents;
1629 goto bad_swap;
1630 }
1631 nr_good_pages = p->pages;
1632 }
1633 if (!nr_good_pages) {
1634 printk(KERN_WARNING "Empty swap-file\n");
1635 error = -EINVAL;
1636 goto bad_swap;
1637 }
1638
1639 mutex_lock(&swapon_mutex);
1640 spin_lock(&swap_lock);
1641 p->flags = SWP_ACTIVE;
1642 nr_swap_pages += nr_good_pages;
1643 total_swap_pages += nr_good_pages;
1644
1645 printk(KERN_INFO "Adding %uk swap on %s. "
1646 "Priority:%d extents:%d across:%lluk\n",
1647 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1648 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1649
1650 /* insert swap space into swap_list: */
1651 prev = -1;
1652 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1653 if (p->prio >= swap_info[i].prio) {
1654 break;
1655 }
1656 prev = i;
1657 }
1658 p->next = i;
1659 if (prev < 0) {
1660 swap_list.head = swap_list.next = p - swap_info;
1661 } else {
1662 swap_info[prev].next = p - swap_info;
1663 }
1664 spin_unlock(&swap_lock);
1665 mutex_unlock(&swapon_mutex);
1666 error = 0;
1667 goto out;
1668 bad_swap:
1669 if (bdev) {
1670 set_blocksize(bdev, p->old_block_size);
1671 bd_release(bdev);
1672 }
1673 destroy_swap_extents(p);
1674 bad_swap_2:
1675 spin_lock(&swap_lock);
1676 swap_map = p->swap_map;
1677 p->swap_file = NULL;
1678 p->swap_map = NULL;
1679 p->flags = 0;
1680 if (!(swap_flags & SWAP_FLAG_PREFER))
1681 ++least_priority;
1682 spin_unlock(&swap_lock);
1683 vfree(swap_map);
1684 if (swap_file)
1685 filp_close(swap_file, NULL);
1686 out:
1687 if (page && !IS_ERR(page)) {
1688 kunmap(page);
1689 page_cache_release(page);
1690 }
1691 if (name)
1692 putname(name);
1693 if (did_down) {
1694 if (!error)
1695 inode->i_flags |= S_SWAPFILE;
1696 mutex_unlock(&inode->i_mutex);
1697 }
1698 return error;
1699 }
1700
1701 void si_swapinfo(struct sysinfo *val)
1702 {
1703 unsigned int i;
1704 unsigned long nr_to_be_unused = 0;
1705
1706 spin_lock(&swap_lock);
1707 for (i = 0; i < nr_swapfiles; i++) {
1708 if (!(swap_info[i].flags & SWP_USED) ||
1709 (swap_info[i].flags & SWP_WRITEOK))
1710 continue;
1711 nr_to_be_unused += swap_info[i].inuse_pages;
1712 }
1713 val->freeswap = nr_swap_pages + nr_to_be_unused;
1714 val->totalswap = total_swap_pages + nr_to_be_unused;
1715 spin_unlock(&swap_lock);
1716 }
1717
1718 /*
1719 * Verify that a swap entry is valid and increment its swap map count.
1720 *
1721 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1722 * "permanent", but will be reclaimed by the next swapoff.
1723 */
1724 int swap_duplicate(swp_entry_t entry)
1725 {
1726 struct swap_info_struct * p;
1727 unsigned long offset, type;
1728 int result = 0;
1729
1730 if (is_migration_entry(entry))
1731 return 1;
1732
1733 type = swp_type(entry);
1734 if (type >= nr_swapfiles)
1735 goto bad_file;
1736 p = type + swap_info;
1737 offset = swp_offset(entry);
1738
1739 spin_lock(&swap_lock);
1740 if (offset < p->max && p->swap_map[offset]) {
1741 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1742 p->swap_map[offset]++;
1743 result = 1;
1744 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1745 if (swap_overflow++ < 5)
1746 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1747 p->swap_map[offset] = SWAP_MAP_MAX;
1748 result = 1;
1749 }
1750 }
1751 spin_unlock(&swap_lock);
1752 out:
1753 return result;
1754
1755 bad_file:
1756 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1757 goto out;
1758 }
1759
1760 struct swap_info_struct *
1761 get_swap_info_struct(unsigned type)
1762 {
1763 return &swap_info[type];
1764 }
1765
1766 /*
1767 * swap_lock prevents swap_map being freed. Don't grab an extra
1768 * reference on the swaphandle, it doesn't matter if it becomes unused.
1769 */
1770 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1771 {
1772 int our_page_cluster = page_cluster;
1773 int ret = 0, i = 1 << our_page_cluster;
1774 unsigned long toff;
1775 struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1776
1777 if (!our_page_cluster) /* no readahead */
1778 return 0;
1779 toff = (swp_offset(entry) >> our_page_cluster) << our_page_cluster;
1780 if (!toff) /* first page is swap header */
1781 toff++, i--;
1782 *offset = toff;
1783
1784 spin_lock(&swap_lock);
1785 do {
1786 /* Don't read-ahead past the end of the swap area */
1787 if (toff >= swapdev->max)
1788 break;
1789 /* Don't read in free or bad pages */
1790 if (!swapdev->swap_map[toff])
1791 break;
1792 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1793 break;
1794 toff++;
1795 ret++;
1796 } while (--i);
1797 spin_unlock(&swap_lock);
1798 return ret;
1799 }