4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
45 static void free_swap_count_continuations(struct swap_info_struct
*);
46 static sector_t
map_swap_entry(swp_entry_t
, struct block_device
**);
48 DEFINE_SPINLOCK(swap_lock
);
49 static unsigned int nr_swapfiles
;
50 atomic_long_t nr_swap_pages
;
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
56 EXPORT_SYMBOL_GPL(nr_swap_pages
);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages
;
59 static int least_priority
;
61 static const char Bad_file
[] = "Bad swap file entry ";
62 static const char Unused_file
[] = "Unused swap file entry ";
63 static const char Bad_offset
[] = "Bad swap offset entry ";
64 static const char Unused_offset
[] = "Unused swap offset entry ";
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
70 PLIST_HEAD(swap_active_head
);
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
84 static PLIST_HEAD(swap_avail_head
);
85 static DEFINE_SPINLOCK(swap_avail_lock
);
87 struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
89 static DEFINE_MUTEX(swapon_mutex
);
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
95 static inline unsigned char swap_count(unsigned char ent
)
97 return ent
& ~SWAP_HAS_CACHE
; /* may include SWAP_HAS_CONT flag */
100 /* returns 1 if swap entry is freed */
102 __try_to_reclaim_swap(struct swap_info_struct
*si
, unsigned long offset
)
104 swp_entry_t entry
= swp_entry(si
->type
, offset
);
108 page
= find_get_page(swap_address_space(entry
), entry
.val
);
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
118 if (trylock_page(page
)) {
119 ret
= try_to_free_swap(page
);
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
130 static int discard_swap(struct swap_info_struct
*si
)
132 struct swap_extent
*se
;
133 sector_t start_block
;
137 /* Do not discard the swap header page! */
138 se
= &si
->first_swap_extent
;
139 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
140 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
142 err
= blkdev_issue_discard(si
->bdev
, start_block
,
143 nr_blocks
, GFP_KERNEL
, 0);
149 list_for_each_entry(se
, &si
->first_swap_extent
.list
, list
) {
150 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
151 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
153 err
= blkdev_issue_discard(si
->bdev
, start_block
,
154 nr_blocks
, GFP_KERNEL
, 0);
160 return err
; /* That will often be -EOPNOTSUPP */
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
167 static void discard_swap_cluster(struct swap_info_struct
*si
,
168 pgoff_t start_page
, pgoff_t nr_pages
)
170 struct swap_extent
*se
= si
->curr_swap_extent
;
171 int found_extent
= 0;
174 if (se
->start_page
<= start_page
&&
175 start_page
< se
->start_page
+ se
->nr_pages
) {
176 pgoff_t offset
= start_page
- se
->start_page
;
177 sector_t start_block
= se
->start_block
+ offset
;
178 sector_t nr_blocks
= se
->nr_pages
- offset
;
180 if (nr_blocks
> nr_pages
)
181 nr_blocks
= nr_pages
;
182 start_page
+= nr_blocks
;
183 nr_pages
-= nr_blocks
;
186 si
->curr_swap_extent
= se
;
188 start_block
<<= PAGE_SHIFT
- 9;
189 nr_blocks
<<= PAGE_SHIFT
- 9;
190 if (blkdev_issue_discard(si
->bdev
, start_block
,
191 nr_blocks
, GFP_NOIO
, 0))
195 se
= list_next_entry(se
, list
);
199 #define SWAPFILE_CLUSTER 256
200 #define LATENCY_LIMIT 256
202 static inline void cluster_set_flag(struct swap_cluster_info
*info
,
208 static inline unsigned int cluster_count(struct swap_cluster_info
*info
)
213 static inline void cluster_set_count(struct swap_cluster_info
*info
,
219 static inline void cluster_set_count_flag(struct swap_cluster_info
*info
,
220 unsigned int c
, unsigned int f
)
226 static inline unsigned int cluster_next(struct swap_cluster_info
*info
)
231 static inline void cluster_set_next(struct swap_cluster_info
*info
,
237 static inline void cluster_set_next_flag(struct swap_cluster_info
*info
,
238 unsigned int n
, unsigned int f
)
244 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
246 return info
->flags
& CLUSTER_FLAG_FREE
;
249 static inline bool cluster_is_null(struct swap_cluster_info
*info
)
251 return info
->flags
& CLUSTER_FLAG_NEXT_NULL
;
254 static inline void cluster_set_null(struct swap_cluster_info
*info
)
256 info
->flags
= CLUSTER_FLAG_NEXT_NULL
;
260 /* Add a cluster to discard list and schedule it to do discard */
261 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
265 * If scan_swap_map() can't find a free cluster, it will check
266 * si->swap_map directly. To make sure the discarding cluster isn't
267 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
268 * will be cleared after discard
270 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
271 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
273 if (cluster_is_null(&si
->discard_cluster_head
)) {
274 cluster_set_next_flag(&si
->discard_cluster_head
,
276 cluster_set_next_flag(&si
->discard_cluster_tail
,
279 unsigned int tail
= cluster_next(&si
->discard_cluster_tail
);
280 cluster_set_next(&si
->cluster_info
[tail
], idx
);
281 cluster_set_next_flag(&si
->discard_cluster_tail
,
285 schedule_work(&si
->discard_work
);
289 * Doing discard actually. After a cluster discard is finished, the cluster
290 * will be added to free cluster list. caller should hold si->lock.
292 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
294 struct swap_cluster_info
*info
;
297 info
= si
->cluster_info
;
299 while (!cluster_is_null(&si
->discard_cluster_head
)) {
300 idx
= cluster_next(&si
->discard_cluster_head
);
302 cluster_set_next_flag(&si
->discard_cluster_head
,
303 cluster_next(&info
[idx
]), 0);
304 if (cluster_next(&si
->discard_cluster_tail
) == idx
) {
305 cluster_set_null(&si
->discard_cluster_head
);
306 cluster_set_null(&si
->discard_cluster_tail
);
308 spin_unlock(&si
->lock
);
310 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
313 spin_lock(&si
->lock
);
314 cluster_set_flag(&info
[idx
], CLUSTER_FLAG_FREE
);
315 if (cluster_is_null(&si
->free_cluster_head
)) {
316 cluster_set_next_flag(&si
->free_cluster_head
,
318 cluster_set_next_flag(&si
->free_cluster_tail
,
323 tail
= cluster_next(&si
->free_cluster_tail
);
324 cluster_set_next(&info
[tail
], idx
);
325 cluster_set_next_flag(&si
->free_cluster_tail
,
328 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
329 0, SWAPFILE_CLUSTER
);
333 static void swap_discard_work(struct work_struct
*work
)
335 struct swap_info_struct
*si
;
337 si
= container_of(work
, struct swap_info_struct
, discard_work
);
339 spin_lock(&si
->lock
);
340 swap_do_scheduled_discard(si
);
341 spin_unlock(&si
->lock
);
345 * The cluster corresponding to page_nr will be used. The cluster will be
346 * removed from free cluster list and its usage counter will be increased.
348 static void inc_cluster_info_page(struct swap_info_struct
*p
,
349 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
351 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
355 if (cluster_is_free(&cluster_info
[idx
])) {
356 VM_BUG_ON(cluster_next(&p
->free_cluster_head
) != idx
);
357 cluster_set_next_flag(&p
->free_cluster_head
,
358 cluster_next(&cluster_info
[idx
]), 0);
359 if (cluster_next(&p
->free_cluster_tail
) == idx
) {
360 cluster_set_null(&p
->free_cluster_tail
);
361 cluster_set_null(&p
->free_cluster_head
);
363 cluster_set_count_flag(&cluster_info
[idx
], 0, 0);
366 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) >= SWAPFILE_CLUSTER
);
367 cluster_set_count(&cluster_info
[idx
],
368 cluster_count(&cluster_info
[idx
]) + 1);
372 * The cluster corresponding to page_nr decreases one usage. If the usage
373 * counter becomes 0, which means no page in the cluster is in using, we can
374 * optionally discard the cluster and add it to free cluster list.
376 static void dec_cluster_info_page(struct swap_info_struct
*p
,
377 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
379 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
384 VM_BUG_ON(cluster_count(&cluster_info
[idx
]) == 0);
385 cluster_set_count(&cluster_info
[idx
],
386 cluster_count(&cluster_info
[idx
]) - 1);
388 if (cluster_count(&cluster_info
[idx
]) == 0) {
390 * If the swap is discardable, prepare discard the cluster
391 * instead of free it immediately. The cluster will be freed
394 if ((p
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
395 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
396 swap_cluster_schedule_discard(p
, idx
);
400 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
401 if (cluster_is_null(&p
->free_cluster_head
)) {
402 cluster_set_next_flag(&p
->free_cluster_head
, idx
, 0);
403 cluster_set_next_flag(&p
->free_cluster_tail
, idx
, 0);
405 unsigned int tail
= cluster_next(&p
->free_cluster_tail
);
406 cluster_set_next(&cluster_info
[tail
], idx
);
407 cluster_set_next_flag(&p
->free_cluster_tail
, idx
, 0);
413 * It's possible scan_swap_map() uses a free cluster in the middle of free
414 * cluster list. Avoiding such abuse to avoid list corruption.
417 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct
*si
,
418 unsigned long offset
)
420 struct percpu_cluster
*percpu_cluster
;
423 offset
/= SWAPFILE_CLUSTER
;
424 conflict
= !cluster_is_null(&si
->free_cluster_head
) &&
425 offset
!= cluster_next(&si
->free_cluster_head
) &&
426 cluster_is_free(&si
->cluster_info
[offset
]);
431 percpu_cluster
= this_cpu_ptr(si
->percpu_cluster
);
432 cluster_set_null(&percpu_cluster
->index
);
437 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
438 * might involve allocating a new cluster for current CPU too.
440 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct
*si
,
441 unsigned long *offset
, unsigned long *scan_base
)
443 struct percpu_cluster
*cluster
;
448 cluster
= this_cpu_ptr(si
->percpu_cluster
);
449 if (cluster_is_null(&cluster
->index
)) {
450 if (!cluster_is_null(&si
->free_cluster_head
)) {
451 cluster
->index
= si
->free_cluster_head
;
452 cluster
->next
= cluster_next(&cluster
->index
) *
454 } else if (!cluster_is_null(&si
->discard_cluster_head
)) {
456 * we don't have free cluster but have some clusters in
457 * discarding, do discard now and reclaim them
459 swap_do_scheduled_discard(si
);
460 *scan_base
= *offset
= si
->cluster_next
;
469 * Other CPUs can use our cluster if they can't find a free cluster,
470 * check if there is still free entry in the cluster
473 while (tmp
< si
->max
&& tmp
< (cluster_next(&cluster
->index
) + 1) *
475 if (!si
->swap_map
[tmp
]) {
482 cluster_set_null(&cluster
->index
);
485 cluster
->next
= tmp
+ 1;
490 static unsigned long scan_swap_map(struct swap_info_struct
*si
,
493 unsigned long offset
;
494 unsigned long scan_base
;
495 unsigned long last_in_cluster
= 0;
496 int latency_ration
= LATENCY_LIMIT
;
499 * We try to cluster swap pages by allocating them sequentially
500 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
501 * way, however, we resort to first-free allocation, starting
502 * a new cluster. This prevents us from scattering swap pages
503 * all over the entire swap partition, so that we reduce
504 * overall disk seek times between swap pages. -- sct
505 * But we do now try to find an empty cluster. -Andrea
506 * And we let swap pages go all over an SSD partition. Hugh
509 si
->flags
+= SWP_SCANNING
;
510 scan_base
= offset
= si
->cluster_next
;
513 if (si
->cluster_info
) {
514 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
518 if (unlikely(!si
->cluster_nr
--)) {
519 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
520 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
524 spin_unlock(&si
->lock
);
527 * If seek is expensive, start searching for new cluster from
528 * start of partition, to minimize the span of allocated swap.
529 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
530 * case, just handled by scan_swap_map_try_ssd_cluster() above.
532 scan_base
= offset
= si
->lowest_bit
;
533 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
535 /* Locate the first empty (unaligned) cluster */
536 for (; last_in_cluster
<= si
->highest_bit
; offset
++) {
537 if (si
->swap_map
[offset
])
538 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
539 else if (offset
== last_in_cluster
) {
540 spin_lock(&si
->lock
);
541 offset
-= SWAPFILE_CLUSTER
- 1;
542 si
->cluster_next
= offset
;
543 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
546 if (unlikely(--latency_ration
< 0)) {
548 latency_ration
= LATENCY_LIMIT
;
553 spin_lock(&si
->lock
);
554 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
558 if (si
->cluster_info
) {
559 while (scan_swap_map_ssd_cluster_conflict(si
, offset
))
560 scan_swap_map_try_ssd_cluster(si
, &offset
, &scan_base
);
562 if (!(si
->flags
& SWP_WRITEOK
))
564 if (!si
->highest_bit
)
566 if (offset
> si
->highest_bit
)
567 scan_base
= offset
= si
->lowest_bit
;
569 /* reuse swap entry of cache-only swap if not busy. */
570 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
572 spin_unlock(&si
->lock
);
573 swap_was_freed
= __try_to_reclaim_swap(si
, offset
);
574 spin_lock(&si
->lock
);
575 /* entry was freed successfully, try to use this again */
578 goto scan
; /* check next one */
581 if (si
->swap_map
[offset
])
584 if (offset
== si
->lowest_bit
)
586 if (offset
== si
->highest_bit
)
589 if (si
->inuse_pages
== si
->pages
) {
590 si
->lowest_bit
= si
->max
;
592 spin_lock(&swap_avail_lock
);
593 plist_del(&si
->avail_list
, &swap_avail_head
);
594 spin_unlock(&swap_avail_lock
);
596 si
->swap_map
[offset
] = usage
;
597 inc_cluster_info_page(si
, si
->cluster_info
, offset
);
598 si
->cluster_next
= offset
+ 1;
599 si
->flags
-= SWP_SCANNING
;
604 spin_unlock(&si
->lock
);
605 while (++offset
<= si
->highest_bit
) {
606 if (!si
->swap_map
[offset
]) {
607 spin_lock(&si
->lock
);
610 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
611 spin_lock(&si
->lock
);
614 if (unlikely(--latency_ration
< 0)) {
616 latency_ration
= LATENCY_LIMIT
;
619 offset
= si
->lowest_bit
;
620 while (offset
< scan_base
) {
621 if (!si
->swap_map
[offset
]) {
622 spin_lock(&si
->lock
);
625 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
626 spin_lock(&si
->lock
);
629 if (unlikely(--latency_ration
< 0)) {
631 latency_ration
= LATENCY_LIMIT
;
635 spin_lock(&si
->lock
);
638 si
->flags
-= SWP_SCANNING
;
642 swp_entry_t
get_swap_page(void)
644 struct swap_info_struct
*si
, *next
;
647 if (atomic_long_read(&nr_swap_pages
) <= 0)
649 atomic_long_dec(&nr_swap_pages
);
651 spin_lock(&swap_avail_lock
);
654 plist_for_each_entry_safe(si
, next
, &swap_avail_head
, avail_list
) {
655 /* requeue si to after same-priority siblings */
656 plist_requeue(&si
->avail_list
, &swap_avail_head
);
657 spin_unlock(&swap_avail_lock
);
658 spin_lock(&si
->lock
);
659 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
660 spin_lock(&swap_avail_lock
);
661 if (plist_node_empty(&si
->avail_list
)) {
662 spin_unlock(&si
->lock
);
665 WARN(!si
->highest_bit
,
666 "swap_info %d in list but !highest_bit\n",
668 WARN(!(si
->flags
& SWP_WRITEOK
),
669 "swap_info %d in list but !SWP_WRITEOK\n",
671 plist_del(&si
->avail_list
, &swap_avail_head
);
672 spin_unlock(&si
->lock
);
676 /* This is called for allocating swap entry for cache */
677 offset
= scan_swap_map(si
, SWAP_HAS_CACHE
);
678 spin_unlock(&si
->lock
);
680 return swp_entry(si
->type
, offset
);
681 pr_debug("scan_swap_map of si %d failed to find offset\n",
683 spin_lock(&swap_avail_lock
);
686 * if we got here, it's likely that si was almost full before,
687 * and since scan_swap_map() can drop the si->lock, multiple
688 * callers probably all tried to get a page from the same si
689 * and it filled up before we could get one; or, the si filled
690 * up between us dropping swap_avail_lock and taking si->lock.
691 * Since we dropped the swap_avail_lock, the swap_avail_head
692 * list may have been modified; so if next is still in the
693 * swap_avail_head list then try it, otherwise start over.
695 if (plist_node_empty(&next
->avail_list
))
699 spin_unlock(&swap_avail_lock
);
701 atomic_long_inc(&nr_swap_pages
);
703 return (swp_entry_t
) {0};
706 /* The only caller of this function is now suspend routine */
707 swp_entry_t
get_swap_page_of_type(int type
)
709 struct swap_info_struct
*si
;
712 si
= swap_info
[type
];
713 spin_lock(&si
->lock
);
714 if (si
&& (si
->flags
& SWP_WRITEOK
)) {
715 atomic_long_dec(&nr_swap_pages
);
716 /* This is called for allocating swap entry, not cache */
717 offset
= scan_swap_map(si
, 1);
719 spin_unlock(&si
->lock
);
720 return swp_entry(type
, offset
);
722 atomic_long_inc(&nr_swap_pages
);
724 spin_unlock(&si
->lock
);
725 return (swp_entry_t
) {0};
728 static struct swap_info_struct
*swap_info_get(swp_entry_t entry
)
730 struct swap_info_struct
*p
;
731 unsigned long offset
, type
;
735 type
= swp_type(entry
);
736 if (type
>= nr_swapfiles
)
739 if (!(p
->flags
& SWP_USED
))
741 offset
= swp_offset(entry
);
742 if (offset
>= p
->max
)
744 if (!p
->swap_map
[offset
])
750 pr_err("swap_free: %s%08lx\n", Unused_offset
, entry
.val
);
753 pr_err("swap_free: %s%08lx\n", Bad_offset
, entry
.val
);
756 pr_err("swap_free: %s%08lx\n", Unused_file
, entry
.val
);
759 pr_err("swap_free: %s%08lx\n", Bad_file
, entry
.val
);
764 static unsigned char swap_entry_free(struct swap_info_struct
*p
,
765 swp_entry_t entry
, unsigned char usage
)
767 unsigned long offset
= swp_offset(entry
);
769 unsigned char has_cache
;
771 count
= p
->swap_map
[offset
];
772 has_cache
= count
& SWAP_HAS_CACHE
;
773 count
&= ~SWAP_HAS_CACHE
;
775 if (usage
== SWAP_HAS_CACHE
) {
776 VM_BUG_ON(!has_cache
);
778 } else if (count
== SWAP_MAP_SHMEM
) {
780 * Or we could insist on shmem.c using a special
781 * swap_shmem_free() and free_shmem_swap_and_cache()...
784 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
785 if (count
== COUNT_CONTINUED
) {
786 if (swap_count_continued(p
, offset
, count
))
787 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
789 count
= SWAP_MAP_MAX
;
794 usage
= count
| has_cache
;
795 p
->swap_map
[offset
] = usage
;
797 /* free if no reference */
799 mem_cgroup_uncharge_swap(entry
);
800 dec_cluster_info_page(p
, p
->cluster_info
, offset
);
801 if (offset
< p
->lowest_bit
)
802 p
->lowest_bit
= offset
;
803 if (offset
> p
->highest_bit
) {
804 bool was_full
= !p
->highest_bit
;
805 p
->highest_bit
= offset
;
806 if (was_full
&& (p
->flags
& SWP_WRITEOK
)) {
807 spin_lock(&swap_avail_lock
);
808 WARN_ON(!plist_node_empty(&p
->avail_list
));
809 if (plist_node_empty(&p
->avail_list
))
810 plist_add(&p
->avail_list
,
812 spin_unlock(&swap_avail_lock
);
815 atomic_long_inc(&nr_swap_pages
);
817 frontswap_invalidate_page(p
->type
, offset
);
818 if (p
->flags
& SWP_BLKDEV
) {
819 struct gendisk
*disk
= p
->bdev
->bd_disk
;
820 if (disk
->fops
->swap_slot_free_notify
)
821 disk
->fops
->swap_slot_free_notify(p
->bdev
,
830 * Caller has made sure that the swap device corresponding to entry
831 * is still around or has not been recycled.
833 void swap_free(swp_entry_t entry
)
835 struct swap_info_struct
*p
;
837 p
= swap_info_get(entry
);
839 swap_entry_free(p
, entry
, 1);
840 spin_unlock(&p
->lock
);
845 * Called after dropping swapcache to decrease refcnt to swap entries.
847 void swapcache_free(swp_entry_t entry
)
849 struct swap_info_struct
*p
;
851 p
= swap_info_get(entry
);
853 swap_entry_free(p
, entry
, SWAP_HAS_CACHE
);
854 spin_unlock(&p
->lock
);
859 * How many references to page are currently swapped out?
860 * This does not give an exact answer when swap count is continued,
861 * but does include the high COUNT_CONTINUED flag to allow for that.
863 int page_swapcount(struct page
*page
)
866 struct swap_info_struct
*p
;
869 entry
.val
= page_private(page
);
870 p
= swap_info_get(entry
);
872 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
873 spin_unlock(&p
->lock
);
879 * How many references to @entry are currently swapped out?
880 * This considers COUNT_CONTINUED so it returns exact answer.
882 int swp_swapcount(swp_entry_t entry
)
884 int count
, tmp_count
, n
;
885 struct swap_info_struct
*p
;
890 p
= swap_info_get(entry
);
894 count
= swap_count(p
->swap_map
[swp_offset(entry
)]);
895 if (!(count
& COUNT_CONTINUED
))
898 count
&= ~COUNT_CONTINUED
;
899 n
= SWAP_MAP_MAX
+ 1;
901 offset
= swp_offset(entry
);
902 page
= vmalloc_to_page(p
->swap_map
+ offset
);
903 offset
&= ~PAGE_MASK
;
904 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
907 page
= list_next_entry(page
, lru
);
908 map
= kmap_atomic(page
);
909 tmp_count
= map
[offset
];
912 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
913 n
*= (SWAP_CONT_MAX
+ 1);
914 } while (tmp_count
& COUNT_CONTINUED
);
916 spin_unlock(&p
->lock
);
921 * We can write to an anon page without COW if there are no other references
922 * to it. And as a side-effect, free up its swap: because the old content
923 * on disk will never be read, and seeking back there to write new content
924 * later would only waste time away from clustering.
926 * NOTE: total_mapcount should not be relied upon by the caller if
927 * reuse_swap_page() returns false, but it may be always overwritten
928 * (see the other implementation for CONFIG_SWAP=n).
930 bool reuse_swap_page(struct page
*page
, int *total_mapcount
)
934 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
935 if (unlikely(PageKsm(page
)))
937 count
= page_trans_huge_mapcount(page
, total_mapcount
);
938 if (count
<= 1 && PageSwapCache(page
)) {
939 count
+= page_swapcount(page
);
940 if (count
== 1 && !PageWriteback(page
)) {
941 delete_from_swap_cache(page
);
949 * If swap is getting full, or if there are no more mappings of this page,
950 * then try_to_free_swap is called to free its swap space.
952 int try_to_free_swap(struct page
*page
)
954 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
956 if (!PageSwapCache(page
))
958 if (PageWriteback(page
))
960 if (page_swapcount(page
))
964 * Once hibernation has begun to create its image of memory,
965 * there's a danger that one of the calls to try_to_free_swap()
966 * - most probably a call from __try_to_reclaim_swap() while
967 * hibernation is allocating its own swap pages for the image,
968 * but conceivably even a call from memory reclaim - will free
969 * the swap from a page which has already been recorded in the
970 * image as a clean swapcache page, and then reuse its swap for
971 * another page of the image. On waking from hibernation, the
972 * original page might be freed under memory pressure, then
973 * later read back in from swap, now with the wrong data.
975 * Hibernation suspends storage while it is writing the image
976 * to disk so check that here.
978 if (pm_suspended_storage())
981 delete_from_swap_cache(page
);
987 * Free the swap entry like above, but also try to
988 * free the page cache entry if it is the last user.
990 int free_swap_and_cache(swp_entry_t entry
)
992 struct swap_info_struct
*p
;
993 struct page
*page
= NULL
;
995 if (non_swap_entry(entry
))
998 p
= swap_info_get(entry
);
1000 if (swap_entry_free(p
, entry
, 1) == SWAP_HAS_CACHE
) {
1001 page
= find_get_page(swap_address_space(entry
),
1003 if (page
&& !trylock_page(page
)) {
1008 spin_unlock(&p
->lock
);
1012 * Not mapped elsewhere, or swap space full? Free it!
1013 * Also recheck PageSwapCache now page is locked (above).
1015 if (PageSwapCache(page
) && !PageWriteback(page
) &&
1016 (!page_mapped(page
) || mem_cgroup_swap_full(page
))) {
1017 delete_from_swap_cache(page
);
1026 #ifdef CONFIG_HIBERNATION
1028 * Find the swap type that corresponds to given device (if any).
1030 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1031 * from 0, in which the swap header is expected to be located.
1033 * This is needed for the suspend to disk (aka swsusp).
1035 int swap_type_of(dev_t device
, sector_t offset
, struct block_device
**bdev_p
)
1037 struct block_device
*bdev
= NULL
;
1041 bdev
= bdget(device
);
1043 spin_lock(&swap_lock
);
1044 for (type
= 0; type
< nr_swapfiles
; type
++) {
1045 struct swap_info_struct
*sis
= swap_info
[type
];
1047 if (!(sis
->flags
& SWP_WRITEOK
))
1052 *bdev_p
= bdgrab(sis
->bdev
);
1054 spin_unlock(&swap_lock
);
1057 if (bdev
== sis
->bdev
) {
1058 struct swap_extent
*se
= &sis
->first_swap_extent
;
1060 if (se
->start_block
== offset
) {
1062 *bdev_p
= bdgrab(sis
->bdev
);
1064 spin_unlock(&swap_lock
);
1070 spin_unlock(&swap_lock
);
1078 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1079 * corresponding to given index in swap_info (swap type).
1081 sector_t
swapdev_block(int type
, pgoff_t offset
)
1083 struct block_device
*bdev
;
1085 if ((unsigned int)type
>= nr_swapfiles
)
1087 if (!(swap_info
[type
]->flags
& SWP_WRITEOK
))
1089 return map_swap_entry(swp_entry(type
, offset
), &bdev
);
1093 * Return either the total number of swap pages of given type, or the number
1094 * of free pages of that type (depending on @free)
1096 * This is needed for software suspend
1098 unsigned int count_swap_pages(int type
, int free
)
1102 spin_lock(&swap_lock
);
1103 if ((unsigned int)type
< nr_swapfiles
) {
1104 struct swap_info_struct
*sis
= swap_info
[type
];
1106 spin_lock(&sis
->lock
);
1107 if (sis
->flags
& SWP_WRITEOK
) {
1110 n
-= sis
->inuse_pages
;
1112 spin_unlock(&sis
->lock
);
1114 spin_unlock(&swap_lock
);
1117 #endif /* CONFIG_HIBERNATION */
1119 static inline int pte_same_as_swp(pte_t pte
, pte_t swp_pte
)
1121 return pte_same(pte_swp_clear_soft_dirty(pte
), swp_pte
);
1125 * No need to decide whether this PTE shares the swap entry with others,
1126 * just let do_wp_page work it out if a write is requested later - to
1127 * force COW, vm_page_prot omits write permission from any private vma.
1129 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1130 unsigned long addr
, swp_entry_t entry
, struct page
*page
)
1132 struct page
*swapcache
;
1133 struct mem_cgroup
*memcg
;
1139 page
= ksm_might_need_to_copy(page
, vma
, addr
);
1140 if (unlikely(!page
))
1143 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
1149 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
1150 if (unlikely(!pte_same_as_swp(*pte
, swp_entry_to_pte(entry
)))) {
1151 mem_cgroup_cancel_charge(page
, memcg
, false);
1156 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
1157 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
1159 set_pte_at(vma
->vm_mm
, addr
, pte
,
1160 pte_mkold(mk_pte(page
, vma
->vm_page_prot
)));
1161 if (page
== swapcache
) {
1162 page_add_anon_rmap(page
, vma
, addr
, false);
1163 mem_cgroup_commit_charge(page
, memcg
, true, false);
1164 } else { /* ksm created a completely new copy */
1165 page_add_new_anon_rmap(page
, vma
, addr
, false);
1166 mem_cgroup_commit_charge(page
, memcg
, false, false);
1167 lru_cache_add_active_or_unevictable(page
, vma
);
1171 * Move the page to the active list so it is not
1172 * immediately swapped out again after swapon.
1174 activate_page(page
);
1176 pte_unmap_unlock(pte
, ptl
);
1178 if (page
!= swapcache
) {
1185 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1186 unsigned long addr
, unsigned long end
,
1187 swp_entry_t entry
, struct page
*page
)
1189 pte_t swp_pte
= swp_entry_to_pte(entry
);
1194 * We don't actually need pte lock while scanning for swp_pte: since
1195 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1196 * page table while we're scanning; though it could get zapped, and on
1197 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1198 * of unmatched parts which look like swp_pte, so unuse_pte must
1199 * recheck under pte lock. Scanning without pte lock lets it be
1200 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1202 pte
= pte_offset_map(pmd
, addr
);
1205 * swapoff spends a _lot_ of time in this loop!
1206 * Test inline before going to call unuse_pte.
1208 if (unlikely(pte_same_as_swp(*pte
, swp_pte
))) {
1210 ret
= unuse_pte(vma
, pmd
, addr
, entry
, page
);
1213 pte
= pte_offset_map(pmd
, addr
);
1215 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1221 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
1222 unsigned long addr
, unsigned long end
,
1223 swp_entry_t entry
, struct page
*page
)
1229 pmd
= pmd_offset(pud
, addr
);
1231 next
= pmd_addr_end(addr
, end
);
1232 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1234 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, entry
, page
);
1237 } while (pmd
++, addr
= next
, addr
!= end
);
1241 static inline int unuse_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
1242 unsigned long addr
, unsigned long end
,
1243 swp_entry_t entry
, struct page
*page
)
1249 pud
= pud_offset(pgd
, addr
);
1251 next
= pud_addr_end(addr
, end
);
1252 if (pud_none_or_clear_bad(pud
))
1254 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, entry
, page
);
1257 } while (pud
++, addr
= next
, addr
!= end
);
1261 static int unuse_vma(struct vm_area_struct
*vma
,
1262 swp_entry_t entry
, struct page
*page
)
1265 unsigned long addr
, end
, next
;
1268 if (page_anon_vma(page
)) {
1269 addr
= page_address_in_vma(page
, vma
);
1270 if (addr
== -EFAULT
)
1273 end
= addr
+ PAGE_SIZE
;
1275 addr
= vma
->vm_start
;
1279 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1281 next
= pgd_addr_end(addr
, end
);
1282 if (pgd_none_or_clear_bad(pgd
))
1284 ret
= unuse_pud_range(vma
, pgd
, addr
, next
, entry
, page
);
1287 } while (pgd
++, addr
= next
, addr
!= end
);
1291 static int unuse_mm(struct mm_struct
*mm
,
1292 swp_entry_t entry
, struct page
*page
)
1294 struct vm_area_struct
*vma
;
1297 if (!down_read_trylock(&mm
->mmap_sem
)) {
1299 * Activate page so shrink_inactive_list is unlikely to unmap
1300 * its ptes while lock is dropped, so swapoff can make progress.
1302 activate_page(page
);
1304 down_read(&mm
->mmap_sem
);
1307 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1308 if (vma
->anon_vma
&& (ret
= unuse_vma(vma
, entry
, page
)))
1311 up_read(&mm
->mmap_sem
);
1312 return (ret
< 0)? ret
: 0;
1316 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1317 * from current position to next entry still in use.
1318 * Recycle to start on reaching the end, returning 0 when empty.
1320 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
1321 unsigned int prev
, bool frontswap
)
1323 unsigned int max
= si
->max
;
1324 unsigned int i
= prev
;
1325 unsigned char count
;
1328 * No need for swap_lock here: we're just looking
1329 * for whether an entry is in use, not modifying it; false
1330 * hits are okay, and sys_swapoff() has already prevented new
1331 * allocations from this area (while holding swap_lock).
1340 * No entries in use at top of swap_map,
1341 * loop back to start and recheck there.
1348 if (frontswap_test(si
, i
))
1353 count
= READ_ONCE(si
->swap_map
[i
]);
1354 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
1361 * We completely avoid races by reading each swap page in advance,
1362 * and then search for the process using it. All the necessary
1363 * page table adjustments can then be made atomically.
1365 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1366 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1368 int try_to_unuse(unsigned int type
, bool frontswap
,
1369 unsigned long pages_to_unuse
)
1371 struct swap_info_struct
*si
= swap_info
[type
];
1372 struct mm_struct
*start_mm
;
1373 volatile unsigned char *swap_map
; /* swap_map is accessed without
1374 * locking. Mark it as volatile
1375 * to prevent compiler doing
1378 unsigned char swcount
;
1385 * When searching mms for an entry, a good strategy is to
1386 * start at the first mm we freed the previous entry from
1387 * (though actually we don't notice whether we or coincidence
1388 * freed the entry). Initialize this start_mm with a hold.
1390 * A simpler strategy would be to start at the last mm we
1391 * freed the previous entry from; but that would take less
1392 * advantage of mmlist ordering, which clusters forked mms
1393 * together, child after parent. If we race with dup_mmap(), we
1394 * prefer to resolve parent before child, lest we miss entries
1395 * duplicated after we scanned child: using last mm would invert
1398 start_mm
= &init_mm
;
1399 atomic_inc(&init_mm
.mm_users
);
1402 * Keep on scanning until all entries have gone. Usually,
1403 * one pass through swap_map is enough, but not necessarily:
1404 * there are races when an instance of an entry might be missed.
1406 while ((i
= find_next_to_unuse(si
, i
, frontswap
)) != 0) {
1407 if (signal_pending(current
)) {
1413 * Get a page for the entry, using the existing swap
1414 * cache page if there is one. Otherwise, get a clean
1415 * page and read the swap into it.
1417 swap_map
= &si
->swap_map
[i
];
1418 entry
= swp_entry(type
, i
);
1419 page
= read_swap_cache_async(entry
,
1420 GFP_HIGHUSER_MOVABLE
, NULL
, 0);
1423 * Either swap_duplicate() failed because entry
1424 * has been freed independently, and will not be
1425 * reused since sys_swapoff() already disabled
1426 * allocation from here, or alloc_page() failed.
1428 swcount
= *swap_map
;
1430 * We don't hold lock here, so the swap entry could be
1431 * SWAP_MAP_BAD (when the cluster is discarding).
1432 * Instead of fail out, We can just skip the swap
1433 * entry because swapoff will wait for discarding
1436 if (!swcount
|| swcount
== SWAP_MAP_BAD
)
1443 * Don't hold on to start_mm if it looks like exiting.
1445 if (atomic_read(&start_mm
->mm_users
) == 1) {
1447 start_mm
= &init_mm
;
1448 atomic_inc(&init_mm
.mm_users
);
1452 * Wait for and lock page. When do_swap_page races with
1453 * try_to_unuse, do_swap_page can handle the fault much
1454 * faster than try_to_unuse can locate the entry. This
1455 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1456 * defer to do_swap_page in such a case - in some tests,
1457 * do_swap_page and try_to_unuse repeatedly compete.
1459 wait_on_page_locked(page
);
1460 wait_on_page_writeback(page
);
1462 wait_on_page_writeback(page
);
1465 * Remove all references to entry.
1467 swcount
= *swap_map
;
1468 if (swap_count(swcount
) == SWAP_MAP_SHMEM
) {
1469 retval
= shmem_unuse(entry
, page
);
1470 /* page has already been unlocked and released */
1475 if (swap_count(swcount
) && start_mm
!= &init_mm
)
1476 retval
= unuse_mm(start_mm
, entry
, page
);
1478 if (swap_count(*swap_map
)) {
1479 int set_start_mm
= (*swap_map
>= swcount
);
1480 struct list_head
*p
= &start_mm
->mmlist
;
1481 struct mm_struct
*new_start_mm
= start_mm
;
1482 struct mm_struct
*prev_mm
= start_mm
;
1483 struct mm_struct
*mm
;
1485 atomic_inc(&new_start_mm
->mm_users
);
1486 atomic_inc(&prev_mm
->mm_users
);
1487 spin_lock(&mmlist_lock
);
1488 while (swap_count(*swap_map
) && !retval
&&
1489 (p
= p
->next
) != &start_mm
->mmlist
) {
1490 mm
= list_entry(p
, struct mm_struct
, mmlist
);
1491 if (!atomic_inc_not_zero(&mm
->mm_users
))
1493 spin_unlock(&mmlist_lock
);
1499 swcount
= *swap_map
;
1500 if (!swap_count(swcount
)) /* any usage ? */
1502 else if (mm
== &init_mm
)
1505 retval
= unuse_mm(mm
, entry
, page
);
1507 if (set_start_mm
&& *swap_map
< swcount
) {
1508 mmput(new_start_mm
);
1509 atomic_inc(&mm
->mm_users
);
1513 spin_lock(&mmlist_lock
);
1515 spin_unlock(&mmlist_lock
);
1518 start_mm
= new_start_mm
;
1527 * If a reference remains (rare), we would like to leave
1528 * the page in the swap cache; but try_to_unmap could
1529 * then re-duplicate the entry once we drop page lock,
1530 * so we might loop indefinitely; also, that page could
1531 * not be swapped out to other storage meanwhile. So:
1532 * delete from cache even if there's another reference,
1533 * after ensuring that the data has been saved to disk -
1534 * since if the reference remains (rarer), it will be
1535 * read from disk into another page. Splitting into two
1536 * pages would be incorrect if swap supported "shared
1537 * private" pages, but they are handled by tmpfs files.
1539 * Given how unuse_vma() targets one particular offset
1540 * in an anon_vma, once the anon_vma has been determined,
1541 * this splitting happens to be just what is needed to
1542 * handle where KSM pages have been swapped out: re-reading
1543 * is unnecessarily slow, but we can fix that later on.
1545 if (swap_count(*swap_map
) &&
1546 PageDirty(page
) && PageSwapCache(page
)) {
1547 struct writeback_control wbc
= {
1548 .sync_mode
= WB_SYNC_NONE
,
1551 swap_writepage(page
, &wbc
);
1553 wait_on_page_writeback(page
);
1557 * It is conceivable that a racing task removed this page from
1558 * swap cache just before we acquired the page lock at the top,
1559 * or while we dropped it in unuse_mm(). The page might even
1560 * be back in swap cache on another swap area: that we must not
1561 * delete, since it may not have been written out to swap yet.
1563 if (PageSwapCache(page
) &&
1564 likely(page_private(page
) == entry
.val
))
1565 delete_from_swap_cache(page
);
1568 * So we could skip searching mms once swap count went
1569 * to 1, we did not mark any present ptes as dirty: must
1570 * mark page dirty so shrink_page_list will preserve it.
1577 * Make sure that we aren't completely killing
1578 * interactive performance.
1581 if (frontswap
&& pages_to_unuse
> 0) {
1582 if (!--pages_to_unuse
)
1592 * After a successful try_to_unuse, if no swap is now in use, we know
1593 * we can empty the mmlist. swap_lock must be held on entry and exit.
1594 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1595 * added to the mmlist just after page_duplicate - before would be racy.
1597 static void drain_mmlist(void)
1599 struct list_head
*p
, *next
;
1602 for (type
= 0; type
< nr_swapfiles
; type
++)
1603 if (swap_info
[type
]->inuse_pages
)
1605 spin_lock(&mmlist_lock
);
1606 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
1608 spin_unlock(&mmlist_lock
);
1612 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1613 * corresponds to page offset for the specified swap entry.
1614 * Note that the type of this function is sector_t, but it returns page offset
1615 * into the bdev, not sector offset.
1617 static sector_t
map_swap_entry(swp_entry_t entry
, struct block_device
**bdev
)
1619 struct swap_info_struct
*sis
;
1620 struct swap_extent
*start_se
;
1621 struct swap_extent
*se
;
1624 sis
= swap_info
[swp_type(entry
)];
1627 offset
= swp_offset(entry
);
1628 start_se
= sis
->curr_swap_extent
;
1632 if (se
->start_page
<= offset
&&
1633 offset
< (se
->start_page
+ se
->nr_pages
)) {
1634 return se
->start_block
+ (offset
- se
->start_page
);
1636 se
= list_next_entry(se
, list
);
1637 sis
->curr_swap_extent
= se
;
1638 BUG_ON(se
== start_se
); /* It *must* be present */
1643 * Returns the page offset into bdev for the specified page's swap entry.
1645 sector_t
map_swap_page(struct page
*page
, struct block_device
**bdev
)
1648 entry
.val
= page_private(page
);
1649 return map_swap_entry(entry
, bdev
);
1653 * Free all of a swapdev's extent information
1655 static void destroy_swap_extents(struct swap_info_struct
*sis
)
1657 while (!list_empty(&sis
->first_swap_extent
.list
)) {
1658 struct swap_extent
*se
;
1660 se
= list_first_entry(&sis
->first_swap_extent
.list
,
1661 struct swap_extent
, list
);
1662 list_del(&se
->list
);
1666 if (sis
->flags
& SWP_FILE
) {
1667 struct file
*swap_file
= sis
->swap_file
;
1668 struct address_space
*mapping
= swap_file
->f_mapping
;
1670 sis
->flags
&= ~SWP_FILE
;
1671 mapping
->a_ops
->swap_deactivate(swap_file
);
1676 * Add a block range (and the corresponding page range) into this swapdev's
1677 * extent list. The extent list is kept sorted in page order.
1679 * This function rather assumes that it is called in ascending page order.
1682 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
1683 unsigned long nr_pages
, sector_t start_block
)
1685 struct swap_extent
*se
;
1686 struct swap_extent
*new_se
;
1687 struct list_head
*lh
;
1689 if (start_page
== 0) {
1690 se
= &sis
->first_swap_extent
;
1691 sis
->curr_swap_extent
= se
;
1693 se
->nr_pages
= nr_pages
;
1694 se
->start_block
= start_block
;
1697 lh
= sis
->first_swap_extent
.list
.prev
; /* Highest extent */
1698 se
= list_entry(lh
, struct swap_extent
, list
);
1699 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
1700 if (se
->start_block
+ se
->nr_pages
== start_block
) {
1702 se
->nr_pages
+= nr_pages
;
1708 * No merge. Insert a new extent, preserving ordering.
1710 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
1713 new_se
->start_page
= start_page
;
1714 new_se
->nr_pages
= nr_pages
;
1715 new_se
->start_block
= start_block
;
1717 list_add_tail(&new_se
->list
, &sis
->first_swap_extent
.list
);
1722 * A `swap extent' is a simple thing which maps a contiguous range of pages
1723 * onto a contiguous range of disk blocks. An ordered list of swap extents
1724 * is built at swapon time and is then used at swap_writepage/swap_readpage
1725 * time for locating where on disk a page belongs.
1727 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1728 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1729 * swap files identically.
1731 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1732 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1733 * swapfiles are handled *identically* after swapon time.
1735 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1736 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1737 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1738 * requirements, they are simply tossed out - we will never use those blocks
1741 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1742 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1743 * which will scribble on the fs.
1745 * The amount of disk space which a single swap extent represents varies.
1746 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1747 * extents in the list. To avoid much list walking, we cache the previous
1748 * search location in `curr_swap_extent', and start new searches from there.
1749 * This is extremely effective. The average number of iterations in
1750 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1752 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
1754 struct file
*swap_file
= sis
->swap_file
;
1755 struct address_space
*mapping
= swap_file
->f_mapping
;
1756 struct inode
*inode
= mapping
->host
;
1759 if (S_ISBLK(inode
->i_mode
)) {
1760 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1765 if (mapping
->a_ops
->swap_activate
) {
1766 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
1768 sis
->flags
|= SWP_FILE
;
1769 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
1775 return generic_swapfile_activate(sis
, swap_file
, span
);
1778 static void _enable_swap_info(struct swap_info_struct
*p
, int prio
,
1779 unsigned char *swap_map
,
1780 struct swap_cluster_info
*cluster_info
)
1785 p
->prio
= --least_priority
;
1787 * the plist prio is negated because plist ordering is
1788 * low-to-high, while swap ordering is high-to-low
1790 p
->list
.prio
= -p
->prio
;
1791 p
->avail_list
.prio
= -p
->prio
;
1792 p
->swap_map
= swap_map
;
1793 p
->cluster_info
= cluster_info
;
1794 p
->flags
|= SWP_WRITEOK
;
1795 atomic_long_add(p
->pages
, &nr_swap_pages
);
1796 total_swap_pages
+= p
->pages
;
1798 assert_spin_locked(&swap_lock
);
1800 * both lists are plists, and thus priority ordered.
1801 * swap_active_head needs to be priority ordered for swapoff(),
1802 * which on removal of any swap_info_struct with an auto-assigned
1803 * (i.e. negative) priority increments the auto-assigned priority
1804 * of any lower-priority swap_info_structs.
1805 * swap_avail_head needs to be priority ordered for get_swap_page(),
1806 * which allocates swap pages from the highest available priority
1809 plist_add(&p
->list
, &swap_active_head
);
1810 spin_lock(&swap_avail_lock
);
1811 plist_add(&p
->avail_list
, &swap_avail_head
);
1812 spin_unlock(&swap_avail_lock
);
1815 static void enable_swap_info(struct swap_info_struct
*p
, int prio
,
1816 unsigned char *swap_map
,
1817 struct swap_cluster_info
*cluster_info
,
1818 unsigned long *frontswap_map
)
1820 frontswap_init(p
->type
, frontswap_map
);
1821 spin_lock(&swap_lock
);
1822 spin_lock(&p
->lock
);
1823 _enable_swap_info(p
, prio
, swap_map
, cluster_info
);
1824 spin_unlock(&p
->lock
);
1825 spin_unlock(&swap_lock
);
1828 static void reinsert_swap_info(struct swap_info_struct
*p
)
1830 spin_lock(&swap_lock
);
1831 spin_lock(&p
->lock
);
1832 _enable_swap_info(p
, p
->prio
, p
->swap_map
, p
->cluster_info
);
1833 spin_unlock(&p
->lock
);
1834 spin_unlock(&swap_lock
);
1837 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
1839 struct swap_info_struct
*p
= NULL
;
1840 unsigned char *swap_map
;
1841 struct swap_cluster_info
*cluster_info
;
1842 unsigned long *frontswap_map
;
1843 struct file
*swap_file
, *victim
;
1844 struct address_space
*mapping
;
1845 struct inode
*inode
;
1846 struct filename
*pathname
;
1848 unsigned int old_block_size
;
1850 if (!capable(CAP_SYS_ADMIN
))
1853 BUG_ON(!current
->mm
);
1855 pathname
= getname(specialfile
);
1856 if (IS_ERR(pathname
))
1857 return PTR_ERR(pathname
);
1859 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
1860 err
= PTR_ERR(victim
);
1864 mapping
= victim
->f_mapping
;
1865 spin_lock(&swap_lock
);
1866 plist_for_each_entry(p
, &swap_active_head
, list
) {
1867 if (p
->flags
& SWP_WRITEOK
) {
1868 if (p
->swap_file
->f_mapping
== mapping
) {
1876 spin_unlock(&swap_lock
);
1879 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
1880 vm_unacct_memory(p
->pages
);
1883 spin_unlock(&swap_lock
);
1886 spin_lock(&swap_avail_lock
);
1887 plist_del(&p
->avail_list
, &swap_avail_head
);
1888 spin_unlock(&swap_avail_lock
);
1889 spin_lock(&p
->lock
);
1891 struct swap_info_struct
*si
= p
;
1893 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
1896 si
->avail_list
.prio
--;
1900 plist_del(&p
->list
, &swap_active_head
);
1901 atomic_long_sub(p
->pages
, &nr_swap_pages
);
1902 total_swap_pages
-= p
->pages
;
1903 p
->flags
&= ~SWP_WRITEOK
;
1904 spin_unlock(&p
->lock
);
1905 spin_unlock(&swap_lock
);
1907 set_current_oom_origin();
1908 err
= try_to_unuse(p
->type
, false, 0); /* force unuse all pages */
1909 clear_current_oom_origin();
1912 /* re-insert swap space back into swap_list */
1913 reinsert_swap_info(p
);
1917 flush_work(&p
->discard_work
);
1919 destroy_swap_extents(p
);
1920 if (p
->flags
& SWP_CONTINUED
)
1921 free_swap_count_continuations(p
);
1923 mutex_lock(&swapon_mutex
);
1924 spin_lock(&swap_lock
);
1925 spin_lock(&p
->lock
);
1928 /* wait for anyone still in scan_swap_map */
1929 p
->highest_bit
= 0; /* cuts scans short */
1930 while (p
->flags
>= SWP_SCANNING
) {
1931 spin_unlock(&p
->lock
);
1932 spin_unlock(&swap_lock
);
1933 schedule_timeout_uninterruptible(1);
1934 spin_lock(&swap_lock
);
1935 spin_lock(&p
->lock
);
1938 swap_file
= p
->swap_file
;
1939 old_block_size
= p
->old_block_size
;
1940 p
->swap_file
= NULL
;
1942 swap_map
= p
->swap_map
;
1944 cluster_info
= p
->cluster_info
;
1945 p
->cluster_info
= NULL
;
1946 frontswap_map
= frontswap_map_get(p
);
1947 spin_unlock(&p
->lock
);
1948 spin_unlock(&swap_lock
);
1949 frontswap_invalidate_area(p
->type
);
1950 frontswap_map_set(p
, NULL
);
1951 mutex_unlock(&swapon_mutex
);
1952 free_percpu(p
->percpu_cluster
);
1953 p
->percpu_cluster
= NULL
;
1955 vfree(cluster_info
);
1956 vfree(frontswap_map
);
1957 /* Destroy swap account information */
1958 swap_cgroup_swapoff(p
->type
);
1960 inode
= mapping
->host
;
1961 if (S_ISBLK(inode
->i_mode
)) {
1962 struct block_device
*bdev
= I_BDEV(inode
);
1963 set_blocksize(bdev
, old_block_size
);
1964 blkdev_put(bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
1967 inode
->i_flags
&= ~S_SWAPFILE
;
1968 inode_unlock(inode
);
1970 filp_close(swap_file
, NULL
);
1973 * Clear the SWP_USED flag after all resources are freed so that swapon
1974 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1975 * not hold p->lock after we cleared its SWP_WRITEOK.
1977 spin_lock(&swap_lock
);
1979 spin_unlock(&swap_lock
);
1982 atomic_inc(&proc_poll_event
);
1983 wake_up_interruptible(&proc_poll_wait
);
1986 filp_close(victim
, NULL
);
1992 #ifdef CONFIG_PROC_FS
1993 static unsigned swaps_poll(struct file
*file
, poll_table
*wait
)
1995 struct seq_file
*seq
= file
->private_data
;
1997 poll_wait(file
, &proc_poll_wait
, wait
);
1999 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2000 seq
->poll_event
= atomic_read(&proc_poll_event
);
2001 return POLLIN
| POLLRDNORM
| POLLERR
| POLLPRI
;
2004 return POLLIN
| POLLRDNORM
;
2008 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2010 struct swap_info_struct
*si
;
2014 mutex_lock(&swapon_mutex
);
2017 return SEQ_START_TOKEN
;
2019 for (type
= 0; type
< nr_swapfiles
; type
++) {
2020 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2021 si
= swap_info
[type
];
2022 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2031 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2033 struct swap_info_struct
*si
= v
;
2036 if (v
== SEQ_START_TOKEN
)
2039 type
= si
->type
+ 1;
2041 for (; type
< nr_swapfiles
; type
++) {
2042 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2043 si
= swap_info
[type
];
2044 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2053 static void swap_stop(struct seq_file
*swap
, void *v
)
2055 mutex_unlock(&swapon_mutex
);
2058 static int swap_show(struct seq_file
*swap
, void *v
)
2060 struct swap_info_struct
*si
= v
;
2064 if (si
== SEQ_START_TOKEN
) {
2065 seq_puts(swap
,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2069 file
= si
->swap_file
;
2070 len
= seq_file_path(swap
, file
, " \t\n\\");
2071 seq_printf(swap
, "%*s%s\t%u\t%u\t%d\n",
2072 len
< 40 ? 40 - len
: 1, " ",
2073 S_ISBLK(file_inode(file
)->i_mode
) ?
2074 "partition" : "file\t",
2075 si
->pages
<< (PAGE_SHIFT
- 10),
2076 si
->inuse_pages
<< (PAGE_SHIFT
- 10),
2081 static const struct seq_operations swaps_op
= {
2082 .start
= swap_start
,
2088 static int swaps_open(struct inode
*inode
, struct file
*file
)
2090 struct seq_file
*seq
;
2093 ret
= seq_open(file
, &swaps_op
);
2097 seq
= file
->private_data
;
2098 seq
->poll_event
= atomic_read(&proc_poll_event
);
2102 static const struct file_operations proc_swaps_operations
= {
2105 .llseek
= seq_lseek
,
2106 .release
= seq_release
,
2110 static int __init
procswaps_init(void)
2112 proc_create("swaps", 0, NULL
, &proc_swaps_operations
);
2115 __initcall(procswaps_init
);
2116 #endif /* CONFIG_PROC_FS */
2118 #ifdef MAX_SWAPFILES_CHECK
2119 static int __init
max_swapfiles_check(void)
2121 MAX_SWAPFILES_CHECK();
2124 late_initcall(max_swapfiles_check
);
2127 static struct swap_info_struct
*alloc_swap_info(void)
2129 struct swap_info_struct
*p
;
2132 p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
2134 return ERR_PTR(-ENOMEM
);
2136 spin_lock(&swap_lock
);
2137 for (type
= 0; type
< nr_swapfiles
; type
++) {
2138 if (!(swap_info
[type
]->flags
& SWP_USED
))
2141 if (type
>= MAX_SWAPFILES
) {
2142 spin_unlock(&swap_lock
);
2144 return ERR_PTR(-EPERM
);
2146 if (type
>= nr_swapfiles
) {
2148 swap_info
[type
] = p
;
2150 * Write swap_info[type] before nr_swapfiles, in case a
2151 * racing procfs swap_start() or swap_next() is reading them.
2152 * (We never shrink nr_swapfiles, we never free this entry.)
2158 p
= swap_info
[type
];
2160 * Do not memset this entry: a racing procfs swap_next()
2161 * would be relying on p->type to remain valid.
2164 INIT_LIST_HEAD(&p
->first_swap_extent
.list
);
2165 plist_node_init(&p
->list
, 0);
2166 plist_node_init(&p
->avail_list
, 0);
2167 p
->flags
= SWP_USED
;
2168 spin_unlock(&swap_lock
);
2169 spin_lock_init(&p
->lock
);
2174 static int claim_swapfile(struct swap_info_struct
*p
, struct inode
*inode
)
2178 if (S_ISBLK(inode
->i_mode
)) {
2179 p
->bdev
= bdgrab(I_BDEV(inode
));
2180 error
= blkdev_get(p
->bdev
,
2181 FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
, p
);
2186 p
->old_block_size
= block_size(p
->bdev
);
2187 error
= set_blocksize(p
->bdev
, PAGE_SIZE
);
2190 p
->flags
|= SWP_BLKDEV
;
2191 } else if (S_ISREG(inode
->i_mode
)) {
2192 p
->bdev
= inode
->i_sb
->s_bdev
;
2194 if (IS_SWAPFILE(inode
))
2202 static unsigned long read_swap_header(struct swap_info_struct
*p
,
2203 union swap_header
*swap_header
,
2204 struct inode
*inode
)
2207 unsigned long maxpages
;
2208 unsigned long swapfilepages
;
2209 unsigned long last_page
;
2211 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
2212 pr_err("Unable to find swap-space signature\n");
2216 /* swap partition endianess hack... */
2217 if (swab32(swap_header
->info
.version
) == 1) {
2218 swab32s(&swap_header
->info
.version
);
2219 swab32s(&swap_header
->info
.last_page
);
2220 swab32s(&swap_header
->info
.nr_badpages
);
2221 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
2222 swab32s(&swap_header
->info
.badpages
[i
]);
2224 /* Check the swap header's sub-version */
2225 if (swap_header
->info
.version
!= 1) {
2226 pr_warn("Unable to handle swap header version %d\n",
2227 swap_header
->info
.version
);
2232 p
->cluster_next
= 1;
2236 * Find out how many pages are allowed for a single swap
2237 * device. There are two limiting factors: 1) the number
2238 * of bits for the swap offset in the swp_entry_t type, and
2239 * 2) the number of bits in the swap pte as defined by the
2240 * different architectures. In order to find the
2241 * largest possible bit mask, a swap entry with swap type 0
2242 * and swap offset ~0UL is created, encoded to a swap pte,
2243 * decoded to a swp_entry_t again, and finally the swap
2244 * offset is extracted. This will mask all the bits from
2245 * the initial ~0UL mask that can't be encoded in either
2246 * the swp_entry_t or the architecture definition of a
2249 maxpages
= swp_offset(pte_to_swp_entry(
2250 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2251 last_page
= swap_header
->info
.last_page
;
2252 if (last_page
> maxpages
) {
2253 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2254 maxpages
<< (PAGE_SHIFT
- 10),
2255 last_page
<< (PAGE_SHIFT
- 10));
2257 if (maxpages
> last_page
) {
2258 maxpages
= last_page
+ 1;
2259 /* p->max is an unsigned int: don't overflow it */
2260 if ((unsigned int)maxpages
== 0)
2261 maxpages
= UINT_MAX
;
2263 p
->highest_bit
= maxpages
- 1;
2267 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
2268 if (swapfilepages
&& maxpages
> swapfilepages
) {
2269 pr_warn("Swap area shorter than signature indicates\n");
2272 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
2274 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
2280 static int setup_swap_map_and_extents(struct swap_info_struct
*p
,
2281 union swap_header
*swap_header
,
2282 unsigned char *swap_map
,
2283 struct swap_cluster_info
*cluster_info
,
2284 unsigned long maxpages
,
2288 unsigned int nr_good_pages
;
2290 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
2291 unsigned long idx
= p
->cluster_next
/ SWAPFILE_CLUSTER
;
2293 nr_good_pages
= maxpages
- 1; /* omit header page */
2295 cluster_set_null(&p
->free_cluster_head
);
2296 cluster_set_null(&p
->free_cluster_tail
);
2297 cluster_set_null(&p
->discard_cluster_head
);
2298 cluster_set_null(&p
->discard_cluster_tail
);
2300 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
2301 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
2302 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
2304 if (page_nr
< maxpages
) {
2305 swap_map
[page_nr
] = SWAP_MAP_BAD
;
2308 * Haven't marked the cluster free yet, no list
2309 * operation involved
2311 inc_cluster_info_page(p
, cluster_info
, page_nr
);
2315 /* Haven't marked the cluster free yet, no list operation involved */
2316 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
2317 inc_cluster_info_page(p
, cluster_info
, i
);
2319 if (nr_good_pages
) {
2320 swap_map
[0] = SWAP_MAP_BAD
;
2322 * Not mark the cluster free yet, no list
2323 * operation involved
2325 inc_cluster_info_page(p
, cluster_info
, 0);
2327 p
->pages
= nr_good_pages
;
2328 nr_extents
= setup_swap_extents(p
, span
);
2331 nr_good_pages
= p
->pages
;
2333 if (!nr_good_pages
) {
2334 pr_warn("Empty swap-file\n");
2341 for (i
= 0; i
< nr_clusters
; i
++) {
2342 if (!cluster_count(&cluster_info
[idx
])) {
2343 cluster_set_flag(&cluster_info
[idx
], CLUSTER_FLAG_FREE
);
2344 if (cluster_is_null(&p
->free_cluster_head
)) {
2345 cluster_set_next_flag(&p
->free_cluster_head
,
2347 cluster_set_next_flag(&p
->free_cluster_tail
,
2352 tail
= cluster_next(&p
->free_cluster_tail
);
2353 cluster_set_next(&cluster_info
[tail
], idx
);
2354 cluster_set_next_flag(&p
->free_cluster_tail
,
2359 if (idx
== nr_clusters
)
2366 * Helper to sys_swapon determining if a given swap
2367 * backing device queue supports DISCARD operations.
2369 static bool swap_discardable(struct swap_info_struct
*si
)
2371 struct request_queue
*q
= bdev_get_queue(si
->bdev
);
2373 if (!q
|| !blk_queue_discard(q
))
2379 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
2381 struct swap_info_struct
*p
;
2382 struct filename
*name
;
2383 struct file
*swap_file
= NULL
;
2384 struct address_space
*mapping
;
2387 union swap_header
*swap_header
;
2390 unsigned long maxpages
;
2391 unsigned char *swap_map
= NULL
;
2392 struct swap_cluster_info
*cluster_info
= NULL
;
2393 unsigned long *frontswap_map
= NULL
;
2394 struct page
*page
= NULL
;
2395 struct inode
*inode
= NULL
;
2397 if (swap_flags
& ~SWAP_FLAGS_VALID
)
2400 if (!capable(CAP_SYS_ADMIN
))
2403 p
= alloc_swap_info();
2407 INIT_WORK(&p
->discard_work
, swap_discard_work
);
2409 name
= getname(specialfile
);
2411 error
= PTR_ERR(name
);
2415 swap_file
= file_open_name(name
, O_RDWR
|O_LARGEFILE
, 0);
2416 if (IS_ERR(swap_file
)) {
2417 error
= PTR_ERR(swap_file
);
2422 p
->swap_file
= swap_file
;
2423 mapping
= swap_file
->f_mapping
;
2424 inode
= mapping
->host
;
2426 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2427 error
= claim_swapfile(p
, inode
);
2428 if (unlikely(error
))
2432 * Read the swap header.
2434 if (!mapping
->a_ops
->readpage
) {
2438 page
= read_mapping_page(mapping
, 0, swap_file
);
2440 error
= PTR_ERR(page
);
2443 swap_header
= kmap(page
);
2445 maxpages
= read_swap_header(p
, swap_header
, inode
);
2446 if (unlikely(!maxpages
)) {
2451 /* OK, set up the swap map and apply the bad block list */
2452 swap_map
= vzalloc(maxpages
);
2457 if (p
->bdev
&& blk_queue_nonrot(bdev_get_queue(p
->bdev
))) {
2460 p
->flags
|= SWP_SOLIDSTATE
;
2462 * select a random position to start with to help wear leveling
2465 p
->cluster_next
= 1 + (prandom_u32() % p
->highest_bit
);
2467 cluster_info
= vzalloc(DIV_ROUND_UP(maxpages
,
2468 SWAPFILE_CLUSTER
) * sizeof(*cluster_info
));
2469 if (!cluster_info
) {
2473 p
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
2474 if (!p
->percpu_cluster
) {
2478 for_each_possible_cpu(cpu
) {
2479 struct percpu_cluster
*cluster
;
2480 cluster
= per_cpu_ptr(p
->percpu_cluster
, cpu
);
2481 cluster_set_null(&cluster
->index
);
2485 error
= swap_cgroup_swapon(p
->type
, maxpages
);
2489 nr_extents
= setup_swap_map_and_extents(p
, swap_header
, swap_map
,
2490 cluster_info
, maxpages
, &span
);
2491 if (unlikely(nr_extents
< 0)) {
2495 /* frontswap enabled? set up bit-per-page map for frontswap */
2496 if (IS_ENABLED(CONFIG_FRONTSWAP
))
2497 frontswap_map
= vzalloc(BITS_TO_LONGS(maxpages
) * sizeof(long));
2499 if (p
->bdev
&&(swap_flags
& SWAP_FLAG_DISCARD
) && swap_discardable(p
)) {
2501 * When discard is enabled for swap with no particular
2502 * policy flagged, we set all swap discard flags here in
2503 * order to sustain backward compatibility with older
2504 * swapon(8) releases.
2506 p
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
2510 * By flagging sys_swapon, a sysadmin can tell us to
2511 * either do single-time area discards only, or to just
2512 * perform discards for released swap page-clusters.
2513 * Now it's time to adjust the p->flags accordingly.
2515 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
2516 p
->flags
&= ~SWP_PAGE_DISCARD
;
2517 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
2518 p
->flags
&= ~SWP_AREA_DISCARD
;
2520 /* issue a swapon-time discard if it's still required */
2521 if (p
->flags
& SWP_AREA_DISCARD
) {
2522 int err
= discard_swap(p
);
2524 pr_err("swapon: discard_swap(%p): %d\n",
2529 mutex_lock(&swapon_mutex
);
2531 if (swap_flags
& SWAP_FLAG_PREFER
)
2533 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
2534 enable_swap_info(p
, prio
, swap_map
, cluster_info
, frontswap_map
);
2536 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2537 p
->pages
<<(PAGE_SHIFT
-10), name
->name
, p
->prio
,
2538 nr_extents
, (unsigned long long)span
<<(PAGE_SHIFT
-10),
2539 (p
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
2540 (p
->flags
& SWP_DISCARDABLE
) ? "D" : "",
2541 (p
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
2542 (p
->flags
& SWP_PAGE_DISCARD
) ? "c" : "",
2543 (frontswap_map
) ? "FS" : "");
2545 mutex_unlock(&swapon_mutex
);
2546 atomic_inc(&proc_poll_event
);
2547 wake_up_interruptible(&proc_poll_wait
);
2549 if (S_ISREG(inode
->i_mode
))
2550 inode
->i_flags
|= S_SWAPFILE
;
2554 free_percpu(p
->percpu_cluster
);
2555 p
->percpu_cluster
= NULL
;
2556 if (inode
&& S_ISBLK(inode
->i_mode
) && p
->bdev
) {
2557 set_blocksize(p
->bdev
, p
->old_block_size
);
2558 blkdev_put(p
->bdev
, FMODE_READ
| FMODE_WRITE
| FMODE_EXCL
);
2560 destroy_swap_extents(p
);
2561 swap_cgroup_swapoff(p
->type
);
2562 spin_lock(&swap_lock
);
2563 p
->swap_file
= NULL
;
2565 spin_unlock(&swap_lock
);
2567 vfree(cluster_info
);
2569 if (inode
&& S_ISREG(inode
->i_mode
)) {
2570 inode_unlock(inode
);
2573 filp_close(swap_file
, NULL
);
2576 if (page
&& !IS_ERR(page
)) {
2582 if (inode
&& S_ISREG(inode
->i_mode
))
2583 inode_unlock(inode
);
2587 void si_swapinfo(struct sysinfo
*val
)
2590 unsigned long nr_to_be_unused
= 0;
2592 spin_lock(&swap_lock
);
2593 for (type
= 0; type
< nr_swapfiles
; type
++) {
2594 struct swap_info_struct
*si
= swap_info
[type
];
2596 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
2597 nr_to_be_unused
+= si
->inuse_pages
;
2599 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
2600 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
2601 spin_unlock(&swap_lock
);
2605 * Verify that a swap entry is valid and increment its swap map count.
2607 * Returns error code in following case.
2609 * - swp_entry is invalid -> EINVAL
2610 * - swp_entry is migration entry -> EINVAL
2611 * - swap-cache reference is requested but there is already one. -> EEXIST
2612 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2613 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2615 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
)
2617 struct swap_info_struct
*p
;
2618 unsigned long offset
, type
;
2619 unsigned char count
;
2620 unsigned char has_cache
;
2623 if (non_swap_entry(entry
))
2626 type
= swp_type(entry
);
2627 if (type
>= nr_swapfiles
)
2629 p
= swap_info
[type
];
2630 offset
= swp_offset(entry
);
2632 spin_lock(&p
->lock
);
2633 if (unlikely(offset
>= p
->max
))
2636 count
= p
->swap_map
[offset
];
2639 * swapin_readahead() doesn't check if a swap entry is valid, so the
2640 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2642 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
2647 has_cache
= count
& SWAP_HAS_CACHE
;
2648 count
&= ~SWAP_HAS_CACHE
;
2651 if (usage
== SWAP_HAS_CACHE
) {
2653 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2654 if (!has_cache
&& count
)
2655 has_cache
= SWAP_HAS_CACHE
;
2656 else if (has_cache
) /* someone else added cache */
2658 else /* no users remaining */
2661 } else if (count
|| has_cache
) {
2663 if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
2665 else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
)
2667 else if (swap_count_continued(p
, offset
, count
))
2668 count
= COUNT_CONTINUED
;
2672 err
= -ENOENT
; /* unused swap entry */
2674 p
->swap_map
[offset
] = count
| has_cache
;
2677 spin_unlock(&p
->lock
);
2682 pr_err("swap_dup: %s%08lx\n", Bad_file
, entry
.val
);
2687 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2688 * (in which case its reference count is never incremented).
2690 void swap_shmem_alloc(swp_entry_t entry
)
2692 __swap_duplicate(entry
, SWAP_MAP_SHMEM
);
2696 * Increase reference count of swap entry by 1.
2697 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2698 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2699 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2700 * might occur if a page table entry has got corrupted.
2702 int swap_duplicate(swp_entry_t entry
)
2706 while (!err
&& __swap_duplicate(entry
, 1) == -ENOMEM
)
2707 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
2712 * @entry: swap entry for which we allocate swap cache.
2714 * Called when allocating swap cache for existing swap entry,
2715 * This can return error codes. Returns 0 at success.
2716 * -EBUSY means there is a swap cache.
2717 * Note: return code is different from swap_duplicate().
2719 int swapcache_prepare(swp_entry_t entry
)
2721 return __swap_duplicate(entry
, SWAP_HAS_CACHE
);
2724 struct swap_info_struct
*page_swap_info(struct page
*page
)
2726 swp_entry_t swap
= { .val
= page_private(page
) };
2727 BUG_ON(!PageSwapCache(page
));
2728 return swap_info
[swp_type(swap
)];
2732 * out-of-line __page_file_ methods to avoid include hell.
2734 struct address_space
*__page_file_mapping(struct page
*page
)
2736 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2737 return page_swap_info(page
)->swap_file
->f_mapping
;
2739 EXPORT_SYMBOL_GPL(__page_file_mapping
);
2741 pgoff_t
__page_file_index(struct page
*page
)
2743 swp_entry_t swap
= { .val
= page_private(page
) };
2744 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
2745 return swp_offset(swap
);
2747 EXPORT_SYMBOL_GPL(__page_file_index
);
2750 * add_swap_count_continuation - called when a swap count is duplicated
2751 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2752 * page of the original vmalloc'ed swap_map, to hold the continuation count
2753 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2754 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2756 * These continuation pages are seldom referenced: the common paths all work
2757 * on the original swap_map, only referring to a continuation page when the
2758 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2760 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2761 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2762 * can be called after dropping locks.
2764 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
2766 struct swap_info_struct
*si
;
2769 struct page
*list_page
;
2771 unsigned char count
;
2774 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2775 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2777 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
2779 si
= swap_info_get(entry
);
2782 * An acceptable race has occurred since the failing
2783 * __swap_duplicate(): the swap entry has been freed,
2784 * perhaps even the whole swap_map cleared for swapoff.
2789 offset
= swp_offset(entry
);
2790 count
= si
->swap_map
[offset
] & ~SWAP_HAS_CACHE
;
2792 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
2794 * The higher the swap count, the more likely it is that tasks
2795 * will race to add swap count continuation: we need to avoid
2796 * over-provisioning.
2802 spin_unlock(&si
->lock
);
2807 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2808 * no architecture is using highmem pages for kernel page tables: so it
2809 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2811 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2812 offset
&= ~PAGE_MASK
;
2815 * Page allocation does not initialize the page's lru field,
2816 * but it does always reset its private field.
2818 if (!page_private(head
)) {
2819 BUG_ON(count
& COUNT_CONTINUED
);
2820 INIT_LIST_HEAD(&head
->lru
);
2821 set_page_private(head
, SWP_CONTINUED
);
2822 si
->flags
|= SWP_CONTINUED
;
2825 list_for_each_entry(list_page
, &head
->lru
, lru
) {
2829 * If the previous map said no continuation, but we've found
2830 * a continuation page, free our allocation and use this one.
2832 if (!(count
& COUNT_CONTINUED
))
2835 map
= kmap_atomic(list_page
) + offset
;
2840 * If this continuation count now has some space in it,
2841 * free our allocation and use this one.
2843 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
2847 list_add_tail(&page
->lru
, &head
->lru
);
2848 page
= NULL
; /* now it's attached, don't free it */
2850 spin_unlock(&si
->lock
);
2858 * swap_count_continued - when the original swap_map count is incremented
2859 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2860 * into, carry if so, or else fail until a new continuation page is allocated;
2861 * when the original swap_map count is decremented from 0 with continuation,
2862 * borrow from the continuation and report whether it still holds more.
2863 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2865 static bool swap_count_continued(struct swap_info_struct
*si
,
2866 pgoff_t offset
, unsigned char count
)
2872 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2873 if (page_private(head
) != SWP_CONTINUED
) {
2874 BUG_ON(count
& COUNT_CONTINUED
);
2875 return false; /* need to add count continuation */
2878 offset
&= ~PAGE_MASK
;
2879 page
= list_entry(head
->lru
.next
, struct page
, lru
);
2880 map
= kmap_atomic(page
) + offset
;
2882 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
2883 goto init_map
; /* jump over SWAP_CONT_MAX checks */
2885 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
2887 * Think of how you add 1 to 999
2889 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
2891 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2892 BUG_ON(page
== head
);
2893 map
= kmap_atomic(page
) + offset
;
2895 if (*map
== SWAP_CONT_MAX
) {
2897 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2899 return false; /* add count continuation */
2900 map
= kmap_atomic(page
) + offset
;
2901 init_map
: *map
= 0; /* we didn't zero the page */
2905 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2906 while (page
!= head
) {
2907 map
= kmap_atomic(page
) + offset
;
2908 *map
= COUNT_CONTINUED
;
2910 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2912 return true; /* incremented */
2914 } else { /* decrementing */
2916 * Think of how you subtract 1 from 1000
2918 BUG_ON(count
!= COUNT_CONTINUED
);
2919 while (*map
== COUNT_CONTINUED
) {
2921 page
= list_entry(page
->lru
.next
, struct page
, lru
);
2922 BUG_ON(page
== head
);
2923 map
= kmap_atomic(page
) + offset
;
2930 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2931 while (page
!= head
) {
2932 map
= kmap_atomic(page
) + offset
;
2933 *map
= SWAP_CONT_MAX
| count
;
2934 count
= COUNT_CONTINUED
;
2936 page
= list_entry(page
->lru
.prev
, struct page
, lru
);
2938 return count
== COUNT_CONTINUED
;
2943 * free_swap_count_continuations - swapoff free all the continuation pages
2944 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2946 static void free_swap_count_continuations(struct swap_info_struct
*si
)
2950 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
2952 head
= vmalloc_to_page(si
->swap_map
+ offset
);
2953 if (page_private(head
)) {
2954 struct page
*page
, *next
;
2956 list_for_each_entry_safe(page
, next
, &head
->lru
, lru
) {
2957 list_del(&page
->lru
);